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Abstract  

Background: Liver fibrosis is a common pathway leading to cirrhosis. Cilostazol, a 

clinically-available oral phosphodiesterase-3 inhibitor, was shown to have an 

antifibrotic potential in experimental non-alcoholic fatty liver disease. However, the 

detailed mechanisms of its antifibrotic effect and the efficacy in a different experimental 

model are elusive. 

Methods: Male C57BL/6J mice were randomly assigned into five groups: control mice 

fed with normal diet (Group-1 and -2); mice fed with 0.1% and 0.3% cilostazol diet 

(Group-3 and -4, respectively), and with 0.125% clopidogrel (Group-5) as an 

anti-platelet drug control. After two weeks from the feeding, we injected carbon 

tetrachloride (CCl4) intraperitoneally twice a week for six weeks into Group-2 to -5 

mice. Group-1 was treated with only the vehicle. To clarify whether cilostazol has a 

direct effect on hepatic cells or not, we employed an in vitro study using 

primary-cultured HSCs, Kupffer cells or hepatocytes with cilostazol supplementation. 

Results: Sirius-red staining demonstrated Group-3 and -4 mice exhibited less fibrotic 

area (2.49±0.43% and 2.31±0.30%, respectively) than Group-2 mice (3.17±0.67%, 

p<0.05 and p<0.001, respectively). In vitro study revealed activation markers of HSC, 

namely α-SMA, collagen-α1(I) and PDGFR-β, were all lowered by cilostazol 
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dose-dependently, suggesting their direct effect to attenuate HSC activation. 

Conclusions:  Cilostazol could alleviate hepatic fibrogenesis induced by CCl4 even at 

clinical doses. Our data indicate the possibility of a direct effect of cilostazol on HSC 

activation in vivo, which is pivotal for liver pathogenesis. Given its clinical availability 

and safety, it may be a novel therapeutic intervention for chronic liver diseases. 

 

Key words: carbon tetrachloride; cilostazol; hepatic stellate cells; liver fibrosis; platelet 

derived growth factor; phosphodiesterase-3 inhibitor 
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Introduction 

Liver fibrosis, a precursor to cirrhosis, is a common consequence of almost all types of 

chronic liver injury, including viral, alcoholic, autoimmune, metabolic, and 

drug-induced liver diseases.1 Fibrosis results from excessive accumulation of 

extracellular matrix (ECM) components, such as collagen type I. Left untreated, fibrosis 

can progress to liver cirrhosis and ultimately lead to organ failure and death. The 

activation of hepatic stellate cells (HSCs) in response to liver injury is considered to be an 

essential event underlying hepatic fibrogenesis.2-4 The activation of HSCs refers to the 

transdifferentiation of quiescent HSCs into proliferative and contractile 

myofibroblast-like cells. These activated HSCs secrete excess ECM proteins and 

contribute to the development of hepatic fibrosis. Several types of growth factors, 

cytokines, chemokines, and their cognate receptors are associated with HSC activation. 

Among these, transforming growth factor beta (TGF-β) and platelet derived growth 

factor (PDGF) are probably the most important.5-7 HSCs play a key role in liver fibrosis, 

and so the restraint of HSC activation may attenuate liver fibrosis. Thus, numerous 

studies have attempted to suppress the activation of HSCs in order to develop new 

treatment strategies for hepatic fibrosis.8-11 Cilostazol (OPC-13013 

(6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone) is a 
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synthetic vasodilator and an antiplatelet agent. It was approved in 1988 in Japan for the 

treatment of symptoms related to occlusive peripheral arterial disease (Pletaal®) and 

subsequently in 1999 in the U.S. and 2001 in the U.K. (Pletal®) for the treatment of 

intermittent claudication symptoms.12-14 Over the past 20 years, it has widely been used 

as a potent inhibitor of platelet aggregation and thrombosis.15-18 Also, it has been shown 

to inhibit PDGF secretion in vitro.19 The antiplatelet activity of cilostazol is attributed to 

its inhibition of cyclic adenosine monophosphate (cAMP) phosphodiesterase (PDE). 

Recent studies have identified 11 different families of PDE. Of these, cilostazol 

selectively inhibits PDE3, which is predominantly expressed in platelets, vascular 

smooth muscle cells, cardiac myocytes, and hepatic cells.20, 21 Recently, increased 

intracellular cAMP has been shown to inhibit HSC activation22-25 though little is known 

about the effect of cilostazol on liver fibrosis. Furthermore, cilostazol was shown to 

have an antifibrotic potential in experimental non-alcoholic fatty liver disease.26 

However, the precise mechanisms of its antifibrotic effect and the efficacy in a different 

experimental model are elusive. This study was designed to investigate the effect of 

cilostazol on CCl4-induced hepatic fibrogenesis in mice and to clarify its mechanism of 

action by pathological examination and analysis of the primary cells derived from the 

mice. 
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Methods 

Animals.  Male C57BL/6J mice aged four weeks were purchased from Japan SLC Inc. 

(Shizuoka, Japan). After an acclimation period of seven days, the mice were randomly 

assigned to five treatment groups (n = 10 per group) in a single-blinded fashion (Fig. 1). 

Mice were maintained on standard chow and allowed free access to food and water. The 

protocol for animal handling was reviewed and approved by the Animal Care and Use 

Committee of Kyoto University.   

Mouse model of liver fibrosis.  Two weeks after assignment into treatment groups, 

mice were treated with carbon tetrachloride (CCl4; 2 µl/g body weight diluted 1:4 in corn 

oil) by intraperitoneal injection twice a week for six weeks. Mice were collected four 

days after the last injection.  

Drugs and drug treatment.  The antiplatelet drug cilostazol was a gift from Otsuka 

Pharma Co., Ltd. (Tokushima, Japan). Clopidogrel was purchased from Sanofi-Aventis 

Co., Ltd. (Tokyo, Japan). Each drug was administered in standard pellet food (Oriental 

Bio Service, Kyoto, Japan) containing cilostazol (0.1% w/w), cilostazol (0.3% w/w), or 

clopidogrel (0.125% w/w). Oral treatment with cilostazol at 0.1% and 0.3% w/w, and 

clopidogrel at 0.125% w/w of chow is equivalent to clinically used doses.27-29 The 

alternative antiplatelet drug clopidogrel was used as a control. To raise and stabilize the 
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plasma concentration of drugs, we set the pretreatment of the drugs for two weeks. All 

animals were closely observed for two weeks after the dietary change, then received CCl4 

injections for six weeks. Food intake, body-weight change were monitored throughout 

the whole experimental period for eight weeks. Blood samples were collected from 

inferior vena cava of the mice, and liver weights were recorded at sacrifice.  

Histological examination and immunohistochemistry. For histological evaluation, the 

right lobe of the liver of each mouse was collected at sacrifice and fixed in 4% 

paraformaldehyde (PFA). In order to assess fibrosis, paraffin-embedded sections were 

stained with picrosirius red (Sigma, St. Louis, MO, USA).30 Expression of alpha smooth 

muscle actin (α-SMA) and F4/80 were determined in paraffin-embedded sections by 

immunohistochemistry as described previously31 using a monoclonal antimouse α-SMA 

antibody (1:300, clone: 1A4; Dako, Glostrup, Denmark) or antimouse F4/80 antibody 

(1:100, clone: BM8, eBioscience, CA, USA), respectively. 

Sirius red-positive areas, α-SMA-positive areas and F4/80-positive areas were 

quantified from ten random 100× fields from each animal (n = 10 per treatment group) 

using image processing software (BZ analyzer; Keyence, Osaka, Japan). Data are 

presented as percentage area positively stained for sirius red, α-SMA or F4/80 . 

Measurement of hepatic collagen content. For measurement of liver fibrosis, the 
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specific amino acid of collagen type I, hydroxyproline, was quantified in liver tissue. 

Hepatic hydroxyproline content was measured as previously described.32 In brief, liver 

tissue was homogenized in 900 µl of ice-cold distilled water. Subsequently, 125 µl of 

50% trichloroacetic acid was added, and the homogenates were incubated on ice for 20 

min. Precipitated pellets were hydrolyzed for 18 h at 110°C in 6 N HCl. After hydrolysis, 

the samples were filtered and neutralized with 10 N NaOH, and hydrolysates were 

oxidized with chloramine-T (Sigma) for 25 min at room temperature. The reaction 

mixture was then incubated in Ehrlich’s-perchloric acid solution at 65°C for 20 min and 

then cooled to room temperature. Sample absorbance was measured at 560 nm in 

duplicate. Purified hydroxyproline (Sigma) was used as a standard. Hydroxyproline 

content was expressed as nanograms of hydroxyproline per gram of liver. 

Western blotting. For analysis of α-SMA protein expression, western blotting was 

performed from whole liver lysates (20 μg/lane) using standard techniques.  

Immunoblotting was performed using a polyclonal antigoat GAPDH antibody (1:200; 

#sc-20357; Santa Cruz, CA, USA) as an internal control, a polyclonal antirabbit α-SMA 

antibody (1:200; #ab-5694; Abcam, Cambridge, UK) and horseradish 

peroxidase-conjugated secondary antibodies (Santa Cruz) as described in the 

manufacturer’s protocol.33 Antibody staining was visualized with an enhanced 
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chemiluminescence system (GE Healthcare Biosciences, Little Chalfont, UK) using 

Lumino-image analyzer (LAS-3000 mini; Fujifilm, Tokyo, Japan). Band density was 

quantified from digital images using Image J software.  

Isolation and culture of hepatic cells. Primary HSCs, Kupffer cells and Hepatocytes 

were isolated from mouse livers as described previously.34, 35, 36 In brief, HSCs and 

Kupffer cells were isolated from mice by two-step collagenase–pronase perfusion 

followed by three-layer discontinuous density gradient centrifugation with 8.2% (wt/vol) 

and 14.5% (wt/vol) Nycodenz (Accurate Chemical and Scientific Corporation, NY, 

USA) to obtain HSC and Kupffer cell fractions. HSCs were collected between the 0 and 

8.2% (wt/vol) layer. Kupffer cells were collected between the 8.2 and 14.5% (wt/vol) 

layer and were purified by differential plating. HSCs and Kupffer cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM; Sigma) supplemented with 10% fetal 

bovine serum (FBS) and antibiotics. HSCs were cultured in William's Medium E 

supplemented with 10% fetal bovine serum (FBS) and antibiotics on the collagen coated 

dish. Hepatic cells were cultured in a CO2 incubator at 37°C. 

Cilostazol treatment. Cilostazol was dissolved in dimethylsulfoxide (DMSO) and 

diluted in DMEM supplemented with 10% FBS and antibiotics. Complete medium 

containing final concentration of 0 µM (control), 5 µM and 15 µM cilostazol was added 
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to cultures one day after isolation.   

Measurement of Intracellular cAMP. The intracellular cAMP level was measured as 

described previously37 using the cAMP-Glo max assay kit (Promega, USA). Briefly, 1 x 

104 cells were seeded in a 96-well-plate well with or without cilostazol in culture medium 

containing 10% FBS and incubated in 37 °C for 24 h. The cAMP detecting solution was 

added to each well and incubated at room temperature for 20 min. The Kinase-Glo 

reagent was added to each well. The plate was shaken for one min at room temperature 

and incubated at room temperature for ten min. Finally, luminescent signal was measured 

by a plate reader (Arvo; Perkin-Elmer,MA, USA). 

Time-lapse recording and cell counting. For the observation of morphological changes, 

HSCs were placed in a Lab-Tek plastic 4-well chamber slide (Nunc, Inc., Naperville, IL) 

and maintained at 37°C in 10% CO2. Time-lapse images were taken using an inverted 

microscope (BZ9000; Keyence, Osaka, Japan) over six days following cilostazol 

treatment. Cells were counted in four random 100× fields on each chamber using the 

image processing software, BZ analyzer. 

Cytochemical analysis. Primary HSCs in each chamber were fixed in 10% formalin/PBS 

for 10 min, blocked with Dako Protein Block (#X0909; Dako, Glostrup, Denmark) for 1 h, 

incubated overnight with a polyclonal antimouse α-SMA antibody (1:200; #A2524, 
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Sigma) in a blocking solution, washed with PBS, and incubated with Alexa Flour 594 

goat antimouse IgG (1:600; #A-11005; Invitrogen, CA, USA) secondary antibody and 

4′,6-diamidino-2-phenylindole (DAPI) nuclear stain for 1 h. Finally, HSCs were washed 

and observed with an inverted fluorescence microscope, BZ9000. 

Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). For gene 

expression analysis, total RNA was extracted from HSCs or Kupffer cells using TRIZOL 

reagent (Invitrogen) according to the manufacturer’s protocol. DNase treated RNA was 

reverse-transcribed using the Omniscript RT Kit (Qiagen, Hilden, Germany) according to 

the manufacturer’s protocol. RT-qPCR was performed for 55 cycles of 15 s at 95°C and 

60 s at 60°C using SYBR Green Ι Kits for the LightCycler 480 instrument (Roche 

Diagnostics, Mannheim, Germany). The relative abundance of target genes was 

calculated using a standard curve normalized to α-tublin or 18S. Probes and primers for 

α-SMA (NM_007392), collagen α1(I) (NM_007742), PDGF-BB (NM_011057), 

PDGFR-β (NM_008809), TGF-β1 (NM_011577), TGF-βR1 (NM_009370), 

TNF-α (NM_013693), IL1-β (NM_008361), MCP1 (NM_011333), F4/80 

(NM_010130), 18S (NR_003278) and α-tublin (NM_011653) were designed by and 

purchased from ABI. 

Statistical analysis. Results are reported as mean ± 95% confidence intervals (C.I.s). 
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Statical comparisons were made using Student t test or two-way or one-way analysis of 

variance (ANOVA) followed by Bonferroni post-hoc test.  p < 0.05 was considered to be 

significant. 

Results 

Cilostazol alleviated fibrous change of the liver.   

In order to validate the antifibrotic efficacy of cilostazol, we utilized a widely used 

experimental mouse model of liver fibrosis induced by CCl4 injections (twice a week 

for six weeks; Fig. 1). Based on the pharmacokinetic data of the plasma concentration 

of the drugs, 0.1% and 0.3% cilostazol and 0.125% clopidogrel were used as clinically 

equivalent doses. Collagen deposition, a marker for liver fibrosis, was assessed by sirius 

red staining (Fig. 2A). Sirius red staining of the liver was significantly less in the 0.1% 

and 0.3% cilostazol-administrated groups (2.49%; 95% C.I. 2.18–2.80; and 2.31%; C.I. 

2.10–2.52) compared with the control group (3.17%; C.I. 2.70–3.65; p < 0.05 and p < 

0.001, respectively), but clopidogrel had no effect (Figs. 2A, B). This was reflected by 

hydroxyproline content, which was significantly reduced in the 0.3% 

cilostazol-administrated group (317 ng/mg liver; C.I. 289–346) compared with the 

control group (371 ng/mg liver; C.I. 344–398; p < 0.001; Fig. 2C). Thus, oral 

administration of cilostazol reduces hepatic fibrogenesis at clinical doses. During the 
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eight-week experimental duration, no significant difference in body-weight change or 

peripheral platelet count was observed among treatment groups (Figs. 3A, B), indicating 

minimal toxicity of the drugs. Moreover, there was no apparent difference in 

CCl4-induced hepatocyte damage among the groups, as assessed by peripheral blood 

AST and ALT levels (Figs. 3C, D) and HE staining (Fig. 3E). We also observed no 

morphological change in cultured primary hepatocytes supplemented with cilostazol 

(Fig. 3F). 

Cilostazol attenuated the activation of HSCs in the liver. 

Chronic liver injury can lead to unrestrained HSC activation, resulting in excessive 

production of extracellular matrices and hepatic fibrosis. Thus, we assessed the 

activation status of HSCs in the liver, by immunohistochemical staining of α-SMA, a 

marker of HSC activation (Fig. 4A). Similar to the sirius red staining, the α-SMA 

positive area in the livers of 0.1% (4.16%; C.I. 3.17–5.15) and 0.3% (2.61%; C.I. 

2.17–3.05) cilostazol-administrated groups was clearly reduced in a dose-dependent 

manner compared with the control group (7.13%; C.I. 4.10–10.2; p < 0.05 and p < 0.001, 

respectively; Fig. 4B) and clopidogrel-administrated animals (original magnification 

100×). This was also reflected by immunoblotting experiments in which α-SMA protein 

expression was significantly reduced in the 0.3% cilostazol-administrated group (0.44%; 
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C.I. 0.29–0.60) compared with the control group (1.14%; C.I. 0.55–1.72; p < 0.05; Fig. 

4C). These results indicate that cilostazol has potent activity to attenuate the activation 

of HSCs in the liver through unkown mechanisms. 

Cilostazol directly and effectively inhibits the activation of HSCs but not of Kupffer 

cells 

To reveal the possible mechanisms behind these in vivo observations, we performed in 

vitro studies in primary cultures of HSCs. Generally, isolated HSCs undergo 

autonomous activation in culture, and the activation is associated with a depletion of 

retinoid droplets, morphological change, cell proliferation, and expression of several 

activation markers such as α-SMA and collagen α1 (I). During six days of culture, 

control HSCs gradually lost retinoid droplets and showed myofibroblast-like activated 

morphology, while cilostazol-supplemented HSCs maintained retinoid droplets and kept 

their morphology as quiescent (Fig. 5A). In addition, cilostazol suppressed HSC 

proliferation in a dose dependent manner, without showing cell toxicity (Fig. 5B).The 

expression of α-SMA protein was dose-dependently suppressed in the presence of 

cilostazol (Fig. 5C). Because Kupffer cells were also shown to be implicated in liver 

fibrosis as well as HSCs,11, 38-40 we examined the effect of cilostazol on Kupffer-cell 

activation in vivo and in vitro.  The pathological examination revealed a weak tendency 

for the decrease in F4/80-positive (Kupffer cell) area in the liver of 
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cilostazol-administrated mice, however, we could not detect significant changes in our 

experimental setting (Figs. 5D and E). In fact, cilostazol did not affect the messenger 

RNA (mRNA) expression of F4/80 in isolated Kupffer cells (Fig. 5F), suggesting the 

minimal effect of cilostazol in vivo might be simply explained by the secondary effect of 

the resolution of fibrosis.  Likewise, cilostazol exhibits an insignificant effect on the 

Kupffer-cell production of TNF-α, IL-1β, MCP1 and TGF-β1 (Fig. 5F).  These data 

together propose the notion that the in vivo therapeutic efficacy of cilostazol is mediated, 

at least in part, via its direct effects on HSCs. If then, why did HSCs respond well to 

cilostazol?  One possible explanation is that HSCs are more sensitive to cilostazol than 

other cell-types (e.g. Kupffer cells). Actually, the cilostazol-induced cAMP accumulation, 

which is an indicator for cilostazol inhibition of PDE3 enzyme, is only significantly 

higher in HSCs supplemented with cilostazol (2.283; C.I. 1.45–3.12; p < 0.01) but not in 

Kupffer cells (1.363; C.I. 0.4374-2.289; Fig. 5G), (original magnification 100x).   

Cilostazol suppressed PDGF receptor expression in HSCs. 

To further delineate the effect of cilostazol on the activation of HSCs, we characterized 

the cilostazol-affected gene expression profiles during the activation phase of HSCs.  

Firstly, to confirm the direct effects of cilostazol on the gene activation mechanism of 

HSCs, we examined the α-SMA and collagen α1 (I) gene induction. As suggested by 



 

 

17 

the previous data (Figs. 2, 4 and 5), mRNA induction of α-SMA was lower in cells 

supplemented with 5 µM cilostazol (0.555; C.I. 0.085–1.024) and 15 µM cilostazol 

(0.221; C.I. 0.086–0.356) when compared with the control (2.53; C.I. 1.01–4.05; p < 

0.01; Fig. 6A). Similarly, collagen α1 (I) mRNA expression was lower in cells 

supplemented with 5 µM cilostazol (0.411; C.I. 0.010–0.833) and 15 µM cilostazol 

(0.059; C.I. 0.042–0.159) as compared with the control cells (2.20; C.I. 0.31–4.08; p < 

0.01; Fig. 6B). Then, to gain further mechanistic insights in the action of cilostazol on 

HSCs, the mRNA expression of PDGF-B, PDGFR-β  and TGF-βR1, an important 

cytokine and cytokine receptors for HSC activation, was determined. Expression of 

PDGF-B, one of the most important mitogens for HSCs, was unaffected by cilostazol 

treatment (Fig. 6C), but PDGFR-β mRNA expression in the 5 µM 

cilostazol-supplemented cells (0.282; C.I. 0.104–0.460) and 15 µM 

cilostazol-supplemented cells (0.336; C.I. 0.036–0.636) was significantly decreased 

compared with control cells (0.749; C.I. 0.290–1.210; p < 0.001; Fig. 6D). On the other 

hand, TGF-βR1 mRNA expression was not affected by cilostazol treatment (Fig. 6E). 

These results indicate the possibility that cilostazol attenuates the activation-induced 

proliferation of HSCs through abrogation of the PDGF-autocrine signaling by limiting 

the receptor (PDGFR-β) signaling regardless of the ligand (PDGF) availability.   
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Discussion 

The oral administration of cilostazol effectively prevents the development of 

CCl4-induced liver fibrosis in mice. In agreement with the previous study, cilostazol was 

not toxic to the HSCs as indicated by the morphology and the proliferation of the cells 

(Figs. 5A and B).25 It is noteworthy that unlike many other candidate medications, 

cilostazol is already widely used as an antiplatelet agent in clinical practice with proven 

long-term safety. For this reason, cilostazol holds potential to become an antifibrotic 

agent for chronic liver diseases in humans. 

In the present study, we employed clopidogrel as an alternative antiplatelet agent for  

the comparison. Although both cilostazol and clopidogrel showed minimal side effects 

(Figs. 3A–F), only cilostazol attenuated liver fibrosis (Figs. 2 and 4), suggesting that 

cilostazol may have distinct antifibrotic mechanisms apart from its antiplatelet action. 

This notion is consistent with the results of the present in vitro study in which the 

treatment of primary HSCs with cilostazol attenuated the HSC proliferation (Fig. 5B) 

and the expression of α-SMA and collagen α1 (I) (Figs. 5C and 6), indicating the direct 

effect of cilostazol on HSCs. 

As reported,6, 39, 41 PDGFR-β was absent in quiescent HSCs, but was upregulated in an 

early stage of liver injury. Activating factors from autocrine or paracrine sources such as 
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TGF-β stimulate the transcriptional induction of PDGFR-β in quiescent HSCs, thereby 

rendering them responsive to PDGF-B chain molecules. Among several activating 

pathways, the autocrine-loop exerted by PDGF-PDGF receptor signaling is regarded as 

one of the most potent mitogenic pathways for HSCs.42 Although PDGF itself seemed 

unaffected in our study, our quantitative analyses showed cilostazol significantly 

suppressed PDGFR-β in HSCs (Figs. 6C and D).  Because, the PDGF-PDGF receptor 

signaling not only promotes myofibroblast proliferation but also participates in other 

fibrogenic actions including stimulation of collagen production and promotion of cell 

adhesion, it has been speculated that the activated PDGF-PDGF receptor signaling 

pathway might be a candidate target for antifibrotic therapy in liver diseases.43 Actually, 

focusing on PDGFR, recent studies showed attenuation of hepatic fibrosis by using a 

PDGFR tyrosine kinase inhibitor.44-46 In the same sense, a blockade of the 

autocrine-loop of PDGF-PDGF receptor signaling by cilostazol may also have the 

multiple benefits for preventing the development of hepatic fibrosis.   

Cilostazol is a selective inhibitor of PDE3 and the PDE3 inhibition in platelets exhibits 

antithrombotic effects by avoiding platelet aggregation. Recently, increased intracellular 

cAMP levels and activation of PKA was reported to reduce the PDGF-stimulated 

cellular proliferation.47, 48 Interestingly, cilostazol has been shown to be effective against 
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NAFLD development through the activation of cAMP/PKA signaling pathway in vivo.26 

Although the exact mechanism remains to be seen, there may be a link between PDGF 

receptor downregulation and cAMP/PKA signaling in HSCs. 

In conclusion, orally bioavailable cilostazol attenuates HSC activation at clinically 

equivalent doses maybe through the suppression of PDGF-R expression in HSCs, and 

thereby alleviates hepatic fibrogenesis. Further studies have promise in offering future 

intervention strategy against liver diseases. 
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Figure Legends 

Figure 1. Experimental protocol. Male adult C57BL/6J mice were fed the pelleted 

food containing 0.1% or 0.3% cilostazol or 0.125% clopidogrel, or control diet. Liver 

fibrosis was induced by intraperitoneal injection of CCl4 twice a week for six weeks. 

Mice were sacrificed four days after the last injection. CLZ: cilostazol, CPG: 

clopidogrel, CCl4: carbon tetrachloride. (n = 10)  
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Figure 2. Cilostazol alleviated fibrous changes in the liver. (A) Sirius red staining of 

liver sections in each group. CCl4 treatment for six weeks remarkably increased fibrotic 

area. CCl4-treated livers in the control or clopidogrel-administrated group showed 

bridging fibrosis. Cilostazol decreased fibrotic area among CCl4-treated mice (original 

magnification 100×). (B) Quantification of liver fibrosis area stained by sirius red. 

CCl4-induced fibrous areas in the 0.1% or 0.3% cilostazol-administrated groups were 

significantly decreased compared with that in the control group. (C) Hydroxyproline 

assay was performed to measure total collagen content. Administration with 0.3% 

cilostazol reduced tissue hydroxyproline levels compared with control. The box plots 

present the median and 25th–75th percentiles. Upper and lower lines are the minimum 

and maximum values (n = 10). * p < 0.05; † p < 0.001 vs. CCl4-treated control. CCl4; 

carbon tetrachloride, CLZ; cilostazol, CPG; clopidogrel.  
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Figure 3. Body-weight change, peripheral platelet counts, hepatocyte damage and 

AST/ALT did not differ among the CCl4-treated groups. (A) Body-weight change 

during the eight-week experimental duration. Mice without CCl4 treatment showed the 

highest gain, but no significant differences were observed among all groups. (B) 

Peripheral platelet counts at sacrifice were not different among CCl4-treated groups. (C, 

D) Serum AST and ALT levels at sacrifice were not different among CCl4-treated 

groups. (E) HE staining of liver sections from each group (original magnification 100×). 

No obvious differences of hepatocytes damage existed among CCl4-treated groups. (F) 

Morphology of hepatocyes supplemented with cilostazol for one day was viewed on a 

phase contrast microscope (original magnification 200×). The morphology was 

unaffected by cilostazol supplementation. On line plots, each plot represents the mean 

of measurements (n = 10). The box plots present median and 25th–75th percentiles. 

Upper and lower lines are the minimum and maximum values (n = 10). CCl4; carbon 

tetrachloride, CLZ; cilostazol, CPG; clopidogrel.  
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Figure 4. Cilostazol attenuated the expression of α-SMA protein in the liver. (A) 

α-SMA immunostaining of liver sections in each group. Treatment with CCl4 for six 

weeks remarkably increased α-SMA expression. Among CCl4-treated groups, livers of 

cilostazol-administrated group have reduced α-SMA positive areas compared with that 

of control diet or clopidogrel-administrated group (original magnification 100×). (B) 

Quantification of α-SMA positive area in each group. Cilostazol-administrated groups 

had significantly decreased α-SMA positive areas compared with control diet and 

clopidogrel-administrated groups. (C) Measurement of α-SMA protein in livers by 

immunoblotting. Administration with 0.3% cilostazol reduced α-SMA levels in 

CCl4-treated mice. The box plots present median and 25th –75th percentiles. Upper and 

lower lines are the minimum and maximum values (n = 10).  * p < 0.05; † p < 0.001 vs. 

CCl4-treated control diet group. α-SMA; α-smooth muscle actin, CCl4; carbon 

tetrachloride, CLZ; cilostazol, CPG; clopidogrel.  
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Figure 5. Cilostazol suppressed proliferation and activation of HSCs, but didn't 

affect Kupffer cell activation. (A) Morphological changes of HSCs from zero to six 

days were viewed on a phase contrast microscope (original magnification 100×). HSCs 

supplemented with 15 µM cilostazol resulted in visible short cytoplasmic dendritic 

processes and perinuclear vacuoles containing retinoids. (B) HSC proliferation was 

determined by direct count of the cell numbers. Cilostazol supplementation slowed the 

increase in cell numbers compared with control. (C) Immunofluorescent staining of 

α-SMA (red) in HSCs at the second day in culture. (original magnification 100×). The 

protein expression of α-SMA was decreased in cilostazol-supplemented HSCs in a 

dose-dependent manner. (D) F4/80 immunostaining of liver sections in each group. 

(original magnification 200×). (E) Quantification of F4/80 positive area in each group. 

Cilostazol-administrated groups tended to decrease F4/80 positive areas compared with 

control, but no significant differences were observed among CCl4 treated-groups. (F) 

Expression of Kupffer cell marker (F4/80) and inflammation-related genes (TNF-α, 

IL1-β, MCP1 and TGFβ1) in primary Kupffer cells at the second day in culture was not 

altered by cilostazol. (G) Accumulation of cAMP in primary cultured HSCs and Kupffer 

cells. Cilostazol supplementation significantly elevated cAMP level only in HSCs. The 

box plots present median and 25th–75th percentiles. Upper and lower lines are the 
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minimum and maximum values (n = 4). * p < 0.05; † p < 0.001; ‡ p < 0.01 vs. control 

group. HSC; hepatic stellate cell, CLZ; cilostazol, α-SMA; α-smooth muscle actin, 

DAPI; 4′, 6-diamidino-2-phenylindole, CCl4; carbon tetrachloride, TNF-α; tumor 

necrosis factor-α, IL1-β; interleukin1-β, MCP1; monocyte chemotactic protein-1, 

TGF-β1; transforming growth factor-β1, cAMP; cyclic adenosine monophosphate.
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Figure 6. Expression of genes associated with HSC activation was assessed by 

RT-qPCR. (A) α-SMA, (B) collagen α1 (I) and (D) PDGFR-β expression levels in 

HSCs supplemented with 5 µM and 15 µM cilostazol for two days were significantly 

suppressed compared with control (* p < 0.05; ‡ p < 0.01; † p < 0.001 vs. control, 

respectively). The expression of (C) PDGF-B and (E) TGF-βR1 had no difference 

between control and cilostazol-supplemented HSCs. The box plots present median and 

25th–75th percentiles. Upper and lower lines are the minimum and maximum values (n = 

7). HSC; hepatic stellate cell, CLZ; cilostazol, α-SMA; α-smooth muscle actin, 

PDGF-B; platelet growth factor-B, PDGFR-β; platelet growth factor receptor-β, 

TGF-βR1; transforming growth factor-β receptor1. 
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