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Abstract 

Brain activity patterns differ from person to person, even for an identical stimulus. In functional brain 

mapping studies, it is important to align brain activity patterns between subjects for group statistical 

analyses. While anatomical templates are widely used for inter-subject alignment in functional magnetic 

resonance imaging (fMRI) studies, they are not sufficient to identify the mapping between voxel-level 

functional responses representing specific mental contents. Recent work has suggested that statistical 

learning methods could be used to transform individual brain activity patterns into a common space while 

preserving representational contents. Here, we propose a flexible method for functional alignment, 

“neural code converter,” which converts one subject’s brain activity pattern into another’s representing 

the same content. The neural code converter was designed to learn statistical relationships between fMRI 

activity patterns of paired subjects obtained while they saw an identical series of stimuli. It predicts the 

signal intensity of individual voxels of one subject from a pattern of multiple voxels of the other subject. 

To test this method, we used fMRI activity patterns measured while subjects observed visual images 

consisting of random and structured patches. We show that fMRI activity patterns for visual images not 

used for training the converter could be predicted from those of another subject where brain activity was 

recorded for the same stimuli. This confirms that visual images can be accurately reconstructed from the 

predicted activity patterns alone. Furthermore, we show that a classifier trained only on predicted fMRI 

activity patterns could accurately classify measured fMRI activity patterns. These results demonstrate that 

the neural code converter can translate neural codes between subjects while preserving contents related to 

visual images. While this method is useful for functional alignment and decoding, it may also provide a 

basis for brain-to-brain communication using the converted pattern for designing brain stimulation.  
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Introduction 

Human brains are individually unique. Anatomical structure and brain activity patterns differ from person 

to person, even in response to identical sensory inputs. Anatomical normalization morphs the anatomical 

structure of one’s brain to fit a template brain, for which the Talairach template (Talairach and Tournoux, 

1988) and the MNI template (Evans et al., 1992, 1993) are widely used. Anatomical normalization aligns 

the 3D structure of the brain to a template by an affine transformation, often combined with nonlinear 

warping. A more precise method for anatomical normalization is to align cortical surfaces between 

individuals. Since the cortex is a 2D folded surface, cortical surface-based alignment has an advantage 

over 3D structure-based methods that do not explicitly take the cortical surface information into account. 

Cortical surface-based alignment utilizes cortical surface geometry such as manually-defined anatomical 

landmarks (Van Essen, 2004, 2005) and curvature of the cortical surface (Fischl et al., 2008) to calculate 

the correspondence between individual cortical surfaces.  

 

Although these methods can normalize anatomical structure of brains so that brain activity at 

corresponding coordinates can be compared between different subjects (Hasson et al., 2004), there still 

remain differences in the finer spatial patterns of brain activity, presumably originating from idiosyncratic 

neural representations at a mesoscopic scale. Assimilation of individual differences in brain activity 

patterns may enable more precise group statistical analyses than normalization of anatomical structure. In 

addition, it allows us to predict one subject’s brain activity patterns from another’s. Inter-subject brain 

activity conversion is potentially useful when constructing a “decoder,” a statistical model that predicts a 

subject’s perception and/or behavior from brain activity patterns (Kamitani and Tong, 2005), since 

decoder training typically needs repetitive measurements of brain activity corresponding to a subject’s 

perception or behavior. Inter-subject brain activity conversion hence may help to reduce the time and cost 

of performing actual experiments for training decoders for each subject in a study. 

 

Recent studies have proposed methods to assimilate individual differences in brain activity patterns. 

Sabuncu et al. (2009) developed a method that spatially warps cortical surface points for each subject 

such that fMRI signals at the same points on the cortical surface are the most correlated. They found that 

the method could improve group statistics analyzed by a standard general linear model. Haxby et al. 

(2011) defined a common brain activity space calculated by Procrustean transformation, a combination of 

orthogonal transformations (rotation, translation, and uniform scaling), of fMRI activity patterns of 

multiple subjects for an identical sequence of stimuli, and then converted the fMRI activity patterns of 

each subject into the common brain activity space. They demonstrated that a decoding model trained with 

the converted fMRI activity patterns was able to achieve high classification performance of object 

categories.  
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Here we propose a method to design a “neural code converter,” which provides a direct and flexible 

inter-subject conversion of brain activity patterns. It is a machine learning-based method that aims to 

predict the brain activity pattern of one person from another’s. Our method uses a linear regression model 

to make a prediction of the intensity of each voxel for a person (“target subject”) from multiple voxels of 

another person (“source subject”), given the same stimulus. This model is capable of representing all 

kinds of linear transformations and is not limited to orthogonal ones.  

 

In addition, we introduced a Bayesian sparseness constraint on the weights of source voxels (Bishop, 

2006) that automatically selects a small number of voxels relevant to the prediction. This approach 

reduces the dimensionality of the model and is expected to improve prediction accuracy while avoiding 

overfitting. Further, the efficiency of our neural code converter rests, in part, on biologically plausible 

sparsity assumptions.  In other words, we assume that functional anatomy shows a degree of segregation 

such that neuronal representations are spatially compact. These sparsity assumptions underlie multivariate 

Bayesian analyses of distributed responses in fMRI (Yamashita et al., 2008; Friston et al., 2008; 

Chadwick et al 2014).   

 

To evaluate the conversion performance, we used the fMRI data from our previous study (Miyawaki et al., 

2008), in which visual images consisting of 10 x 10 patches (“pixels”) were presented. The converter was 

trained on data from a pair of subjects collected from an identical sequence of presented random images. 

It was then tested on fMRI data for independent images containing a simple geometric shape. The 

conversion performance was quantified by the correlation between the measured voxel patterns of the 

target subject and those predicted by the converter from the source subject. The results are compared with 

those from other methods using only anatomical information, one-to-one voxel mapping by correlation, 

retinotopy, or orthogonal transformation of multi-voxel space. We also show that visual images can be 

reconstructed from brain activity predicted by the neural code converter. Further, we created a decoder for 

the shapes using converted brain activity to achieve accurate classification of measured data. The results 

demonstrate the feasibility and usability of the neural code converter for predicting brain activity for 

unseen stimuli. A preliminary version of this study was presented in conference proceedings (Yamada et 

al., 2011). 
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Methods 

 

Algorithms 

(1) Neural code converter 

As shown in Fig. 1, the neural code converter from the source to the target subject consists of multiple 

linear regression models. Each regression model predicts the amplitude of the target subject’s fMRI 

activity for each voxel. The amplitude of the fMRI activity patterns of the i -th voxel, iy , is modeled 

as  

 xw ⋅= T
iiy , (1)  

where [ ]T21 ,...,, Nxxx=x  ( N , number of voxels) denotes a set of the amplitude of fMRI activity 

patterns for all voxels in a region-of-interest (ROI) of the source subject and [ ]T1 2, ,...,i i i iNw w w=w  is a 

weight vector to predict the amplitude of the i -th voxel of the target subject from the multi-voxel 

patterns of fMRI activity of the source subject. The neural code converter consists of a set of the weight 

vectors for all voxels in the ROI of the target subject.  

 

The number of fMRI data samples for training is less than the number of voxels in the ROI, or the feature 

dimension of the model, and thus overfitting is likely to occur. In addition, it is natural to assume that the 

activity of a particular target voxel would be similar only to a small part of the corresponding areas in the 

ROI of the source subject because the functional organization of the brain is largely correlated between 

subjects, especially in the early visual area. Thus only a small number of source voxels may be relevant to 

prediction for a particular target voxel and the others can be pruned off as irrelevant voxels. To reduce the 

feature dimension of the model (the number of source voxels), we adopted a variant of sparse regression 

(Bishop, 2006; Toda et al., 2011), which performs hierarchical Bayesian estimation of the weight 

parameters with an ARD (automatic relevance determination) prior. The likelihood function of the weight 

parameters are described as 
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where [ ]T1 2, , , My y y=y L  (M  ,number of target voxels), [ ]1 2, , , M=W w w wL , and β  represents an 

inverse variance of the observation noise. The likelihood function was combined with a prior distribution 
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for each weight parameter to obtain the posterior distribution. The prior distributions for a weight 

parameter and a noise variance are described as 

 

 ( )1( | ) N 0,ij ij ijP w α α −= , (3)  

and 

 1( )P β β −= , (4)  

respectively, where N represents a normal distribution, ijw  represents a weight parameter for i-th source 

voxel and j-th target voxel, 
ijα  is the hyperparameter denoting the inverse of the variance, or precision, 

of the weight parameter ijw , and β  is the inverse of variance of the observation noise. The 

hyperparameter ijα  was also treated as a random variable, whose distribution is defined by 

 1( )ij ijP α α −= . (5)  

The weight parameter ijw , the inverse variance of the weight parameter ijα , and inverse variance of the 

observation noise β
 

were estimated by taking the expectation of the posterior distribution. Since a 

direct evaluation of the posterior distribution is analytically intractable, we used a variational Bayesian 

method to approximate the distribution. See Sato (2001), Sato et al. (2004), and Ting et al. (2005, 2008) 

for details about the algorithm used for parameter estimation. The source codes are available at the 

websites (http://www.cns.atr.jp/dni/en/downloads/neuralcodeconverter/ and 

https://github.com/ATR-DNI/NeuralCodeConverter/). 

 

(2) “One-to-one” conversion 

The neural code converter was designed to receive fMRI signals from multiple voxels of the source 

subject to predict the fMRI signals of a single voxel for the target subject (“many-to-one” conversion). To 

examine whether the neural code converter exploits multi-voxel patterns of fMRI activity for the 

prediction, we also tested the following two types of conversion algorithms, both of which were designed 

to convert fMRI signals based on the correspondence between each single voxel of the source and target 

subject (“one-to-one” conversion). 

 

(2-1) Anatomy-based conversion 

The first method was based on anatomical normalization. This conversion assumed that individual 
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differences in fMRI activity patterns corresponding to identical stimulus inputs were only caused by 

differences in the anatomical structure of the brain. If this is the case, individual differences in fMRI 

activity patterns can be assimilated by matching the anatomical structure of the brains of different 

subjects. For this purpose, we performed nonlinear anatomical normalization of structural images of the 

source and target subjects, and applied the same normalization to functional images of both subjects. This 

procedure converted fMRI activity patterns of the source and target subjects into a common, normalized 

coordinate space. After this conversion, the fMRI activity of each voxel from the source subject in the 

common coordinate space was considered as that of the corresponding voxel of the target subject in the 

common coordinate space. 

 

(2-2) Correlation-based conversion 

The second method was based on similarity between time-courses of fMRI activity for pairs of voxels 

between subjects. In this method, we assumed that individual differences in fMRI activity patterns 

corresponding to identical stimulus inputs were only caused by differences in the relative spatial 

relationships among voxels within a subject. The conversion was performed by associating a time-course 

of fMRI activity for each voxel of the target subject with that from the source subject, such that fMRI 

activity of the paired voxels were most correlated. Then, the intensity of each voxel in the target subject 

was replaced with that of the associated voxel in the source subject. 

 

(3) Retinotopy-based conversion 

Although the neural code converter was designed to exploit information represented in the multi-voxel 

patterns of fMRI signals from the source subject to predict fMRI signals for the target subject, the 

prediction could be using only the inter-subject correspondence of the well-known functional structure of 

the early visual area, i.e., retinotopic map only. To examine this possibility, we also tested a 

retinotopy-based method, in which the intensity of each voxel of the target subject was predicted from the 

averaged fMRI signal among voxels of the source subject that had the same retinotopy coordinate as the 

voxel from the target subject. 

 

(4) Procrustean conversion 

Haxby et al. (2011) showed that Procrustean transformation, a restricted version of linear transformation 

that involves only translation, rotation, and uniform scaling, was useful for aligning fMRI activity 

patterns of multiple subjects into a common brain activity space. The neural code converter is a 

combination of linear weights for source voxel signals to predict target voxel signals, yielding a general 

linear transformation matrix that converts fMRI activity patterns of the source subject to the target subject, 

which is a more flexible transformation than Procrustean transformation. To examine whether the 

flexibility of the neural code converter contributes to the conversion accuracy of the fMRI activity 
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patterns between subjects, we also tested Procrustean transformation of the fMRI activity patterns of the 

source subject to the target according to Haxby et al. (2011)’s methods. 

 

 

fMRI data 

To evaluate these algorithms, we used fMRI data from three subjects (one female, two males), one of 

which was from our previous work (Miyawaki et al., 2008) and the rest were newly collected for this 

study using a similar protocol to the previous study. All three subjects gave written informed consent and 

the study was approved by the Ethics Committee of ATR. The fMRI data are available at the websites 

(http://www.cns.atr.jp/dni/en/downloads/neuralcodeconverter/ and 

https://github.com/ATR-DNI/NeuralCodeConverter/). 

 

According to our previous work, three types of experimental sessions were performed to measure the 

fMRI activity patterns of the visual cortex: (1) a random image session, (2) a figure image session, and 

(3) a retinotopic mapping session (Engel et al., 1994; Sereno et al., 1995). 

 

In the random image session, images of random patterns consisting of 12×12 binary, contrast-defined 

square patches (1.15×1.15 deg each) were presented with a fixation point at the center of each image on a 

gray background. Each square patch was either a flickering checkerboard (spatial frequency, 1.74 

cycles/deg; temporal frequency, 6 Hz) or a homogeneous gray area, with a probability of 0.5. To avoid 

effects from the stimulus frame, only the central 10×10-patch area was used for analysis. Each stimulus 

block consisted of 6-s presentation of a random pattern image followed by a 6-s rest period, and 22 

stimulus blocks constituted one run. At the beginning and the end of each run, an extra rest period was 

inserted for 28 s and 12 s, respectively. In total, twenty runs were performed and a total of 440 different 

random images were presented for each subject. The same image set was presented in the same order to 

all subjects. The duration of stimulus presentation was shorter than that used in a typical block design 

paradigm because .this experiment was designed to obtain fMRI signals for a variety of visual inputs 

within a limited time to train accurate statistical models.  

 

In the figure image session, figure images in stimulus blocks consisted of flickering checkerboard patches, 

as in the random image session. The patches in the figure images formed five different types of geometric 

shapes: a square, small frame, large frame, a plus sign, and the letter X. Each stimulus block lasted for 12 

s, followed by a 12-s rest period, and ten stimulus blocks constituted one run. Each geometric shape was 

presented twice per run. At the beginning and end of each run, an extra rest period of the same duration as 

the random image session was inserted. To ensure alertness to the stimulus images, each subject was 
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instructed to detect changes in the color of the fixation point (from red to green, lasting 100 ms). 

 

The retinotopic mapping session was performed using conventional methods, as in Engel (1994) and 

Sereno et al. (1995). A rotating wedge and an expanding ring consisting of a flickering checkerboard 

pattern were used as stimulus images. fMRI scanner settings for all sessions were identical to those in 

Miyawaki et al. (2008) . 

 

MRI data for three experimental sessions explained above were all obtained using a 3.0-Tesla Siemens 

MAGNETOM Trio A Tim scanner located at the ATR Brain Activity Imaging Center. An interleaved 

T2*-weighted gradient-echo echo-planar imaging (EPI) scan was performed to acquire functional images 

to cover the entire occipital lobe (TR, 2000 ms; TE, 30 ms; flip angle, 80deg; FOV, 192×192 mm; voxel 

size, 3×3×3 mm; slice gap, 0 mm; number of slices, 30). T2-weighted turbo spin echo images were 

scanned to acquire high-resolution anatomical images of the same slices used for the EPI (TR, 6000 ms; 

TE, 57 ms; flip angle, 90 deg; FOV, 192×192 mm; voxel size, 0.75×0.75×3.0 mm). T1-weighted 

magnetization prepared rapid-acquisition gradient-echo (MP-RAGE) fine-structural images of the 

whole-head were also acquired (TR, 2250 ms; TE, 2.98 or 3.06 ms; TI, 900ms; flip angle, 9 deg; FOV, 

256×256mm; voxel size, 1.0×1.0×1.0mm). 

 

Before performing inter-subject conversion, raw fMRI signals were preprocessed as follows. First, signals 

in each experimental session were processed with standard procedures including motion correction, 

outlier rejection, detrending, and high path filtering. Then, baseline correction for each voxel was 

performed using the average signal intensity in the beginning rest period of each session. Each volume 

was labeled by stimulus after shifting the signal time course by two volumes (4 s) to account for a 

hemodynamic delay. The signals were simply averaged within each stimulus block to create data samples 

for machine learning analyses. 

 

 

Inter-subject conversion procedure 

We used only fMRI data for the random image session to train a converter according to each algorithm. 

After training, each converter was tested with fMRI data for the figure image session, which were 

independent of the data used for training.  

 

For all algorithms except the anatomy-based conversion, bilateral V1 was used as a ROI to evaluate the 

conversion accuracy of each algorithm. For anatomy-based conversion, we used WFU PickAtlas 

(http://fmri.wfubmc.edu/software/PickAtlas) to define Brodmann area 17 (BA17), an area anatomically 
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equivalent to V1, as a ROI.  

 

fMRI activity patterns from the ROI were preprocessed using the same procedures as in Miyawaki et al. 

(2008), and were used for each algorithm to convert those from one subject (source subject) to predict 

those of the other subject (target subject). 

 

The conversion accuracy of each algorithm was evaluated by the spatial correlation between a predicted 

voxel pattern and a measured voxel pattern of the target subject, which we refer to as the voxel-wise 

correlation, for each image presented in the figure image session. Brain activity varies across different 

experimental blocks even for the same stimulus in the same subject. Performance evaluation of 

inter-subject conversions would be strongly affected by those variances. We hence calculated the 

correlation between measured brain activity patterns of each target subject for the same stimulus pair 

presented in different experimental blocks, and used it as an upper bound of the voxel-wise correlation. 

 

Visual image reconstruction 

If fMRI activity patterns of a target subject can be predicted accurately, we should also be able to 

reconstruct visual stimulus images corresponding to the predicted fMRI activity patterns (instead of using 

measured fMRI activity patterns). Here we evaluated the performance of the neural code converter by 

reconstructing visual stimulus images from fMRI activity patterns of the target subject predicted from 

measured fMRI activity patterns of the source subject. 

 

To accomplish this, first, a reconstruction model was trained with fMRI activity patterns of the target 

subject measured for the random pattern images presented in the random image session. Then, using the 

neural code converter, fMRI activity patterns of the target subject were predicted from those of the source 

subject measured for the figure images presented in the figure image session. Finally, visual stimulus 

images were reconstructed from the predicted fMRI activity patterns for the target subject by using the 

trained reconstruction model (see Fig. 2). 

 

For the sake of comparison, we also performed conventional visual image reconstruction (Miyawaki et al., 

2008) using fMRI data actually measured for the target subject. The original reconstruction method 

predicted the contrasts of ‘‘local image bases’’ at multiple scales (1×1, 1×2, 2×1, and 2×2 patch areas, 

defined by rectangles), and the local image bases were multiplied by the predicted contrasts to reconstruct 

visual images (Miyawaki et al., 2008). Here we predicted the contrasts of only 1×1 local image bases 

instead of using multiple scales to reconstruct visual images from measured fMRI activity patterns. Note 

that visual image reconstruction using predicted fMRI activity patterns was also based on the 1×1 scale. 

We evaluated the performance of the neural code converter by the spatial correlation between images 
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reconstructed from the predicted and the measured fMRI activity patterns, which we refer to as the 

pixel-wise correlation. Upper bounds of pixel-wise correlations were also caluculated in a way similar to 

the voxel-wise correlation. 

 

Decoder trained with converted brain activity 

The accuracy of the neural code conversion was further evaluated by performance of a decoding model 

trained with the predicted fMRI activity patterns for the target subject. We performed a classification 

analysis where measured fMRI activity patterns of the target subject were classified into a category 

associated with one of stimulus classes, using a decoder trained with predicted fMRI activity patterns. 

 

To accomplish this, first, the fMRI activity patterns of the target subject for the figure images presented in 

the figure image session were predicted from those of the source subject for the corresponding stimuli 

using the neural code converter. Then a classification model was trained with the predicted fMRI activity 

patterns of the target subject along with the class labels for the corresponding stimuli. Finally, the trained 

classifier was used to classify fMRI activity patterns of the target subject measured for the corresponding 

figure images (see Fig. 3). We used an L2-loss support vector machine (LIBLINEAR, 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/) to create the classification model. The classifier was trained 

with fMRI activity patterns predicted for three out of four runs in the figure image session and was tested 

with the remaining run. This evaluation was repeated until all runs were tested (leave-one-run-out 

cross-validation). For the sake of comparison, we also performed conventional classification analysis 

(Kamitani and Tong, 2005) using measured fMRI activity patterns of the target subject for both the 

training and testing. The performance was evaluated based on leave-one-run-out cross-validation in a 

similar way to the case using the predicted fMRI activity patterns for the training. 
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Results 

First, we evaluated how accurately brain activity patterns were predicted through the neural code 

converter by comparing them with measured brain activity patterns. We calculated the spatial correlation 

between predicted and measured voxel patterns for the target subject, which we call the voxel-wise 

correlation, for each image presented in the figure image session. Since each of the five figure images was 

presented in eight trials, correlations were calculated for all possible combinations of the trials, yielding 

320 correlations (= 5 images×(8×8 trials)) for each source–target subject pair. This analysis was 

performed for a total of six source–target subject pairs created from the three subjects. Fig. 4 shows the 

averaged correlation (Fisher’s Z-transformed) between predicted and measured brain activity for each 

source–target pair. The voxel-wise correlation was significantly higher than zero (t-test, p < 0.05) in all 

source–target pairs and the average of the voxel-wise correlations across subjects was 0.399 ± 0.014 

(mean ± 95% confidence interval). Compared with upper bound correlations, the neural code converter 

shows a moderate level of prediction accuracy.  

 

To see how the neural code converter learned the patterns for prediction, we analyzed the weight values 

of the voxels of the source subject (source voxels) for each voxel of the target subject (target voxel). In 

particular, we focused on the correspondence of the voxel coordinates with respect to the retinotopic map, 

between the source and target subjects. Voxels were sorted by the eccentricity and the polar angle 

coordinate of the retinotopic map, and the magnitudes of the weights of source voxels were averaged at 

each eccentricity or polar angle of source and target voxels. The weight distributions show relatively 

higher weight values along the diagonal line for both the eccentricity and the polar angle coordinate for 

both hemispheres (Fig. 5). The results indicate that the neural code converter predicts the activity of each 

target voxel mainly from the source voxels located in retinotopically corresponding regions. The 

relatively low weight magnitudes found at small eccentricities (Fig. 5A) and around the 90/270 deg polar 

angle (Fig. 5B) may be due to the crosstalk of informative voxels across hemispheres.  

 

Next we compared the prediction performance of the neural code converter based on sparse regression, to 

those of more conventional methods that only use anatomical information, one-to-one voxel mapping by 

correlation, retinotopy, or orthogonal transformation of multi-voxel space (see Methods).  

Fig. 6 shows the comparison result of prediction performance between the neural code converter and 

control methods. The voxel-wise correlations (Fisher’s Z-transformed) averaged across all trials (8 

trials/run/image × 8 runs × 5 images) and all source–target pairs (6 source–target pairs) were significantly 

higher than zero in all methods (a total of 1920 correlation values were evaluated; t-test, p < 0.05). 

Among all methods, the anatomy-based conversion that did not utilize functional information showed the 
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worst performance. The performances of one-to-one voxel mapping methods utilizing functional 

information including correlation-based conversion and retinotopy-based conversion were significantly 

worse than the performance of the neural code converter that utilized multi-voxel patterns for the 

prediction (t-test, p < 0.05). The procrustean conversion, a less flexible linear transformation than the 

neural code converter, showed significantly worse performance than the neural code converter (t-test, p < 

0.05). 

 

The results show that the neural code converter based on sparse regression outperformed the other 

methods, suggesting the advantage of the flexible regression model that exploits multi-voxel patterns. For 

further evaluation, only the neural code converter was applied as an inter-subject conversion algorithm. 

 

Visual image reconstruction from predicted brain activity patterns 

The second evaluation utilized predicted fMRI activity patterns for visual image reconstruction. We 

compared images reconstructed from the predicted and measured fMRI activity patterns. Fig. 7 shows 

examples of images reconstructed from S1’s measured brain activity and those reconstructed from S1’s 

predicted brain activity with S2 as the source subject. Results show that presented images could be 

reconstructed from the predicted brain activity with a comparable level of quality to those from the 

measured brain activity. 

 

We also performed a quantitative evaluation of the accuracy of the neural code converter by calculating 

the pixel-wise correlation between visual images reconstructed from the measured and the predicted brain 

activity. The averaged pixel-wise correlation calculated from the reconstruction results is shown for each 

pair of source–target subjects in Fig. 8. The average correlation was calculated from 320 (= 5 figure 

images × (8×8 combinations of trials)) pairs of reconstructed images. Results showed that the pixel-wise 

correlation was significantly higher than zero in all source–target pairs (t-test, p < 0.05). The average of 

the pixel-wise correlations across subjects was 0.553 ± 0.008 (mean ± 95% confidence interval). These 

results suggest that predicted activity patterns carry enough information to achieve visual image 

reconstruction. 

 

Decoding models trained with predicted brain activity patterns  

The third evaluation was to test whether decoding models trained with predicted fMRI activity patterns 

alone could achieve high decoding accuracies using the measured data. We used the predicted brain 

activity patterns to build a new decoder to classify brain activity into five categories corresponding to 

each of the figure images (eight trials for each image). The results showed high decoding accuracies 

significantly exceeding the chance level in all source–target pairs (binominal test, p < 0.05; average 
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across pairs, 78.333 ± 18.484%; Fig. 9 A). The classification performance was comparable to that of the 

decoder trained with measured brain activity (94.167 ± 5.204%; Fig. 9B). The results suggest that once a 

neural code converter is established, decoding models can be trained using the predicted fMRI activity 

patterns, without the need for actual measurements. 
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Discussion 

In this paper, we proposed an inter-subject neural code converter that can translate brain activity patterns 

of one subject to another subject’s, while preserving representational contents. The converter trained with 

a limited number of random images successfully predicted fMRI activity patterns for unseen visual 

images (Fig. 4). We further demonstrated that visual images could be reconstructed from predicted fMRI 

activity patterns (Fig. 7 and Fig. 8). The predicted fMRI activity patterns could be also used to train 

accurate classifiers for measured fMRI activity patterns (Fig. 9). These results suggest that our neural 

code converter may be able to predict brain activity patterns corresponding to arbitrary perceptual states 

by only conducting experiments to collect data necessary for training the neural code converter. 

 

An important feature of the neural code conversion that provides advantages over previous methods is the 

ability to exploit multi-voxel patterns in fMRI activity in a flexible way. Although structural differences 

in brain anatomy can be standardized by anatomical normalization, individual differences in fMRI 

activity patterns were not able to be assimilated accurately for voxels with the same anatomical 

coordinate (Fig. 6). This suggests that inter-subject differences in fMRI activity patterns cannot be 

explained by anatomical differences alone. When spatial positions of voxels were replaced so that fMRI 

activity patterns of paired voxels between subjects were most correlated, fMRI activity patterns were able 

to be partially assimilated between the paired subjects, showing a significant positive correlation. 

However, the accuracy achieved by the voxel replacement was still significantly lower than that achieved 

by the neural code conversion (Fig. 6). Thus, inter-subject differences in fMRI activity patterns are not 

simply explainable as a result of individual variations in the spatial arrangement of cortical regions that 

have similar response characteristics. Although Fig. 5 shows that the neural code converter tends to use 

retinotopically corresponding voxels, it also uses voxels with a bit broader range of coordinates. It is also 

known that accurate prediction of the contrast at a single visual field location requires a complex response 

pattern of voxels with a range of retinotopic coordinates (Miyawaki et al., 2008). Together, one-to-one 

mapping based on the positional correspondence seems to be insufficient to achieve accurate prediction of 

one subject’s fMRI activity patterns from another’s.  

 

The accuracy of the neural code conversion was also demonstrated by visual image reconstruction that 

utilized predicted fMRI activity patterns. Pixel-wise correlations between images reconstructed from 

measured and predicted fMRI activity patterns were calculated (Fig. 8). Pixel-wise correlations (0.553 ± 

0.008 (mean ± 95% confidence interval)) were higher than voxels-wise correlations (0.399 ± 0.014 (mean 

± 95% confidence interval)). This may be because the reconstruction model assigns weights of greater 

magnitudes to voxels that are more selective to stimuli (Miyawaki et al., 2008). Pixel patterns calculated 
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from selectively weighted voxels may represent more reliable responses to stimuli than non-weighted 

voxel patterns. 

 

Machine learning-based brain decoding often requires acquisition of a large number of data sets to train a 

model customized to each subject. Our method may partially resolve this issue by utilizing predicted 

fMRI activity patterns to train decoders for a person who does not undergo actual experiments. The neural 

code converter could predict fMRI activity patterns of the target subject for unseen visual stimuli given 

the fMRI activity patterns of another subject, and the predicted fMRI activity patterns can be used to train 

a decoder to classify fMRI activity patterns measured for a target subject (Fig. 9). This suggests that once 

a neural code converter is trained, fMRI activity patterns necessary to create decoders for a target subject 

can be substituted by those measured from another subject. Thus, experimental data necessary for a target 

subject are only for training a neural code converter, which can be used to predict activity patterns for 

other subjects, without performing actual experiments. If this method is applied to brain–machine 

interfaces based on neural decoding, it will potentially reduce the user’s load required for collecting data 

for system caliblration.  

 

Although we tested the neural code converter on fMRI data from the early visual cortex in this study, the 

framework could also be applied to the higher visual cortices and even other sensory areas, such as the 

auditory cortex and the somatosensory cortex. A previous study (Hasson et al., 2004) has shown that 

brain activity patterns from different subjects were significantly correlated across broad areas of the brain, 

including visual areas, auditory areas, and areas around the superior temporal sulcus and the lateral 

sulcus), while subjects viewed identical visual stimuli (e.g., movie stimuli). Thus, our method may also 

be applicable to establish a systematic mapping of brain activity patterns between subjects for these areas. 

Depending on the brain area of interest, other machine learning methods, which are based on hypotheses 

about information representation on neural population, might be more appropriate. For example, if 

information is represented over multiple voxels in a broadly distributed manner, a non-sparse method 

might show better performance. 

 

An interesting application would be to use the neural code converter to analyze individual differences in 

brain activity patterns relevant to human complex functions such as higher cognitions, social behaviors, 

preferences, personalities, and cultural backgrounds. The neural code converter provides a mapping of 

brain activity patterns from one person to another, so the mapping parameters (e.g., weight values) could 

give an insight into how differently the brain represents information relevant for such complex functions 

between different subjects.  
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A more advanced application of the neural code converter could be enabling direct brain-to-brain 

communication. If the converted brain activity is used for designing a brain stimulation pattern, the 

stimulation might induce a similar mental content. In the last decade, new technologies as such as 

optogenetics (Deisseroth, et al., 2006) have dramatically improved the capacity of brain stimulation in 

both spatial and temporal resolution. Furthermore, a proof-of-concept of brain-to-brain communication 

has been demonstrated by using EEG and TMS (Grau et al., 2014), although the system only works at an 

anatomically-coarse scale. Since our neural code converter can deal with information represented in 

fine-grained activity patterns, high-resolution brain stimulation designed with converted patterns may 

allow for the transmission of detailed mental contents between two persons. This could create a new 

dynamic in how humans communicate with each other. 
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Figure legends 

Fig. 1. Schematics of the neural code converter. (A) Training the neural code converter. An identical 

stimulus set, consisting of random-patterned images, is presented to a pair of subjects. Then, the pairs of 

fMRI activity patterns are used to train linear regression models to predict fMRI signals for each voxel of 

the target subject, given the fMRI signal patterns of the source subject. The set of the linear regression 

models to predict fMRI signals for all voxels of the target subject constitutes the neural code converter. 

(B) Prediction of fMRI activity patterns through neural code conversion. fMRI activity patterns from the 

source subject evoked by visual stimuli independent of those used for the training are converted to fMRI 

activity patterns for the target subject. 

 

Fig. 2. Visual image reconstruction through neural code conversion. Visual stimulus images are 

reconstructed from the target subject’s predicted fMRI activity patterns. 

 

Fig. 3. Training a decoder using fMRI activity patterns predicted through neural code conversion. A 

decoder (classification model to predict presented image labels) for the target subject is trained with fMRI 

activity patterns for the target subject, predicted by the neural code converter. fMRI activity patterns of 

the target subject, measured for the same visual image set, are then classified into one of five classes by 

the decoder trained by the neural code converter. 

 

Fig. 4. Voxel-wise correlations between measured and predicted fMRI activity patterns through neural 

code conversion. Correlation values were converted into Fisher’s z-scores. Six source–target pairs are 

shown (mean ± 95% confidence interval). Dotted lines indicate keupper bounds of voxel-wise 

correlations (averaged over stimulus pairs). 

 

Fig. 5. Voxel weight distributions from the source subject to predict fMRI activity patterns for the target 

subject. Voxels for the target subjects are sorted by (A) the eccentricity, and (B) the polar angle 

coordinate of the retinotopic map (horizontal axis, 0.67 deg bins for eccentricity and 15 deg bins for polar 

angle) of each hemisphere. Weight values of the source subject are also sorted by the coordinates of the 

retinotopic map for the corresponding voxels (vertical axis, 0.67 deg bins for eccentricity and 15 deg bins 

for polar angle) for each hemisphere. The magnitude of voxel weights was averaged in each target voxel 

location and source voxel location (six source–target pairs from three subjects pooled). White cells denote 

no corresponding voxel with non-zero weight. 

 

Fig. 6. Performance comparison (voxel-wise correlation) between the neural code converter and 
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conventional methods (conversion by anatomical normalization, voxel position replacement based on 

temporal correlation, correspondence of retinotopic maps, and procrustean multi-voxel transformation). 

Correlation values were converted into Fisher’s z-scores and then averaged across all trials for all source–

target pairs (mean ± 95% confidence interval). Dotted lines indicate upper bounds of voxel-wise 

correlations (averaged over subjects and stimulus pairs).  

 

Fig. 7. Visual stimulus images (contrast patterns) reconstructed from measured and predicted fMRI 

activity patterns of S1 (S2 as source subject). Results presented here are examples of a single run of the 

figure image session consisting of ten trials of the stimulus presentation (presentation order (left to right) 

preserved). 

 

Fig. 8. Pixel-wise correlations between images reconstructed from fMRI activity patterns using measured 

and predicted (through neural code conversion) fMRI activity. Correlation values were converted into 

Fisher’s z-scores. Six source–target pairs are shown (mean ± 95% confidence interval). Dotted lines 

indicate upper bounds of pixel-wise correlations (averaged over stimulus pairs).  

 

Fig. 9. Classification performance of decoders trained with (A) predicted, and (B) measured fMRI 

activity patterns. 
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Training the neural code converter. An identical 
stimulus set, consisting of random-patterned images, 
is presented to a pair of subjects. Then, the pairs of 
fMRI activity patterns are used to train linear regres-
sion models to predict fMRI signals for each voxel 
of the target subject, given the fMRI signal patterns 
of the source subject. The set of the linear regression 
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correlation) between the neural code converter 
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