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Chapter 1 

Background of the study 

 

1.1 Importance of structure analyses of cellulose 

Cellulose is one of the most abundant biomaterials on the earth and has drawn 

increasing attention as a renewable, biocompatible and degradable material.[1, 2]  

Currently, it is highly demanded to expand the utilization of cellulose in the wider areas 

in high end-use.  The structural analysis of cellulose is a key to this goal because the 

structures and properties are closely related; the understanding of structures is 

essential to improve the properties in final products.[1-3]   

Cellulose is synthesized by enzymatic polymerization, crystallized, organized to 

nano-crystals (CNC), and self-assembled in microfibers.  It is further organized into cell 

walls, fibers, etc.  Biosyntheses at terminal complexes [2] are diverse depending on 

biological sources, resulting in diversities in subsequent morphologies of cellulose.[2]  

Two crystal forms, Iα and Iβ, determined by diffraction [4] and spectroscopic methods [5] 

are known.  Size and shape of CNCs depend on sources.  Organizations and 

orientations of CNCs in microfibers and fibers are diverse.  All these hierarchical 

diversities in structure make it difficult to characterize the physical, chemical, and 

biological properties of cellulose.  It is evident that structures should be elucidated at 

every level of hierarchies, however, structures exhibited are so complicated.   

In this thesis, attempts are made to develop methods to elucidating some aspects 

of cellulose structures.  Techniques of magnetic orientation of crystals and fibers are 

used to prepare oriented samples that are analyzed by X-ray diffractions and solid-state 

NMR spectroscopy.  By orientation, it becomes possible for the first time to obtain more 
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information on structures.  In this thesis, magnetically oriented cellobiose (a smallest 

repeating unit of cellulose) crystals and cellulose whiskers are studied.  X-ray 

diffraction and solid-state NMR techniques are used to elucidate the solid state structure 

of these materials.  These two techniques are powerful to analyze solid state 

structures and mutually complementary.  In chapter 2, the diamagnetic anisotropy of 

cellobiose is determined, which provides the experimental conditions needed to prepare 

the oriented samples.  In chapter 3, the chemical shift tensors of C1 and C1’ carbons of 

cellobiose crystals are determined using magnetically oriented samples.  In chapter 4, 

magnetically oriented cellulose whiskers are analyzed by X-ray diffraction and the 

correlation lengths of CNC orientations are determined. 

 

1.2 Methods used 

1.2.1 X-ray diffraction 

X-ray is scattered by electrons in the crystals, and the periodic electron density in 

the crystal results in the diffraction.  Therefore, the X-ray can be scattered by heavy 

atoms (having more electrons) more strongly than light atoms such as hydrogen 

atoms.[6]   

There are three major ways of performing X-ray diffraction measurements.  Single 

crystal X-ray diffraction method is most powerful and accurate in atomic level structure 

determination of crystals.  However, it is sometimes difficult to grow a single crystal 

large enough to apply this method; crystals about 100 m are needed though much 

smaller ones suffice if synchrotron sources are used.  Fiber diffraction method is 

applied to fibrous materials including synthetic polymeric fiebers such as poly(ethylene 

terephthalate), nylon, etc. and bio-fibers such as cellulose, silk, collagen, etc.  
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Micro/nano crystals are uniaxially distributed in fibers and the single crystal approach is 

unavailable.  However, the three-dimensional information of the crystal structures is 

partially retained in fiber diffractions.  Powder diffraction method is used when crystals 

are available as a powder.   As described in this thesis, there is an alternative way.  A 

powder sample can be magnetically aligned three-dimensionally in a polymeric matrix 

material, which we call MOMA (Magnetically Oriented Microcrystal Array).  A MOMA 

can diffract in a similar way to a real single crystal.      

 

1.2.2 Solid-state NMR 

Unlike diffraction methods, solid-state NMR spectroscopy is suited for looking at 

local electric environments around specific resonating nuclei.  These environments 

reflect on host-guest structures, absorptions, and hydrogen bondings, etc.[7]  The local 

structures in crystals are also of great interest because they are strongly related to the 

inter- and intra-interactions of molecules in crystalline states.  The local electric 

distributions are reflected on several NMR parameters including chemical shift tensors.   

Chemical shift is one of most frequently used NMR parameters.  Because of 

Larmor precession induced by an applied magnetic field, the magnetic field applied on 

a nucleus is shielded.  As a result, the resonance frequency is shifted from where it 

should be without Larmor precession.  This shift is referred to as chemical shift.  If 

the shielding is anisotropic, then, the chemical shift cannot be a scalar, but it should be 

a tensor.  This tensor is referred to chemical shift tensor.   

The chemical shift tensor is described by three principal values 1 , 2 , and 3 , 

and three principal axes.  With the conventional one-dimensional NMR at magic angle 

spinning, only the average of the principal values is observed.  Without magic angle 
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spinning we obtain powder patterns, from which three principal values can be 

determined in principal.  In order to determine the principal axes, we need to perform 

measurements on a single crystal.   

Similar to the X-ray diffraction method, preparation of a large single crystal is a 

bottleneck for single crystal NMR measurements.  In many circumstances, large 

single crystals (millimeter sizes) are difficult to prepare.   

 

1.2.3 Magnetic orientation  

As we discussed above, X-ray diffraction and NMR spectroscopy on oriented 

sample can give rise to more enhanced structural information.  The orientation can be 

achieved using external fields like magnetic fields, mechanical field, and electric field.  

In this thesis, we choose magnetic fields to align microcrystals.   

1.2.3.1 Magnetic susceptibility of diamagnetic crystals [8] 

Magnetic susceptibility tensor χ  of crystals is expressed by three principal values 

1χ , 2χ , and 3χ  that are all negative because diamagnetic crystals are concerned.  

We define 0123  χχχ .  Crystals are classified into three types: biaxial, uniaxial, 

and isotropic.  (i) Biaxial crystals include the triclinic, monoclinic, and orthorhombic 

systems. Three principal values are different from one another, i.e., 123 χχχ  .  In 

orthorhombic crystals, three magnetic axes correspond to three crystallographic a, b, 

and c axes.  In monoclinic crystals, two fold rotation or inversion axis corresponds to 

one of χ  values.  In triclinic crystals, there are no fixed relations between 

susceptibility axes and crystallographic axes.  (ii) Uniaxial crystals include the trigonal, 

hexagonal, and tetragonal systems.  Two of χ  values are equal, i.e., 123 χχχ   or 

123 χχχ  .  3-, 6-, and 4-fold crystallographic axes of trigonal, hexagonal, and 
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tetragonal crystals, respectively, correspond to one of susceptibility axes.  (iii) Isotropic 

crystals include cubic system, for which 123 χχχ  .   

1.2.3.2 Magnetic energy 

The anisotropic magnetic energy of a piece of crystal of volume V  subjected to an 

external magnetic field ),,( 321
t BBBB  (t indicating transpose) is expressed by 

 

BχB
t

02

V
E  ,  (1) 

 

where the magnetic susceptibility tensor χ  and the magnetic field B  are expressed 

relative to the laboratory 321 xxx  frame.  The tensor χ  is transformed into 'χ  with 

respect to the particle frame.  'χ  is diagonalized and diagonal components are 1χ , 

2χ , and 3χ .  The tensors χ  and 'χ  are related through the transformation matrix 

A as follows: 

 

AAχχ 't ,  (2) 

 

where the matrix A is expressed using Eulerian angles. [9]  Then, eq.(1) is rewritten 

as  

 

BAAχB '
2

tt

0

V
E  .  (3) 

 

1.2.3.3 Magnetic orientation 

Magnetic orientation of any crystal systems under any applied magnetic fields are 
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derived from eq.(3).  For example, in the case of uniaxial crystals ( 123 χχχ  ) 

subjected to a static magnetic field ),0,0(t BB , we obtain  

 




2
31

0

2

cos)(
2


VB

E ,  (4) 

 

where   is the angle between the magnetic field and 1χ  axis.  E has a minimum at 

 = 0; that is, 1χ || B , indicating that the 1χ  axis aligns parallel to the applied magnetic 

field [Fig. 1a].   

In the case of uniaxial crystals ( 123 χχχ  ) subjected to a rotating magnetic field 

)0,sin,cos(t tBtB B (t is time) at rotation frequency of  , we obtain  

 




2
31

0

2

cos)(
4


VB

E ,  (5) 

 

where eq.(3) is time-averaged over one revolution and   is the angle between the 

rotation axis and the 3  axis.  <E> has a minimum at 0 ; that is, 3  axis aligns 

parallel to the rotation axis [Fig. 1b]. 

In the case of biaxial crystals 123 χχχ   subjected to an amplitude-modulated 

rotating magnetic field, )0,sin,cos( 21
t tBtB B , where 21 BB  , we can achieve 

three-dimensional alignment in which 1χ || 1x , 2χ || 2x , 3χ || 3x [Fig. 1c].   
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1.3 Objective of my PhD research 

The objective of my PhD research is to analyze the structures of cellobiose and 

cellulose with X-ray diffraction and solid state NMR spectroscopy by using oriented 

microcrystalline samples.   

 

1.4 The outline of my thesis 

 

Chapter 1 Background of the study 

 

Chapter 2 Determination of anisotropic diamagnetic susceptibility of cellobiose crystals 

Fig. 1  Different orientation states under three types of magnetic fields 
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by performing X-ray diffraction measurement 

In this chapter, we present a facile method for determining the anisotropic diamagnetic 

susceptibility of biaxial crystals by performing X-ray diffraction measurements.  The 

proposed method is based on the fact that the amplitude of fluctuations in a 

crystallographic axis under a magnetic field depends on the direction of the field with 

respect to the susceptibility axes.  By calculating the magnetic energies of a crystal 

under static and rotating magnetic fields, we determined the relationship of the 

half-width of the diffraction spots corresponding to the (hkl) planes with the anisotropic 

magnetic susceptibilities 21    and 32    for the static field and 21    and 

31    for the rotating field, where 321   .  We have shown that the absolute 

values of the anisotropic diamagnetic susceptibilities can be determined if the size of 

the microcrystals is known, whereas only the ratio )/()( 2132    or 

)/()( 2131    can be determined if the microcrystal size is unknown. 

The developed method was applied to cellobiose microcrystal.  The ratio of 

diamagnetic anisotropy of cellobiose (monoclinic, space group P21) was determined 

using two X-ray fiber diffraction patterns that were obtained from its microcrystalline 

powder oriented in static and rotating magnetic fields.  We first determined the 

directions of the magnetic axes with respect to the crystallographic axes to obtain that 

3  is parallel to the b* axis and the 1  axis makes angles of 67.9 and 22.8 with 

respect to the a* and c* axes, respectively.  Following the analysis method proposed 

recently, azimuthal half widths of the X-ray diffraction spots for (hkl) planes of the 

oriented samples were plotted as a function of Φ2sin , where Φ  is an angle that 

characterizes the direction of the reciprocal vector of the (hkl) plane in the 321   

coordinates, with 1 , 2 , and 3  being the principal axes of the magnetic 
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susceptibility tensor.  The half width linearly depended on Φ2sin  as predicted by the 

proposed method.  From the values of the slope and intercept of the plot, the ratio of 

the diamagnetic anisotropy, )/()( 2132  r  was determined, where 

321   .  We estimated that r 1.41.7.   

 

Chapter 3 Determination of the chemical shift tensors of cellobiose by using a MOMA 

sample 

In this chapter, the single crystal rotation technique was applied to magnetically oriented 

microcrystal arrays (MOMAs) of cellobiose (monoclinic) microcrystals, and the principal 

values and principal axes of the chemical shift tensors of the C1 and C1′ carbons 

were determined.  Rotation was performed about the magnetic 1 , 2 , and 3  axes 

of MOMA, and the measurements were performed at six different orientations with 

respect to the applied magnetic field.  With this choice of rotation, crowded peaks were 

reduced and the peaks for the C1 and C1΄ carbons were resolved by comparing with 

simulation results.  Six components of the chemical shift tensor expressed with respect 

to the magnetic 321  -frame were determined.  The tensors thus obtained were 

transformed into those relative to the molecular frame. 

 

Chapter 4 Structure analysis of cellulose microfiber (Cotton, Ramie and Wood) via the 

anisotropic diamagnetic susceptibility 

In this chapter, the orientational distribution of cellulose nanocrystals (CNCs) in a 

cellulose whisker (CW) was investigated by means of the X-ray diffraction of 

magnetically oriented samples of CWs.  A cellulose sample (Cotton: Whatman CF11) 

was hydrolyzed and fractionated to prepare three different CW samples with a size 
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ranging from ca. 10 m to 100 m.  Each of the fractions that were suspended in a 

liquid matrix was aligned under a static or a rotating magnetic field, and the matrix was 

solidified to prepare magnetically oriented microcrystal arrays (MOMAs).  Then, the 

MOMAs were investigated by X-ray diffraction measurements.  By analysis of the 

diffraction patterns, it is concluded that the c-axes of the CNCs are uniaxially distributed 

within a CW and that the orientational order increases with decreasing CW size.  The 

average magnetic susceptibility a  of the CWs was expressed in terms of their size 

and of the X-ray azimuthal half width.  Using these expressions, a correlation length for 

the orientation of CNCs in a CW was determined.  Then, this method developed by 

using Cotton CW was also applied to the Ramie and Wood CWs to determine the 

correlation lengths.  

 

Chapter 5 Summary, Publication List and Acknowledgments 
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Chapter 2 

Determination of ratio of diamagnetic anisotropy of cellobiose  

by X-ray diffraction measurement 

 

2.1 Introduction 

As introduced in Chapter 1, our laboratory has developed a technique to align the 

microcrystals 3-dimensionally under magnetic field to fabricate a magnetically oriented 

microcrystal array (MOMA).  A MOMA facilitates the single-crystal X-ray analysis of 

microcrystalline powders [1-3] and single-crystal NMR study [4]. Information of 

diamagnetic anisotropy, 21    and 32    of crystal, which is a key parameter 

governing the orientation, is highly demanded in order to prepare composites having 

high degree of biaxial crystal alignment. 

However, these information are available only for limited number of crystals.[5]  We 

recently reported[6] a facile method for determination of the ratio of the anisotropic 

diamagnetic susceptibility )./()( 2132  r  It should be noted that 

 r0 .  Although the absolute values of 21    and 32    affect both the 

orientation dynamics and the degree of alignment in equilibrium, only the ratio r  is 

sufficient to describe the degree of alignment against the thermal fluctuation in the final 

product.[7]  In this method, the orientation distribution of magnetic axes in a composite 

is related to the broadening of its X-ray diffraction spots.  

Cellobiose is usually used as the model substance for structural analysis of 

cellulose.  We apply this method to the determination of the r  value of cellobiose 

crystal (monoclinic, space group P21, a=10.973Å, b=13.048Å, c=5.091Å, =90.83) [8] 

to evaluate the validity of the method and also pave the way for preparation of 

cellobiose MOMA.   
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Fig. 1  Definition of angles 1 , 2 , and 3 , where 1 , 2 , and 3  are magnetic 

susceptibility axes and B is an applied magnetic field.   

 

2.2 Theory  

Let us assume that a crystal having three different diamagnetic susceptibilities 1 , 

2 , and 3  is subjected to a magnetic field B  whose axis makes angles 1 , 2 , 

and 3  with respect to the axes of 1 , 2 , and 3 , respectively (Fig. 1).  Magnetic 

susceptibility S  in the direction of the axis of B
 is expressed as[9] 

 






3

1

2
S cos

i

ii  ,   (1) 

 

where the subscript S indicates that the applied magnetic field is static.  The magnetic 

energy in the vicinity of the stable alignment ( 1  B ) is expressed as a function of 

2/22  a  and 2/33  a :  

 2
331

2
221

0

2

0

S
2

S )()(
22

aa
VBVB

E 



 ,  (2) 
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where isotropic and higher terms are disregarded, 0  is the magnetic permeability of 

vacuum, and V  is the volume of the microcrystal.  Using the Boltzmann distribution, 

),/exp( BS TkE  we evaluate the mean-square fluctuations in angles 2a  and 3a  as 

1
21

12
0B

2
2 )()(    VBTka  and 1

31
12

0B
2

3 )()(    VBTka , 

respectively.  Here, Bk  and T  are the Boltzmann constant and the absolute 

temperature, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  (a) Fluctuation in the 1  axis viewed from the direction of magnetic field B .  

Mean-square amplitudes of fluctuation in the directions of 2  and 3  are 
2

2a  

and 
2

3a , respectively, and that in the direction designated by S  is 
2

Sa .  (b) 

Amplitude of fluctuations in the reciprocal vector G is equal to that in the magnetic 

susceptibility axis 1  when 1 , B, and G are all in the same plane.  Reciprocal vector 

G is defined by the angles SΦ  and SΘ  with respect to the 321   frame. 

 

SS ,Φ

B

G

1

2

3

SΘ

Sa

2

3

S 2
Sa

2
3a

2
2a

(a) (b)



15 

 

The fluctuation in the 1  axis viewed from the axis of B  forms an ellipse because 

the energy SE  is a quadratic form in 2a  and 3a .  The amplitudes of the 

mean-square fluctuation in the directions parallel to the 2  and 3  axes are 
2

2a  

and 
2

3a , respectively [Fig. 2(a)].  Thus, the mean-square amplitude of the 

fluctuation in the direction designated by S  in Fig. 2(a) is expressed as 

 

S
2

3221

12
0B2

S
sin)(

)(








VBTk
a .  (3) 

 

It is evident from eq. (3) that 
2

Sa  becomes 
2

2a  and 
2

3a  when S 0 and 

2/ , respectively.   

Let us consider a reciprocal vector )(hklG  of a crystal, whose direction is defined 

by the angles SΦ  and SΘ  with respect to the 321   frame [Fig. 2(b)].  Because 

the fluctuation in G  is caused by the fluctuation in the 1  axis, the mean-square 

amplitude of the fluctuation in G is equal to 
2

Sa  if the angle SΦ  coincides with S .   

Because of the uniaxial nature of the magnetic field, the distribution of G  is 

uniaxial about the direction of B .  Therefore, the orientation distribution of G  forms a 

band of width 2/12
S  a  on a reciprocal sphere with radius G .  In Fig. 3(a), the 

fluctuation band of G  is shown with respect to the laboratory coordinates xyz.  The 

direction of the z axis coincides with that of the axis of the magnetic field B .  Point P, 

at which the band intersects the Ewald sphere, is determined by angle SΘ .  At this 

point, the line of intersection is inclined with respect to the band by angle S , as shown 

in Fig. 3b.  Therefore, the square of the band width, 
2

SH , which is observed as a 

half-width in azimuthal plot of an X-ray diffraction spot, is obtained from the relation,  
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Fig. 3  (a) Band of the distribution of G vectors on the reciprocal sphere formed under a 

static magnetic field applied in the z direction.  The band intersects with the Ewald 

sphere around point P.  (b) Magnified view of the area around point P, showing the 

relationship between 2/12
S  a  and the half-width SH  observed for the azimuthal 

plot in the X-ray diffraction pattern. 

 

 

 

 

 

 

 

 

Fig. 4  (a) Unit vectors 1u , 2u , and 3u  used for calculating the magnetic 

energy under a magnetic field rotating in the xy plane.  Direction of the rotation axis n is 

defined by angles 1 ,  2 , and 3  with respect to unit vectors 1u , 2u , and 3u .  (b) 

Definition vectors iv  (i = 1,2,3).  
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 
2

S
2

S
22

S
2 cos aGHR  , where )]4/(1[ 2222 KGGR   is the square radius of 

the intersection circle of the Ewald sphere (radius K) and the reciprocal sphere (radius 

G).  The quantity S
2cos   is determined as a function of K, G, and SΘ .  This 

approximation is valid when 
2

Sa  is small.  From eq. (3), we obtain 

 

S
2

3221
2

S
2

S sin)( ΦHf  
 ,   (4) 

 

where 

 

1
2

i
2

0B2
i

sin2
1

m


























ΘK

G

VB
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Here, i=S with SΘ  being the angle between the reciprocal vector G  and the 1  axis, 

as shown in Fig. 2b.  The factor m is unity for i=S and m=2 for i=R.   

 Next, we consider the fluctuations under a rotating magnetic field.  Let us define a 

magnetic field )0,sin,cos( tBtB B  rotating in the xy plane and a unit vector n  

parallel to the z axis.  We define unit vectors 1u , 2u , and 3u
 as parallel to the 1 , 

2 , and 3  axes, respectively.  The direction cosines of n  with respect to 1u , 2u , 

and 3u
 are defined as 1cos , 2cos , and 3cos , respectively (Fig. 4).  The 

projection of iu  (i = 1, 2, 3) on the xy plane is expressed as iii cosnuv  .  Thus, 

the magnetic energy is given by 
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where i  is the phase of iv  and the subscript R indicates that the applied magnetic 

field is rotating.  If the magnetic field rotates at a high speed such that the change in 

the directions of the magnetic axes is negligible in a single rotation, then )(cos2
it    

is time averaged over one rotation to give a factor of 1/2.  Thus, the magnetic energy in 

the vicinity of the stable alignment ( 3  n ) is expressed as a function of 2/11  b  

and 2/22  b : 

 

 2
232

2
131

0

2

R )()(
4

bb
VB

E 


 ,    (7) 

 

where isotropic and higher terms are disregarded.  Similar to the case of the static 

magnetic field, the mean-square fluctuations in the 3  axis in the direction designated 

by R  in Fig. 5 is expressed as  
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2131

12
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)(2
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We find that 
2

Rb becomes 1
31

12
0B

2
1 )()(2    VBTkb  and 

1
32

12
0B

2
2 )()(2    VBTkb   when R 0 and 2/ ,  respectively.  Further,  
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2

R
2

R sin)( ΦHf  


,        (9) 

 

where 
2

Rf

 

is determined using eq. (5), with Ri ΘΘ  .  Here, RΘ

 

is the angle 

between the reciprocal vector G and the 3  axis, as shown in Fig. 5. 
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Fig. 5  (a) Fluctuation in the 3  axis viewed from the direction n perpendicular to the 

rotating magnetic field.  Mean-square amplitudes of fluctuation in the directions of 1  

and 2  are 
2

1b  and 
2

2b , respectively, and that in the direction designated by 

R  is 
2

Rb .  (b) Amplitude of fluctuations in the reciprocal vector G is equal to that 

in the magnetic susceptibility axis 3  when 3 , n, and G are all in the same plane.  

Reciprocal vector G is defined by the angles RΦ  and RΘ  with respect to the 321   

frame. 

 

 

We observe that the plot of the quantity on the left-hand side of eq. (4) as a function 

of S
2sin Φ  forms a line whose y intercept and slope are equal to those of 21    and 

32   , respectively [Fig. 6(a)].  This plot can be generated as follows:  because the 

RR ,Φ

n
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susceptibility axes 1 , 2 , and 3  are related to the crystallographic axes a, b, and 

c,[10] the angle SΘ  [Fig. 2(b)] is determined for a given reciprocal vector G(hkl).  

Thus, the factor 
2

if  in eq. (5) is determined if the values of V , B , and T  are given.  

Consequently, the quantity on the left-hand side of eq. (4) can be determined using the 

experimental value of half-width SH

 

corresponding to G(hkl).  Because the angle SΦ  

[Fig. 2(b)] is also determined for G(hkl), we can complete the plot.  In many cases, the 

crystal volume V  (or the average volume of the microcrystalline powder) is unknown.  

In these cases, we can generate a plot with the front factor )/( 2
0B VBTk   of 

2
if  

being set equal to unity so that we only obtain the ratio )/()( 3221    from the 

intercept and slope values instead of the absolute values.  Based on eq. (9), the same 

procedure can be performed using the experimental data obtained under the rotating 

magnetic field [Fig. 6(b)].  From this plot, 31    and 21    are determined.  If 

the crystal volume V  (or the average volume of the microcrystalline powder) is 

unknown, only the ratio )/()( 2131    is determined. 

 In conclusion, we have proposed a facile method to determine the anisotropic 

diamagnetic susceptibilities of a microcrystalline powder of biaxial crystals by 

performing X-ray diffraction measurements.  The experiment can be performed by 

in-situ X-ray measurement of a magnetically oriented microcrystalline suspension 

(MOMS) [11] or ex-situ X-ray measurement of a magnetically oriented microcrystalline 

array (MOMA) [3] prepared under a static or rotating magnetic field.   
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Fig. 6  Determination of the anisotropic diamagnetic susceptibilities under (a) static and 

(b) rotating magnetic fields.  

 

 

2.3 Experiement 

As-received cellobiose crystal sample (supplied from Matsutani Chemical Industry 

Co. Ltd) was pulverized using a mortar and pestle, and dispersed in UV 

(ultraviolet)-curable monomer (XVL-14 of Kyoritsu Chemical and Co. Ltd).  The 

concentration of the crystallites was ca. 17 wt%.  The suspension was allowed to stand 

for a few days to form a lower layer of large crystallites and an upper layer of small ones.  

A small amount of the suspension was collected from between these two layers using a 

pipette and was poured into two plastic containers (diameter, 5 mm; height, ca. 8mm).  

The actual concentration may therefore be less than 17 wt%.   

One suspension was exposed to a static magnetic field of 8 T (a Sumitomo Heavy 

Industry cryocooler-cooled superconducting magnet) for 1.5 h and then irradiated with 

UV light for 3 h, with the magnetic field being applied, to photopolymerize the monomer 

and consolidate the alignment [Fig. 7(a), referred to as static-sample].  Under this 

experimental condition, the easy magnetization axis 1  aligns uniaxially parallel to the 

S
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applied magnetic field, giving rise to a fiber diffraction pattern ( 1  fiber axis).  The 

other was rotated at 40 rpm in a static magnetic field of 8 T for 3 h with the rotation axis 

being perpendicular to the field.  Then, the UV light was irradiated for 3 h, with the 

magnetic field and the rotation being applied, to photopolymerize the monomer [Fig. 

7(b), referred to as rotating-sample].  Under this experimental condition, the hard 

magnetization axis 3
 
aligns uniaxially in the direction of sample rotating axis, giving 

rise to a fiber diffraction pattern ( 3  fiber axis). 

 

 

 

 

 

 

 

Fig. 7  Sample preparation.  (a) static-sample: the suspension was placed under 

a static magnetic field B and irradiated with UV light to consolidate the alignment.  (b) 

rotating-sample: the suspension was rotated in a static magnetic field at a rotating 

speed of   and irradiated with UV light to consolidate the alignment. 

 

 

X-ray diffraction measurement was performed for 40 min using an MAC Science 

Dip 2000 diffractometer equipped with an MXP18HF22 rotating anode generator (45 kV, 

84 mA).  Graphite-monochromated Cu K radiation was used ( 54078.1 Å; wave 

number 078.4/2  K Å-1).  The collimator size was 0.9 mm.  The 

crystal-to-detector distance was 150.0 mm.  The divergence of the X-ray beam was 

0.5. 

B

ω(a) (b)

B
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2.4 Results and discussion 

Due to the Brownian motion of microcrystals suspended in a liquid medium, 

fluctuation in magnetic axes that are embedded in crystal occurs when the microcrystals 

are subjected to a magnetic field.  This fluctuation is anisotropic because of the 

diamagnetic anisotropy of crystal, resulting in anisotropic fluctuation in crystallographic 

axes.  In the theory part, we derived the relationship between the amplitude of the 

fluctuation in magnetic axes and the half width of X-ray diffraction spots resulting from 

the fluctuation in crystallographic axes.  The half width HS of the diffraction spot, 

corresponding to the (hkl) plane, obtained from the sample with uniaxial 1  alignment 

(a static-sample in the present case) is related to the magnetic susceptibilities by the 

following equation: 
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where Sf  is a correction factor expressed as 
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Here, SΦ  and SΘ  are the angles characterizing the direction of the reciprocal vector 

G(hkl) relative to the 321   frame as shown in Fig. 8(a), and 0 , magnetic 

permeability of vacuum; Bk , Boltzmann constant; T , temperature; V , volume of a 

microcrystal; B , applied magnetic flux density; G , length of the reciprocal vector for  
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Fig. 8  Angles Θ  and Φ  characterizing the direction of the reciprocal vector )(hklG  

with respect to the 321   coordinates.  (a) in the case of a static-sample and (b) in 

the case of a rotating sample.  Suffices S and R indicate “static” and “rotating”, 

respectively. 

 

 

the crystal plane (hkl) under consideration; K , radius of Ewald sphere, equal to the 

wave number of the X-ray.  We find from eq. (1) that the left-hand side quantity 

2
S

2
S


Hf  linearly depends on S

2sin Φ , giving rise to the slope of 32  
 and the 

intercept of 21   .  Arbitrariness of the value of Sf  is inevitable when the value of 

the volume V of microcrystals is unavailable, and hence the determination of the 

absolute values of 32    and 21    cannot be made.  However, it is possible to 

determine the ratio )/()( 2132  r  by assigning an arbitrary value to the 

factor of )/( 2
0B VBTk 

 

in Sf .  In the present experimental analysis, we set this factor 

equal to unity.   

A similar equation is given for the half width HR of the sample with uniaxial 3  
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alignment (case rotating-sample in the present) by the following equation:  
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where Rf  is a correction factor expressed as 
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Here, RΦ  and RΘ  are the angles characterizing the direction of the reciprocal vector 

G(hkl) relative to the 321   frame as shown in Fig. 8(b).    

 Now we need to locate the magnetic axes with respect to the crystallographic axes 

using the X-ray diffraction pattern in order to evaluate the angles RΦ  and RΘ . Figures 

9(a) and (b) show the X-ray diffraction patterns obtained from the sample prepared 

under static- and rotating magnetic fields, respectively.  Symmetry axes in the figure 

are the 1  and 3  axes, respectively.   

In Fig. 9(b), the vertical direction coincides with the 3  axis.  Because the 

cellobiose crystal belongs to the monoclinic crystal system, the two-fold crystal axis 

(here the b axis) is one of the magnetic susceptibility axes.[10]  Thus, we conclude 

3 b (also 3 b*, with asterisk indicating reciprocal vector).  The assignment of 

diffraction spots in Fig. 9(b) by their 2  values is consistent with this conclusion. 

Because (i) the reciprocal a*c* plane is perpendicular to the b* axis, (ii) the 21  

plane is perpendicular to the 3
 
axis, and (iii) 3 b*, the 1  and 2  axes are on  
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Fig. 9  X-ray diffraction patterns of (a) static-sample and (b) rotating-sample.  The 

assignment for the diffraction spots {hkl}s used for the analyses is indicated.  The 

directions of the 1  and 3  axes are shown in figures (a) and (b), respectively.  The 

angles 110  and 011  used to determine the a* and c* axes with respect to the 1  

axis (see Fig. 4) is shown in fig. (a). 

 

 

the a*c* plane [Fig. 10].  Using the diffraction spots for {110} and {011} planes in Fig. 

9(a), we locate the 1  and 2  axes relative to the a* and c* axes.  We define the 

angle of the diffraction spot {110} on the diffraction image with respect to the 1  axis 

as 110  [Fig. 9(a)] and the angle of the reciprocal a* axis with respect to the 1  axis 

as 
* [Fig. 10].  By the diffraction law, 

*
 
is related to 110 .  Next, we define the 

angle for the diffraction spot {011} on the diffraction image with respect to the 1  axis 

as 011  [Fig. 9(a)] and the angle of the reciprocal c* axis with respect to the 1  axis 
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as * [Fig. 10].  Then, *
 
is related to 011 .  Using the experimental data, 

110 =73.2 and 011 =29.5, we obtain 
* =67.9 and * =22.8.  From this result, 

the a* and c* axes are located on the 21  plane as shown in Fig. 10.  This 

assignment consistently explains the positions of other diffraction spots in Fig. 9(a).  

 

 

 

 

 

 

 

 

 

 

Fig. 10  The direction of the a* and c* axes with respect to the 1  axis, characterized 

by the angles 
* =67.9 and * =22.8.  Using this relation, the angles Θ  and Φ  in 

Fig. 2 are determined.    

 

   Azimuthal -scans were performed on diffraction spots for the }110{ , }011{ ; {011}, 

{ 110 }; { 111 }, { 111 }; { 102 }, { 120 }; { 120 }; { 121 }, { 112 }; { 122 }, { 122 } planes in Fig. 9(a) 

obtained for the static-sample, and their half widths were determined.  The results are 

summarized in Table I.  Similar analysis was performed for the X-ray diffraction spots 

for the {110}, { 011 }; {210}, { 012 }; {011}, { 110 }; { 111 }, { 111 } planes shown in Fig. 9(b) 

obtained for the rotating-sample.  The results are also summarized in Table I.  In most 

cases, four diffraction spots (Peaks 1, 2, 3, and 4) appear.  This is due to the crystal  

3b
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Table I  The experimental results for the half width H for {hkl} planes.  The calculated 

results for the angles Θ  and Φ  characterizing the direction of the reciprocal G are 

shown.  Quantity f is the correction factor (eqs. (2) and (3)).  Plots of f 2/H2 as a 

function of Φ2sin
 
is shown in Figs. 5(a) and (b).   

 

 

symmetry and the symmetry about the magnetic axis.  Ideally, the half widths of these 

four spots are equal, but we observed scattering of the values of the half widths as seen 

in Table I.  A poor signal-to-noise ratio of the diffraction data and an imperfect setting of 

the sample (the magnetic axis slightly deviates from being perpendicular to the X-ray 

beam, etc.) might be responsible for the unequal half width values.   

In Figs. 11(a) and (b), -H  plots (eqs. (1) and (3)) for the static- and 

rotating-samples, respectively, are shown.  Here we set 1)/( 2
0B VBTk   by the 

reason previously mentioned.  From Fig. 11(a), we obtain r 1.7, and from Fig. 

11(b), we obtain 3.2)/()( 2131   , leading to r 1.4.  Ideally, these two

{hkl} 2 /deg G /deg  /deg  /deg f 2
H /deg f 2/H2

/deg-2

Peak 1 Peak 2 Peak 3 Peak 4 Average

Static

10.6 0.75 107 42.2 1.01 3.15 3.54 3.81 3.27 3.44 0.0853

18.8 1.33 30.8 45.1 1.11 1.83 2.27 2.37 2.2 2.17 0.236

20.3 1.44 160 84.0 1.38 2.52 2.1 1.48 2.42 1.86 0.398

22.2 1.57 137 -63.5 1.09 2.38 1.82 2.22 2.05 2.12 0.242

23.5 1.66 160 0 1.53 3.07 2.87 2.7 2.8 2.86 0.187

24.5 1.73 154 39.6 1.32 2.79 2.22 2.58 2.4 2.5 0.211

27.3 1.92 144 58.6 1.20 2.05 2.08 1.94 2.08 2.04 0.287

Rotating

10.6 0.75 49.9 -68.0 2.03 3.12 3.49 3.31 3.01 3.23 0.195

17.6 1.25 67.2 -68.0 2.06 2.97 3.27 3.22 3.6 3.27 0.192

18.8 1.33 68.8 22.8 2.06 2.03 2.36 4.04 1.81 2.56 0.315

20.3 1.44 70.5 -2.16 2.07 2.27 2.08 3.8 2.6 2.7 0.284
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Fig. 11  Squared inverse of the half widths are plotted as a function of Φ2sin .  

Figures (a) and (b) are the plots for the static- and rotating samples, respectively.  

Suffices S and R indicate the static and rotating, respectively.  From the slope of the 

line and the value of the intercept with the vertical axis, the ratio r  is determined using 

eqs. (1) and (3).   
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values should coincide.  The discrepancy might come from the insufficient data quality.  

In order to improve the data quality, we might need the correction of the sample shape 

and size with respect to the collimator size, the correction of the X-ray beam divergence, 

the exact setting of the magnetic axis of the sample with respect to the X-ray beam, the 

estimation of the 2-dependence of the half width, etc.   

 

2.5 Conclusion 

In conclusion, we determined the ratio r  of the diamagnetic anisotropy of 

cellobiose crystal by using X-ray diffraction measurement.  We first determined the 

directions of the magnetic axes with respect to the crystallographic axes.  We found 

that 3  is parallel to the b* axis and the 1  axis makes angles of 67.9 and 22.8 with 

respect to the a* and c* axes, respectively.  The half widths of the (hkl) diffraction spots 

exhibited dependence on the angles Φ
 
and Θ  characterizing the direction of the 

reciprocal vector G(hkl) with respect to the frame of the magnetic axes, from which the 

ratio r  of the diamagnetic anisotropy was determined by the method reported 

previously.  From the plot, we determined r =1.4~1.7.  Although the experimental 

result is sensitive to the sample quality and X-ray measurements, the method presented 

here will be useful to determine crystal diamagnetic anisotropy from a microcrystalline 

powder. 
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Chapter 3 

A single crystal NMR approach for determining chemical shift tensors from 

powder samples via magnetically oriented microcrystal arrays 

 

3.1 Introduction 

The chemical shift tensor (CST) of a nucleus is very sensitive to electronic structure 

around the nucleus in a crystal.  Chemical shift tensor reflects the full local structural 

information around the resonance nuclei.  For a complete characterization of the CST, 

it is expressed by three principal values and directions of the principal axes with respect 

to a crystal coordinate system.   

Single crystal NMR is a direct method to determine the chemical shift tensor with 

highest accuracy.[1, 2] 

Powder solid state NMR measurement gives rise to isotropic chemical shifts with 

magic angle spinning (MAS), or three principal values without MAS. However, single 

crystal NMR measurement obtains a complete chemical shift tensor.  

 Single-crystal NMR measurement can determine the chemical shift tensor directly 

and precisely.  Currently, many techniques have been developed to determine the 

three principal values.  Therefore, most of the chemical shift tensor data reported is 

only principal values.  However, very few reports are about determining the orientation 

of magnetic axes effectively.  Till now, single crystal NMR is the most effective method 

to determine the full chemical shift tensor.  Limitation: a single crystal with suitable size 

is needed (mm scale). However, this single crystal is not commercially available.  In 

most cases, very much efforts and time are taken to recrystallize some crystals.  

   As mentioned in Chapter 1, we recently showed that a magnetically oriented 
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microcrystal array (MOMA) is a resin composite in which microcrystals are aligned 

three-dimensionally, and it behaves like a single crystal in single crystal NMR or X-ray 

diffraction measurement.[3, 4] 

   In Chapter 2, magnetic anisotropy of cellobiose has been determined successfully.  

In this chapter, MOMA of cellobiose was then prepared and single crystal NMR 

measurement was performed on this MOMA.  Complete chemical shift tensors of C1 

and C1` were determined, combined with a 2D NMR technique.  Then, the result was 

discussed based on the local molecular symmetry.  

 

3.2 Experiment 

Cellobiose MOMA samples were prepared following the method reported 

previously.[5]  As-received cellobiose crystals (Wako Pure Chemical Industries, Ltd.) 

were pulverized with a mortar and passed through a 125/90 m mesh and 75/50 m 

mesh consecutively, then the fraction of a powder on the 75/50m -mesh was collected.  

The obtained microcrystalline powder was dispersed in a UV-curable monomer 

(POLY201 of Arakawa Chemical Industries, Ltd.; viscosity of 5 Pas).  The weight 

fraction of microcrystals was ca. 0.2.   

The obtained suspension was poured into a plastic tube of 4-mm diameter and ca. 

15-mm height.  The tube was then mounted on a sample-rotating unit placed in the 

bore center of a Sumitomo Heavy Industry cryogen-free superconducting magnet 

generating an 8-T static horizontal magnetic field.  The sample rotation axis was 

vertical (the z-axis) and the tube axis was set horizontal or vertical.  Three kinds of 

rod-shaped MOMA samples, M1, M2, and M3, were prepared, where the rod axes (tube 

axes) were parallel to (M1) 3  axis; (M2) 1  axis; (M3) 2  axis.  Here we define 1

> 2 > 3 .  Two different frequencies of rotation were applied within one revolution: the 
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rotation frequency was switched between =10 and =80 rpm every 90.  After 70 min 

of this frequency-modulated rotation of the tube, the suspension was irradiated with UV 

light for 45 min to photopolymerize the UV-curable monomer.  Then, the consolidated 

specimen was removed from the tube to obtain a rod-shaped cellobiose MOMA (ca. 3 

mm in diameter and 10 mm in height) for NMR measurements.   

   The three-dimensional alignment of the cellobiose microcrystals in the MOMA 

sample was confirmed using X-ray diffraction.  X-ray diffraction data were collected on 

a Rigaku RAXIS RAPID II system equipped with an imaging plate using 

graphite-monochromatized Cu Kradiation.  The collimator size and 

crystal-to-detector distance were 0.5 mm and 127 mm, respectively.  Data were 

collected via ω scans from −15 to 15 at ambient temperature.   

   13C CP solid-state NMR measurements under proton decoupling were performed 

using a probe with a goniometer (sample rotation axis (rod axis) is perpendicular to the 

applied magnetic field 0B ) at ambient temperature (20 C) with a JEOL ECA-500 

system operated at a 13C resonance frequency of 125 MHz.  Recycle delay and 

contact time are 60 s and 2 ms, respectively.  Total scans of 600~2160 were taken.  

The SUPER experiment [6] was performed on a Varian 400 spectrometer operating at 

100 MHz for 13C using a 4 mm zirconia rotor spinning at 3 kHz.  Recycle delay, total 

scans, contact time and complex points for 2D increments were 9 s, 4096, 2 ms, and 16, 

respectively.  MAS measurement was performed on a Varian 400 spectrometer 

operating at 100 MHz for 13C using a 4 mm zirconia rotor spinning at 15 kHz.  Recycle 

delay, total scans, and contact time were 120 s, 256, and 2 ms.  Chemical shifts for all 

measurements were referred to adamantane (ADM). 

 

3.3 Results and discussion 
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3.3.1 X-ray diffraction pattern 

Fig. 1 shows the X-ray diffraction patterns of the obtained cellobiose MOMA sample 

(sample M2).  The sample clearly shows well-separated diffraction spots in the 

diffraction images taken from the direction of the 1 , 2 , and 3  axes.  The half 

widths in the azimuthal plot were ca. 5 for most of the spots in all of the images in the 

figure.  This result indicates that the microcrystals in the polymer matrix are aligned 

three-dimensionally.  The same order of orientations was confirmed for the other two 

MOMA samples (M1 and M3). 

Fig. 1  X-ray diffraction images of a MOMA (sample M2) taken from three different 

directions.  Sharp spots indicate three-dimensional orientation of the microcrystals in 

MOMA.  1 , 2 , and 3  indicate the directions of the magnetic axes. 

 

 

3.3.2 Theoretical background 

3.3.2.1 Crystal symmetry   

Cellobiose crystals belong to monoclinic system (space group P21, Z=2, a=5.0633 

Å, b= 13.017 Å, c=10.9499 Å, β=90.811º).[7]  In the monoclinic crystals, the two-fold 

rotation or inversion axis coincides with one of three magnetic axes.[8]  We reported 

previously [9] that the b axis (two-fold rotation axis) corresponds to the hard 
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magnetization axis 3  in cellobiose crystals.  The other two magnetic axes 1  (easy 

magnetization axis) and 2  (intermediate axis) are located on the ac plane.  The 

relationship between magnetic 1  and 2  axes and crystallographic a and c axes has 

been reported in our previous work [5, 10] and shown in Fig. 2.  There are two identical 

molecules in the unit cell, which are related by a two-fold screw axis.  We designate 

these two molecules by A1(lmn) and A2(-l-mn), where (lmn) indicates the direction 

cosines with respect to the χ -frame.    

 

 

 

 

 

 

 

 

Fig. 2  Unit cell of cellobiose crystals and twin structure that occurs in a MOMA sample.  

There are two identical molecules with different orientations in a unit cell, designated by 

A1(lmn)  and A2(-l-mn), where (lmn) indicates the direction cosines with respect to 

-frame.  In a MOMA, another orientation (twin) that is produced by a  rotation of the 

unit cell about the 1  (or 2 ) axis is allowed.  The orientations of the molecules in the 

twin are designated by A3(l-m-n) and A4(-lm-n).  The direction of the 1  axis with 

respect to the c and a axes are  =67.2 and  =21.8, respectively. 

 

 

 

2
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1

a

c

b





A1(lmn)
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3.3.2.2 Twin structure 

The magnetic axes, 1 , 2 , and 3 , of each microcrystal are aligned 

three-dimensionally in a MOMA.  However, this does not necessarily mean that the 

crystallographic a, b, and c axes are aligned three-dimensionally because the a and c 

axes do not coincide with the 1 , 2  axes.  Due to the axial nature of magnetic axes, 

a   rotation of a microcrystal about the magnetic axes gives rise to an additional 

crystal orientation that has an equal magnetic energy.  If a unit cell containing 

molecules A1(lmn) and A2(-l-mn) is rotated by   about the 1  axis, two molecules 

A3(l-m-n) and A4(-lm-n) are created [Fig. 2].  These four molecules having mutually 

different orientations are described by the point group (222).[4]  This symmetry is a 

characteristic of MOMA prepared from monoclinic crystals with the point group 2.  

Owing to this (222) symmetry, a cellobiose MOMA can be equivalent to the 

orthorhombic crystal with point group (222), whereby the χ -frame corresponds to the 

crystallographic abc frame of the orthorhombic system.     

3.3.2.3 Procedure to determine the principal values and principal axes 

The chemical shift tensors χ
σ s relative to the χ -frame, which are symmetric, are 

defined as  
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 (1) 

for the molecules A1(lmn), A2(-l-mn), A3(l-m-n), and A4(-lm-n), respectively.  The 

tensors χ
σ  is transformed into the expression relative to the principal 321   frame 
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(σ -frame) as  

 

1
σ

χ
σ

 RσRσ ,  (2) 

 

where σR  is the transformation matrix whose ij component is defined as jiij ksR )( σ  

with is  and jk  being the normalized orthogonal base vectors for the - and χ -frames, 

respectively [Fig. 3a].  The tensor σ  is diagonal whose components are 1 , 2 , and 

3 .  The principal values and principal axes of the tensor σ  are determined as the 

eigenvalues and eigenvectors of the tensor χ
σ , respectively.   

The tensor χ
σ  is transformed into 

 

1

L

χ

L

L  RσRσ ,  (3) 

 

expressed with respect to the laboratory xyz frame (L-frame), where LR  is the 

transformation matrix whose ij component is defined by jiij keR )( L  with ie  being 

the normalized orthogonal base vectors for the L-frame [Fig. 3b].     

We use three experimental settings (i), (ii), and (iii) shown in Fig. 4.  In these 

settings, MOMA samples, M1, M2, and M3, are set such that (i) 03 B , (ii) 01 B , 

and (iii) 02 B , where 0B  is the NMR magnetic field.   In each setting, the sample is 

rotated by an angle   about the respective axes.  When 0 , three settings 

correspond to (i-0) 1 || 0B , 03 B ,  (ii-0) 2 || 0B , 01 B , and (iii-0) 3 || 0B , 

02 B .  
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Fig. 3  Relationship of the magnetic frame (-frame) with (a) the principal frame 

(-frame) and (b) the laboratory frame (L-frame).  Orthogonal unit base vectors in each 

frame are represented by si (-frame), ki (-frame), and ei (L-frame), respectively, where 

i=1,2,3.   

 

 

The rotation matrices LR  for the settings (i), (ii), and (iii) are expressed as follows: 
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The experimentally observed chemical shift is related to the components of 
σ  through 

the relationship 33
1

LL
L )(  RσR


zzσ .  With the setting (i) at 0 , referred to as (i-0), the 

observed values of L
zzσ s for four different molecules A1, A2, A3, and A4 are the same: 

(i-0) L
zzσ

χ
11σ .  Similarly, (ii-0) L

zzσ
χ
22σ  and (iii-0) L

zzσ
χ
33σ .  With the settings (i), (ii), 

and (iii) at =45, referred to as (i-45), (ii-45), and (iii-45), we observe two peaks for 

each of these settings: (i-45) L
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and (iii-45) L
zzσ 2/)2(

χ
13

χ
33

χ
11 σσσ  , giving rise to six equations.  Then, the total of nine 

equations are derived from the above experiments and they are used to determine six 

unknown values, χ
11σ , χ

22σ , χ
33σ , χ

12σ , χ
23σ , and χ

13σ .  There is an arbitrariness of the 

sign of χ
12σ , χ

23σ , and χ
13σ .  Determination of these six values is performed by the least 

square method.  Now, the principal values 1 , 2 , and 3 , and the principal axes 1s , 

2s , and 3s  of the tensor σ  are derived as the eigenvalues and eigenvectors of the 

tensor χ
σ .   

 

 

 

 

 

 

 

Fig. 4  Experimental settings of MOMA samples in a probe.  The NMR magnetic field 

B0 is in the z direction and the sample rotation axis is laboratory x axis.  Setting (i): 

sample M1 is set with 3  x axis; settings are referred to as (i-0) and (i-45) when =0 

and 45, respectively. Setting (ii): sample M2 is set with 1  x axis; settings are referred 

to as (ii-0) and (ii-45) when =0 and 45, respectively.  Setting (iii): sample M3 is set 

with 2  x axis; settings are referred to as (iii-0) and (iii-45) when =0 and 45, 

respectively.  It is noted that 1 k1, 2 k2, and 3 k3, where vector ks are defined in 

Fig. 3. 
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3.3.3 Simulation for peak assignment  

The chemical shift values of C1 carbon determined by SUPER range as 1σ =119.4, 

2σ =102.9, and 3σ =89.7 ppm and those of C1’ range as '1σ =122.1, '2σ =99.4, and '3σ

=70.7 ppm [Fig. 5].  Because of these large anisotropies in chemical shifts, C1 and C1′ 

carbons exhibit severe overlapping in the spectra obtained under experimental settings 

(i), (ii), and (iii).  This causes difficulties in assigning the peaks under consideration.  

In addition, peaks from other carbons may interfere with the assignment.   

Fig. 5  CP/MAS spectrum and powder patters of C1 and C1′ carbons obtained by 

SUPER of cellobiose.  Dotted red curves in powder spectra are results by simulation 

and principal values obtained by the simulation are indicated by arrows. 

 

In order to assign C1 and C1′ carbons, we first perform simulations to find 

approximate locations of the peaks.  The simulation is based on the local symmetry 

assumption.  The 13C chemical shift tensor is strongly related to the anisotropy in 

electron density around the resonance nucleus.  The shielding is stronger in the 
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direction where the electron density is higher.  The hybridization of the carbon and the 

atoms bonding to it dominates the electron environment.  So the anisotropy of the 

chemical shift tensor of a 13C nucleus depends on the bonding symmetry of the 

nuclei.[2] 

The C1 and C1΄ carbons are bonding to two oxygen atoms [Fig. 6].  The C-O bond 

is dominant direction of chemical shielding because the electron density is high in this 

direction.  The bond length C1-O1 is shorter than that of C1-O5 bond by 0.031Ǻ, and 

hence the most shielded direction is close to C1-O1 direction and the least shielded 

direction is close to the direction perpendicular to the O1-C1-O5 plane.  The C1΄-O1΄ 

bond is shorter than the C1΄-O5΄ bond by 0.057 Ǻ, and hence the most shielded 

direction is close to C1΄-O1΄ direction and the least shielded direction is close to the 

direction perpendicular to the O1΄-C1΄-O5΄ plane.  These assumptions are employed 

and confirmed experimentally for several saccharides.[1, 2]  Therefore, we assume in 

the simulation that the 3σ  axis is parallel to the C1-O1 bond and the 1σ  axis is 

perpendicular to the O1-C1-O5 plane; '3σ  axis is parallel to the C1΄-O1΄ bond and the 

'1σ  axis is perpendicular to the O1΄-C1΄-O5΄ plane.  Experimental values of 1σ , 2σ , 

and 3σ  for C1 and '1σ , '2σ , and '3σ  for C1’ determined by SUPER were used in 

simulation.  Table 1 summarizes the results of the simulation.     

 

3.3.4 Peak assignment and determination of the tensor χ
σ  

The spectra obtained under the settings (i), (ii), and (iii) for 0  and 45  are 

shown in Fig. 7.  In this figure, the locations of the peaks for the C1 and C1′ carbons 

predicted by simulation are indicated by thin arrows.  The actual locations of the peaks 

are found in the vicinity of these predicted locations and indicated by thick arrows.  The  
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Fig. 6  Molecular axes (XYZ) at C1 and (X′Y′Z′) at C1′ carbons.  The X axis is parallel 

to the C1-O1 bond, the Y axis is on the O1-C1-O5 plane, and the Z axis is defined 

following the right-handed rule.  The X′ axis is parallel to the C1′-O1′ bond, the Y′ axis 

is on the O1′-C1′-O5′ plane, and the Z′ axis is defined following the right-handed rule.  

In simulations, it is assumed that X 3σ , Y 2σ , Z 1σ , X′ '3σ , Y′ '2σ , and Z′ '1σ . 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Simulation results for peak positions (ppm) expected to appear under different 

experimental settings,  (i-0), (ii-0), (iii-0), (i-45), (ii-45), and (iii-45) for C1 and C1′ 

carbons. 

 

 

C1

(i-0) 105.6 (i-45)
108.3
93.8

(ii-0) 96.6 (ii-45)
105
101.5

(iii-0) 109.8 (iii-45)
118.7
96.7

C1’

(i-0) 104.9 (i-45)
117.2
95.7

(ii-0) 108.1 (ii-45)
110.8
76.5

(iii-0) 79.2 (iii-45)
91.5
92.7
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results of the assignment are summarized in Table 2.  Applying the least square 

method to the values tabulated in Table 2, we obtain the tensors χ
σ (C1) for C1 carbons 

as follows:   

 

χ
σ (C1) =
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
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The tensors for the other three molecules can be generated according to eq. (1).  

Either one of eq. (5) is correct.[11]  The principal values derived are 1.1191  , 

9.1002  , 1.943   ppm from eq.(5a) and 1.1171  , 7.1052  , 3.913   ppm from 

eq.(5b).  These should be compared to 4.1191  , 9.1022  , 7.893   ppm 

determined by SUPER.  It is difficult to tell which is close to those by SUPER.  In Fig. 

8(a), the principal 1 , 2 , and 3  axes of C1 carbon are shown.  The blue and red 

arrows are those determined using eqs (5a) and (5b), respectively.  According to the 

criteria 1, 11, we conclude that eq (b) provides a better result because the 3  axis (red) 

derived from (5b) is closer to the C1-O1 bond.  In Table 3, the principal values and 

direction cosines in molecular XYZ frame [Fig. 6] are summarized. 

 

On the other hand, we obtain the tensors χ
σ (C1′) for C1′ carbons uniquely as 

follows because 
χ
13σ  component happens to vanish:  
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Fig. 7  Spectra observed under (a) settings (i-0), (ii-0), and (iii-0) and (b) settings (i-45), 

(ii-45), and (iii-45).  Peak positions (ppm) for C1 and C1′ predicted by simulation (Table 

1) are indicated by thin arrows (blue for C1 and dotted red for C1′) and those assigned 

are indicated by thick arrows.  
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Table 2 Peak positions (ppm) determined from the spectra displayed in Fig. 7, with the 

help of simulation peak positions (Table 1) indicated in Fig. 7.   

 

 

 

 

 

 

 

 

 

 

 

Table 3  Principal values and direction cosines of the C1 and C1′ chemical shift tensors 

relative to the molecular frame defined in Fig. 6.   

 

 

C1

(i-0) 108.7 (i-45)
113.2
97.8

(ii-0) 96.3 (ii-45)
105.4
99.3

(iii-0) 107.6 (iii-45)
115.0
99.0

C1’

(i-0) 108.7 (i-45)
113.2
97.8

(ii-0) 112.0 (ii-45)
105.4
77.0

(iii-0) 71.5 (iii-45)
93.0
93.0

 

Carbons
nucleus

Principal
value of 
tensor

Direction cosines with respect to

X (X’) Y (Y’) Z (Z’)

C1 σ3    91.3 0.9949 -0.0509 -0.0870

σ2   105.8 0.0292 0.9718 -0.2340

σ1 117.1 0.0964 0.2303 0.9683

C1’ σ3’ 68.4 0.9917 -0.1090 0.0685

σ2’ 103.3 0.1132 0.9917 -0.0604

σ1’ 118.9 -0.0613 0.0677 0.9958
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χ
σ (C1′)
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The principal values are calculated as 9.1181  , 2.1032  , 5.683   ppm, which are 

compared to '1σ =122.1, '2σ =99.4, and '3σ =70.7 ppm obtained by SUPER.  The 

principal '1σ , '2σ , and '3σ  axes are shown in Fig. 8(b).  In Table 3, the principal 

values and direction cosines in molecular X′Y′Z ′frame [Fig. 6] are summarized. 

 

 

 

 

 

 

 

 

 

Fig. 8  (a) Principal axes of C1 carbon determined from eqs (5a, b).  Blue and red 

arrows correspond to eqs (5a) and (5b), respectively.  (b) Principal axes of C1′ 

determined from eq (6).   

 

 

4. Conclusions 

The chemical shift tensors of C1 and C1΄ carbons of cellobiose crystals were 

 

O1

O5

C1
σ3

σ2

σ1

O5’

O1’
C1’

σ3′

σ2′

σ1′

(a) (b)



48 

 

determined from its microcrystalline powder sample by using MOMA samples.  In this 

study, MOMA samples were rotated about its magnetic axes, while a single crystal is 

rotated about its crystallographic axes in conventional single crystal NMR methods.  

Since a MOMA is formed in a rod-like shape and its magnetic axis coincides with the rod 

axis, the rotation axis is easily identified when performing the sample rotating 

measurements.  This is a marked contrast to the rotation of single crystals.  We 

conducted six measurements at designated sample orientations with respect to the 

applied field to determine six components of the chemical shift tensor expressed relative 

to χ -frame.  We obtained two chemical shift tensors for C1 carbon, between which the 

correct one was selected by the criteria that 3  direction is close to the C1-O1 bond 

vector.   We have demonstrated that the use of MOMAs is of great advantage when 

large single crystals are unavailable, whereby the rotations about the magnetic axes are 

appropriate choices. 
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Chapter4 

Orientational distribution of cellulose nanocrystals in cellulose whiskers (Cotton, 

Ramie and Wood) as studied by diamagnetic anisotropy 

 

4.1 Introduction 

Cellulose whiskers (CWs), especially those of nanometer size, have drawn 

increasing attention because of their renewable nature and excellent physical and 

chemical properties.[1–4]  Depending on the source of celluloses and hydrolysis 

conditions, the whiskers can be obtained in a variety of sizes, shapes, and degrees of 

crystallinity,[5,6] which could affect the performance of the final products such as 

composite materials.  After biosynthesis, cellulose chains crystallize in nanocrystals 

(CNCs) that further form hierarchical suprastructures until ending up in 

macrofibers.[2,7,8] The elucidation of these suprastructures existing in CWs is 

important not only for an understanding of their formation mechanism but also for their 

proper characterization.  There are several aspects of these suprastructures, among 

which the orientational distribution of the CNCs is of great interest because the 

orientation is one of the dominant factors affecting the physical properties of CWs such 

as mechanical, optical, dielectric, and thermal properties.   

X-ray diffraction analysis is commonly used for the determination of crystal 

structures and the characterization of crystal orientations.  If macrofibers are under 

consideration, the fiber X-ray pattern is easily acquired and the orientational distribution, 

such as the microfibril angle (MFA) with respect to the axis of the macrofiber, is reflected 

in a broadening of diffraction spots along the azimuthal direction.[9]  However, in the 

case of whickers, only powder patterns are available, which hinders a corresponding 

orientational analysis.  We need to align individual whisker particles to obtain a fiber 
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pattern.  There are several ways to align CWs, including magnetic,[10–18] 

electric,[19,20] and mechanical[21] methods.  Among these, the application of a 

magnetic field is a versatile technique.[22]  By using static and rotating magnetic fields, 

we can obtain two types of uniaxial alignments (a uniaxial alignment of the easy and of 

the hard magnetization axes) and, accordingly, two fiber patterns, thereby enhancing 

the information needed for the structure analysis. 

In this study, we firstly investigate the orientational distribution of CNCs in a Cotton 

CW using two X-ray fiber patterns from CWs aligned under static or rotating magnetic 

field, respectively.  The orientational disorder of CNCs is related to the correlation 

length of the anisotropy of the magnetic susceptibility.  Then, this method was applied 

to Ramie and Wood CW to study orientational distribution of nanocrystals to determine 

the correlation lengths.  

 

4.2 Experiment 

4.2.1 Cotton  

4.2.1.1 Preparation of cotton cellulose microwhiskers   

Cotton cellulose powder (Whatman CF11, 11 g) was hydrolyzed with hydrochloric 

acid (5 mol/L, 310 ml) at 80 C for 325 min.  The suspension was then diluted to stop 

the reaction, followed by centrifugation.  The isolated cellulose was washed once with 

water and centrifuged again.  The precipitate was dialyzed against water in a VISKING 

dialysis membrane (Nihon Medical Science, Inc.) for a few days until the water pH value 

became constant. 

    The suspension thus obtained was diluted by excess water.  Cellulose particles 

that sank after 1.5 h were collected and marked as fraction 2 (F2).  The supernatant 
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was allowed to stand for a few days and the precipitate was collected and marked as 

fraction 1 (F1).  In addition, the original CF11 sample was passed through a 20 m 

mesh, and the powder that passed through was collected and marked as fraction 3 (F3). 

The size distribution of the CWs of each fraction was determined by observation 

with a microscope.  Each fraction was dispersed in an ultraviolet (UV)-curable 

monomer (Kyoritsu Chemical XVL-90K) to prepare 10-wt% suspensions that were 

subjected to a magnetic field, followed by photopolymerization of the monomer to 

consolidate the alignment.  

4.2.1.2 Preparation of magnetically oriented whiskers   

The UV-curable monomer suspension F1 was divided into two parts and each of 

them was poured into a plastic container (5 mm diameter; 8 mm height).  One 

suspension was exposed to a horizontal static magnetic field of 8 T (a Sumitomo Heavy 

Industry cryocooler-cooled superconducting magnet) for 40 min and then irradiated by 

UV light for 1 h, with the constant magnetic field being kept applied, to photopolymerize 

the monomer and, thereby, to consolidate the alignment.  This sample is referred to as 

M1S (“S” stands for static).  The other sample was rotated in the same horizontal static 

magnetic field at 35 rpm for 1 h with the rotation axis set vertically (perpendicular to the 

magnetic field).  Then, the suspension was UV-irradiated for 1 h with the magnetic field 

and the rotation being kept applied, to photopolymerize the monomer.  This sample is 

referred to as M1R (“R” stands for rotating).  The same procedure was applied to F2 

and F3 to prepare magnetically oriented samples, which are referred to as M2S, M2R, 

M3S, and M3R.   

4.2.1.3 X-ray diffraction measurement   

Wide angle X-ray diffraction measurements were performed using a MAC Science 
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Dip 2020 diffractometer equipped with an MXP18HF22 rotating anode generator (45 kV, 

84 mA).  The 2D detector employed was a Mac Science Dip 2020 (20-cm plate, 80-m 

pixel, and 2500 x 2500 pixels in number).  The transmittance mode was used.  The 

exposure time was 45 min.  Graphite-monochromated Cu K radiation was used 

( 54078.1 Å).  The collimator size was 0.9 mm in diameter, sample-to-detector 

distance was 150.0 mm, and divergence of the X-ray beam was 0.5.  The specimen of 

ca. 1.2-mm thickness was cut from approximately the center of the photopolymerized 

samples of M1S, M2S, M3S, M1R, M2R, and M3R and subjected to the X-ray 

measurement.   

The background diffraction due to the photopolymerized monomer was removed as 

follows: The 2D diffraction pattern of the pure photopolymerized monomer was 

measured, and subtracted from that of whisker-containing sample.  Since the 

thickness was slightly different depending on specimens, the factor of the subtraction 

was determined so that at the 2 scan the baseline around the (200) plane becomes flat.  

After the subtraction was performed, the azimuthal scan for the (200) plane was made. 

 

4.2.2 Ramie 

4.2.2.1 Preparation of ramie cellulose microwhiskers 

Raw ramie fiber (7.89 g) was cut by a sharp blade and hydrolyzed with hydrochloric 

acid (6 mol/L, 500 ml) at 76 C for 330 min.  The suspension was then diluted to stop 

the reaction, followed by centrifugation.  The precipitate was dialyzed against water in 

a dialysis membrane for a few days until the water pH value became constant. 

    The suspension thus obtained was diluted by excess water.  Cellulose particles 

that sank after 20 min were collected. The collected part was diluted by excess water 
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again and after 20 min, the precipitation was collected and marked as fraction 3 (F3R).  

The supernatant was allowed to stand for about 2 h and the precipitate was collected 

and marked as fraction 2 (F2R).  The supernatant was allowed to stand for about 

50min and the precipitate was removed.  The supernatant was allowed to stand for 

about 12 days and the precipitate was collected and marked as fraction 1 (F1R). 

The size distribution of the Ramie CWs of each fraction was determined by 

observation with a microscope.  Each fraction was dispersed in an ultraviolet 

(UV)-curable monomer (Kyoritsu Chemical XVL-90K) to prepare 5~10 wt% suspensions 

that were subjected to a magnetic field, followed by photopolymerization of the 

monomer to consolidate the alignment. 

4.2.2.2 Preparation of magnetically oriented whiskers   

The procedure is same as in 4.2.1.2  

4.2.2.3 X-ray diffraction measurement   

The synchrotron X-ray diffraction measurement was performed at Spring 8.  The 

background diffraction due to the photopolymerized monomer was removed as follows: 

The 2D diffraction pattern of the pure photopolymerized monomer was measured, and 

subtracted from that of whisker-containing sample.  After the subtraction was 

performed, the azimuthal scan for the (200) plane was made. 

 

4.2.3 Wood 

4.2.3.1 Preparation of wood cellulose microwhiskers 

3.03 g Wood cellulose pulp (NBKP) was cut into small pieces with a cutter and then 

hydrolyzed with hydrochloric acid (5 mol/L, 200 ml) at 70 ºC for 255 min.  The 

suspension was then diluted to stop the reaction, followed by centrifugation.  The 

precipitate was dialyzed against water in a dialysis membrane for a few days until the 
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water pH value became constant.  The suspension thus obtained was diluted by 

excess water.  Cellulose particles that sank after 10min were collected and marked as 

fraction 3 (F3W).   

Sample preparation for other two fractions of wood  4 g wood cellulose pulp 

(NBKP) was cut into small pieces with a cutter.  640 g H2O was added in a triangle 

biker with 4 g wood cellulose.  Then, homogenizer was used to disperse the wood 

cellulose in water.  HCl (320 ml, 36%) was added into the suspension.  Now the 

suspension consists of 4 g wood cellulose and HCl (960 ml, 4 mol/L).  Hydrolysis was 

carried out under 82 ºC for 10 h.  The acid was removed by centrifugement.  HCl (960 

ml, 4 mol/L) was used again to hydrolyze the wood cellulose under 82 ºC for 3 h.  Then, 

the acid was removed by centrifugement of suspension two times.  

The acid was removed further by the ion exchange resin.  Then, the suspension 

was diluted by excess water. After 6mins, the precipitation was disregarded.  The 

upper layer was allowed to stand for 1h, and collect the precipitation marked as Fraction 

2W (F2W).  After 10 h, the precipitation was disregarded.  After 48 h, the precipitation 

was again collected as Fraction 1W (F1W).  

     The size distribution of the Wood CWs of each fraction was determined by 

observation with a microscope.  Each fraction was dispersed in an ultraviolet 

(UV)-curable monomer (Kyoritsu Chemical XVL-90K) to prepare 5-wt% suspensions for 

F3W, and 2.3-wt% suspensions for F2W and F1W that were subjected to a magnetic 

field, followed by photopolymerization of the monomer to consolidate the alignment. 

4.2.3.2 Preparation of magnetically oriented whiskers   

In this section, it refers to the case of cotton 4.2.1.2  

4.2.3.3 X-ray diffraction measurement   
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The synchrotron X-ray diffraction measurement was performed at Spring 8.  The 

base line of azimuthal plots was removed using the ImageJ software.  

 

4.3 Results and discussion 

4.3.1 Methodology development using cotton cellulose whisker 

4.3.1.1 Microscope observation   

 

 

 

 

 

 

 

 

 

The average size L and the aspect ratio D of the CWs of the different samples were 

as follows.  Fraction 1 (F1): L = 8 m, D = 4.1; fraction 2 (F2): L = 23 m, D = 3.2; 

fraction 3 (F3): L = 103 m, D = 6.4.  Polarized-optical microscopy (POM) observations 

of F1, F2, and F3 with a color plate are shown in Fig. 1.  The optical homogeneity of 

the whiskers in each fraction is evidently different.  The whiskers of sample F3 exhibit 

multicolors, but those from F1 are almost homogeneous in color.  The optically uniform 

whiskers identified in F1 appear to be fragments derived from larger particles, as 

observed in F3.  Although the whiskers of F1 appear optically uniform, it does not 

necessary mean that the CNCs are three-dimensionally aligned inside of the CWs used 

in the present study, because the typical size of CNCs is reported to be 200–350 nm in 

Fig. 1  Cotton cellulose whiskers (CWs) of the three fractions: Suspensions of (a) 

F1, (b) F2, and (c) F3, observed by polarized optical microscope with a color 

plate.  The average lengths are (a) 8 m, (b) 23 m, and (c) 103 m. 

50μm 100μm50μm

(a) (b) (c)
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length and 5 nm in width for cotton cellulose.[3]  If the CNCs are perfectly aligned in the 

whisker, the CWs should exhibit a biaxial nature; however, as will be discussed later, the 

CWs of F1 are magnetically uniaxial.  

4.3.1.2 Magnetic alignment of CWs   

The diamagnetic anisotropy of a biaxial crystal is fully characterized by the 

magnetic susceptibility tensor that has three different magnetic susceptibility values 1 , 

2 , and 3 ,[23] where we assume 321   .  These values are associated with 

the magnetic axes; the 1 - and 3 -axes are referred to as easy and hard 

magnetization axes, respectively.  In the case of the monoclinic crystal system, the 

two-fold crystal axis coincides with one of these magnetic axes.[23]  The easy 

magnetization axis aligns in the direction of the applied static magnetic field, whereas 

the hard magnetization axis aligns in the direction of the z-axis when a rotating magnetic 

field is applied within the xy-plane.[24–26]  Since the application of a rotating magnetic 

field to a sample is equivalent to the rotation of the sample in a static magnetic field, 

these two statements are used interchangeably hereafter.    

The native cellulose crystal has two crystal modifications of triclinic I[27] and 

monoclinic I.[28]  The content of each modification depends on the source of cellulose.  

Cotton cellulose is rich in I modification.  The c-axis (cellulose chain direction) of the I 

modification is the twofold axis, and hence, it coincides with one of the magnetic axes.  

Sugiyama et al. reported that the c-axis of tunicate cellulose (rich in I) coincides with 

the hard magnetization axis and the a-axis (perpendicular to the glucose ring) is close to 

the easy magnetization axis.[10]  Furthermore, it is reported that the chiral nematic 

phase formed by CNC suspensions aligns with its helical axis parallel to the applied 

magnetic field, indicating that the c-axis is the hard magnetization axis.[11,15]  
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In a CW, it is assumed that the c-axes of the CNCs are approximately aligned in the 

direction parallel to the whisker axis (long axis) with a certain degree of orientational 

distribution.  Thus, by application of a rotating magnetic field, the whisker axis 

undergoes uniaxial alignment in the direction parallel to the rotation axis of the magnetic 

field.   

In Fig. 2, the geometry of the applied static magnetic field and the sample rotation 

axis with respect to the laboratory xyz-coordinates are shown.  Fig. 3 shows 

micrographs of the sample M1R.  We find that the long axes of individual CWs are 

aligned parallel to the axis of sample rotation.  A uniaxial alignment of the long axes of 

CWs under a rotating magnetic field is reported previously.[16]  Moreover, it is reported 

that poly(ethylene) short fibers also exhibit a similar alignment behavior.[24] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic of the sample rotation in a static magnetic field.  The sample is 

rotated about the z-axis (vertical) and the static magnetic field B is applied along 

the y-direction, where x, y, z are the laboratory coordinates. 
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4.3.1.3 X-ray diffractions of magnetically aligned CWs   

Under a rotating magnetic field, the whisker axes (corresponding to the average 

direction of the c-axes of the CNCs) are supposed to align in the direction parallel to the 

rotation axis and the a- and b-axes are symmetrically distributed about the c-axis.  Fig. 

4(a) shows the X-ray diffraction pattern of M1R, which was prepared under a rotating 

magnetic field.  The diffraction spots are assigned following the crystallographic data of 

cellulose I (a = 7.784(8) Å, b = 8.201(8) Å, c = 10.380(10) Å, = 96.5).[28]  In Fig. 

4(a), we find that the diffractions from the (200), (110), and (11̅0) planes are located 

along the equator that is perpendicular to the direction of the c-axis (parallel to the 

Fig. 3  Micrographs of sample M1R prepared by magnetic alignment of 

fraction F1 by sample rotation, as shown in Fig. 2.  (a) In top view (viewed 

from the z-axis), heads and tails of the CWs are observed.  (b) In side view 

(viewed from the x- or y-axis), the long axes of the CWs are observed to be 

uniaxially aligned parallel to the sample rotation axis (z-axis).  

50μm (b)50μm50μm

(b)(a)
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meridian).  The location of the diffractions from the (102) and (012) planes are also 

reasonably explained.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4   X-ray results of the samples M1R, M2R, and M3R, prepared by rotation 

in a magnetic field.  The direction of the X-ray is perpendicular to the rotation 

axis.  (a) Diffraction image of sample M1R with the meridian being taken as the 

direction of the rotation axis (z-axis).  The meridian corresponds to the CW axes 

(parallel to the average direction of the c-axes of the CNCs constituting a CW).  

(b) Azimuthal plots of the (200) plane of the samples M1R, M2R, and M3R.  The 

diffraction patterns of M2R and M3R are similar to that of M1R.  The line shapes 

are well fitted by a Gaussian function represented by solid lines, and the half 

widths increase with the increase in whisker size (M1R < M2R < M3R).  The 

base line of each plot is zero. 

Rotation axis

(200)

(110)
(1 )

(012)

(102)(a)

0 90 180 270 360

Azimuthal angle / deg
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M1R

M2R



62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  X-ray results of the samples M1S, M2S, and M3S, prepared under a 

static magnetic field.  The direction of the X-ray is perpendicular to the 

applied magnetic field.  (a) Diffraction image of sample M1S with the 

equator being taken as the direction of the magnetic field.  (b) Azimuthal 

plots of the (200) plane of the samples M1S, M2S, and M3S.  The 

diffraction patterns of M2S and M3S are similar to that of M1S.  The line 

shapes are well fitted by a simulation based on the orientational distribution 

model illustrated in Fig. 6.  The base lines do not vanish. 
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Unlike diffractions from a single crystal (CNC), the diffractions in Fig. 4(a) are not 

very sharp but form arcs.  There are two possible reasons for this broadening: (i) the 

magnetic alignment is not sufficient; and (ii) the magnetic alignment is sufficient, but 

there is a remaining orientational distribution of the CNCs in a CW.  A high degree of 

magnetic alignment is expressed by the condition TkVB B
2

a
1

0 )2(   ,[22] where 

0  is the magnetic permeability of vacuum; V  is the volume of a whisker; B  is the 

applied magnetic field; Bk  is the Boltzmann constant; and T  is absolute temperature.  

The anisotropic magnetic susceptibility a  is not available in the present case, but if 

we assume a typical value of common organic materials,[29] this inequality is 

sufficiently satisfied in the present experiment because the whisker size is sufficiently 

large (ca. L = 8 m in length and the aspect ratio D = 4.1 for sample F1).  In fact, we 

can prove the inequality numerically if we use the following values: 7
0 104   H/m, 

23
B 1038.1 k J/K, 8B T, 300T K, 8

a 10 , 1723 104.2)4/(  DLV  m3, 

resulting in 18101.6  J >> 21101.4  J.  Thus, possibility (i) is ruled out; the broadening 

in the diffraction patterns is not attributed to an insufficient intensity of the applied 

magnetic field but originates from the orientational distribution of the c*-axes of the 

CNCs about the CW axis.   

The distribution of the a*-axes (and, consequently, of the b*- and c*-axes) of the 

individual CNCs in a CW can be regarded as being of Gaussian type because the 

azimuthal plot of the (200) plane is well fitted by a Gaussian distribution, as shown in 

Fig. 4(b).  In this figure, the azimuthal plots of MR2 and MR3 are also shown.  The 

standard deviation R  of the Gaussian distribution increases with the whisker size, 

indicating that the orientational disorder of the CNCs increases with the size of the CWs.   

Fig. 5(a) shows the X-ray diffraction pattern of M1S, which is prepared under a 
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static magnetic field without sample rotation.  Under this condition, the long axes of the 

whiskers undergo a planar alignment within the xy-plane that is normal to the applied 

static magnetic field.  If we assume that the CWs are biaxial, the diffraction intensities 

of the (110) and (11̅0) planes should appear off the equator; however, they appear along 

the equator.  In Fig. 5(b), the azimuthal plots of the (200) plane of M1S, M2S, and M3S 

are shown.  The profile of these plots is in marked contrast to that of M1R, M2R, and 

M3R shown in Fig. 4(b).  That is, the peaks are not fitted by a Gaussian distribution 

and the base line does not vanish.  (The asymmetry of the peaks might be attributed to 

an imperfect sample mounting when the X-ray measurements are performed.)  In 

addition, the half widths are larger in case of the statically aligned samples.  Because 

the efficiency of the magnetic alignment is higher by a factor of 2  for a static than for 

a rotating field, the half width is expected to be narrower for the statically aligned 

samples.  However, the current observation reveals an opposite behavior.    

4.3.1.4 Orientation distribution of CNCs in a CW   

In order to rationalize these observations for the static samples, we assume the 

following orientational distribution.  Inside of a CW, the crystallographic reciprocal a*-, 

b*-axes of constituent CNCs are symmetrically distributed about their c*-axis, as shown 

in Fig. 6(a).  If a static magnetic field is applied, the c*-axes of the CNCs undergo a 

planar alignment within the plane perpendicular to the applied field, leading to a 

distribution of the a*- and b*-axes, as shown in Fig. 6(b) by solid circles.  In addition, 

since the c*-axes are assumed to be fluctuating about the long axis of a CW, the solid 

circles in Fig. 6(b) should be convoluted with the Gaussian distribution that 

characterizes the distribution of the rotating samples.  In this model, the distribution of 

the reciprocal lattice vectors )200(G  ( a* axis), )110(G , and )011(G  are all located 
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on the solid circles of Fig. 6(b), which rationalizes the locations of these diffractions as 

observed in Fig. 5(a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other characteristic feature of the diffraction patterns of the static samples is 

the line shape of the azimuthal plots, which is shown for the (200) plane in Fig. 5(b).  

The experimentally observed azimuthal plots are well reproduced by the orientational 

distribution model shown in Fig. 6(b).  Simulating the azimuthal plots, the following two 

factors are considered: (i) the azimuthal profile )(f  according to the geometrical 

distribution of G  for the (200) plane shown in Fig. 6(b) is used, with   being the 

Fig. 6   Model of the distribution of CNCs in a CW.  (a) The c*-axes are 

uniaxially aligned in the direction of the long axis of a CW with the a*- and 

b*-axes uniformly distributed about the c*-axes.  (b) Under a static magnetic 

field, the c*-axes are uniformly distributed about the applied magnetic field B.  

The X-ray beam is impinged from the direction perpendicular to B. 

 

c*
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c*

b*

a*

(a) (b)
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azimuthal angle, and (ii) the Gaussian distribution )(h  determined from the X-ray 

measurements of the samples aligned in rotating magnetic fields, shown in Fig. 4(b), is 

convoluted with )(f  in order to account for the line broadening of )(f .  Then, the 

azimuthal plot is finally expressed by  

 






 000 )()()(  dhfF .  (1) 

 

Details about Eq. (1) are described in Appendix A.  The experimentally observed 

azimuthal plots are shown in Fig. 5(b) are well reproduced by )(F , demonstrating that 

the distribution model is appropriate.     

4.3.1.5 Orientational correlation   

It is clear from Fig. 4(b) that the standard deviation R  of the (200) diffraction 

peak obtained for the rotating samples increases with the CW size.  This indicates that 

the orientational order of CNCs in a CW is lower if viewed at a larger scale.  The 

decrease in orientational order causes a decrease of the average anisotropic magnetic 

susceptibility a  of the CWs.  Here, we assume that a  decays as a function of 

L  as follows: 

 

  












 

c
||a exp

L

L
 ,  (2) 

 

where 2/)( 213||     with 1 , 2 , and 3  being the magnetic 

susceptibilities of the CNCs and cL  is the correlation length.  It is assumed within the 
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framework of this model that in the limit of short L  ( cL ), the CNCs exist in the form 

of cellulose nanofibers (CNFs) or their aggregates, in which the c-axes of the CNCs are 

distributed uniaxially.  Owing to the crystalline disorder caused by tilting and twisting[7] 

and/or by the existence of amorphous regions [30] along the fiber axis, a CNF of 

sufficiently longer scales than the CNCs (typically 100 to 300 nm[3,31]), could be 

regarded as uniaxial.  Likewise, an aggregate of CNFs could also be uniaxial.  

Therefore, ||  and   are regarded as the magnetic susceptibilities of the CNFs (or 

its aggregate).   

Because we assume a uniaxial nature of the CWs under investigation, the increase 

in R  indicates a decrease in the average anisotropic magnetic susceptibility a .  

As shown in Appendix B, a  is related to the broadening of the X-ray diffraction 

peaks as follows:  

 

   2
R||a 6.2exp    .  (3) 

 

Here, we assume that the azimuthal   plot of the X-ray diffraction is approximated by a 

Gaussian function with the standard deviation R  [Fig. 4(b)].  If we combine Eqs. (2) 

and (3), we obtain a relation between the size L  of the CWs and the standard deviation 

R  determined from the X-ray measurements of the rotating samples as follows:  

 

c

2
R

6.2

1

L

L
 .   (4) 
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In Fig. 7, 2
R  (rad2) is plotted against L .  The experimental data fall on a straight line 

passing through the origin, indicating that Eq. (4) is appropriate to describe the 

experimental observations.  From the value of the slope, the correlation length cL  is 

determined to 142 m.  The value of cL  may depend on the source of the cellulose.   

The origin of the orientational correlation length is attributed to the orientational 

distribution of CNFs deposited in the secondary wall of the cell.  In a cotton macrofiber, 

the CNFs are spirally arranged in the secondary wall at a certain MFA [32] that may be 

different from layer to layer within the secondary wall.  If a macrofiber is hydrolyzed into 
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Fig. 7  Plot of the standard deviations 2
R  determined from Fig. 4(b) of the rotating 

samples M1R, M2R, and M3R as a function of the size L of the CWs. 

 



69 

 

smaller segments, such as CWs, the spiral nature might become less dominant and a 

parallel arrangement of the CNFs at a local scale could show up.  There may be 

suprastructures other than the commonly observed spiral arrangement, but in general, it 

is expected that the orientational disorder of the CNCs within a suprastructure is larger if 

viewed at a larger scale.  Therefore, the disorder decreases upon downsizing.  A 

decrease of the order is evident in the optical micrographs [Fig. 1].  The CWs with 

average size of 8 m (F1) exhibit a homogeneous color throughout the entire particle, 

indicating that the orientation of the axes of the CNFs is uniform within a CW.  The 

uniformity in orientation decreases with increasing average size of the CWs (F2 and F3).  

The correlation length determined above appears to be in good agreement with these 

microscope observations.   

In the present model, a uniaxial segment of CNF or its aggregate is regarded as the 

smallest unit of the cellulose suprastructure.  However, this is not the actual case.  If 

the whisker size is diminished, for example by enhanced hydrolysis, some size will be 

reached at which the biaxial nature of the CNCs starts to appear, which may be 

confirmed by the X-ray diffraction patterns of the statically aligned samples.  This will 

certainly occur at sizes of the CNCs as summarized in the literature,[2,3] but it may 

likewise occur at much larger sizes, depending on the degree of disorder in the CNFs or 

its aggregate.   

 

4.3.2 Correlation lengths of ramie and wood 

4.3.2.1 Ramie cellulose whisker 

A theory about correlation length of cellulose nanocrystals has been developed 

using cotton whiskers.  By the same procedures, correlation length of ramie cellulose 
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whiskers was studied.  Fig.8 shows three fractions of ramie cellulose whiskers (F1R, 

F2R, and F3R, here R refers to Ramie).  Fig. 9 is the micrograph of the sample 

prepared by magnetic alignment of Fraction F1R by sample rotation and the alignment 

can be confirmed directly in Fig. 9.  Fig. 10 are the X-ray results of the samples F1R, 

F2R, and F3R prepared by rotation in a magnetic field.  Fig. 10(a) is the diffraction 

image of aligned F1R sample.  Fig. 10(b) are azimuthal plots of the (200) plane of the 

three aligned samples, and the line shapes are well fitted by a Gaussian function 

represented by solid lines.  The standard deviation σR of the Gaussian distribution can 

be determined by the fitting process.   

The slop of the linear line of ramie cellulose whisker is very small [Fig. 14], and it 

indicates that the correlation length is very large and nanocrystals in the ramie whiskers 

are aligned with very small orientational disorder.  Intercept with y axis is almost zero, 

and this means that there is no orientational disorder in the cellulose nanocrystals.   

4.3.2.2. Wood cellulose whisker 

The same procedures were also performed on wood cellulose whiskers to 

determine the correlation length.  Fig.11 shows three fractions of wood cellulose 

whiskers (F1W, F2W, and F3W, here W refers to Wood).  Fig. 12 is the micrograph of 

the sample prepared by magnetic alignment of Fraction F1W by sample rotation and the 

alignment can be confirmed directly in Fig. 12.  Fig. 13 are the X-ray results of the 

samples F1W, F2W, and F3W prepared by rotation in a magnetic field.  Fig. 13(a) is 

the diffraction image of aligned F1W sample.  Fig. 13(b) are azimuthal plots of the (200) 

plane of the three aligned samples obtained by ImageJ software, and the line shapes 

are well fitted by a Gaussian function represented by solid lines.  The standard 

deviation σR of the Gaussian distribution can be determined by the fitting process.   
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Fig. 8  Ramie whiskers of the three fractions: Suspensions of (a) F1R, (b) 

F2R, and (c) F3R, observed by polarized optical microscope with a color 

plate.  The average lengths are (a) 17 m, (b) 44 m, and (c) 80 m. 

Fig. 9  A micrographs of the sample prepared by magnetic alignment of 

fraction F1R by sample rotation, as shown in Fig. 2.  In side view (viewed 

from the x- or y-axis), the long axes of the Ramie CWs are observed to be 

uniaxially aligned parallel to the sample rotation axis (z-axis).  

(a) (b) (c) 
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Fig. 10   X-ray results of the samples F1R, F2R, F3R prepared by rotation in a 

magnetic field.  The direction of the X-ray is perpendicular to the rotation axis.  (a) 

Diffraction image of aligned F1R sample, (b) Azimuthal plots of the (200) plane of the 

three aligned samples.  The three diffraction patterns are similar.  The line shapes 

are well fitted by a Gaussian function represented by solid lines.  The base line of 

each plot is zero. 
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Fig. 12  A micrograph of the sample prepared by magnetic alignment of 

fraction F1W by sample rotation, as shown in Fig. 2.  In side view (viewed 

from the x- or y-axis), the long axes of the Wood CWs are observed to be 

uniaxially aligned parallel to the sample rotation axis (z-axis).  

Fig.11  Wood whiskers of the three fractions: Suspensions of (a) F1W, (b) 

F2W, and (c) F3W, observed by polarized optical microscope with a color 

plate.  The average lengths are (a) 12 m, (b) 85 m, and (c) 160 m. 

(a) (b) (c) 



74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13  X-ray results of the samples F1W, F2W, F3W prepared by rotation in a 

magnetic field.  The direction of the X-ray is perpendicular to the rotation axis.  

(a) Diffraction image of aligned F1W sample, (b) Azimuthal plots of the (200) 

plane of the three aligned samples.  The three diffraction patterns are similar.  

The line shapes are well fitted by a Gaussian function represented by solid lines.  

The base line of each plot is zero. 

 (a)  

 (b)  
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The slop of the linear line of the wood cellulose whisker is also very small (Fig. 14), 

and it indicates that the correlation length is very large and nanocrystals in the wood 

whiskers are aligned with very small orientational disorder.  Intercept with y axis is 

0.0524 rad2 in this study, meaning that there is orientational disorder about 13 deg 

within the nanocrystals.   
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Fig. 14  Plot of the standard deviations  σ
R

2
 determined from Fig. 4(b), Fig. 10(b), 

Fig. 13(b) of the rotating samples as a function of the size L of the CWs. 
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4.4 Conclusion 

CWs prepared from cotton cellulose (Whatman CF11) were aligned under static or 

rotating magnetic fields and the distribution of CNCs in the CW was analyzed using 

X-ray diffraction.  By the analyses of the diffraction patterns of magnetically oriented 

samples, one prepared under static and the other prepared under rotating magnetic 

fields, it was found that the c-axes of the CNCs were distributed uniaxially in the CW.  It 

was also found that the orientational degree of CNCs in the CW increased with 

decreasing CW size.  The anisotropic magnetic susceptibility a  of the CWs was 

expressed by an exponential function of the size 
2
R  of the CWs, from which the 

correlation length was determined to be ca. 2
R = 142 m.  The method presented in 

this chapter is also useful for the analysis of orientational orders in other fibrous 

materials including biomacromolecules as well as synthetic polymers that exhibit 

hierarchical suprastructures.  The method allows us to investigate the orientational 

order in a macrofiber at arbitrary scales by magnetically aligning the small fragments 

segmented from the macrofiber.  The method has been applied to ramie and wood 

cellulose to study the orientational distribution of nanocrystals in CW, to determine the 

correlation length.  
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APPENDIX 

A. Derivation of Eq. (1).  Let us consider the distribution of the reciprocal vector 

G  for (200) on the surface of the reciprocal lattice sphere formed by G , as shown in 

Fig. 6(b).  The experimentally observed azimuthal profile of this distribution is related 

to the line density f  of the vector G  on the intersection circle formed by the Ewald 

sphere and this reciprocal lattice sphere.  The reciprocal lattice sphere and the 

intersection circle are drawn schematically in Fig. A with respect to the xyz-coordinates, 

where the X-ray beam impinged along the y-direction.  The orientation of the 1 -axis 

(parallel to the applied magnetic field) of the sample is denoted by a unit vector n 

expressed by polar coordinates ),(  .  If n is set parallel to the z-axis, then 0 .  

Let us consider a point P on the intersection circle, defined by the azimuthal angle  .  

At P, the density )(f  is proportional to sin/1 , with   being the angle between n 

and the line OP .  By a simple calculation, we obtain cos  as a function of   as 

follows: 

 

 sinsin))/(1()cossinsincos)(cos/(cos 2/12GRGR  , (A1) 

 

where G  is the radius of the reciprocal lattice sphere and  2sin)/2(R , with   

being the wavelength of the X-ray and 2 , the diffraction angle of (200).  In Fig. 6(b), 

fluctuations of the c* axes are not considered.  However, such a fluctuation exists, as 

reflected in the broadening observed for the samples prepared by sample rotation [Fig. 

4(b)].  Therefore, the function )(f  should be convoluted with a Gaussian function 

)2/exp()2()( 222/12   h  representing these fluctuations, where the standard    
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Fig. A  Definitions of the angles , and.  The angles  and  

(shown at the top right) describe the direction of the unit vector n with 

respect to the xyz-coordinates.  The direction of n corresponds to the 

direction of the magnetic field B in Fig. 6.  The point P is located on 

the intersection circle formed by the reciprocal lattice sphere of radius 

G and the Ewald sphere.  The location of P projected on the 

azimuthal scan is denoted by the angle .  The line  makes an 

angle  with respect to the vector n.  The tangential vectors a and g 
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deviation   depends on the angle   shown in Fig. A.  The angle   is defined as 

the angle between the tangential vectors a  and g  at P with respect to the intersection 

circle and the great circle formed by G , respectively.  We obtain  

 

)(sin/)( R   ,    (A2) 

 

where R  is the standard deviation determined from the Gaussian distribution of the 

samples prepared by sample rotation, as shown in Fig. 4(b), and the angle )(  is 

expressed as a function of  : 

 

  .sincoscossincos

))}sinsincos(sinsinsincoscoscos2coscos()/(

)sinsincoscos(cossinsin))/(1)(/(2sinsin1{)(cos

2

2222222

2/12222

















GR

GRGR

 (A3) 

 

Using Eq. A3, )(  in Eq. A2 is determined.  Now, the Gaussian function to be used 

for the convolution is expressed by    

 













 


)(2

)(
exp

)(2

1
)(

0
2

2
0

0
2

0





h .  (A4) 

 

The calculated azimuthal profile to be compared with the experimentally observed 

profile is given by the following convolution: 
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000 )()()(  dhfF 




 .  (A5) 

 

If 0 , )(f  and )(cos 2 
 are reduced to 

 




222 cos)/(1

1

cos1

1

sin

1
)(

GR

f







 ,  (A6) 

and 

 2222 sin}cos)/(1{)(cos   GR ,  (A7) 

 

respectively. 

 

B. Derivation of Eq. (3).  Let us suppose that the c-axes of the CNCs are 

uniaxially distributed in a CNF (or its aggregate) and its magnetic susceptibilities are ||  

and   in the directions parallel and perpendicular to the CNF axis, respectively.  The 

susceptibility tensor Pχ  with respect to the particle coordinates is expressed by  

 

















 



||

P

00

00

00







χ .  (B1) 

 

This tensor is transformed to AAχχ P
t  with respect to the laboratory xyz-coordinates 

by using a transformation matrix A  expressed by the Euler angles  ,  ,  , where 

the Z1X2Z3-convention is used (see H. Goldstein, Classical Mechanics Third edition, 
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(Pearson Education, Inc. 2002) Chap. 4).  Here,   is the angle of the CNF axis with 

respect to the axis of the whisker (CW) that directs the z-axis.  We assume that the 

distribution of   of the CNFs in a CW is expressed by a Gaussian distribution with the 

standard deviation R  (rad) as follows: 

 

   dddKdddP sin)2/)(exp()2/exp(sin),,( 2
R

22
R

2    (B2) 

 

with  

 

    
  


2

0

2

0 0

2
R

22
R

21 sin)2/)(exp()2/exp( dddK  (B3) 

 

If R  is not very large, the above distribution is a good approximation.  Now, each 

component of χ  is averaged using this distribution function.  The average is 

calculated by 

 

  dddP sin),,(ijij  (B4) 

 

with ij  being the ij-component of the tensor χ .  The averages of the off-diagonal 

components vanish and .2211     The average anisotropic susceptibility (parallel 

minus perpendicular) is defined by 1133a   .  The resulting a  is 

expressed by 
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 2
R||a 6.2exp)(    ,  (B5) 

 

in good approximation up to 4.1R  .  
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Chapter 5 

Summary 

 

In Chapter 2, in-situ or ex-situ X-ray diffraction study on 1-dimensionally oriented 

microcrystals for determining magnetic anisotropy of cellobiose is described.  In order 

to achieve high degree of magnetic orientations, we need to know magnetic anisotropy. 

However, the anisotropy of many materials is not known; thus, a facile method to 

determine the anisotropy of materials had long been strongly desired.  The magnetic 

anisotropy results in the anisotropic orientation fluctuation of microcrystals under 

magnetic field.  The fluctuation can be reflected on diffraction spot broadening.  

Therefore, a method that allows determination of magnetic anisotropy by in-situ or 

ex-situ X-ray diffraction was developed.  The method was applied to determine the 

magnetic anisotropy of cellobiose. 

 

In Chapter 3, single-crystal NMR spectroscopic study on 3-dimensionally oriented 

microcrystals for determining chemical shift tensors of C1 and C1’ carbons of cellobiose 

is described.  Single-crystal NMR technique is a powerful method that allows 

determination of the chemical shift tensor, which is a useful parameter for NMR 

crystallography and local structure analyses.  However, this technique requires large 

single crystals (mm scales).  The bottleneck of this technique has now been overcome 

by using 3-dimensionally magnetically aligned microcrystals whose sizes can be as 

small as several hundred nanometers in my experimental setup.  In particular, a facile 

method is developed to determine chemical shift tensors by using the aligned 

microcrystals, combined with 2D solid-state NMR technique. 
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In Chapter 4, ex-situ X-ray diffraction study on 1-dimensionally oriented cellulose 

whiskers is perfomred for the analyses of hierarchical suprastructures.  Nanocrystal 

distribution in cellulose whiskers from different species are elucidated by applying X-ray 

diffraction on oriented whiskers.  This novel idea can also be used in other polymers. 
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