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Abstract

In this paper, we develop an alternative approach to the fundamental theory of rough paths
on the basis of fractional calculus. First, using fractional derivatives, we introduce integration
along β-Hölder rough paths for any roughness β ∈ (0, 1] and prove that this integral coincides
with the first level path of the rough integral along geometric β-Hölder rough paths that were
introduced by Lyons [19]. Next, we generalize the formulation to adapt for the concept of
controlled paths introduced by Gubinelli [9]. As an application, we provide an alternative
proof of Lyons’ extension theorem for geometric β-Hölder rough paths together with an explicit
expression of the extension map. Finally, using the integration of controlled paths based on
fractional derivatives, we formulate rough differential equations and establish existence and
uniqueness results of solutions to rough differential equations driven by geometric β-Hölder
rough paths with β ∈ (1/3, 1/2].
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1 Introduction

The theory of rough paths introduced by Lyons [19] has produced a framework of multidimen-
sional controlled differential equations driven by non-smooth functions, known as rough differential
equations. These differential equations have led to useful methods for studying stochastic calcu-
lus; in particular, it has enabled us to take a pathwise approach to classical stochastic calculus
and provided a convenient tool for the study of a large class of stochastic processes that are not
semimartingales, such as fractional Brownian motions. After this revolution, several different ap-
proaches have been proposed for the study of the theory of rough paths (e.g. [4, 5, 7, 9–11, 13]).
Among other things, controlling rough paths introduced by Gubinelli [9] gave a natural exten-
sion of rough integration, the integration of 1-forms along rough paths by Lyons; this extension
yielded another formulation of rough differential equations. Recent researches have shown that the
rough differential equations in the sense of Gubinelli [9] have produced new methods for studying
stochastic partial differential equations as well as stochastic differential equations; indeed, it has
provided appropriate frameworks for a number of classically ill-posed stochastic partial differential
equations, including Burgers type equations and the KPZ equations.

On the other hand, Hu and Nualart [13] introduced another different approach, which relies on
fractional calculus. They defined integration along Hölder continuous functions of order β ∈ (1/3,
1/2) generalizing Riemann–Stieltjes type integrals for more regular functions in terms of fractional
derivatives by Zähle [25]. This integral can be regarded as an alternative definition of rough
integrals and provides an additional tool to study multidimensional controlled differential equations
driven by Hölder continuous functions; for example, Besalú and Nualart [2] made use of this concept
for a study of stochastic differential equations driven by fractional Brownian motions with Hurst
parameter H ∈ (1/3, 1/2). Furthermore, Besalú, Márquez-Carreras, and Rovira [1] applied this
integral to a study of stochastic delay equations driven by fractional Brownian motions. The
results of [2, 13] and [1] with β,H ∈ (1/3, 1/2) can be considered as extensions of their previous
works [12,22] and [3] in the case β,H > 1/2. Here it should be noted that, in the case β,H > 1/2,
there is no need to use the theory of rough paths because of sufficient regularities of the functions
under consideration. This approach is beneficial in that the integration is not based on any
approximation arguments, in contrast to the rough integration of Lyons [19] as the limit of a type
of Riemann sums, and this explicit formula straightforwardly leads to quantitative estimates of the
integration. Therefore, we expect further developments in this direction to provide sophisticated
access to the fundamental theory of rough paths.

Motivated by these preceding studies, this paper develops the approach by Hu and Nualart [13]
to more general rough paths. Treating β-Hölder continuous functions with β less than 1/3 is much
more involved since we have to consider rough paths up to the Nth level path, where N is the
unique integer such that N ≤ 1/β < N + 1. We first define the integral along β-Hölder rough
paths for any roughness β ∈ (0, 1] using fractional derivatives (Definition 3.1), which is explicitly
given by ordinary Lebesgue integrals. The definition is entirely new and generalizes preceding
studies [13,25]. To ensure the definition is reasonable, we prove that the integral is consistent with
the Riemann–Stieltjes integral along smooth curves (Theorem 3.3) and is a continuous functional
with respect to the β-Hölder rough path metric (Theorem 3.4). As a result, this integral coincides
with the first level path of the rough integral along geometric β-Hölder rough paths in the sense
of Lyons [19] (Theorem 3.5).

One of the key ingredients for the definition of our integral is the integration by parts of
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fractional orders as described by Hu and Nualart [13, Theorem 3.3]. Due to less regularity of
functions, the integrand has to be decomposed into the regular part and the remainder part for
the integration to make sense. The latter is then replaced by the higher level path of the rough
path. In this procedure, we have to take care of additional terms that successively arise from
integration by parts formulas and the multiplicative property of the rough path. For this reason,
the resulting formula involves some complicated terms. Once we have explicit expressions for the
integral, however, it is not difficult to provide quantitative estimates for proving the continuity of
the integration operator.

We next generalize the integral of 1-forms along rough paths introduced in Definition 3.1
to that of controlled paths. The concept of controlled paths was introduced by Gubinelli [9] to
produce a more general framework of rough integrals and differential equations. This generalization
has an application to Lyons’ extension theorem (also called the first fundamental result in the
theory of rough paths) as follows. Let X = (1, X1, . . . , XN ) be a β-Hölder rough path, that
is, a multiplicative functional of degree N with finite β-Hölder estimates (see Eqs. (2.3) and
(2.4)). Lyons’ extension theorem states that for any integer k ≥ N + 1, the rough path X = (1,
X1, . . . , XN ) extends to the unique multiplicative functional of degree k that possesses β-Hölder
estimates (see [19, Theorem 2.2.1] for the exact statement of the claim). This extension map has
been constructed by a discrete approximation similar to the Riemann sums [19]. By using our
integration, the extension map induced by geometric Hölder rough paths is expressed explicitly by
ordinary Lebesgue integrals using fractional derivatives (Definition 3.17). This result can also be
regarded as an alternative proof of Lyons’ extension theorem for geometric Hölder rough paths.
Gubinelli also proved Lyons’ extension theorem in his framework (cf. [9, Proposition 10]), but our
approach is different from his and the results are not comparable.

Lastly, we formulate rough differential equations driven by β-Hölder rough paths with β ∈ (1/3,
1/2] in our framework (Definition 4.1). Our definition of the solutions is consistent with that of
Gubinelli [9]. We first solve rough differential equations driven by geometric β-Hölder rough
paths on a small interval by a classical fixed point argument in a suitable complete metric space
of controlled paths (Proposition 4.16). Next, concatenating the local solutions, we construct a
solution on the whole interval and then show uniqueness of the global solutions. As a result, we
establish global existence and uniqueness of solutions to rough differential equations driven by
geometric β-Hölder rough paths (Theorem 4.2). For the fixed point argument, it is essential to
provide quantitative estimates of the integration of controlled paths. This follows easily from the
explicit formula of our integration. Accordingly, our arguments are more straightforward than
the original ones of Lyons [19] on the basis of discrete approximations. The main difference with
the formulation of Hu and Nualart [13] is described as follows. Their definition of the solutions
consists of a closed system of three integral equations and these are all defined by ordinary Lebesgue
integrals using fractional derivatives (see Eqs. (4.3), (4.4), and (4.5) of [13]), while ours is given by
a closed system of only two equations. One of them is an integral equation and is defined by the
integral of controlled paths based on fractional derivatives, but another equation is simply defined
without any integrations and can be regarded as the derivative of the former integral equation
with respect to (the first level path of) the rough paths. In this sense, our formulation is more
concise than that of Hu and Nualart.

The remainder of this paper is organized as follows. The basic framework is arranged in
Section 2. In Subsection 2.1, we provide a brief review of the concepts of rough paths and fractional
calculus. Our version of Lyons’ extension theorem is also described here. In Subsection 2.2, we
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introduce some fractional operators and prove their continuity properties for later use.
The results concerning the rough integration are arranged in Section 3. In Subsection 3.1,

using the fractional operators, we define integrals of 1-forms along rough paths and state the
main theorems. In Subsection 3.2, we first provide a definition of controlled paths and their
examples. We next define integrals of controlled paths along rough paths and state some of their
properties. The application to Lyons’ extension theorem is also described. The proofs are given
in Subsection 3.3.

We discuss rough differential equations in Section 4. In Subsection 4.1, we formulate the
concept of solutions to rough differential equations and state the theorem on existence and unique-
ness results of the solutions. For the proof, we prepare some basic estimates and lemmas in the
subsequent subsection. The last subsection is devoted to the proof of the main theorem.

Acknowledgements. First and foremost, I would like to thank my supervisor, Professor Masanori
Hino for his guidance from my master’s course at the graduate school. I wish to express my
gratitude to Professor Yuzuru Inahama for his valuable advice, in particular, suggesting the gener-
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many valuable and instructive discussions of the theory of rough paths. His intensive courses on
rough paths and controlling rough paths at Ritsumeikan University and Tsukuba University also
helped me understand the theory more deeply. Finally, I would like to thank all the members of
Sub-department of Applied Analysis for their continuous support.

Sections 2 and 3 of this paper are based on [14,15]. The final publication of [14] is available at
Springer via http://dx.doi.org/10.1007/s11118-014-9428-3.

2 Framework

2.1 Preliminaries

In this subsection, we briefly review some concepts of rough paths [6, 8, 17–21] and fractional
operators [23,25]. Our version of Lyons’ extension theorem is also described.

2.1.1 Notation

Throughout this paper, C denotes a positive constant, which may change line by line. Let V and
W denote finite-dimensional normed spaces with norms ∥ · ∥V and ∥ · ∥W , respectively. Although
the fundamental theory of rough paths is valid for suitable infinite-dimensional Banach spaces,
we consider only finite-dimensional cases in this paper to avoid technical difficulties that are not
relevant to our theme. We use L(V,W ) to denote the set of all linear maps from V to W . Let U
be a subset of V . We use C(U,W ) to denote the space of all W -valued continuous functions on U .
Let λ be a real number with 0 < λ ≤ 1. We use Cλ-Höl(U,W ) to denote the space of all W -valued
λ-Hölder continuous functions on U and define the corresponding semi-norm by ∥·∥λ-Höl;U , namely

∥f∥λ-Höl;U := sup
x,y∈U, x ̸=y

∥f(x)− f(y)∥W
∥x− y∥λV

.

We also use ∥ · ∥∞;U to denote the supremum norm of a W -valued function on U , namely

∥f∥∞;U := sup
x∈U

∥f(x)∥W .
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We will omit U from the notation if there is no ambiguity; that is, we write ∥f∥λ-Höl and ∥f∥∞
instead of ∥f∥λ-Höl;U and ∥f∥∞;U , respectively. For a subset U0 of U , we denote the restriction of
f on U0 by f |U0 . We can then write ∥f∥λ-Höl;U0 and ∥f∥∞;U0 for ∥f |U0∥λ-Höl;U0 and ∥f |U0∥∞;U0 ,
respectively. Let l be a non-negative integer. We denote by C l,λ(V,W ) the space of all W -
valued l-times continuously Fréchet differentiable functions on V whose lth derivative is λ-Hölder
continuous on V . For f ∈ C l,λ(V,W ) such that f , ∇f ,. . . ,∇lf are all bounded on V in addition,
we set

∥f∥Cl,λ :=
(
max
0≤k≤l

∥∇kf∥∞;V

)
∨ ∥∇lf∥λ-Höl;V . (2.1)

Here, p∨q denotes the maximum of real numbers p and q. We also use p∧q to denote the minimum
of p and q. Furthermore, let ⌊p⌋ and ⌈p⌉ denote the largest integer less than or equal to p and the
smallest integer more than or equal to p, respectively.

Let T denote a positive constant. This constant will be fixed throughout Sections 2 and 3.
The simplex {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T} is denoted by ∆T , which is a closed subset of R2. Let
C1(V ) and C2(V ) denote C([0, T ], V ) and C(∆T , V ), respectively. For f ∈ C1(C) and g ∈ C2(C),
we define fg ∈ C2(C) and gf ∈ C2(C) by

(fg)s,t := fsgs,t and (gf)s,t := gs,tft for (s, t) ∈ ∆T . (2.2)

For g ∈ C2(V ), µ > 0, and (a, b) ∈ ∆T with a < b, we set

|||g|||µ;[a,b] := sup
a≤s<t≤b

∥gs,t∥V
(t− s)µ

and write |||g|||µ instead of |||g|||µ;[0,T ]. Furthermore, we set Cµ
2 (V ) := {g ∈ C2(V ) : |||g|||µ < ∞} and

Cλ
1 (V ) := Cλ-Höl([0, T ], V ).

Hereafter, E and F denote the Euclidean spaces Rd and Re respectively and | · | denotes the
Euclidean norms of E, F , and their tensor spaces. For a positive integer k, T (k)(E) denotes⊕k

j=0E
⊗j and we define the norm on T (k)(E) as

∥a∥T (k)(E) :=

k∑
j=0

|aj | for a = (a0, a1, . . . , ak) ∈ T (k)(E).

The set of all X = (X0, X1, . . . , Xk) ∈ C(∆T , T
(k)(E)) such that X0

s,t = 1 for all (s, t) ∈ ∆T is

denoted by C0(∆T , T
(k)(E)).

2.1.2 Rough paths and Lyons’ extension theorem

Let k be a positive integer. We say that X = (1, X1, . . . , Xk) ∈ C0(∆T , T
(k)(E)) is a multiplicative

functional of degree k in E if

j∑
i=0

Xi
s,u ⊗Xj−i

u,t = Xj
s,t (2.3)
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for each j = 1, . . . , k and s, t, u ∈ [0, T ] with s ≤ u ≤ t. Let β be a real number with 0 < β ≤ 1.
We say that X = (1, X1, . . . , Xk) ∈ C0(∆T , T

(k)(E)) has finite β-Hölder estimates if

sup
0≤s<t≤T

|Xj
s,t|

(t− s)jβ
<∞ (2.4)

for each j = 1, . . . , k. We denote by C0,β(∆T , T
(k)(E)) the space of all X = (1, X1, . . . , Xk) ∈

C0(∆T , T
(k)(E)) with finite β-Hölder estimates and define the distance on C0,β(∆T , T

(k)(E)) as

dβ,k(X, X̃) := max
1≤j≤k

|||Xj − X̃j |||jβ;[0,T ] for X, X̃ ∈ C0,β(∆T , T
(k)(E)).

Let x ∈ C1
1(E). We set

Xj
s,t =

∫
s<u1<···<uj<t

dxu1 ⊗ · · · ⊗ dxuj (2.5)

for each j = 1, . . . , k and (s, t) ∈ ∆T . Then we see that X = (1, X1, . . . , Xk) is a multiplicative
functional of degree k in E with finite 1-Hölder estimates and we call this the step-k signature
of x. Let N denote ⌊1/β⌋. A multiplicative functional of degree N in E with finite β-Hölder
estimates is called a β-Hölder rough path in E. A step-N signature is called a smooth rough path
and the elements in the closure of the set of all smooth rough paths with respect to the distance
dβ,N are called geometric β-Hölder rough paths. The spaces of all β-Hölder rough paths, smooth
rough paths, and geometric β-Hölder rough paths in E are denoted by Ωβ,T (E), SΩβ,T (E), and
GΩβ,T (E), respectively. We will omit T from the notations Ωβ,T (E), SΩβ,T (E), and GΩβ,T (E) if
there is no ambiguity. The following property of geometric β-Hölder rough paths X = (1, X1, . . . ,
XN ) ∈ GΩβ(E) is used in Section 3: for each j = 1, . . . , k and (s, t) ∈ ∆T ,

the symmetric part of Xj
s,t is equal to (X1

s,t)
⊗j/j!. (2.6)

Let us now introduce our version of Lyons’ extension theorem.

Theorem 2.1 (cf. [19, Theorem 2.2.1]). Let X = (1, X1, . . . , XN ) ∈ Ωβ(E). For any integer
k ≥ N + 1, there exists a unique extension of the rough path X to a multiplicative functional of
degree k in E with finite β-Hölder estimates.

In [19, Theorem 2.2.1], rough paths X of finite p-variation with p := 1/β are treated and the
exact claim includes quantitative estimates for the extension of X by using control functions ω.
For Theorem 2.1 and the alternative proof of the theorem for geometric β-Hölder rough paths
X ∈ GΩβ(E) given in Section 3, we consider only a particular case where ω is given by ω(s,
t) = C(t− s) for some constant C for simplicity and are not concerned with uniform estimates for
the continuity of the extension map.

2.1.3 Fractional integrals and derivatives

Let a and b be real numbers with a < b. For p ∈ [1,∞), Lp(a, b) denotes the real Lp-space on the
interval [a, b] with respect to the Lebesgue measure. Let f ∈ L1(a, b) and α ∈ (0,∞). The left-
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and right-sided Riemann–Liouville fractional integrals of f of order α are defined for almost all
t ∈ (a, b) by

Iαa+f(t) :=
1

Γ(α)

∫ t

a
(t− s)α−1f(s) ds

and

Iαb−f(t) :=
(−1)−α

Γ(α)

∫ b

t
(s− t)α−1f(s) ds,

respectively, where (−1)−α := e−iπα and Γ(α) denotes the gamma function, namely Γ(α) :=∫∞
0 rα−1e−r dr. We use Iαa+

(b−)

(Lp) to denote the image of Lp(a, b) by the operator Iαa+
(b−)

. Here,

we note a simple criterion for functions to belong to Iαa+
(b−)

(Lp). This criterion is used frequently

in Section 3 without being explicitly noted: if f ∈ Cλ-Höl([a, b],R) with α < λ ≤ 1, then f ∈
Iαa+(L

p)∩ Iαb−(Lp) for any 1 ≤ p <∞. Let f ∈ Iαa+
(b−)

(L1) with 0 < α < 1. The left- and right-sided

Weyl–Marchaud fractional derivatives of f of order α are defined for almost all t ∈ (a, b) by

Dα
a+f(t) :=

1

Γ(1− α)

(
f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(s)

(t− s)α+1
ds

)
(2.7)

and

Dα
b−f(t) :=

(−1)α

Γ(1− α)

(
f(t)

(b− t)α
+ α

∫ b

t

f(t)− f(s)

(s− t)α+1
ds

)
, (2.8)

respectively. The integrals above are well-defined for almost all t ∈ (a, b). The following three
formulas are important in the subsequent sections. The first is the composition formula:

Dα
a+
(b−)

(Dβ
a+
(b−)

f) = Dα+β
a+
(b−)

f (2.9)

for f ∈ Iα+β
a+
(b−)

(L1), 0 < α < 1, and 0 < β < 1 with α + β < 1. The second is the basic integration

by parts formula of order α:

(−1)α
∫ b

a
Dα

a+f(t)g(t) dt =

∫ b

a
f(t)Dα

b−g(t) dt (2.10)

for f ∈ Iαa+(L
p), g ∈ Iαb−(L

q), 0 < α < 1, 1 ≤ p <∞, and 1 ≤ q <∞ with 1/p+ 1/q ≤ 1 + α. The

third is also regarded as an integration by parts formula of order α. Let f ∈ Cλ-Höl([a, b],R) and
g ∈ Cµ-Höl([a, b],R) with λ+ µ > 1. Then, the Riemann–Stieltjes integral

∫ b
a f(t) dg(t) exists [24]

and is expressed as follows: for α ∈ (1− µ, λ),∫ b

a
f(t) dg(t) = (−1)α

∫ b

a
Dα

a+fa+(t)D
1−α
b− gb−(t) dt+ f(a)(g(b)− g(a)) (2.11)

= (−1)α
∫ b

a
Dα

a+f(t)D
1−α
b− gb−(t) dt, (2.12)

where fa+(t) := f(t) − f(a) and gb−(t) := g(t) − g(b). For proofs of Eqs. (2.11) and (2.12),
see [25, Theorem 4.2.1 and Proposition 2.2].
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2.2 Some fractional operators

In this subsection, we introduce some variants of the fractional derivatives and integral operators
for later use. Throughout this subsection, we will assume the following: (a, b) is an element of ∆T

with a < b, β is a real number with 0 < β ≤ 1, k is a positive integer, and γ is a real number with
0 < γ < min{1/k, β}. We also recall V is a finite-dimensional normed space with norm ∥ · ∥V .

2.2.1 Definition of the operators and their properties

Let µ > 0 and Ψ ∈ Cµ
2 (V ). For α ∈ (0, µ ∧ 1), we define Dα

a+Ψ and Dα
b−Ψ as Dα

a+Ψ(a) := 0,

Dα
a+Ψ(u) :=

1

Γ(1− α)

(
Ψa,u

(u− a)α
+ α

∫ u

a

Ψv,u

(u− v)α+1
dv

)
for u ∈ (a, T ] (2.13)

and Dα
b−Ψ(b) := 0,

Dα
b−Ψ(r) :=

(−1)1+α

Γ(1− α)

(
Ψr,b

(b− r)α
+ α

∫ b

r

Ψr,v

(v − r)α+1
dv

)
for r ∈ [0, b). (2.14)

It is straightforward to show that, for each u ∈ [a, T ] and r ∈ [0, b],

∥Dα
a+Ψ(u)∥V ≤ 1

Γ(1− α)

µ

µ− α
|||Ψ|||µ;[a,u](u− a)µ−α (2.15)

and

∥Dα
b−Ψ(r)∥V ≤ 1

Γ(1− α)

µ

µ− α
|||Ψ|||µ;[r,b](b− r)µ−α. (2.16)

If Ψ ∈ Cλ
2 (V ) is of the form Ψs,t = ψ(t) − ψ(s) for some ψ ∈ Cλ

1 (V ) with 0 < λ ≤ 1, then the
identity Dα

a+
(b−)

Ψ = Dα
a+
(b−)

ψ a+
(b−)

holds for α ∈ (0, λ) from the definition. Using these functions, we

further introduce the following.

Definition 2.2. Let X = (1, X1, . . . , Xk) ∈ C0,β(∆T , T
(k)(E)) and {γl}kl=1 be a set of positive

numbers that satisfy γl < β for each l = 1, . . . , k and
∑k

l=1 γl ≤ 1. Then, for each j = 1, . . . , k, we
define a function Rγ1,...,γj

b− X on [0, b] as follows: for each r ∈ [0, b],

Rγ1
b−X(r) := Dγ1

b−X
1(r)

and

Rγ1,...,γj
b− X(r) := D

∑j
l=1 γl

b− Xj(r)−
j−1∑
i=1

D
∑j

l=i+1 γl
b− (Xj−i ⊗Rγ1,...,γi

b− X)(r)

for j = 2, . . . , k, inductively. If γ1, . . . , γk are all the same value γ, we write R(j,γ)
b− X for Rγ1,...,γj

b− X.

Specifically, R(1,γ)
b− X(r) := Dγ

b−X
1(r) and

R(j,γ)
b− X(r) := Djγ

b−X
j(r)−

j−1∑
i=1

D(j−i)γ
b− (Xj−i ⊗R(i,γ)

b− X)(r)

for j = 2, . . . , k.
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We note that R(j,γ)
b− X is well-defined by the assumption that 0 < γ < min{1/k, β}. Further-

more, with regard to the second terms of Rγ1,...,γj
b− X(r) and R(j,γ)

b− X(r),

D
∑j

l=i+1 γl
b− (Xj−i ⊗Rγ1,...,γi

b− X)(r) =
(−1)1+

∑j
l=i+1 γl

∑j
l=i+1 γl

Γ(1−
∑j

l=i+1 γl)

∫ b

r

Xj−i
r,v ⊗Rγ1,...,γi

b− X(v)

(v − r)
∑j

l=i+1 γl+1
dv (2.17)

and

D(j−i)γ
b− (Xj−i ⊗R(i,γ)

b− X)(r) =
(−1)1+(j−i)γ(j − i)γ

Γ(1− (j − i)γ)

∫ b

r

Xj−i
r,v ⊗R(i,γ)

b− X(v)

(v − r)(j−i)γ+1
dv (2.18)

hold for each i = 1, . . . , j − 1 from Eqs. (2.2), (2.14), and Rγ1,...,γi
b− X(b) = R(i,γ)

b− X(b) = 0.

Definition 2.3. Let X = (1, X1, . . . , Xk) ∈ C0,β(∆T , T
(k)(E)), j = 1, . . . , k, µ a real number with

µ > 1− jγ and Ψ a function in Cµ
2 (L(E

⊗(j−1), L(E,F ))). An F -valued function Ij,γ
X (Ψ) on ∆T is

defined as

Ij,γ
X (Ψ)s,t := (−1)1−jγ

∫ t

s
D1−jγ

s+ Ψ(u)R(j,γ)
t− X(u) du for (s, t) ∈ ∆T . (2.19)

These functions possess the following continuity properties.

Proposition 2.4. In the setting of Definition 2.3, the map Ψ 7→ Ij,γ
X (Ψ) is bounded linear from

Cµ
2 (L(E

⊗(j−1), L(E,F ))) to Cµ+jβ
2 (F ); in particular, it is Lipschitz continuous.

Proposition 2.5. In the setting of Definition 2.3, the map (1, X1, . . . , Xj) 7→ Ij,γ
X (Ψ) is locally

Lipschitz continuous from C0,β(∆T , T
(j)(E)) to Cµ+jβ

2 (F ).

We will prove them in the remainder of this subsection.

2.2.2 Proof of Propositions 2.4 and 2.5

Let X, X̃ ∈ C0,β(∆T , T
(k)(E)). For each j = 1, . . . , k, we set K

(j)
a,b := max1≤i≤j |||Xi|||iβ;[a,b] and

K̃
(j)
a,b := max1≤i≤j |||X̃i|||iβ;[a,b].

Lemma 2.6. Under the above notation and assumptions, for each j = 2, . . . , k,

∥R(j,γ)
b− X −R(j,γ)

b− X̃∥∞;[a,b] ≤ C(1 + C(K
(j−1)
a,b + K̃

(j−1)
a,b ))j−1 max

1≤i≤j
|||Xi − X̃i|||iβ;[a,b](b− a)j(β−γ),

(2.20)

where C = (β/(β − γ))Γ(1− γ)−1. If X̃ = (1, 0, . . . , 0), then, for each j = 2, . . . , k,

∥R(j,γ)
b− X∥∞;[a,b] ≤ C(1 + CK

(j−1)
a,b )j−1K

(j)
a,b (b− a)j(β−γ). (2.21)
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Proof. We prove Eq. (2.20) by induction on j. We set r ∈ [a, b] with a ≤ r < b since R(j,γ)
b− X(b) =

R(j,γ)
b− X̃(b) = 0 holds from the definition. From Eq. (2.18),

|R(2,γ)
b− X(r)−R(2,γ)

b− X̃(r)| ≤ |D2γ
b−X

2(r)−D2γ
b−X̃

2(r)|

+
γ

Γ(1− γ)

∫ b

r

|X1
r,v − X̃1

r,v||R
(1,γ)
b− X(v)|

(v − r)γ+1
dv

+
γ

Γ(1− γ)

∫ b

r

|X̃1
r,v||R

(1,γ)
b− X(v)−R(1,γ)

b− X̃(v)|
(v − r)γ+1

dv

=: A1 +A2 +A3.

From Eq. (2.16), we have

A1 ≤
1

Γ(1− 2γ)

2β

2β − 2γ
|||X2 − X̃2|||2β;[r,b](b− r)2(β−γ) ≤ C|||X2 − X̃2|||2β;[r,b](b− r)2(β−γ)

and

A2 ≤
γ

Γ(1− γ)

∫ b

r
(v − r)β−γ−1 dv|||X1 − X̃1|||β;[r,b]

1

Γ(1− γ)

β

β − γ
|||X1|||β;[r,b](b− r)β−γ

=
γ

Γ(1− γ)

(b− r)β−γ

β − γ
|||X1 − X̃1|||β;[r,b]C|||X1|||β;[r,b](b− r)β−γ

≤ C2|||X1|||β;[r,b]|||X1 − X̃1|||β;[r,b](b− r)2(β−γ).

In a similar way, we get

A3 ≤ C2|||X̃1|||β;[r,b]|||X1 − X̃1|||β;[r,b](b− r)2(β−γ).

By combining these estimates, we obtain

A1 +A2 +A3 ≤ C(1 + (C(|||X1|||β;[r,b] + |||X̃1|||β;[r,b]))) max
1≤l≤2

|||X l − X̃ l|||lβ;[r,b](b− r)2(β−γ).

Hence, Eq. (2.20) holds for j = 2. Suppose that Eq. (2.20) holds for each j = 2, . . . , J with
J ≤ k − 1. By using the induction hypothesis and calculations similar to those shown above, we
have

|R(J+1,γ)
b− X(r)−R(J+1,γ)

b− X̃(r)|

= |D(J+1)γ
b− XJ+1(r)−D(J+1)γ

b− X̃J+1(r)|

+

J∑
i=1

{
(J + 1− i)γ

Γ(1− (J + 1− i)γ)

∫ b

r

|XJ+1−i
r,v − X̃J+1−i

r,v ||R(i,γ)
b− X(v)|

(v − r)(J+1−i)γ+1
dv

+
(J + 1− i)γ

Γ(1− (J + 1− i)γ)

∫ b

r

|X̃J+1−i
r,v ||R(i,γ)

b− X(v)−R(i,γ)
b− X̃(v)|

(v − r)(J+1−i)γ+1
dv

}
≤ C|||XJ+1 − X̃J+1|||(J+1)β;[r,b](b− r)(J+1)(β−γ)
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+

J∑
i=1

{
C|||XJ+1−i − X̃J+1−i|||(J+1−i)β;[r,b](b− r)(J+1−i)(β−γ)

× C(1 + CK
(i−1)
r,b )i−1K

(i)
r,b(b− r)i(b−r)

+ C|||X̃J+1−i|||(J+1−i)β;[r,b](b− r)(J+1−i)(β−γ)

× C(1 + C(K
(i−1)
r,b + K̃

(i−1)
r,b ))i−1 max

1≤l≤i
|||X l − X̃ l|||lβ;[r,b](b− r)i(b−r)

}
(from the induction hypothesis)

≤ C max
1≤l≤J+1

|||X l − X̃ l|||lβ;[r,b](b− r)(J+1)(β−γ)

×
(
1 + C

J∑
i=1

(
K

(i)
r,b + |||X̃J+1−i|||(J+1−i)β;[r,b]

)
(1 + C(K

(i−1)
r,b + K̃

(i−1)
r,b ))i−1

)
≤ C max

1≤l≤J+1
|||X l − X̃ l|||lβ;[r,b](b− r)(J+1)(β−γ)

×
(
1 + C(K

(J)
r,b + K̃

(J)
r,b )

J∑
i=1

(1 + C(K
(J)
r,b + K̃

(J)
r,b ))

i−1

)
= C(1 + C(K

(J)
r,b + K̃

(J)
r,b ))

J max
1≤l≤J+1

|||X l − X̃ l|||lβ;[r,b](b− r)(J+1)(b−r),

as desired. Therefore, Eq. (2.20) holds for j = J + 1.

Proof of Propositions 2.4 and 2.5. We first prove Proposition 2.4. The linearity of Ij,γ
X follows

immediately from the definition. From Eq. (2.21) and the relation C ≤ β/(β − γ), we have

∥R(j,γ)
b− X∥∞;[a,b] ≤ Cj,β,γ(1 + max

1≤i≤j−1
|||Xi|||iβ;[a,b])j−1 max

1≤i≤j
|||Xi|||iβ;[a,b](b− a)j(β−γ), (2.22)

where Cj,β,γ := (β/(β − γ))j . Then, from Eq. (2.15), for each (s, t) ∈ ∆T with a ≤ s < t ≤ b,

|Ij,γ
X (Ψ)s,t| ≤ ∥D1−jγ

s+ Ψ∥∞;[s,t]∥R
(j,γ)
b− X∥∞;[s,t](t− s)

≤ Cj,β,γ,µ|||Ψ|||µ;[s,t](1 + max
1≤i≤j−1

|||Xi|||iβ;[s,t])j−1 max
1≤i≤j

|||Xi|||iβ;[s,t](t− s)µ+jβ ,

where Cj,β,γ,µ := (µ/(µ− (1− jγ)))Γ(jγ)−1Cj,β,γ . Therefore,

|||Ij,γ
X (Ψ)|||µ+jβ;[a,b] ≤ Cj,β,γ,µ|||Ψ|||µ;[a,b](1 + max

1≤i≤j−1
|||Xi|||iβ;[a,b])j−1 max

1≤i≤j
|||Xi|||iβ;[a,b]. (2.23)

It is also straightforward to show that Ij,γ
X (Ψ) belongs to C2(F ). Hence, Ij,γ

X (Ψ) ∈ Cµ+jβ
2 (F ) and

Ij,γ
X is bounded. Thus we obtain the claim of Proposition 2.4. We next prove Proposition 2.5 in a

similar way. From Eq. (2.20) and the relation C ≤ β/(β − γ),

∥R(j,γ)
b− X −R(j,γ)

b− X̃∥∞;[a,b]

≤ Cj,β,γ(1 + max
1≤i≤j−1

|||Xi|||iβ;[a,b] + max
1≤i≤j−1

|||X̃i|||iβ;[a,b])j−1 max
1≤i≤j

|||Xi − X̃i|||iβ;[a,b](b− a)j(β−γ)

(2.24)

12



and from Eq. (2.15),

|||Ij,γ
X (Ψ)− Ij,γ

X̃
(Ψ)|||µ+jβ;[a,b]

≤ Cj,β,γ,µ|||Ψ|||µ;[a,b](1 + max
1≤i≤j−1

|||Xi|||iβ;[a,b] + max
1≤i≤j−1

|||X̃i|||iβ;[a,b])j−1 max
1≤i≤j

|||Xi − X̃i|||iβ;[a,b].

(2.25)

This yields Proposition 2.5.

3 Integrals along rough paths via fractional calculus

3.1 Integration of 1-forms

We introduce our definition of integrals of 1-forms along rough paths as well as the main theorems
of this section. Throughout this subsection, we will assume the following: (a, b) is an element of
∆T with a < b and β is a real number with 0 < β ≤ 1. We also recall N = ⌊1/β⌋ and V is a
finite-dimensional normed space with norm ∥ · ∥V .

3.1.1 Definition of the integral

We introduce two symbols for the definition of our integral. For X = (1, X1, . . . , XN ) ∈ Ωβ(E)

and ξ ∈ E, we define X1,ξ ∈ Cβ
1 (E) as

X1,ξ
t := ξ +X1

0,t for t ∈ [0, T ]. (3.1)

Let l be an integer with 0 ≤ l ≤ N − 1 and λ a real number with 0 < λ ≤ 1. For f ∈ C l,λ(E, V )

and x ∈ Cβ
1 (E), we define a V -valued function Rl(f, x) on ∆T as

Rl(f, x)s,t := f(xt)−
l∑

i=0

1

i!
∇if(xs)(xt − xs)

⊗i for (s, t) ∈ ∆T .

Then, Rl(f, x) belongs to C(l+λ)β
2 (V ); indeed, it is easy to prove that there exists a positive constant

Cl,λ such that

|||Rl(f, x)|||(l+λ)β;[a,b] ≤ Cl,λ∥∇lf∥λ-Höl∥x∥l+λ
β-Höl;[a,b]. (3.2)

We are now ready to define the integral of 1-forms along X.

Definition 3.1. Let X ∈ Ωβ(E) and ξ ∈ E. Let λ be a real number with 1/β −N < λ ≤ 1 and
φ ∈ CN−1,λ(E,L(E,F )). Take γ such that (1 − λβ)/N < γ < β. Then, for each (s, t) ∈ ∆T , we
define Iγφ(X, ξ)s,t ∈ F as

Iγφ(X, ξ)s,t :=

N∑
n=1

∇n−1φ(X1,ξ
s )Xn

s,t +

N∑
n=1

In,γ
X (RN−n(∇n−1φ,X1,ξ))s,t. (3.3)

Remark 3.2. Let us make a few comments about the definition above.
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(1) The inequality 1 − nγ < (N − n + λ)β follows from the assumption (1 − λβ)/N < γ < β.
Then, In,γ

X (RN−n(∇n−1φ,X1,ξ)) is well-defined from Eq. (3.2) and so is Iγφ(X, ξ). Moreover,

we see from Proposition 2.4 that Iγφ(X, ξ) belongs to Cβ
2 (F ).

(2) IfN = 1, then Iγφ(X, ξ)a,b coincides with the right-hand side of Eq. (2.11) with f(t) = φ(X1,ξ
t ),

g(t) = X1
0,t and α = 1 − γ. Hence, the equality Iγφ(X, ξ)a,b =

∫ b
a φ(X

1,ξ
t ) dX1

0,t holds. In
particular, this value is independent of the choice of γ. If N ≥ 2, from Theorems 3.3 and 3.4
stated below, Iγφ(X, ξ)a,b is independent of the choice of γ for X ∈ GΩβ(E). However, it is
uncertain whether such a property holds for non-geometric Hölder rough paths X ∈ Ωβ(E).

(3) Although the definition of R(n,γ)
t− X looks complicated, as seen in Subsection 3.3, this term

naturally comes out from the integration by parts of fractional orders and the multiplicative
property of the rough path as described by Hu and Nualart [13, Theorem 3.3]. Indeed,

if N = 2, the equality R(2,γ)
b− X = Dγ

b−(D
γ
b−X

2) holds for X ∈ SΩβ(E) as seen from the
proof of Proposition 3.30. The right-hand side of this equality is also well-defined for every
X ∈ Ωβ(E) and this appears in the integral introduced by Hu and Nualart [13, Definition 3.2].

On the other hand, the left-hand side of this equality and its generalizations R(n,γ)
t− X in our

integration appear for the first time.

3.1.2 Statement of main theorems

The following are the main theorems of this subsection.

Theorem 3.3. Let X ∈ SΩβ(E), ξ ∈ E, and φ ∈ CN−1,1(E,L(E,F )). Take γ ∈ ((1 −
β)/N, β). Then, for each (s, t) ∈ ∆T , I

γ
φ(X, ξ)s,t coincides with the Riemann–Stieltjes integral∫ t

s φ(X
1,ξ
u ) dX1

0,u.

Theorem 3.4. Let 0 < λ ≤ 1 and φ ∈ CN,λ(E,L(E,F )) such that ∇φ,. . . ,∇Nφ are bounded on
E. Take γ ∈ ((1−β)/N, β). Then, the map (X, ξ) 7→ Iγφ(X, ξ) is locally Lipschitz continuous from

Ωβ(E)×E to Cβ
2 (F ).

We prove Theorems 3.3 and 3.4 in Subsection 3.3. From these theorems, Iγφ(X, ξ) is closely
related to the rough integral introduced in Lyons [19]. We refer to Section 4.3 of [20] for the
definition of the rough integral and the details of the construction. Let X ∈ GΩβ(E), ξ ∈ E, and
1/β − N < λ ≤ 1. Let φ ∈ CN−1,λ(E,L(E,F )) such that φ, ∇φ,. . . ,∇N−1φ are bounded on E.

Then the rough integral
∫
φ(X1,ξ

u ) dX is defined and the map X 7→
∫
φ(X1,ξ

u ) dX is continuous
from GΩβ(E) to GΩβ(F ) [20, Definition 4.9 and Theorem 4.12]. Moreover, if X ∈ SΩβ(E),

then, for each (s, t) ∈ ∆T , the first level path of the rough integral
∫ t
s φ(X

1,ξ
u ) dX1 coincides

with the Riemann–Stieltjes integral
∫ t
s φ(X

1,ξ
u ) dX1

0,u. Using these properties of
∫
φ(X1,ξ

u ) dX and
Theorems 3.3 and 3.4, we obtain the following:

Theorem 3.5. Let X ∈ GΩβ(E), ξ ∈ E, and 0 < λ ≤ 1. Let φ ∈ CN,λ(E,L(E,F )) such that φ,
∇φ,. . . ,∇Nφ are bounded on E. Take γ ∈ ((1− β)/N, β). Then, for each (s, t) ∈ ∆T , I

γ
φ(X, ξ)s,t

coincides with the first level path of the rough integral
∫ t
s φ(X

1,ξ
u ) dX1.

Remark 3.6. Let us make a few conceptual comments about our integration.
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(1) Because the definition of our integration is based on fractional derivatives, it is essential for
the rough paths to possess the finite Hölder estimates (2.4). In the usual integration theory
of rough paths, the finite p-variation condition for p ≥ 1 is imposed on rough paths instead
of (2.4), which are called p-rough paths. The space of p-rough paths is a complete metric
space with respect to the p-variation norm and this space contains the space of β-Hölder
rough paths with p = 1/β. On the other hand, p-rough paths are identified with β-Hölder
rough paths via re-parameterizations. In this sense, our framework is not very restricted as
compared with the usual theory of rough paths.

(2) The identification mentioned above is also valid for geometric p-rough paths. More precisely,
given a geometric p-rough path X in E, there exists a continuous increasing function τ from
[0, T ] to itself such that X̃ ∈ GΩβ(E), where X̃s,t := Xτ(s),τ(t) for (s, t) ∈ ∆T . Then, from

Theorems 3.3 and 3.4, for each (s, t) ∈ ∆T , I
γ
φ(X̃, ξ)s,t coincides with the first level path

of the rough integral
∫ t
s φ(X

1,ξ
u ) dX1 along p-rough path X and the value of Iγφ(X̃, ξ)s,t is

independent of the choice of re-parameterization τ . Similarly, Iγφ(X̃, ξ)s,t is well-defined for
non-geometric p-rough paths X and the corresponding re-parameterizations. However, it is
unknown whether Iγφ(X̃, ξ)s,t possesses such two properties.

(3) The relation to the integral introduced by Hu and Nualart [13] is stated as follows. For
f ∈ C(F,L(E,F )), we define f̂ ∈ C(E ⊕ F,L(E ⊕ F,E ⊕ F )) as

f̂(x, y)(u, v) := (u, f(y)u) for (x, y), (u, v) ∈ E ⊕ F.

Let β ∈ (1/3, 1/2), ξ̂ ∈ E ⊕ F , and Z ∈ GΩβ(E ⊕ F ). Take γ ∈ ((1 − β)/2, β). Then, for

sufficiently smooth f , the projection of Iγ
f̂
(Z, ξ̂)a,b ∈ E⊕F onto F is identical to the integral

in Definition 3.2 given by Hu and Nualart [13]. This follows from Theorems 3.3, 3.4, and the
corresponding results [13, Theorem 3.3, Propositions 3.4, and 6.4]. However, it is not known
whether such identification is true for non-geometric Hölder rough paths Z ∈ Ωβ(E ⊕ F ).

3.2 Integration of controlled paths and its application

In this subsection, we introduce integrals of controlled paths along rough paths. This is a gener-
alization of the integral introduced in Definition 3.1. As an application, we provide an alternative
proof of Lyons’ extension theorem for geometric Hölder rough paths together with an explicit ex-
pression of the extension map. Throughout this subsection, we will assume the following: (a, b) is
an element of ∆T with a < b, β is a real number with 0 < β ≤ 1, k is a positive number, and γ is
a real number with 0 < γ < min{1/k, β}.

3.2.1 Controlled paths

Let X = (1, X1, . . . , Xk) ∈ C0,β(∆T , T
(k)(E)). We say that a k-tuple Y = (Y (0), Y (1), . . . , Y (k−1))

is a path controlled by X with values in F if Y satisfies the following two properties:

(1) for each l = 0, . . . , k − 1, Y (l) ∈ Cβ
1 (L(E

⊗l, F ));
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(2) for each l = 0, . . . , k − 1, Rk−1−l
l (X,Y ) ∈ C(k−l)β

2 (L(E⊗l, F )), where

Rk−1−l
l (X,Y )s,t := Y

(l)
t −

k−1−l∑
i=0

Y (l+i)
s Xi

s,t for (s, t) ∈ ∆T . (3.4)

It is sometimes referred to as a controlled path for X ∈ C0,β(∆T , T
(k)(E)). The space of all paths

controlled by X ∈ C0,β(∆T , T
(k)(E)) with values in F is denoted by Qβ,k

X,T (F ), which is a normed

space under the norm Y 7→
∑k−1

l=0 |Y
(l)
0 |+ ∥Y ∥X,β,k;[0,T ]. Here, in general, ∥Y ∥X,β;[a,b] is defined by

∥Y ∥X,β,k;[a,b] :=

k−1∑
l=0

|||Rk−1−l
l (X,Y )|||(k−l)β;[a,b] for Y ∈ Qβ,k

X,T (F ). (3.5)

If there is no ambiguity, we omit T and [0, T ] from the notations Qβ,k
X,T (F ) and ∥Y ∥X,β,k;[0,T ],

respectively. We also write ∥Y ∥X,β;[a,b] instead of ∥Y ∥X,β,N ;[a,b]. Although the highest level pathXk

is not necessary for our definition of paths controlled by X ∈ C0,β(∆T , T
(k)(E)), we need it in

applications. The multiplicative property (2.3) is not assumed for X ∈ C0,β(∆T , T
(k)(E)) in the

definition of paths controlled by X. In the following examples, however, such properties play an
essential role in confirming property (2) in the definition above.

Example 3.7. Let φ ∈ CN−1,1(E,L(E,F )) and X = (1, X1, . . . , XN ) ∈ GΩβ(E). For ξ ∈ E, we

define X1,ξ ∈ Cβ
1 (E) as in Eq. (3.1). For each l = 0, . . . , N − 1, we set Y (l) ∈ Cβ

1 (L(E
⊗l, L(E,F )))

as

Y
(l)
t := ∇lφ(X1,ξ

t ) for t ∈ [0, T ]. (3.6)

From the property (2.6) and the symmetry of the derivatives of φ,

RN−1−l
l (X,Y )s,t = RN−1−l(∇lφ,X1,ξ)s,t (3.7)

holds for each l = 0, . . . , N − 1 and (s, t) ∈ ∆T . Then, from Eq. (3.2), we have

|RN−1−l
l (X,Y )s,t| ≤ Cl,λ∥∇N−1φ∥1-Höl|||X1|||N−l

β (t− s)(N−l)β.

Thus, Y = (Y (0), Y (1), . . . , Y (N−1)) belongs to Qβ,N
X (L(E,F )). In addition, if 1/3 < β ≤ 1, then

Y belongs to Qβ,N
X (L(E,F )) for every X ∈ Ωβ(E).

Example 3.8 (cf. [9, Proposition 4]). Let 1/3 < β ≤ 1/2, X = (1, X1, X2) ∈ C0,β(∆T , T
(2)(E)),

Y = (Y (0), Y (1)) ∈ Qβ,2
X (F ), and φ ∈ C1,1(F,L(E,F )) such that ∇φ is bounded on F . We set

φ(Y )(0) ∈ Cβ
1 (L(E,F )) and φ(Y )(1) ∈ Cβ

1 (L(E,L(E,F ))) as

φ(Y )
(0)
t := φ(Y

(0)
t ) and φ(Y )

(1)
t := ∇φ(Y (0)

t )Y
(1)
t for t ∈ [0, T ].

Then, φ(Y ) := (φ(Y )(0), φ(Y )(1)) belongs to Qβ,2
X (L(E,F )). For the proof, see Lemma 4.3.
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Example 3.9. LetX be a multiplicative functional of degree k in E with finite β-Hölder estimates.
For each l = 0, . . . , k − 1, we set Y (l) ∈ Cβ

1 (L(E
⊗l, L(E,E⊗(k+1)))) as

(Y
(l)
t (η))(ξ) := (Xk−l

0,t ⊗ η)⊗ ξ for t ∈ [0, T ], (3.8)

where η ∈ E⊗l and ξ ∈ E. From Eq. (2.3), for each l = 0, . . . , k − 1 and (s, t) ∈ ∆T ,

Rk−1−l
l (X,Y )s,t = Xk−l

0,t −
k−1−l∑
i=0

Xk−l−i
0,s ⊗Xi

s,t = Xk−l
s,t . (3.9)

Then, from Eq. (2.4), Y = (Y (0), Y (1), . . . , Y (k−1)) belongs to Qβ,k
X (L(E,E⊗(k+1))).

The construction of multiplicative functionals with finite β-Hölder estimates in Example 3.9 is
used in the proof of Lyons’ extension theorem (Theorem 3.20). The controlled path in Example 3.8
is used in the definition of rough differential equations (Definition 4.1).

3.2.2 Definition of the integral and its properties

We assume that (1− β)/N < γ < β in this subsection. We set

Mβ,T (E,F ) := {(X,Y ) : X ∈ C0,β(∆T , T
(N)(E)), Y ∈ Qβ,N

X,T (F )}

equipped with a distance

mβ((X,Y ), (X̃, Ỹ )) := dβ,N (X, X̃) +

N∑
j=1

|Y (j−1)
0 − Ỹ

(j−1)
0 |+ dX,X̃,β(Y, Ỹ ) (3.10)

for (X,Y ), (X̃, Ỹ ) ∈Mβ,T (E,F ). Here,

dX,X̃,β(Y, Ỹ ) :=
N∑
j=1

|||RN−j
j−1 (X,Y )−RN−j

j−1 (X̃, Ỹ )|||(N−j+1)β;[0,T ]. (3.11)

We define the subset Sβ,T (E,F ) of Mβ,T (E,F ) by Sβ,T (E,F ) := {(X,Y ) : X ∈ SΩβ,T (E), Y ∈
Q1,N

X,T (F )} and let Sβ,T (E,F ) denote the closure of Sβ,T (E,F ) with respect to the distance mβ. We

will omit T from the notations Mβ,T (E,F ), Sβ,T (E,F ), and Sβ,T (E,F ) if there is no ambiguity.
In Example 3.7, if φ is sufficiently smooth and all derivatives are bounded on E, then the pair
(X,Y ) belongs to Sβ(E,L(E,F )). This is proved by straightforward calculation. In Example 3.8,
if the pair (X,Y ) is in Sβ(E,F ) and φ ∈ C2,1(E,L(E,F )) such that ∇φ and ∇2φ are bounded
on F , then the pair (X,φ(Y )) belongs to Sβ(E,L(E,F )). See Proposition 4.7 for the proof. The
following is our definition of the integral of controlled paths along rough paths.

Definition 3.10. For (X,Y ) ∈Mβ(E,L(E,F )), an F -valued function Iγ(X,Y ) on ∆T is defined
by

Iγ(X,Y )s,t :=

N∑
n=1

Y (n−1)
s Xn

s,t +

N∑
n=1

In,γ
X (RN−n

n−1 (X,Y ))s,t for (s, t) ∈ ∆T .
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We note that the inequality 1−nγ < (N−n+1)β follows from the assumption that (1−β)/N <
γ. Therefore, In,γ

X (RN−n
n−1 (X,Y ))s,t is well-defined and so is Iγ(X,Y )s,t. The following theorem

justifies treating Iγ(X,Y ) as the integral of Y along X.

Theorem 3.11. Let (X,Y ) ∈ Sβ(E,L(E,F )). Then, for each (s, t) ∈ ∆T , I
γ(X,Y )s,t coincides

with the Riemann–Stieltjes integral
∫ t
s Y

(0)
u dX1

0,u.

We prove Theorem 3.11 in Subsection 3.3.

Theorem 3.12. The map (X,Y ) 7→ Iγ(X,Y ) is locally Lipschitz continuous fromMβ(E,L(E,F ))

to Cβ
2 (F ).

Proof. From Proposition 2.4, Iγ(X,Y ) belongs to Cβ
2 (F ). Set (s, t) ∈ ∆T with s < t. For (X,Y ),

(X̃, Ỹ ) ∈Mβ(E,L(E,F )),

|Iγ(X,Y )s,t − Iγ(X̃, Ỹ )s,t| ≤
N∑

n=1

{
|Y (n−1)

s − Ỹ (n−1)
s ||Xn

s,t|+ |Ỹ (n−1)
s ||Xn

s,t − X̃n
s,t|

+ |In,γ
X (RN−n

n−1 (X,Y )−RN−n
n−1 (X̃, Ỹ ))s,t|

+ |In,γ
X (RN−n

n−1 (X̃, Ỹ ))s,t − In,γ

X̃
(RN−n

n−1 (X̃, Ỹ ))s,t|
}
. (3.12)

By the definition of controlled paths, we have

|Y (n−1)
s − Ỹ (n−1)

s | ≤ |Y (n−1)
0 − Ỹ

(n−1)
0 |+ |RN−n

n−1 (X,Y )0,s −RN−n
n−1 (X̃, Ỹ )0,s|

+
N−n∑
i=1

|Y (n−1+i)
0 Xi

0,s − Ỹ
(n−1+i)
0 X̃i

0,s|

≤ |Y (n−1)
0 − Ỹ

(n−1)
0 |+ |||RN−n

n−1 (X,Y )−RN−n
n−1 (X̃, Ỹ )|||(N−n+1)βT

(N−n+1)β

+
N−n∑
i=1

{
|Y (n−1+i)

0 − Ỹ
(n−1+i)
0 ||Xi

0,s|+ |Ỹ (n−1+i)
0 ||Xi

0,s − X̃i
0,s|

}

≤
(
1 + T (N−n+1)β +

N−n∑
i=1

(
|||Xi|||iβ + |Ỹ (n−1+i)

0 |
)
T iβ

)
mβ((X,Y ), (X̃, Ỹ ))

(3.13)

for each n = 1, . . . , N . Then, from Eqs. (2.23), (2.25), (3.10), (3.11), (3.12), and (3.13), we obtain
the statement of the theorem immediately.

Corollary 3.13. Let X ∈ C0,β(∆T , T
(N)(E)). Then, the map Y 7→ Iγ(X,Y ) is locally Lipschitz

continuous from Qβ,N
X (L(E,F )) to Cβ

2 (F ).

Proof. Apply Eqs. (2.23) and (3.5) to Eq. (3.12) with X = X̃.

From Theorems 3.11 and 3.12, we see that, for each s, t, u ∈ [0, T ] with s ≤ u ≤ t, the identity

Iγ(X,Y )s,u + Iγ(X,Y )u,t = Iγ(X,Y )s,t (3.14)

holds for (X,Y ) ∈ Sβ(E,L(E,F )). Using this relation, we obtain the following propositions.
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Proposition 3.14. Let (X,Y ) ∈ Sβ(E,L(E,F )). Then, for each (s, t) ∈ ∆T ,

Iγ(X,Y )s,t = lim
|Ps,t|→0

m−1∑
i=0

N∑
n=1

Y (n−1)
ui

Xn
ui,ui+1

,

where the limit is taken over all finite partitions Ps,t = {u0, u1, . . . , um} of the interval [s, t] such
that s = u0 ≤ u1 ≤ · · · ≤ um = t and |Ps,t| := max0≤i≤m−1|ui+1 − ui|.

Proof. From Eq. (3.14) and Definition 3.10, for any partition Ps,t = {u0, u1, . . . , um},

Iγ(X,Y )s,t =

m−1∑
i=0

Iγ(X,Y )ui,ui+1

=
m−1∑
i=0

{ N∑
n=1

Y (n−1)
ui

Xn
ui,ui+1

+
N∑

n=1

In,γ
X (RN−n

n−1 (X,Y ))ui,ui+1

}
.

It then suffices to show that, for each n = 1, . . . , N ,

lim
|Ps,t|→0

m−1∑
i=0

|In,γ
X (RN−n

n−1 (X,Y ))ui,ui+1 | = 0. (3.15)

From Eq. (2.23), we have

|In,γ
X (RN−n

n−1 (X,Y ))ui,ui+1 |
≤ Cn,β,γ |||RN−n

n−1 (X,Y )|||(N−n+1)β(1 + max
1≤j≤n−1

|||Xj |||jβ)n−1 max
1≤j≤n

|||Xj |||jβ(ui+1 − ui)
(N+1)β.

Thus, from the relation (N + 1)β > 1,

m−1∑
i=0

|In,γ
X (RN−n

n−1 (X,Y ))ui,ui+1 | ≤ C

m−1∑
i=0

(ui+1 − ui)
(N+1)β ≤ C|Ps,t|(N+1)β−1(t− s) → 0

as |Ps,t| → 0. Here, C is a positive constant that does not depend on Ps,t. Therefore, Eq. (3.15)
holds. Thus we obtain the claim of the proposition.

Proposition 3.15. Let (X,Y ) ∈ Sβ(E,L(E,F )). We set Z = (Z(0), Z(1), . . . , Z(N−1)) as

Z
(0)
t := Iγ(X,Y )0,t and Z

(l)
t := Y

(l−1)
t for t ∈ [0, T ]

and each l = 1, . . . , N − 1. Then, (X,Z) belongs to Sβ(E,L(E,F )).

Proposition 3.15 will be used in Section 4 and the proof is given in Subsection 3.3.

Remark 3.16. Let us make a few comments about our integration.

(1) Take X ∈ GΩβ(E) and Y ∈ Qβ,N
X (L(E,F )) as in Example 3.7. Then, Iγ(X,Y ) is the same

as the integral introduced in Definition 3.1. Thus we see from Theorem 3.5 that Iγ(X,Y )
coincides with the first level path of the rough integral along X ∈ GΩβ(E).
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(2) The relation to the integration of controlled paths introduced by Gubinelli [9] is stated as
follows. Let 1/3 < β ≤ 1/2. Based on Proposition 3.14 and [9, Corollaries 2 and 3], we see
that Iγ(X,Y ) coincides with the integral introduced in [9, Corollary 3] on ∆T if Iγ(X,Y )
satisfies Eq. (3.14). Therefore, for (X,Y ) ∈ Sβ(E,L(E,F )), I

γ(X,Y ) is consistent with the
integral introduced in [9, Corollary 3] on ∆T . However, it is unknown whether Eq. (3.14) is

true for every X ∈ Ωβ(E) and Y ∈ Qβ,2
X (L(E,F )).

(3) If N = 1, then Iγ(X,Y )a,b coincides with the Riemann–Stieltjes integral
∫ b
a Y

(0)
t dX1

0,t for

(X,Y ) ∈ Mβ(X,Y ), which follows from Eq. (2.11) with f = Y (0), g = X1
0,· and α = 1 − γ.

In particular, Iγ(X,Y )a,b is independent of the choice of γ. If N ≥ 2, then this value is
independent of the choice of γ for (X,Y ) ∈ Sβ(E,L(E,F )) from Proposition 3.14. However,
it is unknown whether such a property holds for every (X,Y ) ∈Mβ(E,L(E,F )).

3.2.3 Application: Lyons’ extension theorem via fractional calculus

We assume the following: j is an integer with j ≥ N and γj is a real number with (1 − β)/j <
γj < min{1/j, β}. To construct the extension map we first define the following functional.

Definition 3.17. For X = (1, X1, . . . , Xj) ∈ C0,β(∆T , T
(j)(E)), an E⊗(j+1)-valued function X̂j+1

on ∆T is defined by

X̂j+1
s,t :=

j∑
n=1

(−1)1−nγj

∫ t

s
D1−nγj

s+ Xj+1−n(u)⊗R(n,γj)
t− X(u) du for (s, t) ∈ ∆T .

We note that the inequality 1−nγj < (j+1−n)β follows from the assumption that (1−β)/j <
γj . Thus, X̂

j+1 is well-defined and for each (s, t) ∈ ∆T ,

|X̂j+1
s,t | ≤ Cj,β,γj (max

1≤i≤j
|||Xi|||iβ)2((1 + max

1≤i≤j−1
|||Xi|||iβ)j − 1)( max

1≤i≤j−1
|||Xi|||iβ)−1(t− s)(j+1)β

from Eqs. (2.4), (2.15), (2.19), and (2.23). Furthermore, from Propositions 2.4 and 2.5, we obtain
the following proposition.

Proposition 3.18. For X = (1, X1, . . . , Xj) ∈ C0,β(∆T , T
(j)(E)), the map X 7→ X̂j+1 is locally

Lipschitz continuous from C0,β(∆T , T
(j)(E)) to C(j+1)β

2 (E⊗(j+1)).

The following is a key proposition for the proof of Theorem 3.20.

Proposition 3.19. Let X = (1, X1, . . . , Xj) be a step-j signature in E. Then, (1, X1, . . . , Xj ,
X̂j+1) is the step-(j+1) signature, that is, for each (s, t) ∈ ∆T , X̂

j+1
s,t coincides with the Riemann–

Stieltjes integral
∫ t
s X

j
s,u ⊗ dX1

0,u.

We prove Proposition 3.19 in Subsection 3.3. From Propositions 3.18 and 3.19, for geometric
β-Hölder rough paths X ∈ GΩβ(E), we can see that the definition of X̂j+1 is independent of the
choice of γj . The following is our version of Lyons’ extension theorem for X ∈ GΩβ(E).

Theorem 3.20. Let X = (1, X1, . . . , XN ) ∈ GΩβ(E). For any integer k ≥ N + 1, there exists an
extension of the rough path X to a multiplicative functional of degree k in E with finite β-Hölder
estimates.
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Proof. We define X̂N+1 as in Definition 3.17 and set X̂(N+1) := (1, X1, . . . , XN , X̂N+1). Here,
we take an arbitrary γN such that (1 − β)/N < γN < min{1/N, β} = β to define X̂N+1. From
Proposition 3.18, X̂(N+1) belongs to C0,β(∆T , T

(N+1)(E)). By the definition of X ∈ GΩβ(E), there
exists a sequence of smooth rough paths X(m) which converges to X with respect to the distance
dβ,N . Hence, from Propositions 3.18 and 3.19, limm→∞ dβ,N+1(X(m)(N+1), X̂(N+1)) = 0, where

X(m)(N+1) is the step-(N + 1) signature of X(m)10,· ∈ C1
1(E). Thus, X̂(N+1) is a multiplicative

functional of degree (N + 1) in E. This implies the statement of the theorem for k = N + 1. By
repeating this argument with the parameters γN+1, . . . , γk−1, the desired statement is proven for
any k ≥ N + 1.

We remark that [19, Theorem 2.2.1] implies the uniqueness of extensions even for X ∈ Ωβ(E).
In particular, for X ∈ GΩβ(E), the extension by Theorem 3.20 coincides with those introduced
by Lyons [19, Theorem 2.2.1] and by Gubinelli [9, Proposition 10]. However, it is unknown for
non-geometric Hölder rough paths X ∈ Ωβ(E) whether X̂(k) defined as in Theorem 3.20 is a
multiplicative functional of degree k in E.

3.3 Proofs

In this subsection, we prove Theorems 3.3, 3.4, 3.11, and Proposition 3.19. Throughout this
subsection, we assume the following: (a, b) is an element of ∆T with a < b, β is a real number with
0 < β ≤ 1, and k is a positive integer. We also recall N = ⌊1/β⌋ and V is a finite-dimensional
normed space with norm ∥ · ∥V .

3.3.1 Proof of Theorem 3.4

We prove Theorem 3.4 along with some estimates of Iγφ(X, ξ). Let X, X̃ ∈ Ωβ(E). For each

n = 1, . . . , N , we set K
(n)
a,b := max1≤i≤n |||Xi|||iβ;[a,b] and K̃

(n)
a,b := max1≤i≤n |||X̃i|||iβ;[a,b].

Proposition 3.21. In the setting of Definition 3.1, Iγφ(X, ξ) belongs to Cβ
2 (F ) and there exists a

positive constant C depending only on β and γ such that

|||Iγφ(X, ξ)|||β;[a,b] ≤ CC1
a,b

(
∥∇N−1φ∥λ-Höl ∨ max

1≤n≤N
|∇n−1φ(ξ)|

)
K

(N)
a,b , (3.16)

where

C1
a,b :=

(
1 ∨ b(N−1+λ)β

) N∑
n=1

{
|||X1|||N−n+λ

β;[0,b] +
N−n∑
k=0

|||Xk|||kβ;[0,b] + |||X1|||N−n+λ
β;[a,b]

(
1 +K

(n−1)
a,b

)n−1
}
.

Proof. From Proposition 2.4, Iγφ(X, ξ) belongs to Cβ
2 (F ). We prove Eq. (3.16). Set (s, t) ∈ ∆T

with a ≤ s < t ≤ b. Then,

|Iγφ(X, ξ)s,t|

≤
N∑

n=1

{
|∇n−1φ(X1,ξ

s )||Xn
s,t|+ ∥D1−nγ

s+ RN−n(∇n−1φ,X1,ξ)∥∞;[s,t]∥R
(n,γ)
t− X∥∞;[s,t](t− s)

}
.
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Using Eqs. (2.15), (2.22) and (3.2), we get

∥D1−nγ
s+ RN−n(∇n−1φ,X1,ξ)∥∞;[s,t]∥R

(n,γ)
t− X∥∞;[s,t](t− s)

≤ C|||RN−n(∇n−1φ,X1,ξ)|||(N−n+λ)β;[s,t]

(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+λ)β

≤ C∥∇N−1φ∥λ-Höl|||X1|||N−n+λ
β;[s,t]

(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+λ)β.

From Eq. (3.2), we have

|∇n−1φ(X1,ξ
s )||Xn

s,t|

≤
(
|RN−n(∇n−1φ,X1,ξ)0,s|+

N−n∑
k=0

|∇n−1+kφ(X1,ξ
0 )||Xk

0,s|
)
|||Xn|||nβ;[s,t](t− s)nβ

≤
(
C∥∇N−1φ∥λ-Höl|||X1|||N−n+λ

β;[0,s] s(N−n+λ)β +
N−n∑
k=0

|∇n−1+kφ(ξ)||||Xk|||kβ;[0,s]skβ
)
K

(n)
s,t (t− s)nβ .

Combining these estimates implies Eq. (3.16).

Let l be an integer with 0 ≤ l ≤ N − 1, λ a real number with 0 < λ ≤ 1, and f ∈ C l+1,λ(E, V )
such that ∇l+1f is bounded on E. From simple estimates, there exists a positive constant Cl,λ

such that, for each x, x̃ ∈ Cβ-Höl([0, T ], E),

|||Rl(f, x)−Rl(f, x̃)|||(l+1)β;[a,b]

≤ Cl,λ∥∇l+1f∥λ-Höl∥x∥l+1
β-Höl;[a,b]

(
∥x− x̃∥∞;[a,b] + ∥x− x̃∥β-Höl;[a,b](b− a)β

)λ
+ Cl,λ∥∇l+1f∥∞

( l∑
k=0

∥x∥kβ-Höl;[a,b]∥x̃∥
l−k
β-Höl;[a,b]

)
∥x− x̃∥β-Höl;[a,b]. (3.17)

We recall Eq. (2.1) for the meaning of the symbol ∥∇φ∥CN−1,λ below.

Proposition 3.22. Let X, X̃ ∈ Ωβ(E) and ξ ∈ E. Under the assumptions of Theorem 3.4, there
exists a constant C depending only on β and γ such that

|||Iγφ(X, ξ)− Iγφ(X̃, ξ)|||β;[a,b] ≤ CC2
a,b

(
|φ(ξ)| ∨ ∥∇φ∥CN−1,λ

)(
|||X1 − X̃1|||λβ;[a,b] ∨ dβ,N (X, X̃)

)
,

(3.18)

where

C2
a,b :=

(
1 ∨ (b− a)(N+λ)β ∨ bNβ

) N∑
n=1

{
|||Xn|||nβ;[a,b] + |||X̃1|||N−n+1

β;[0,b] +
N−n∑
k=0

|||X̃k|||kβ;[0,b]

+

(
|||X1|||N−n+1

β;[a,b] +

(N−n∑
k=0

|||X1|||kβ;[a,b]|||X̃
1|||N−n−k

β;[a,b]

))(
1 +K

(n−1)
a,b

)n−1
K

(n)
a,b

+ |||X̃1|||N−n+1
β;[a,b]

(
1 +K

(n−1)
a,b + K̃

(n−1)
a,b

)n−1
}
.
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Proof. Set (s, t) ∈ ∆T with a ≤ s < t ≤ b. Then,

|Iγφ(X, ξ)s,t − Iγφ(X̃, ξ)s,t|

≤
N∑

n=1

{
|∇n−1φ(X1,ξ

s )−∇n−1φ(X̃1,ξ
s )||Xn

s,t|+ |∇n−1φ(X̃1,ξ
s )||Xn

s,t − X̃n
s,t|

+ ∥D1−nγ
s+ (RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ, X̃1,ξ))∥∞;[s,t]∥R

(n,γ)
t− X∥∞;[s,t](t− s)

+ ∥D1−nγ
s+ RN−n(∇n−1φ, X̃1,ξ)∥∞;[s,t]∥R

(n,γ)
t− X −R(n,γ)

t− X̃∥∞;[s,t](t− s)

}
.

Using Eqs. (2.15), (2.22) and (3.17), we obtain

∥D1−nγ
s+ (RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ, X̃1,ξ))∥∞;[s,t]∥R

(n,γ)
t− X∥∞;[s,t](t− s)

≤ C|||RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ, X̃1,ξ)|||(N−n+1)β;[s,t]

(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+1)β

≤ C(∥∇Nφ∥λ-Höl ∨ ∥∇Nφ∥∞)

(
|||X1|||N−n+1

β;[s,t] |||X1 − X̃1|||λβ;[s,t](t− s)λβ

+

(N−n∑
k=0

|||X1|||kβ;[s,t]|||X̃
1|||N−n−k

β;[s,t]

)
∥X1 − X̃1∥β-Höl;[s,t]

)(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+1)β.

Using Eqs. (2.15), (2.24) and (3.2), we have

∥D1−nγ
s+ RN−n(∇n−1φ, X̃1,ξ)∥∞;[s,t]∥R

(n,γ)
t− X −R(n,γ)

t− X̃∥∞;[s,t](t− s)

≤ C|||RN−n(∇n−1φ, X̃1,ξ)|||(N−n+1)β;[s,t]

(
1 +K

(n−1)
s,t + K̃

(n−1)
s,t

)n−1
dβ,N (X, X̃)(t− s)(N+1)β

≤ C∥∇Nφ∥∞|||X̃1|||N−n+1
β;[s,t]

(
1 +K

(n−1)
s,t + K̃

(n−1)
s,t

)n−1
dβ,N (X, X̃)(t− s)(N+1)β.

We also have

|∇n−1φ(X1,ξ
s )−∇n−1φ(X̃1,ξ

s )||Xn
s,t| ≤ ∥∇nφ∥∞|||X1 − X̃1|||β;[0,s]sβ|||Xn|||nβ;[s,t](t− s)nβ

and

|∇n−1φ(X̃1,ξ
s )||Xn

s,t − X̃n
s,t|

≤
(
|RN−n(∇n−1φ, X̃1,ξ)0,s|+

N−n∑
k=0

|∇n−1+kφ(X̃1,ξ
0 )||X̃k

0,s|
)
|||Xn − X̃n|||nβ;[s,t](t− s)nβ

≤
(
C∥∇Nφ∥∞|||X̃1|||N−n+1

β;[0,s] s(N−n+1)β +

N−n∑
k=0

|∇n−1+kφ(ξ)||||X̃k|||kβ;[0,s]skβ
)
dβ,N (X, X̃)(t− s)nβ.

Combining these estimates implies Eq. (3.18).

Proposition 3.23. Let X ∈ Ωβ(E) and ξ, ξ̃ ∈ E. Under the assumptions of Theorem 3.4, there
exists a constant C depending only on β and γ such that

|||Iγφ(X, ξ)− Iγφ(X, ξ̃)|||β;[a,b] ≤ CC3
a,b∥∇φ∥CN−1,λK

(N)
a,b

(
|ξ − ξ̃|λ ∨ |ξ − ξ̃|

)
, (3.19)
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where

C3
a,b :=

(
1 ∨ (b− a)Nβ

) N∑
n=1

{
1 + |||X1|||N−n+1

β;[a,b]

(
1 +K

(n−1)
a,b

)n−1
}
.

Proof. Set (s, t) ∈ ∆T with a ≤ s < t ≤ b. Then,

|Iγφ(X, ξ)s,t − Iγφ(X, ξ̃)s,t|

≤
N∑

n=1

{
|∇n−1φ(X1,ξ

s )−∇n−1φ(X1,ξ̃
s )||Xn

s,t|

+ ∥D1−nγ
s+ (RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ,X1,ξ̃))∥∞;[s,t]∥R

(n,γ)
t− X∥∞;[s,t](t− s)

}
.

Using (2.15), (2.22) and (3.17), we get

∥D1−nγ
s+ (RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ,X1,ξ̃))∥∞;[s,t]∥R

(n,γ)
t− X∥∞;[s,t](t− s)

≤ C|||RN−n(∇n−1φ,X1,ξ)−RN−n(∇n−1φ,X1,ξ̃)|||(N−n+1)β;[s,t]

(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+1)β

≤ C∥∇Nφ∥λ-Höl|||X1|||N−n+1
β;[s,t] |ξ − ξ̃|λ

(
1 +K

(n−1)
s,t

)n−1
K

(n)
s,t (t− s)(N+1)β.

We also have

|∇n−1φ(X1,ξ
s )−∇n−1φ(X1,ξ̃

s )||Xn
s,t| ≤ ∥∇nφ∥∞|ξ − ξ̃||||Xn|||nβ;[s,t](t− s)nβ .

Combining these estimates implies (3.19).

Proof of Theorem 3.4. Using Eqs. (3.16), (3.18), and (3.19) proved above, we obtain the statement
of the theorem immediately.

3.3.2 Proof of Proposition 3.15

We now prove Proposition 3.15. Let (X,Y ) ∈ Mβ(E,L(E,F )). We say that Iγ(X,Y ) is additive
on ∆T if Iγ(X,Y ) satisfies Eq. (3.14), that is, the identity

Iγ(X,Y )s,u + Iγ(X,Y )u,t = Iγ(X,Y )s,t

holds for each s, t, u ∈ [0, T ] with s ≤ u ≤ t. Also, we set Z = (Z(0), Z(1), . . . , Z(N−1)) as

Z
(0)
t := Iγ(X,Y )0,t and Z

(l)
t := Y

(l−1)
t for t ∈ [0, T ] (3.20)

and each l = 1, . . . , N − 1.

Lemma 3.24. Let (X,Y ) ∈Mβ(E,L(E,F )). Suppose that Iγ(X,Y ) is additive on ∆T . Then, Z

belongs to Qβ,N
X (F ).
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Proof. From the additivity of Iγ(X,Y ) and Theorem 3.12, Z(0) belongs to Cβ
1 (F ). Also, from the

definition of controlled paths, Z(l) is in Cβ
1 (L(E

⊗l, F )) for each l = 1, . . . , N − 1. It then suffices

to show that RN−1−l
l (X,Z) ∈ C(N−l)β

2 (L(E⊗l, F )) for each l = 0, . . . , N − 1. Set (s, t) ∈ ∆T with
s < t. From the additivity of Iγ(X,Y ), we have

RN−1
0 (X,Z)s,t = Y (N−1)

s XN
s,t +

N∑
n=1

In,γ
X (RN−n

n−1 (X,Y ))s,t. (3.21)

Then, from Eq. (2.23), In,γ
X (RN−n

n−1 (X,Y )) belongs to C(N+1)β
2 (F ) and so RN−1

0 (X,Z) ∈ CNβ
2 (F ).

Furthermore, for each l = 1, . . . , N − 1, from the definition of controlled paths,

RN−1−l
l (X,Z)s,t = RN−l

l−1 (X,Y )s,t + Y (N−1)
s XN−l

s,t . (3.22)

Then, RN−1−l
l (X,Z) ∈ C(N−l)β

2 (L(E⊗l, F )) and thus Z belongs to Qβ,N
X (F ).

Remark 3.25. By an argument similar to the proof above, it is easy to verify that if (X,Y ) ∈ Sβ(E,

L(E,F )), then Z belongs to Q1,N
X (F ). This fact is used in the proof of Proposition 3.15.

Lemma 3.26. Let (X,Y ), (X̃, Ỹ ) ∈Mβ(E,L(E,F )) and M be a positive constant such that

N∑
n=1

{
|||Xn|||nβ + |||X̃n|||nβ + |Y (n−1)

0 |+ |Ỹ (n−1)
0 |

}
+ ∥Y ∥X,β + ∥Ỹ ∥X̃,β ≤M.

Suppose that Iγ(X,Y ) and Iγ(X̃, Ỹ ) are additive on ∆T . For (X̃, Ỹ ), we set Z̃ = (Z̃(0), Z̃(1), . . . ,
Z̃(N−1)) as in Eq. (3.20). Then, we have a local Lipschitz estimate

dX,X̃,β(Z, Z̃) ≤ Lmβ((X,Y ), (X̃, Ỹ ))

for a suitable constant L which depends only on β, γ, T , and M .

Proof. From Eq. (3.21),

RN−1
0 (X,Z)s,t −RN−1

0 (X̃, Z̃)s,t

= Y (N−1)
s XN

s,t − Ỹ (N−1)
s X̃N

s,t +

N∑
n=1

{
In,γ
X (RN−n

n−1 (X,Y ))s,t − In,γ

X̃
(RN−n

n−1 (X̃, Ỹ ))s,t

}
.

By inequalities of the form |ab− ãb̃| ≤ |a− ã||b|+ |ã||b− b̃|, we get

|Y (N−1)
s XN

s,t − Ỹ (N−1)
s X̃N

s,t|/(t− s)Nβ

≤ (|Y (N−1)
0 − Ỹ

(N−1)
0 |+ |||R0

N−1(X,Y )−R0
N−1(X̃, Ỹ )|||βT β)|||XN |||Nβ

+ (|Ỹ (N−1)
0 |+ |||R0

N−1(X̃, Ỹ )|||βT β)|||XN − X̃N |||Nβ

≤ ((1 + T β)|||XN |||Nβ + (|Ỹ (N−1)
0 |+ |||R0

N−1(X̃, Ỹ )|||βT β))mβ((X,Y ), (X̃, Ỹ ))

≤ (1 + T β)Mmβ((X,Y ), (X̃, Ỹ )).
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Also, from Eqs. (2.23) and (2.25),

|In,γ
X (RN−n

n−1 (X,Y ))s,t − In,γ

X̃
(RN−n

n−1 (X̃, Ỹ ))s,t|/(t− s)(N+1)β

≤ |In,γ
X (RN−n

n−1 (X,Y )−RN−n
n−1 (X̃, Ỹ ))s,t|/(t− s)(N+1)β

+ |In,γ
X (RN−n

n−1 (X̃, Ỹ ))s,t − In,γ

X̃
(RN−n

n−1 (X̃, Ỹ ))s,t|/(t− s)(N+1)β

≤ Cn,β,γ |||RN−n
n−1 (X,Y )−RN−n

n−1 (X̃, Ỹ )|||(N−n+1)β(1 + max
1≤i≤n−1

|||Xi|||iβ)n−1 max
1≤i≤n

|||Xi|||iβ

+ Cn,β,γ |||RN−n
n−1 (X̃, Ỹ )|||µ(1 + max

1≤i≤n−1
|||Xi|||iβ + max

1≤i≤n−1
|||X̃i|||iβ)n−1 max

1≤i≤n
|||Xi − X̃i|||iβ

≤ CN,β,γM(1 +M)N−1mβ((X,Y ), (X̃, Ỹ ))

for each n = 1, . . . , N . Furthermore, from Eq. (3.22),

|RN−1−l
l (X,Z)s,t −RN−1−l

l (X̃, Z̃)s,t|/(t− s)(N−l)β

≤ (|RN−l
l−1 (X,Y )s,t −RN−l

l−1 (X̃, Ỹ )s,t|+ |Y (N−1)
s XN−l

s,t − Ỹ (N−1)
s X̃N−l

s,t |)/(t− s)(N−l)β

≤ |||RN−l
l−1 (X,Y )s,t −RN−l

l−1 (X̃, Ỹ )|||(N−l+1)β(t− s)β

+ (|Y (N−1)
0 − Ỹ

(N−1)
0 |+ |||R0

N−1(X,Y )−R0
N−1(X̃, Ỹ )|||βT β)|||XN−l|||(N−l)β

+ (|Ỹ (N−1)
0 |+ |||R0

N−1(X̃, Ỹ )|||βT β)|||XN−l − X̃N−l|||(N−l)β

≤ (T β + (1 + T β)M + (1 + T β)M)mβ((X,Y ), (X̃, Ỹ ))

for each l = 1, . . . , N − 1. Then, combining these estimates, we obtain the statement of the
proposition immediately.

Proof of Proposition 3.15. Under the assumption of Proposition 3.15, i.e., (X,Y ) ∈ Sβ(E,L(E,
F )), Iγ(X,Y ) is additive on ∆T . This follows from Theorems 3.11 and 3.12. Then, from
Lemma 3.24, (X,Z) belongs to Mβ(E,F ). By the definition of Sβ(E,L(E,F )), there exists a
sequence {(X(n), Y (n))}∞n=1 ⊂ Sβ(E,L(E,F )) which converges to (X,Y ) with respect to the dis-
tance mβ. For each n = 1, 2, . . . , we set Z(n) = (Z(n)(0), Z(n)(1), . . . , Z(n)(N−1)) as in Eq. (3.20).
From Remark 3.25, (X(n), Z(n)) belongs to Sβ(E,F ). Furthermore, we see from Lemma 3.26 that
(X(n), Z(n)) converges to (X,Z) with respect to mβ. Thus, (X,Z) belongs to Sβ(E,F ).

3.3.3 Proof of Theorems 3.3, 3.11, and Proposition 3.19

Using Proposition 3.27 stated below, we prove Theorems 3.3, 3.11, and Proposition 3.19. Let
X ∈ C0,β(∆T , T

(k)(E)) and Y ∈ Qβ,k
X (L(E,F )). For each l = 0, . . . , k − 1, m = 0, . . . , k − 1 − l,

and (s, t) ∈ ∆T , we set

Rm
l (X,Y )s,t := Y

(l)
t −

m∑
i=0

Y (l+i)
s Xi

s,t. (3.23)

Proposition 3.27. Let X be a step-k signature in E and Y ∈ Q1,k
X (L(E,F )). Take γ ∈ (0,

min{1/k, β}). Then, for each l = 0, . . . , k − 1, m = 0, . . . , k − 1− l, and (s, t) ∈ ∆T ,∫ t

s
Rm

l (X,Y )s,u dX
1
0,u =

m+1∑
n=1

In,γ
X (Rm−n+1

l+n−1 (X,Y ))s,t, (3.24)

where the left-hand side is the Riemann–Stieltjes integral of Rm
l (X,Y )s,· along X

1
0,·.
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Proof of Theorem 3.3. Under the assumptions of Theorem 3.3, we can take Y = (Y (0), Y (1), . . . ,
Y (N−1)) ∈ Q1,N

X (L(E,F )) as in Example 3.7. Then, from Eq. (3.4) for l = 0 and k = N and
Proposition 3.27 for l = 0 and m = N − 1,∫ t

s
Y (0)
u dX1

0,u =

N−1∑
i=0

{
Y (i)
s

∫ t

s
Xi

s,u ⊗ dX1
0,u

}
+

∫ t

s
RN−1

0 (X,Y )s,u dX
1
0,u

=

N∑
n=1

Y (n−1)
s Xn

s,t +

N∑
n=1

In,γ
X (RN−n

n−1 (X,Y ))s,t. (3.25)

From Eq. (3.7), we obtain the claim of the theorem.

Proof of Theorem 3.11. In the same way as in the proof of Theorem 3.3, that is, from Eq. (3.4)
for l = 0 and k = N and Proposition 3.27 for l = 0 and m = N − 1, we have the same identity as
Eq. (3.25). This is the claim of the theorem.

Proof of Proposition 3.19. Under the assumptions of Proposition 3.19, we can take Y = (Y (0),

Y (1), . . . , Y (k−1)) ∈ Q1,k
X (L(E,E⊗(k+1))) as in Example 3.9. Then, from Eq. (3.9) for l = n − 1

and k = j and Proposition 3.27 for l = 0 and m = j − 1,

X̂j+1
s,t =

j∑
n=1

In,γj
X (Rj−n

n−1(X,Y ))s,t =

∫ t

s
Rj−1

0 (X,Y )s,u dX
1
0,u.

From Eq. (3.9) for l = 0 and k = j, we obtain the claim of the proposition.

3.3.4 Proof of Proposition 3.27

We first show the Hölder continuity of Rγ1,...,γn
b− X for the proof of Proposition 3.30 stated below,

which is essential for the proof of Proposition 3.27. Although only the case γ1 = · · · = γn appears
in Proposition 3.27, we need general cases for Propositon 3.30.

The following lemma is a slight reformulation of Lemmas 6.1 and 6.2 in [13].

Lemma 3.28. For 0 < δ < ε ≤ 1, there exists a positive constant Cδ,ϵ such that

yδ − xδ ≤ Cδ,εx
δ−ε(y − x)ε for 0 < x < y. (3.26)

For δ, ε > 0 with 0 < ε− δ < 1, there exists a positive constant Cδ,ϵ such that∫ 1

0
uε
(
u−δ−1 − (u+ z)−δ−1

)
du ≤ Cδ,εz

ε−δ for 0 ≤ z <∞. (3.27)

Proof. First, we prove Eq. (3.26). It suffices to prove this inequality with x = 1 by homogeneity.
We define

h(y) :=
yδ − 1

(y − 1)ε
for y ∈ (1,∞)

and note that h is positive on (1,∞). If ε = 1, then limy↓1 h(y) = (yδ)′|y=1 = δ. If ε < 1, then, from
l’Hôpital’s rule, we get limy↓1 h(y) = 0. Also, from the relation 0 < δ < ε, we get limy→∞ h(y) = 0.
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Hence, h is bounded on (1,∞) and Eq. (3.26) holds with x = 1. Thus we obtain Eq. (3.26). We
next prove Eq. (3.27). We may assume z > 0. Using the change of variables u = zv, we get

(left-hand side of (3.27)) = zε−δ

∫ 1/z

0
vε
(
v−δ−1 − (v + 1)−δ−1

)
dv

≤ zε−δ

∫ ∞

0
vε
(
v−δ−1 − (v + 1)−δ−1

)
dv.

Then, from the relation ε− δ > 0,∫ 1

0
vε
(
v−δ−1 − (v + 1)−δ−1

)
dv ≤

∫ 1

0
vε−δ−1 dv <∞.

Also, from the relation ε− δ < 1,∫ ∞

1
vε
(
v−δ−1 − (v + 1)−δ−1

)
dv =

∫ ∞

1
vε
(∫ v+1

v
(δ + 1)w−δ−2 dw

)
dv

≤ (δ + 1)

∫ ∞

1
vε−δ−2 dv <∞.

Hence, Eq. (3.27) holds with z > 0. Therefore, we obtain Eq. (3.27).

Using this lemma, we show the Hölder continuity of Rγ1,...,γn
b− X.

Lemma 3.29. In the setting of Definition 2.2, for each n = 1, . . . , k, the function Rγ1,...,γn
b− X is

min0≤i<j≤n{min{(j − i)β, 1} −
∑j

l=i+1 γl}-Hölder continuous on the interval [0, b]. In particular,

for γ ∈ (0,min{1/k, β}), R(n,γ)
b− X is min{β − γ, 1− nγ}-Hölder continuous on the interval [0, b].

Proof. Let βp = min{pβ, 1} and σqp =
∑q

l=p γl. From Definition 2.2 and Eq. (2.17), it suffices to
prove the following:

(1) for each n = 1, . . . , k, Dσn
1

b−X
n is min1≤j≤n{βj − σj1}-Hölder continuous on [0, b];

(2) for each n = 2, . . . , k and m = 1, . . . , n− 1,∫ b

r

Xn−m
r,v ⊗Rγ1,...,γm

b− X(v)

(v − r)σ
n
m+1+1

dv

is min1≤i<j≤n{βj−i − σji+1}-Hölder continuous in r on [0, b].

We first prove claim (1). Take the real numbers s and t such that 0 ≤ s < t ≤ b. Concerning the

first term in the definition of Dσn
1

b−X
n (see Eq. (2.14)), we have∣∣∣∣ Xn

t,b

(b− t)σ
n
1
−

Xn
s,b

(b− s)σ
n
1

∣∣∣∣ ≤ ∣∣∣∣ Xn
t,b

(b− t)σ
n
1
−

Xn
t,b

(b− s)σ
n
1

∣∣∣∣+ ∣∣∣∣ Xn
t,b

(b− s)σ
n
1
−

Xn
s,b

(b− s)σ
n
1

∣∣∣∣ =: A1 +A2.

Using Eq. (3.26), we have

A1 ≤ |||Xn|||βn;[t,b](b− t)βn(b− t)−σn
1 (b− s)−σn

1
(
(b− s)σ

n
1 − (b− t)σ

n
1
)

≤ |||Xn|||βn(b− t)βn−σn
1 (b− s)−σn

1Cσn
1 ,βn(b− t)σ

n
1−βn(t− s)βn

≤ Cσn
1 ,βn |||Xn|||βn(t− s)βn−σn

1 .
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Using Eq. (2.3), we also obtain

A2 ≤
( n∑

j=1

|||Xj |||βj ;[s,t]|||X
n−j |||βn−j ;[t,b](t− s)βj (b− t)βn−j

)
(b− s)−σn

1

≤ |||Xn|||βn(t− s)βn−σn
1 +

n−1∑
j=1

|||Xj |||βj
|||Xn−j |||βn−j

(b− s)βn−j−σn
j+1(t− s)βj−σj

1 .

With regard to the second term in the definition of Dσn
1

b−X
n (see Eq. (2.14)), we have∣∣∣∣∫ b

t

Xn
t,v

(v − t)σ
n
1+1

dv −
∫ b

s

Xn
s,v

(v − s)σ
n
1+1

dv

∣∣∣∣
≤

∫ t

s

|Xn
s,v|

(v − s)σ
n
1+1

dv +

∫ b

t

∣∣∣∣ Xn
t,v

(v − t)σ
n
1+1

−
Xn

s,v

(v − s)σ
n
1+1

∣∣∣∣ dv =: B1 +B2.

Then,

B1 ≤
∫ t

s
|||Xn|||βn;[s,v](v − s)βn−σn

1−1 dv ≤ |||Xn|||βn

1

βn − σn1
(t− s)βn−σn

1

and

B2 ≤
∫ b

t

∣∣∣∣ Xn
t,v

(v − t)σ
n
1+1

−
Xn

t,v

(v − s)σ
n
1+1

∣∣∣∣ dv + ∫ b

t

∣∣∣∣ Xn
t,v

(v − s)σ
n
1+1

−
Xn

s,v

(v − s)σ
n
1+1

∣∣∣∣ dv =: B21 +B22.

By using the change of variables u = (v− t)/(b− t) and Eq. (3.27) with z = (t− s)/(b− t), we get

B21 ≤
∫ b

t
|||Xn|||βn;[t,v](v − t)βn

(
(v − t)−σn

1−1 − (v − s)−σn
1−1

)
dv

≤ |||Xn|||βn(b− t)βn−σn
1

∫ 1

0
uβn

(
u−σn

1−1 − (u+ z)−σn
1−1

)
du

≤ |||Xn|||βn(b− t)βn−σn
1Cσn

1 ,βnz
βn−σn

1

= |||Xn|||βnCσn
1 ,βn(t− s)βn−σn

1

and, from Eq. (2.3),

B22 ≤
∫ b

t

( n∑
j=1

|||Xj |||βj ;[s,t]|||X
n−j |||βn−j ;[t,v](t− s)βj (v − t)βn−j

)
(v − s)−σn

1−1 dv

≤ |||Xn|||βn

1

σn1
(t− s)βn−σn

1 +

n−1∑
j=1

|||Xj |||βj
|||Xn−j |||βn−j

∫ b

t
(v − s)βn−j−σn

j+1−1 dv (t− s)βj−σj
1 .

Combining these estimates, we obtain claim (1).
Turning to claim (2), let ψ denote Rγ1,...,γm

b− X. We note that ψ is bounded on [0, b], which is
proved as in the proof of Eq. (2.22). Select real numbers s and t such that 0 ≤ s < t ≤ b. We then
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have ∣∣∣∣∣
∫ b

t

Xn−m
t,v ⊗ ψ(v)

(v − t)σ
n
m+1+1

dv −
∫ b

s

Xn−m
s,v ⊗ ψ(v)

(v − s)σ
n
m+1+1

dv

∣∣∣∣∣
≤

∫ t

s

|Xn−m
s,v ⊗ ψ(v)|

(v − s)σ
n
m+1+1

dv +

∫ b

t

∣∣∣∣∣X
n−m
t,v ⊗ ψ(v)

(v − t)σ
n
m+1+1

−
Xn−m

s,v ⊗ ψ(v)

(v − s)σ
n
m+1+1

∣∣∣∣∣ dv =: C1 + C2.

Then,

C1 ≤ ∥ψ∥∞;[0,b]

∫ t

s
|||Xn−m|||βn−m;[s,v](v − s)βn−m−σn

m+1−1 dv

≤ ∥ψ∥∞|||Xn−m|||βn−m

1

βn−m − σnm+1

(t− s)βn−m−σn
m+1

and

C2 ≤
∫ b

t

∣∣∣∣∣X
n−m
t,v ⊗ ψ(v)

(v − t)σ
n
m+1+1

−
Xn−m

t,v ⊗ ψ(v)

(v − s)σ
n
m+1+1

∣∣∣∣∣ dv +
∫ b

t

∣∣∣∣∣X
n−m
t,v ⊗ ψ(v)

(v − s)σ
n
m+1+1

−
Xn−m

s,v ⊗ ψ(v)

(v − s)σ
n
m+1+1

∣∣∣∣∣ dv
=: C21 + C22.

By using the change of variables u = (v − t)/(b− t) and Eq. (3.27) with z = (t− s)(b− t), we get

C21 ≤ ∥ψ∥∞;[0,b]

∫ b

t
|||Xn−m|||βn−m;[t,v](v − t)βn−m

(
(v − t)−σn

m+1−1 − (v − s)−σn
m+1−1

)
dv

≤ ∥ψ∥∞|||Xn−m|||βn−m(b− t)βn−m−σn
m+1

∫ 1

0
uβn−m

(
u−σn

m+1−1 − (u+ z)−σn
m+1−1

)
du

≤ ∥ψ∥∞|||Xn−m|||βn−m(b− t)βn−m−σn
m+1Cσn

m+1,βn−mz
βn−m−σn

m+1

= ∥ψ∥∞|||Xn−m|||βn−mCσn
m+1,βn−m(t− s)βn−m−σn

m+1

and, from Eq. (2.3),

C22 ≤ ∥ψ∥∞;[t,b]

∫ b

t

(
|||Xn−m|||βn−m;[s,t](t− s)βn−m

+

n−1∑
j=m+1

|||Xj−m|||βj−m;[s,t]|||Xn−j |||βn−j ;[t,v](t− s)βj−m(v − t)βn−j

)
(v − s)−σn

m+1−1 dv

≤ ∥ψ∥∞
(
|||Xn−m|||βn−m

1

σnm+1

(t− s)βn−m−σn
m+1

+

n−1∑
j=m+1

|||Xj−m|||βj−m
|||Xn−j |||βn−j

∫ b

t
(v − s)βn−j−σn

j+1−1 dv (t− s)βj−m−σj
m+1

)
.

Combining these estimates, we obtain claim (2).
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We remark the following identities for later use. Let f, g ∈ Cλ-Höl([0, T ],R) and 0 < α < λ.
From Eqs. (2.13) and (2.14), for each t ∈ (a, b),

Dα
a+(fg)(t) = Dα

a+f(t)g(t) +
α

Γ(1− α)

∫ t

a

f(s)(g(t)− g(s))

(t− s)α+1
ds (3.28)

and

Dα
b−(fg)(t) = f(t)Dα

b−g(t)−
(−1)αα

Γ(1− α)

∫ b

t

(f(s)− f(t))g(s)

(s− t)α+1
ds. (3.29)

Proposition 3.30. Let X = (1, X1, . . . , Xk) be a multiplicative functional of degree k in E with
finite 1-Hölder estimates. Take positive numbers {γl}kl=1 such that

∑k
l=1 γl < 1. Then, for each

n = 2, . . . , k and r ∈ (a, b),

Rγ1,...,γn
b− X(r) = D

∑n
l=1 γl

b− Xn
a,·,b−(r)−

n−1∑
j=1

D
∑n

l=j+1 γl
b− (Xn−j

a,· ⊗Rγ1,...,γj
b− X)(r). (3.30)

In particular, for γ ∈ (0, 1/k),

R(n,γ)
b− X(r) = Dnγ

b−X
n
a,·,b−(r)−

n−1∑
j=1

D
(n−j)γ
b− (Xn−j

a,· ⊗R(j,γ)
b− X)(r). (3.31)

Proof. From Lemma 3.29, the right-hand side of Eq. (3.30) is well-defined under our assumptions.
Let σqp denote

∑q
l=p γl. We note that Eq. (3.30) is equivalent to the following identity: for each

r ∈ (a, b),

D
σn
1

b−X
n
a,·,b−(r)−Dσn

1
b−X

n(r)

=
n−1∑
j=1

{
D

σn
j+1

b− (Xn−j
a,· ⊗Rγ1,...,γj

b− X)(r) +
(−1)σ

n
j+1σnj+1

Γ(1− σnj+1)

∫ b

r

Xn−j
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
n
j+1+1

dv

}
. (3.32)

We prove this equation by induction with respect to n. From Eq. (2.3), we have

(left-hand side of (3.32) with n = 2) = X1
a,r ⊗Dσ2

1
b−X

1(r).

By using Eqs. (2.3), (3.29) and (2.9), we obtain

(right-hand side of (3.32) with n = 2) = X1
a,r ⊗Dγ2

b−(R
γ1
b−X)(r) = X1

a,r ⊗Dγ1+γ2
b− X1(r).

Hence, Eq. (3.32) holds for n = 2.
Suppose that Eq. (3.32) holds for each n = 2, . . . ,m with m ≤ k − 1. By using the induction

hypothesis and Eq. (2.9), we have the following identity: for each n = 1, . . . ,m, α ∈ (0, 1 − σn1 )
and r ∈ (a, b),

Dα
b−R

γ1,...,γn−1,γn
b− X(r) = Rγ1,...,γn−1,γn+α

b− X(r). (3.33)
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Using Eq. (2.3), we first have

(left-hand side of (3.32) with n = m+ 1) =

m∑
j=1

Xm+1−j
a,r ⊗Dσm+1

1
b− Xj(r).

We then calculate the right-hand side of Eq. (3.32) with n = m+ 1. For each j = 1, . . . ,m,

D
σm+1
j+1

b− (Xm+1−j
a,· ⊗Rγ1,...,γj

b− X)(r) +
(−1)σ

m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

Xm+1−j
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
m+1
j+1 +1

dv

= D
σm+1
j+1

b− (Xm+1−j
a,· ⊗Rγ1,...,γj

b− X)(r)

+
(−1)σ

m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

(Xm+1−j
a,v −Xm+1−j

a,r )⊗Rγ1,...,γj
b− X(v)

(v − r)σ
m+1
j+1 +1

dv

−
m−j∑
i=1

Xi
a,r ⊗

(−1)σ
m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

Xm+1−j−i
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
m+1
j+1 +1

dv (from (2.3))

= Xm+1−j
a,r ⊗D

σm+1
j+1

b− (Rγ1,...,γj
b− X)(r)

−
m−j∑
i=1

Xi
a,r ⊗

(−1)σ
m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

Xm+1−j−i
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
m+1
j+1 +1

dv. (from (3.29)) (3.34)

Therefore, we obtain

(right-hand side of (3.32) with n = m+ 1)

=
m∑
j=1

Xm+1−j
a,r ⊗R

γ1,...,γj−1,σ
m+1
j

b− X(r)

−
m∑
j=1

m−j∑
i=1

Xi
a,r ⊗

(−1)σ
m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

Xm+1−j−i
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
m+1
j+1 +1

dv (from (3.33) and (3.34))

= Xm
a,r ⊗Rσm+1

1
b− X(r) +

m∑
j=2

Xm+1−j
a,r ⊗R

γ1,...,γj−1,σ
m+1
j

b− X(r)

−
m∑
j=2

Xm+1−j
a,r ⊗

j−1∑
j=1

(−1)σ
m+1
j+1 σm+1

j+1

Γ(1− σm+1
j+1 )

∫ b

r

Xj−j
r,v ⊗Rγ1,...,γj

b− X(v)

(v − r)σ
m+1
j+1 +1

dv

= Xm
a,r ⊗Dσm+1

1
b− X1(r) +

m∑
j=2

Xm+1−j
a,r ⊗Dσm+1

1
b− Xj(r). (from Definition 2.2 and (2.17))

Hence, Eq. (3.32) holds for n = m+ 1. Consequently, we obtain the claim of the proposition.

Let us introduce one more notation for the proof of Proposition 3.27. Let X be a multiplicative
functional of degree k. For j = 1, . . . , k, we set T (X)j ∈ C2(E⊗j) as follows: for each (s, t) ∈ ∆T ,
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T (X)1s,t := X1
s,t and

T (X)js,t := Xj
s,t −

j−1∑
i=1

T (X)is,t ⊗Xj−i
s,t (3.35)

for j = 2, . . . , k, inductively. Then, for each j = 2, . . . , k and (s, t) ∈ ∆T , the identity

j−1∑
i=1

T (X)is,t ⊗Xj−i
s,t =

j−i∑
i=1

Xi
s,t ⊗ T (X)j−i

s,t (3.36)

holds. This is proved by simple calculation and induction on j. By using Eq. (3.36) and induction
on j, we can show that, for each s, u, t ∈ [0, T ] with s ≤ u ≤ t, the identity

Xj
u,t = Xj

s,t −Xj
s,u −

j−1∑
i=1

T (X)is,u ⊗ (Xj−i
s,t −Xj−i

s,u ) (3.37)

holds for j = 2, . . . , k. We now have all the tools to prove Proposition 3.27.

Proof of Proposition 3.27. Fix l with 0 ≤ l ≤ k−1. We prove Eq. (3.24) by induction on m. Using
Eqs. (3.23) and (2.11), we have∫ t

s
R0

l (X,Y )s,u dX
1
0,u = I1,γ

X (R0
l (X,Y ))s,t.

Hence, Eq. (3.24) holds form = 0. Suppose that Eq. (3.24) holds form =M with 0 ≤M ≤ k−2−l.
Using Eqs. (3.23) and (2.5) and the induction hypothesis, we have∫ t

s
RM+1

l (X,Y )s,u dX
1
0,u =

∫ t

s
RM

l (X,Y )s,u dX
1
0,u − Y (l+M+1)

s

∫ t

s
XM+1

s,u ⊗ dX1
0,u

=

M+1∑
n=1

In,γ
X (RM−n+1

l+n−1 (X,Y ))s,t − Y (l+M+1)
s XM+2

s,t .

For the proof of Eq. (3.24) for m =M + 1, it then suffices to show the following identity:

M+1∑
n=1

In,γ
X (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))s,t = IM+2,γ

X (R0
l+M+1(X,Y ))s,t + Y (l+M+1)

s XM+2
s,t .

By the definition of In,γ
X (see Eq. (2.19)), for each n = 1, . . . ,M + 1, we have

In,γ
X (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))s,t

= (−1)1−nγ

∫ t

s
D1−nγ

s+ (RM−n+1
l+n−1 (X,Y )−RM+1−n+1

l+n−1 (X,Y ))(u)R(n,γ)
t− X(u) du.
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We calculate the integrand as follows: for each u ∈ (s, t),

D1−nγ
s+ (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))(u)

=
1

Γ(nγ)

(
Y

(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ
+ (1− nγ)

∫ u

s

Y
(l+M+1)
v XM+1−n+1

v,u

(u− v)(1−nγ)+1
dv

)
(from (3.23))

=
1

Γ(nγ)

Y
(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ
+

1− nγ

Γ(nγ)

∫ u

s

Y
(l+M+1)
v (XM+1−n+1

s,u −XM+1−n+1
s,v )

(u− v)(1−nγ)+1
dv

−
M+1−n∑

i=1

1− nγ

Γ(nγ)

∫ u

s

Y
(l+M+1)
v (T (X)is,v ⊗ (XM+1−n+1−i

s,u −XM+1−n+1−i
s,v ))

(u− v)(1−nγ)+1
dv (from (3.37))

=
1

Γ(nγ)

Y
(l+M+1)
s XM+1−n+1

s,u

(u− s)1−nγ

+D1−nγ
s+ (Y

(l+M+1)
· XM+1−n+1

s,· )(u)−D1−nγ
s+ Y

(l+M+1)
· (u)XM+1−n+1

s,u

−
M+1−n∑

i=1

{
D1−nγ

s+ (Y
(l+M+1)
· T (X)is,·X

M+1−n+1−i
s,· )(u)

−D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)X

M+1−n+1−i
s,u

}
(from (3.28))

= −D1−nγ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)XM+1−n+1
s,u

+D1−nγ
s+ (Y

(l+M+1)
· (XM+1−n+1

s,· −
M+1−n∑

i=1

T (X)is,· ⊗XM+1−n+1−i
s,· ))(u)

+

M+1−n∑
i=1

D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)X

M+1−n+1−i
s,u

= −D1−nγ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)XM+1−n+1
s,u

+D1−nγ
s+ (Y

(l+M+1)
· T (X)M+1−n+1

s,· )(u) (from (3.35))

+

M+1−n∑
i=1

D1−nγ
s+ (Y

(l+M+1)
· T (X)is,·)(u)X

M+1−n+1−i
s,u .

Therefore, for each n = 1, . . . ,M + 1, we obtain

In,γ
X (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))s,t

= −(−1)1−(M+2)γ

∫ t

s
D

1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)

×D
(M+1−n+1)γ
t− (XM+1−n+1

s,· ⊗R(n,γ)
t− X)(u) du

(from (2.9), Lemma 3.29, and (2.10) with α = (M + 1− n+ 1)γ)

+AM+1−n+1
n

+
M+1−n∑

i=1

(−1)1−(M+2−i)γ

∫ t

s
D

1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)

34



×D
(M+1−n+1−i)γ
t− (XM+1−n+1−i

s,· ⊗R(n,γ)
t− X)(u) du.

(from (2.9), Lemma 3.29, and (2.10) with α = (M + 1− n+ 1− i)γ) (3.38)

Here, AM+1−n+1
n is defined by

Aj
n := (−1)1−nγ

∫ t

s
D1−nγ

s+ (Y
(l+M+1)
· T (X)js,·)(u)R

(n,γ)
t− X(u) du

for each n = 1, . . . ,M + 1 and j = 1, . . . ,M + 1. Also, we have

AM+1
1 =

∫ t

s
Y (l+M+1)
u T (X)M+1

s,u dX1
0,u (from (2.12))

=

∫ t

s
Y (l+M+1)
u dXM+2

s,u −
M∑
i=1

∫ t

s
Y (l+M+1)
u T (X)is,u dX

M+2−i
s,u (from (3.35) and (2.3))

= (−1)1−(M+2)γ

∫ t

s
D

1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)D
(M+2)γ
t− XM+2

s,·,t−(u) du

+ Y (l+M+1)
s (XM+2

s,t −XM+2
s,s )

−
M∑
i=1

(−1)1−(M+2−i)γ

∫ t

s
D

1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)D

(M+2−i)γ
t− XM+2−i

s,·,t− (u) du.

(from (2.11) and (2.12)) (3.39)

Hence, by combining Eqs. (3.38) and (3.39), we have

M+1∑
n=1

In,γ
X (RM−n+1

l+n−1 (X,Y )−RM+1−n+1
l+n−1 (X,Y ))s,t

= (−1)1−(M+2)γ

∫ t

s
D

1−(M+2)γ
s+ (Y

(l+M+1)
· − Y (l+M+1)

s )(u)

×
(
D

(M+2)γ
t− XM+2

s,·,t−(u)−
M+1∑
n=1

D
(M+1−n+1)γ
t− (XM+1−n+1

s,· ⊗R(n,γ)
t− X)(u)

)
du

+ Y (l+M+1)
s XM+2

s,t

+
M+1∑
n=2

AM+1−n+1
n

−
M∑
i=1

(−1)1−(M+2−i)γ

∫ t

s
D

1−(M+2−i)γ
s+ (Y

(l+M+1)
· T (X)is,·)(u)

×
(
D

(M+2−i)γ
t− XM+2−i

s,·,t− (u)−
M+1−i∑
n=1

D
(M+1−n+1−i)γ
t− (XM+1−n+1−i

s,· ⊗R(n,γ)
t− X)(u)

)
du

= IM+2,γ
X (R0

l+M+1(X,Y ))s,t + Y (l+M+1)
s XM+2

s,t +

M+1∑
n=2

AM+1−n+1
n −

M∑
i=1

Ai
M+2−i (from (3.31))

= IM+2,γ
X (R0

l+M+1(X,Y ))s,t + Y (l+M+1)
s XM+2

s,t ,
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as desired. Therefore, Eq. (3.24) holds for m =M +1 and thus the claim of the proposition holds
by induction.

4 Differential equation driven by rough paths via fractional cal-
culus

In this section, using the integral introduced in Definition 3.10, we study differential equations
driven by geometric β-Hölder rough paths X = (1, X1, X2) ∈ GΩβ,T (Rd) with β ∈ (1/3, 1/2].
Throughout this section, we assume that β is a real number with 1/3 < β ≤ 1/2 and γ is a real
number with (1− β)/2 < γ < β.

4.1 Rough differential equations

We define the concept of solutions to rough differential equations on the basis of [6,9] and present
the main theorem of this section. We recall Example 3.8, where φ(Y ) = (φ(Y )(0), φ(Y )(1)) was

introduced for Y = (Y (0), Y (1)) ∈ Qβ,2
X,T (F ) with X = (1, X1, X2) ∈ C0,β(∆T , T

(2)(E)) and φ ∈
C1,1(F,L(E,F )) such that∇φ is bounded on F . In Lemma 4.3 below, we prove φ(Y ) ∈ Qβ,2

X,T (L(E,
F )).

4.1.1 Definition of the solution

The following is our definition of solutions to rough differential equations.

Definition 4.1. Let ξ ∈ F , φ ∈ C1,1(F,L(E,F )) such that ∇φ is bounded on F , and X = (1,
X1, X2) ∈ C0,β(∆T , T

(2)(E)). We say that Y = (Y (0), Y (1)) is a solution to the rough differential
equation

dYt = φ(Yt) dXt, Y0 = ξ (4.1)

driven by X = (1, X1, X2) along φ and starting at ξ, if Y = (Y (0), Y (1)) is an element of Qβ,2
X,T (F )

such that

Y
(0)
t = ξ + Iγ(X,φ(Y ))0,t and Y

(1)
t = φ(Y

(0)
t ) for all t ∈ [0, T ]. (4.2)

Here, Iγ(X,φ(Y )) is the integral of φ(Y ) = (φ(Y )(0), φ(Y )(1)) ∈ Qβ,2
X,T (L(E,F )) along X = (1,

X1, X2) ∈ C0,β(∆T , T
(2)(E)) in the sense of Definition 3.10, namely, for each (s, t) ∈ ∆T ,

Iγ(X,φ(Y ))s,t = φ(Y (0)
s )X1

s,t +∇φ(Y (0)
s )Y (1)

s X2
s,t + I1,γ

X (R1
0(X,φ(Y )))s,t + I2,γ

X (R0
1(X,φ(Y )))s,t.

4.1.2 Existence and uniqueness of solutions

Let X = (1, X1, X2) ∈ GΩβ,T (E). We define the subset ΠX(Sβ,T (E,F )) of Qβ,2
X,T (F ) by

ΠX(Sβ,T (E,F )) := {Y : (X,Y ) ∈ Sβ,T (E,F )}.

It is straightforward to show that ΠX(Sβ,T (E,F )) is a complete metric space under the distance

mX,β(Y, Ỹ ) := mβ((X,Y ), (X, Ỹ )) for Y, Ỹ ∈ ΠX(Sβ,T (E,F )).

The following is a result on existence and uniqueness of the solutions to Eq. (4.1).
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Theorem 4.2. Given ξ ∈ F , φ ∈ C2,1(F,L(E,F )) such that φ, ∇φ, ∇2φ are all bounded on F ,
and X = (1, X1, X2) ∈ GΩβ,T (Rd), the rough differential equation (4.1) admits a unique solution
Y = (Y (0), Y (1)) in ΠX(Sβ,T (E,F )).

4.2 Basic estimates

For the proof of Theorem 4.2, we will provide several estimates of φ(Y ) = (φ(Y )(0), φ(Y )(1))
and Iγ(X,φ(Y )), and derive a priori estimates for solutions to rough differential equations. Also,
several lemmas for shift operators will be provided for later use. Throughout this subsection, we
use the following symbols: for X, X̃ ∈ C0,β(∆T , T

(2)(E)),

CX1 := 1 + |||X1|||β + |||X̃1|||β and CX := CX1 + |||X2|||2β + |||X̃2|||2β;

for Y ∈ Qβ,2
X (F ) and Ỹ ∈ Qβ,2

X̃
(F ),

CY := 1 + |Y (1)
0 |+ |Ỹ (1)

0 |+ ∥Y ∥X,β + ∥Ỹ ∥X̃,β.

Recall Eq. (3.5) for the definition of ∥Y ∥X,β and ∥Ỹ ∥X̃,β above.

4.2.1 Estimates of φ(Y )

Based on [8, Lemmas 7.3, 8.2, Theorem 7.5] and [9, Proposition 4], we provide several estimates
of φ(Y ) = (φ(Y )(0), φ(Y )(1)). We remark that, in the assumptions of Lemmas 4.3, 4.5, 4.6,
Remark 4.4, and Proposition 4.7 stated below, X and X̃ possess the second level paths X2 and
X̃2 but these are not needed for the proofs. We also recall Eq. (2.1) for the meaning of ∥∇φ∥C0,1

below.

Lemma 4.3. Let Y ∈ Qβ,2
X (F ) for some X ∈ C0,β(∆T , T

(2)(E)) and φ ∈ C1,1(F,L(E,F )) such

that ∇φ is bounded on E. Then, φ(Y ) = (φ(Y )(0), φ(Y )(1)) belongs to Qβ,2
X (L(E,F )) and there

exists a positive constant C which depends only on β and T such that

∥φ(Y )∥X,β ≤ C∥∇φ∥C0,1(1 + |||X1|||β)2(1 + |Y (1)
0 |+ ∥Y (1)∥β-Höl)(|Y

(1)
0 |+ ∥Y ∥X,β). (4.3)

Moreover, C can be taken independently with respect to T in each finite interval.

Proof. By definition, φ(Y )(0) = φ(Y (0)) and φ(Y )(1) = ∇φ(Y (0))Y (1) are β-Hölder continuous on

[0, T ]. We now prove that R1
0(X,φ(Y )) belongs to Cβ

2 (L(E,F )). Set (s, t) ∈ ∆T with s < t and
decompose R1

0(X,φ(Y ))s,t as follows:

R1
0(X,φ(Y ))s,t =

∫ 1

0
∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s )) dτ(Y
(0)
t − Y (0)

s )−∇φ(Y (0)
s )Y (1)

s X1
s,t

=

∫ 1

0
∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s )) dτ(Y (1)
s X1

s,t +R1
0(X,Y )s,t)−∇φ(Y (0)

s )Y (1)
s X1

s,t

=

∫ 1

0
(∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s ))−∇φ(Y (0)
s )) dτY (1)

s X1
s,t

+

∫ 1

0
∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s )) dτR1
0(X,Y )s,t.
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Then,

|R1
0(X,φ(Y ))s,t|/(t− s)2β

≤ ∥∇φ∥1-Höl∥Y (0)∥β-Höl(|Y
(1)
0 |+ ∥Y (1)∥β-HölT

β)|||X1|||β + ∥∇φ∥∞|||R1
0(X,Y )|||2β.

Thus, R1
0(X,φ(Y )) ∈ Cβ

2 (L(E,F )) and so φ(Y ) belongs to Qβ,2
X (L(E,F )). We next prove Eq. (4.3).

By inequalities of the form |ab− ãb̃| ≤ |a− ã||b|+ |ã||b− b̃|,

|R0
1(X,φ(Y ))s,t|/(t− s)β ≤ (|∇φ(Y (0)

t )−∇φ(Y (0)
s )||Y (1)

t |+ |∇φ(Y (0)
s )||Y (1)

t − Y (1)
s |)/(t− s)β

≤ ∥∇φ∥1-Höl∥Y (0)∥β-Höl(|Y
(1)
0 |+ ∥Y (1)∥β-HölT

β) + ∥∇φ∥∞∥Y (1)∥β-Höl.

Also, from the definition of controlled paths,

∥Y (0)∥β-Höl ≤ (|Y (1)
0 |+ ∥Y (1)∥β-HölT

β)|||X1|||β + |||R1
0(X,Y )|||2βT β

≤ (1 + |||X1|||β)(|Y
(1)
0 |+ ∥Y ∥X,βT

β).

Then, combining these estimates, we get

∥φ(Y )∥X,β = |||R1
0(X,φ(Y ))|||2β + |||R0

1(X,φ(Y ))|||β
≤ ∥∇φ∥1-Höl∥Y (0)∥β-Höl(|Y

(1)
0 |+ ∥Y (1)∥β-HölT

β)(1 + |||X1|||β)
+ ∥∇φ∥∞(∥Y (1)∥β-Höl + |||R1

0(X,Y )|||2β)

≤ ∥∇φ∥C0,1((1 + |||X1|||β)2(|Y
(1)
0 |+ ∥Y ∥X,βT

β)(|Y (1)
0 |+ ∥Y (1)∥β-HölT

β) + ∥Y ∥X,β).

This yields Eq. (4.3) immediately.

Remark 4.4. By an argument similar to the proof above, it is easy to verify that if Y ∈ Q1,2
X (F ) for

some X ∈ SΩβ(E), then φ(Y ) belongs Q1,2
X (L(E,F )). This fact is used later in this subsection.

Lemma 4.5. Let Y ∈ Qβ,2
X (F ), Ỹ ∈ Qβ,2

X̃
(F ) for some X, X̃ ∈ C0,β(∆T , T

(2)(E)), and φ ∈ C1,1(F,
L(E,F )) such that ∇φ is bounded on F . Then, there exists a positive constant C which depends
only on β and T such that

∥φ(Y (0))− φ(Ỹ (0))∥β-Höl ≤ C∥∇φ∥C0,1CX1CY (|Y (0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-Höl). (4.4)

Moreover, C can be taken independently with respect to T in each finite interval.

Proof. Set (s, t) ∈ ∆T with s < t. Then,

(φ(Y
(0)
t )− φ(Y (0)

s ))− (φ(Ỹ
(0)
t )− φ(Ỹ (0)

s ))

=

∫ 1

0
∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s )) dτ(Y
(0)
t − Y (0)

s )

−
∫ 1

0
∇φ(Ỹ (0)

s + τ(Ỹ
(0)
t − Ỹ (0)

s )) dτ(Ỹ
(0)
t − Ỹ (0)

s )

=

∫ 1

0
(∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s ))−∇φ(Ỹ (0)
s + τ(Ỹ

(0)
t − Ỹ (0)

s ))) dτ(Y
(0)
t − Y (0)

s )

+

∫ 1

0
∇φ(Ỹ (0)

s + τ(Ỹ
(0)
t − Ỹs)) dτ((Y

(0)
t − Y (0)

s )− (Ỹ
(0)
t − Ỹ (0)

s )).
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So, we get

|(φ(Y (0)
t )− φ(Y (0)

s ))− (φ(Ỹ
(0)
t )− φ(Ỹ (0)

s ))|/(t− s)β

≤ ∥∇φ∥1-Höl(|Y
(0)
0 − Ỹ

(0)
0 |+ 2∥Y (0) − Ỹ (0)∥β-HölT

β)∥Y (0)∥β-Höl + ∥∇φ∥∞∥Y (0) − Ỹ (0)∥β-Höl

≤ C∥∇φ∥C0,1(1 + ∥Y (0)∥β-Höl)(|Y
(0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-Höl).

Furthermore, from the definition of controlled paths, we have

1 + ∥Y (0)∥β-Höl ≤ (1 + |||X1|||β)(1 + |Y (1)
0 |+ ∥Y ∥X,βT

β) ≤ CX1CY .

Combining these estimates, we obtain Eq. (4.4) immediately.

We recall Eq. (3.11) for the meaning of dX,X̃,β(φ(Y ), φ(Ỹ )) below.

Lemma 4.6. Let Y ∈ Qβ,2
X (F ), Ỹ ∈ Qβ,2

X̃
(F ) for some X, X̃ ∈ C0,β(∆T , T

(2)(E)), and φ ∈ C2,1(F,

L(E,F )) such that ∇φ and ∇2φ are bounded on F . Then, there exists a positive constant C which
depends only on β and T such that

dX,X̃,β(φ(Y ), φ(Ỹ )) ≤ C∥∇φ∥C1,1

(
C2
X1C

3
Y (|Y

(0)
0 − Ỹ

(0)
0 |+ |||X1 − X̃1|||β)

+ C3
X1C

2
Y (|Y

(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ ))

)
. (4.5)

Moreover, C can be taken independently with respect to T in each finite interval.

Proof. Set

δ := |Y (0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-Höl + |||X1 − X̃1|||β + |Y (1)

0 − Ỹ
(1)
0 |+ dX,X̃,β(Y, Ỹ ).

We first provide an estimate of |||R1
0(X,φ(Y ))−R1

0(X̃, φ(Ỹ ))|||2β. Set (s, t) ∈ ∆T with s < t. Then,
in the same way as in the proof of Lemma 4.3, we have

R1
0(X,φ(Y ))s,t −R1

0(X̃, φ(Ỹ ))s,t =

(∫ 1

0
(∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s ))−∇φ(Y (0)
s )) dτY (1)

s X1
s,t

−
∫ 1

0
(∇φ(Ỹ (0)

s + τ(Ỹ
(0)
t − Ỹ (0)

s ))−∇φ(Ỹ (0)
s )) dτỸ (1)

s X̃1
s,t

)
+

(∫ 1

0
∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s )) dτR1
0(X,Y )s,t

−
∫ 1

0
∇φ(Ỹ (0)

s + τ(Ỹ
(0)
t − Ỹ (0)

s )) dτR1
0(X̃, Ỹ )s,t

)
=: A1

s,t +A2
s,t.
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We decompose A1
s,t as follows:

A1
s,t =

∫ 1

0

∫ τ1

0
∇2φ(Y (0)

s + τ2(Y
(0)
t − Y (0)

s )) dτ2 dτ1(Y
(0)
t − Y (0)

s )Y (1)
s X1

s,t

−
∫ 1

0

∫ τ1

0
∇2φ(Ỹ (0)

s + τ2(Ỹ
(0)
t − Ỹ (0)

s )) dτ2 dτ1(Ỹ
(0)
t − Ỹ (0)

s )Ỹ (1)
s X̃1

s,t

=

∫ 1

0

∫ τ1

0
(∇2φ(Y (0)

s + τ2(Y
(0)
t − Y (0)

s ))−∇2φ(Ỹ (0)
s + τ2(Ỹ

(0)
t − Ỹ (0)

s ))) dτ2 dτ1

× (Y
(0)
t − Y (0)

s )Y (1)
s X1

s,t

+

∫ 1

0

∫ τ1

0
∇2φ(Ỹ (0)

s + τ2(Ỹ
(0)
t − Ỹ (0)

s )) dτ2 dτ1((Y
(0)
t − Y (0)

s )− (Ỹ
(0)
t − Ỹ (0)

s ))Y (1)
s X1

s,t

+

∫ 1

0

∫ τ1

0
∇2φ(Ỹ (0)

s + τ2(Ỹ
(0)
t − Ỹ (0)

s )) dτ2 dτ1(Ỹ
(0)
t − Ỹ (0)

s )(Y (1)
s − Ỹ (1)

s )X1
s,t

+

∫ 1

0

∫ τ1

0
∇2φ(Ỹ (0)

s + τ2(Ỹ
(0)
t − Ỹ (0)

s )) dτ2 dτ1(Ỹ
(0)
t − Ỹ (0)

s )Ỹ (1)
s (X1

s,t − X̃1
s,t).

So, we get

|A1
s,t|/(t− s)2β

≤ ∥∇2φ∥1-Höl(|Y
(0)
0 − Ỹ

(0)
0 |+ 2∥Y (0) − Ỹ (0)∥β-HölT

β)∥Y (0)∥β-Höl(|Y
(1)
0 |+ ∥Y (1)∥β-HölT

β)|||X1|||β
+ ∥∇2φ∥∞∥Y (0) − Ỹ (0)∥β-Höl(|Y

(1)
0 |+ ∥Y (1)∥β-HölT

β)|||X1|||β
+ ∥∇2φ∥∞∥Ỹ (0)∥β-Höl(|Y

(1)
0 − Ỹ

(1)
0 |+ ∥Y (1) − Ỹ (1)∥β-HölT

β)|||X1|||β
+ ∥∇2φ∥∞∥Ỹ (0)∥β-Höl(|Ỹ

(1)
0 |+ ∥Ỹ (1)∥β-HölT

β)|||X1 − X̃1|||β
≤ C∥∇2φ∥C0,1

(
∥Y (0)∥β-Höl(|Y

(1)
0 |+ ∥Y (1)∥β-Höl)|||X1|||β

+ (|Y (1)
0 |+ ∥Y (1)∥β-Höl)|||X1|||β + ∥Ỹ (0)∥β-Höl|||X1|||β + ∥Ỹ (0)∥β-Höl(|Ỹ

(1)
0 |+ ∥Ỹ (1)∥β-Höl)

)
δ

≤ C∥∇2φ∥C0,1C2
X1C

2
Y δ,

where in the last inequality we used

∥Y (0)∥β-Höl ≤ (1 + |||X1|||β)(|Y
(1)
0 |+ ∥Y ∥X,βT

β) ≤ CCX1CY .

We also decompose A2
s,t as follows:

A2
s,t =

∫ 1

0
(∇φ(Y (0)

s + τ(Y
(0)
t − Y (0)

s ))−∇φ(Ỹ (0)
s + τ(Ỹ

(0)
t − Ỹ (0)

s ))) dτR1
0(X,Y )s,t

+

∫ 1

0
∇φ(Ỹ (0)

s + τ(Ỹ
(0)
t − Ỹ (0)

s )) dτ(R1
0(X,Y )s,t −R1

0(X̃, Ỹ )s,t).

So, we get

|A2
s,t|/(t− s)2β ≤ ∥∇φ∥1-Höl(|Y

(0)
0 − Ỹ

(0)
0 |+ 2∥Y (0) − Ỹ (0)∥β-HölT

β)|||R1
0(X,Y )|||2β

+ ∥∇φ∥∞|||R1
0(X,Y )−R1

0(X̃, Ỹ )|||2β
≤ C∥∇φ∥C0,1CY δ.
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Hence, from the estimates of A1
s,t and A

2
s,t above, we have

|||R1
0(X,φ(Y ))−R1

0(X̃, φ(Ỹ ))|||2β ≤ C∥∇φ∥C1,1C2
X1C

2
Y δ. (4.6)

We next provide an estimate of |||R0
1(X,φ(Y ))−R0

1(X̃, φ(Ỹ ))|||β. Set (s, t) ∈ ∆T with s < t. Then,

R0
1(X,φ(Y ))s,t −R0

1(X̃, φ(Ỹ ))s,t

= (∇φ(Y (0)
t )Y

(1)
t −∇φ(Y (0)

s )Y (1)
s )− (∇φ(Ỹ (0)

t )Ỹ
(1)
t −∇φ(Ỹ (0)

s )Ỹ (1)
s )

= (∇φ(Y (0)
t )−∇φ(Y (0)

s ))Y
(1)
t +∇φ(Y (0)

s )(Y
(1)
t − Y (1)

s )

− (∇φ(Ỹ (0)
t )−∇φ(Ỹ (0)

s ))Ỹ
(1)
t −∇φ(Ỹ (0)

s )(Ỹ
(1)
t − Ỹ (1)

s )

= ((∇φ(Y (0)
t )−∇φ(Y (0)

s ))− (∇φ(Ỹ (0)
t )−∇φ(Ỹ (0)

s )))Y
(1)
t

+ (∇φ(Ỹ (0)
t )−∇φ(Ỹ (0)

s ))(Y
(1)
t − Ỹ

(1)
t )

+ (∇φ(Y (0)
s )−∇φ(Ỹ (0)

s ))(Y
(1)
t − Y (1)

s )

+∇φ(Ỹ (0)
s )((Y

(1)
t − Y (1)

s )− (Ỹ
(1)
t − Ỹ (1)

s )).

So, we get

|R0
1(X,φ(Y ))s,t −R0

1(X̃, φ(Ỹ ))s,t|/(t− s)β

≤ ∥∇φ(Y (0))−∇φ(Ỹ (0))∥β-Höl(|Y
(1)
0 |+ ∥Y (1)∥β-HölT

β)

+ ∥∇φ∥1-Höl∥Ỹ (0)∥β-Höl(|Y
(1)
0 − Ỹ

(1)
0 |+ ∥Y (1) − Ỹ (1)∥β-HölT

β)

+ ∥∇φ∥1-Höl(|Y
(0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-HölT

β)∥Y (1)∥β-Höl

+ ∥∇φ∥∞∥Y (1) − Ỹ (1)∥β-Höl.

Using Eq. (4.4), we have

|||R0
1(X,φ(Y ))−R0

1(X̃, φ(Ỹ ))|||β ≤ C∥∇φ∥C1,1CX1C2
Y δ. (4.7)

Finally, from Eqs. (4.6), (4.7), and

∥Y (0) − Ỹ (0)∥β-Höl ≤ (1 + |||X1|||β)(|Y
(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)

+ (|Ỹ (1)
0 |+ ∥Ỹ (1)∥β-HölT

β)|||X1 − X̃1|||β
≤ C(CY |||X1 − X̃1|||β + CX1(|Y (1)

0 − Ỹ
(1)
0 |+ dX,X̃,β(Y, Ỹ ))),

we get

dX,X̃,β(φ(Y ), φ(Ỹ )) = |||R1
0(X,φ(Y ))−R1

0(X̃, φ(Ỹ ))|||2β + |||R0
1(X,φ(Y ))−R0

1(X̃, φ(Ỹ ))|||β
≤ C∥∇φ∥C1,1C2

X1C
2
Y δ

≤ C∥∇φ∥C1,1C2
X1C

2
Y

(
|Y (0)

0 − Ỹ
(0)
0 |+ CY |||X1 − X̃1|||β

+ CX1(|Y (1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ ))

)
.

Thus we obtain Eq. (4.5).
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Lemmas 4.3, 4.6, and Remark 4.4 yield the following proposition immediately.

Proposition 4.7. Let Y ∈ ΠX(Sβ(E,F )) for some X ∈ GΩβ(E) and φ ∈ C2,1(F,L(E,F )) such
that ∇φ and ∇2φ are bounded on F . Then, φ(Y ) belongs to ΠX(Sβ(E,L(E,F ))).

Proof. From Lemma 4.3, (X,φ(Y )) belongs to Mβ(E,L(E,F )). By the definition of Y = (Y (0),
Y (1)) ∈ ΠX(Sβ(E,F )), there exists a sequence {(X(n), Y (n))}∞n=1 ⊂ Sβ(E,F ) which converges
to (X,Y ) with respect to the distance mβ. From Remark 4.4, (X(n), φ(Y (n))) belongs to Sβ(E,
L(E,F )). Then, from Lemma 4.6, (X(n), φ(Y (n))) converges to (X,φ(Y )) with respect to the
distance mβ. Thus, (X,φ(Y )) belongs to Sβ(E,L(E,F )).

4.2.2 Estimates of I(X,φ(Y ))

Let (X,Y ) ∈ Mβ(E,F ) and φ ∈ C1,1(F,L(E,F )) such that ∇φ is bounded on F . We set I(X,
φ(Y )) = (I(X,φ(Y ))(0), I(X,φ(Y ))(1)) as

I(X,φ(Y ))
(0)
t := Iγ(X,φ(Y ))0,t and I(X,φ(Y ))

(1)
t := φ(Y

(0)
t ) for t ∈ [0, T ].

For the proof of Theorem 4.2, we provide several estimates of I(X,φ(Y )).

Lemma 4.8. Let (X,Y ) ∈ Mβ(E,F ) and φ ∈ C1,1(F,L(E,F )) such that ∇φ is bounded on F .

Suppose that Iγ(X,φ(Y )) is additive on ∆T . Then, I(X,φ(Y )) belongs to Qβ,2
X (F ) and there exists

a positive constant C which depends only on β, γ, and T such that

∥I(X,φ(Y ))∥X,β ≤ C∥∇φ∥C0,1(1 + |||X1|||β)3(1 + |||X1|||β + |||X2|||2β)

×
(
|Y (1)

0 |+ ∥Y ∥X,βT
β + (1 + |Y (1)

0 |+ ∥Y (1)∥β-Höl)(|Y
(1)
0 |+ ∥Y ∥X,β)T

β
)
.
(4.8)

Moreover, C can be taken independently with respect to T in each finite interval.

Proof. We first see from Lemmas 3.24, 4.3, and the additivity of Iγ(X,φ(Y )) that I(X,φ(Y ))

belongs to Qβ,2
X (F ). We prove Eq. (4.8). Set (s, t) ∈ ∆T with s < t. Then, from the additivity of

Iγ(X,φ(Y )), Eqs. (2.23), and (4.3), we get

|R1
0(X, I(X,φ(Y )))s,t| ≤ |∇φ(Y (0)

s )Y (1)
s X2

s,t|+ |I1,γ
X (R1

0(X,φ(Y )))s,t|+ |I2,γ
X (R0

1(X,φ(Y )))s,t|

≤ ∥∇φ∥∞(|Y (1)
0 |+ ∥Y (1)∥β-HölT

β)|||X2|||2β(t− s)2β

+ C|||R1
0(X,φ(Y ))|||2β|||X1|||β(t− s)3β

+ C|||R0
1(X,φ(Y ))|||β(1 + |||X1|||β) max

1≤i≤2
|||Xi|||iβ(t− s)3β

≤ ∥∇φ∥∞(|Y (1)
0 |+ ∥Y (1)∥β-HölT

β)|||X2|||2β(t− s)2β

+ C∥φ(Y )∥X,β(|||X1|||β + (1 + |||X1|||β) max
1≤i≤2

|||Xi|||iβ)(t− s)3β

≤ ∥∇φ∥∞(|Y (1)
0 |+ ∥Y (1)∥β-HölT

β)|||X2|||2β(t− s)2β

+ C∥∇φ∥C0,1(1 + |||X1|||β)2(1 + |Y (1)
0 |+ ∥Y (1)∥β-Höl)(|Y

(1)
0 |+ ∥Y ∥X,β)

× (|||X1|||β + (1 + |||X1|||β) max
1≤i≤2

|||Xi|||iβ)(t− s)3β.
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Also, by the definitions of I(X,φ(Y )) and controlled paths, we get

|||R0
1(X, I(X,φ(Y )))|||β = ∥φ(Y (0))∥β-Höl

≤ ∥∇φ∥∞∥Y (0)∥β-Höl

≤ ∥∇φ∥∞
(
(|Y (1)

0 |+ ∥Y (1)∥β-HölT
β)|||X1|||β + |||R1

0(X,Y )|||2βT β
)

≤ ∥∇φ∥∞(1 + |||X1|||β)(|Y
(1)
0 |+ |||Y |||X,βT

β).

Combining these estimates, we have

∥I(X,φ(Y ))∥X,β ≤ ∥∇φ∥∞(1 + |||X1|||β + |||X2|||2β)(|Y
(1)
0 |+ ∥Y ∥X,βT

β)

+ C∥∇φ∥C0,1(1 + |||X1|||β)3(1 + |||X1|||β + |||X2|||2β)

× (1 + |Y (1)
0 |+ ∥Y (1)∥β-Höl)(|Y

(1)
0 |+ ∥Y ∥X,β)T

β.

This yields Eq. (4.8) immediately.

Lemma 4.9. Let (X,Y ), (X̃, Ỹ ) ∈ Mβ(E,F ), and φ ∈ C2,1(F,L(E,F )) such that ∇φ and ∇2φ
are bounded on F . Suppose that Iγ(X,φ(Y )) and Iγ(X̃, φ(Ỹ )) are additive on ∆T . Then, there
exists a positive constant C which depends only on β, γ, and T such that

dX,X̃,β(I(X,φ(Y )), I(X̃, φ(Ỹ )))

≤ C∥∇φ∥C1,1(C3
X1CXC

3
Y (|Y

(0)
0 − Ỹ

(0)
0 |+ |||X1 − X̃1|||β + |||X2 − X̃2|||2β)

+ C4
X1CXC

2
Y (|Y

(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)). (4.9)

Moreover, C can be taken independently with respect to T in each finite interval.

Proof. Set

ρ := |Y (0)
0 − Ỹ

(0)
0 |+ dβ,2(X, X̃)

and denote I(X,φ(Y )) and I(X̃, φ(Ỹ )) by Z = (Z(0), Z(1)) and Z̃ = (Z̃(0), Z̃(1)), respectively, that
is, for each t ∈ [0, T ], we set

Z
(0)
t := Iγ(X,φ(Y ))0,t and Z

(1)
t := φ(Y

(0)
t ),

Z̃
(0)
t := Iγ(X̃, φ(Ỹ ))0,t and Z̃

(1)
t := φ(Ỹ

(0)
t ).

First, from Eq. (4.4) and

|Y (0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-Höl ≤ (1 + |||X1|||β)(|Y

(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)

+ (1 + |Ỹ (1)
0 |+ ∥Ỹ (1)∥β-HölT

β)(|Y (0)
0 − Ỹ

(0)
0 |+ |||X1 − X̃1|||β)

≤ CX1(|Y (1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )T β) + CCY ρ, (4.10)

we have

|||R0
1(X,Z)−R0

1(X̃, Z̃)|||β = ∥φ(Y (0))− φ(Ỹ (0))∥β-Höl

≤ C∥∇φ∥C0,1CX1CY (|Y (0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-Höl)

≤ C∥∇φ∥C0,1

(
CX1C2

Y ρ+ C2
X1CY (|Y (1)

0 − Ỹ
(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)

)
.

(4.11)
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We next provide an estimate of |||R1
0(X,Z) − R1

0(X̃, Z̃)|||2β. Set (s, t) ∈ ∆T with s < t. From the
additivity of Iγ(X,φ(Y )) and Iγ(X̃, φ(Ỹ )),

R1
0(X,Z)s,t −R1

0(X̃, Z̃)s,t = (∇φ(Y (0)
s )Y (1)

s X2
s,t + I1,γ

X (R1
0(X,φ(Y ))s,t + I2,γ

X (R0
1(X,φ(Y ))s,t)

− (∇φ(Ỹ (0)
s )Ỹ (1)

s X̃2
s,t + I1,γ

X̃
(R1

0(X̃, φ(Ỹ ))s,t + I2,γ

X̃
(R0

1(X̃, φ(Ỹ ))s,t)

= (∇φ(Y (0)
s )Y (1)

s X2
s,t −∇φ(Ỹ (0)

s )Ỹ (1)
s X̃2

s,t)

+ (I1,γ
X (R1

0(X,φ(Y ))s,t − I1,γ

X̃
(R1

0(X̃, φ(Ỹ ))s,t)

+ (I2,γ
X (R0

1(X,φ(Y ))s,t)− I2,γ

X̃
(R0

1(X̃, φ(Ỹ ))s,t)

=: A0
s,t +A1

s,t +A2
s,t.

By inequalities of the form |abc− ãb̃c̃| ≤ |a− ã||b||c|+ |ã||b− b̃||c|+ |ã||b̃||c− c̃|,

|A0
s,t| ≤ |∇φ(Y (0)

s )−∇φ(Ỹ (0)
s )||Y (1)

s ||X2
s,t|

+ |∇φ(Ỹ (0)
s )||Y (1)

s − Ỹ (1)
s ||X2

s,t|

+ |∇φ(Ỹ (0)
s )||Ỹ (1)

s ||X2
s,t − X̃2

s,t|

≤ ∥∇φ∥1-Höl(|Y
(0)
0 − Ỹ

(0)
0 |+ ∥Y (0) − Ỹ (0)∥β-HölT

β)(|Y (1)
0 |+ ∥Y (1)∥β-HölT

β)|||X2|||2β(t− s)2β

+ ∥∇φ∥∞(|Y (1)
0 − Ỹ

(1)
0 |+ ∥Y (1) − Ỹ (1)∥β-HölT

β)|||X2|||2β(t− s)2β

+ ∥∇φ∥∞(|Ỹ (1)
0 |+ ∥Ỹ (1)∥β-HölT

β)|||X2 − X̃2|||2β(t− s)2β.

Then, using Eq. (4.10), we get

|A0
s,t|/(t− s)2β ≤ C∥∇φ∥C0,1

(
CXC

2
Y ρ+ CX1CXCY (|Y (1)

0 − Ỹ
(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)

)
.

Also, from Eqs. (2.23) and (2.25),

|A1
s,t| ≤ |I1,γ

X (R1
0(X,φ(Y )−R1

0(X̃, φ(Ỹ )))s,t|

+ |I1,γ
X (R1

0(X̃, φ(Ỹ ))s,t − I1,γ

X̃
(R1

0(X̃, φ(Ỹ ))s,t|

≤ C|||R1
0(X,φ(Y )−R1

0(X̃, φ(Ỹ ))|||2β|||X1|||β(t− s)3β

+ C|||R1
0(X̃, φ(Ỹ ))|||2β|||X1 − X̃1|||β(t− s)3β

and

|A2
s,t| ≤ |I2,γ

X (R0
1(X,φ(Y ))−R0

1(X̃, φ(Ỹ )))s,t|

+ |I2,γ
X (R0

1(X̃, φ(Ỹ ))s,t − I2,γ

X̃
(R0

1(X̃, φ(Ỹ )))s,t|

≤ C|||R0
1(X,φ(Y ))−R0

1(X̃, φ(Ỹ ))|||β(1 + |||X1|||β) max
1≤i≤2

|||Xi|||iβ(t− s)3β

+ C|||R0
1(X̃, φ(Ỹ ))|||β(1 + |||X1|||β + |||X̃1|||β)dβ,2(X, X̃)(t− s)3β.
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Combining these estimates, we get

(|A1
s,t|+ |A2

s,t|)/(t− s)3β

≤ C
(
dX,X̃,β(φ(Y ), φ(Ỹ ))

(
|||X1|||β + (1 + |||X1|||β) max

1≤i≤2
|||Xi|||iβ

)
+ ∥φ(Ỹ )∥X̃,β

(
|||X1 − X̃1|||β + (1 + |||X1|||β + |||X̃1|||β)dβ,2(X, X̃)

))
≤ C

(
dX,X̃,β(φ(Y ), φ(Ỹ ))CX1CX + ∥φ(Ỹ )∥X̃,βCX1dβ,2(X, X̃)

)
≤ C∥∇φ∥C1,1

(
C3
X1CXC

3
Y ρ+ C4

X1CXC
2
Y (|Y

(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )) + C3

X1C
2
Y ρ

)
,

where in the last inequality we used Eqs. (4.3) and (4.5). Hence, from the estimates of A0
s,t, A

1
s,t,

and A2
s,t above, we have

|||R1
0(X,Z)−R1

0(X̃, Z̃)|||2β
≤ C∥∇φ∥C1,1(C3

X1CXC
3
Y ρ+ C4

X1CXC
2
Y (|Y

(1)
0 − Ỹ

(1)
0 |+ dX,X̃,β(Y, Ỹ )T β)). (4.12)

Finally, from Eqs. (4.11) and (4.12), we thus obtain Eq. (4.9).

4.2.3 A priori estimates

We now derive a priori estimates for solutions to rough differential equations, which will be used
in the proof of Proposition 4.17. For this, we first introduce the following two lemmas.

Lemma 4.10. Let ξ ∈ F , φ ∈ C1,1(F,L(E,F )) such that φ and ∇φ are bounded on F , X ∈
GΩβ(E), and Y ∈ ΠX(Sβ(E,F )). Assume that Y is a solution to Eq. (4.1). Furthermore, we take
(a, b) ∈ ∆T such that a < b and

Cβ,γ∥φ∥C1,1(1 + max
1≤i≤2

|||Xi|||iβ;[0,T ])
2(b− a)β = κ < 1, (4.13)

where Cβ,γ := (β/(β − γ))2. Then, we have the following bound

∥Y ∥X,β;[a,b] ≤ (1− κ)−1∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[a,b])(|||X1|||β;[a,b] + |||X2|||2β;[a,b]).

Proof. Set (s, t) ∈ ∆T with a ≤ s < t ≤ b. From Eq. (4.2) and the definition of controlled paths,

|R0
1(X,Y )s,t| ≤ ∥∇φ∥∞|Y (0)

t − Y (0)
s | ≤ ∥∇φ∥∞(|Y (1)

s ||X1
s,t|+ |R1

0(X,Y )s,t|).

Then, we get

|||R0
1(X,Y )|||β;[a,b] − ∥∇φ∥∞∥φ∥∞|||X1|||β;[a,b] ≤ ∥∇φ∥∞|||R1

0(X,Y )|||2β;[a,b](b− a)β.

From Eq. (4.2) and the additivity of Iγ(X,φ(Y )),

R1
0(X,Y )s,t = ∇φ(Y (0)

s )Y (1)
s X2

s,t + I1,γ
X (R1

0(X,φ(Y )))s,t + I2,γ
X (R0

1(X,φ(Y )))s,t.
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Then, from Eqs. (4.2) and (2.23),

|||R1
0(X,Y )|||2β;[a,b] − ∥∇φ∥∞∥φ∥∞|||X2|||2β;[a,b]

≤ Cβ,γ |||R1
0(X,φ(Y ))|||2β;[a,b]|||X1|||β;[a,b](b− a)β

+ Cβ,γ |||R0
1(X,φ(Y ))|||β;[a,b](1 + |||X1|||β;[a,b]) max

1≤i≤2
|||Xi|||iβ;[a,b](b− a)β

≤ Cβ,γ(1 + |||X1|||β;[a,b]) max
1≤i≤2

|||Xi|||iβ;[a,b]∥φ(Y )∥X,β;[a,b](b− a)β.

Furthermore, in the same way as in the proof of Lemma 4.3, we get

|R1
0(X,φ(Y ))s,t|/(t− s)2β

≤ (∥∇φ∥1-Höl|Y
(0)
t − Y (0)

s ||Y (1)
s ||X1

s,t|+ ∥∇φ∥∞|R1
0(X,Y )s,t|)/(t− s)2β

≤ ∥∇φ∥1-Höl∥φ∥∞∥Y (0)∥β-Höl;[a,b]|||X1|||β;[a,b] + ∥∇φ∥∞|||R1
0(X,Y )|||2β;[a,b]

and

|R0
1(X,φ(Y ))s,t|/(t− s)β

≤ (|∇φ(Y (0)
t )−∇φ(Y (0)

s )||Y (1)
s |+ |∇φ(Y (0)

s )||Y (1)
t − Y (1)

s |)/(t− s)β

≤ ∥∇φ∥1-Höl∥φ∥∞∥Y (0)∥β-Höl;[a,b] + ∥∇φ∥∞|||R0
1(X,Y )|||β;[a,b].

Then, we have

∥φ(Y )∥X,β;[a,b] = |||R1
0(X,φ(Y ))|||2β + |||R0

1(X,φ(Y ))|||β
≤ ∥∇φ∥1-Höl∥φ∥∞(1 + |||X1|||β;[a,b])∥Y (0)∥β-Höl;[a,b] + ∥∇φ∥∞∥Y ∥X,β;[a,b]

≤ ∥∇φ∥1-Höl∥φ∥∞(1 + |||X1|||β;[a,b])(∥φ∥∞|||X1|||β;[a,b] + |||R1
0(X,Y )|||2β;[a,b](b− a)β)

+ ∥∇φ∥∞∥Y ∥X,β;[a,b].

Combining these estimates yields

|||R1
0(X,Y )|||2β;[a,b] − ∥∇φ∥∞∥φ∥∞|||X2|||2β;[a,b]

≤ Cβ,γ(1 + |||X1|||β;[a,b])2 max
1≤i≤2

|||Xi|||iβ;[a,b]

× ∥∇φ∥1-Höl∥φ∥∞(∥φ∥∞|||X1|||β;[a,b] + |||R1
0(X,Y )|||2β;[a,b](b− a)β)(b− a)β

+ Cβ,γ(1 + |||X1|||β;[a,b]) max
1≤i≤2

|||Xi|||iβ;[a,b]∥∇φ∥∞∥Y ∥X,β;[a,b](b− a)β

≤ ∥∇φ∥1-Höl max
1≤i≤2

|||Xi|||iβ;[a,b](∥φ∥∞|||X1|||β;[a,b] + |||R1
0(X,Y )|||2β;[a,b](b− a)β)

+ Cβ,γ∥∇φ∥∞(1 + |||X1|||β;[a,b]) max
1≤i≤2

|||Xi|||iβ;[a,b]∥Y ∥X,β;[a,b](b− a)β,
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where in the last inequality we used Eq. (4.13). Therefore, we get

∥Y ∥X,β;[a,b] = |||R1
0(X,Y )|||2β;[a,b] + |||R0

1(X,Y )|||β;[a,b]
≤ ∥∇φ∥∞∥φ∥∞(|||X1|||β;[a,b] + |||X2|||2β;[a,b])
+ ∥∇φ∥∞|||R1

0(X,Y )|||2β;[a,b](b− a)β

+ ∥∇φ∥1-Höl∥φ∥∞ max
1≤i≤2

|||Xi|||iβ;[a,b]|||X1|||β;[a,b]

+ ∥∇φ∥1-Höl max
1≤i≤2

|||Xi|||iβ;[a,b]|||R1
0(X,Y )|||2β;[a,b](b− a)β

+ Cβ,γ∥∇φ∥∞(1 + |||X1|||β;[a,b]) max
1≤i≤2

|||Xi|||iβ;[a,b]∥Y ∥X,β;[a,b](b− a)β

≤ ∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[a,b])(|||X1|||β;[a,b] + |||X2|||2β;[a,b])
+ ∥∇φ∥C0,1(1 + max

1≤i≤2
|||Xi|||iβ;[a,b])|||R1

0(X,Y )|||2β;[a,b](b− a)β

+ Cβ,γ∥∇φ∥∞(1 + |||X1|||β;[a,b]) max
1≤i≤2

|||Xi|||iβ;[a,b]∥Y ∥X,β;[a,b](b− a)β

≤ ∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[a,b])(|||X1|||β;[a,b] + |||X2|||2β;[a,b])
+ Cβ,γ∥∇φ∥C0,1(1 + max

1≤i≤2
|||Xi|||iβ;[a,b])2∥Y ∥X,β;[a,b](b− a)β

≤ ∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[a,b])(|||X1|||β;[a,b] + |||X2|||2β;[a,b]) + κ∥Y ∥X,β;[a,b].

Thus we obtain the claim of the lemma.

Lemma 4.11. Let X ∈ Ωβ(E) and {uk}mk=0 be a set of positive numbers such that 0 = u0 < u1 <
· · · < um = T . Take continuous functions Y (0) ∈ C1(F ) and Y (1) ∈ C1(L(E,F )) and suppose that
Y := (Y (0), Y (1)) satisfies

∥Y (l)∥β-Höl;[uk,uk+1] <∞ and |||R1
0(X,Y )|||2β;[uk,uk+1] <∞

for each l = 0, 1 and k = 0, . . . ,m− 1. Then, Y belongs to Qβ,2
X (F ) and the following bounds hold

true:

|||R1
0(X,Y )|||2β;[0,T ] ≤

m−1∑
k=0

|||R1
0(X,Y )|||2β;[uk,uk+1] +

m−1∑
k=1

|||R0
1(X,Y )|||β;[0,uk]|||X

1|||β;[uk,uk+1] (4.14)

and

|||R0
1(X,Y )|||2β;[0,T ] ≤

m−1∑
k=0

|||R0
1(X,Y )|||β;[uk,uk+1]. (4.15)

Proof. Set (s, t) ∈ ∆T with s < t and positive integers i and j such that 0 ≤ i ≤ j ≤ m − 1,
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ui ≤ s ≤ ui+1, and uj ≤ t ≤ uj+1. For each l = 0, 1, we get

|Y (l)
t − Y (l)

s | ≤ |Y (l)
t − Y (l)

uj
|+

j−1∑
k=i+1

|Y (l)
uk+1

− Y (l)
uk

|+ |Y (l)
ui+1

− Y (l)
s |

≤ ∥Y (l)∥β-Höl;[uj ,uj+1](t− uj)
β

+

j−1∑
k=i+1

∥Y (l)∥β-Höl;[uk,uk+1](uk+1 − uk)
β

+ ∥Y (l)∥β-Höl;[ui,ui+1](ui+1 − s)β

≤ (t− s)β
m−1∑
k=0

∥Y (l)∥β-Höl;[uk,uk+1].

Hence, Y (0) and Y (1) are β-Hölder continuous on [0, T ] and also Eq. (4.15) holds. We next prove
Eq. (4.14). In the same way, we decompose R1

0(X,Y ) as follows:

R1
0(X,Y )s,t = Y

(0)
t − Y (0)

s − Y (1)
s X1

s,t

= (Y
(0)
t − Y (0)

uj
) +

j−1∑
k=i+1

(Y (0)
uk+1

− Y (0)
uk

) + (Y (0)
ui+1

− Y (0)
s )− Y (1)

s X1
s,t

= Y (1)
uj
X1

uj ,t +R1
0(X,Y )uj ,t

+

j−1∑
k=i+1

{
Y (1)
uk
X1

uk,uk+1
+R1

0(X,Y )uk,uk+1

}
+ Y (1)

s X1
s,ui+1

+R1
0(X,Y )s,ui+1

− Y (1)
s

(
X1

uj ,t +

j−1∑
k=i+1

X1
uk,uk+1

+X1
s,ui+1

)
(from (2.3) and (3.4))

= R1
0(X,Y )uj ,t +

j−1∑
k=i+1

R1
0(X,Y )uk,uk+1

+R1
0(X,Y )s,ui+1

+ (Y (1)
uj

− Y (1)
s )X1

uj ,t +

j−1∑
k=i+1

(Y (1)
uk

− Y (1)
s )X1

uk,uk+1
. (4.16)

So, we get

|R1
0(X,Y )s,t| ≤ |||R1

0(X,Y )|||2β;[uj ,uj+1](t− uj)
2β

+

j−1∑
k=i+1

|||R1
0(X,Y )|||2β;[uk,uk+1](uk+1 − uk)

2β

+ |||R1
0(X,Y )|||2β;[ui,ui+1](ui+1 − s)β

+ ∥Y (1)∥β-Höl;[ui,uj ]|||X
1|||β;[uj ,uj+1](uj − s)β(t− uj)

β
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+

j−1∑
k=i+1

∥Y (1)∥β-Höl;[ui,uk]|||X
1|||β;[uk,uk+1](uk − s)β(uk+1 − uk)

β

≤ (t− s)2β
{m−1∑

k=0

|||R1
0(X,Y )|||2β;[uk,uk+1] +

m−1∑
k=1

∥Y (1)∥β-Höl;[0,uk]|||X
1|||β;[uk,uk+1]

}
.

Hence, Eq. (4.14) holds and so R1
0(X,Y ) ∈ C2β

2 (F ). Thus we obtain the claim of the lemma.

Lemmas 4.10 and 4.11 yield the following proposition.

Proposition 4.12. Under the notation and assumptions of Lemma 4.10, we take positive numbers
{uj}mj=0 such that 0 = u0 < u1 < · · · < um = T and

Cβ,γ∥φ∥C1,1(1 + max
1≤i≤2

|||Xi|||iβ;[0,T ])
2(uj+1 − uj)

β = κj < 1 (4.17)

for each j = 0, 1, . . . ,m− 1. Then, we have the following bound

∥Y ∥X,β;[0,T ] ≤ m2(1− κ)−1∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[0,T ])
2(|||X1|||β;[0,T ] + |||X2|||2β;[0,T ]),

where κ := max0≤j≤m−1 κj.

Proof. From Eqs. (4.14) and (4.15), we have

∥Y ∥X,β;[0,T ] = |||R1
0(X,Y )|||2β;[0,T ] + |||R0

1(X,Y )|||β;[0,T ]

≤
m−1∑
j=0

|||R1
0(X,Y )|||2β;[uj ,uj+1] +

m−1∑
j=1

|||R0
1(X,Y )|||β;[0,uj ]|||X

1|||β;[uj ,uj+1]

+

m−1∑
j=0

|||R0
1(X,Y )|||β;[uj ,uj+1]

≤
m−1∑
j=0

∥Y ∥X,β;[uj ,uj+1] + |||R0
1(X,Y )|||β;[0,T ]

m−1∑
j=1

|||X1|||β;[uj ,uj+1]

≤ (1 +

m−1∑
i=1

|||X1|||β;[uj ,uj+1])

m−1∑
j=0

∥Y ∥X,β;[uj ,uj+1].

Then, using Lemma 4.10 with a = uj and b = uj+1, we get

∥Y ∥X,β;[0,T ] ≤ (1 +

m−1∑
i=1

|||X1|||β;[uj ,uj+1])∥φ∥∞∥∇φ∥C0,1

×
m−1∑
j=0

(1− κj)
−1(1 + |||X1|||β;[uj ,uj+1])(|||X

1|||β;[uj ,uj+1] + |||X2|||2β;[uj ,uj+1])

≤ m(1− κ)−1∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[0,T ])
2
m−1∑
j=0

(|||X1|||β;[uj ,uj+1] + |||X2|||2β;[uj ,uj+1])

≤ m2(1− κ)−1∥φ∥∞∥∇φ∥C0,1(1 + |||X1|||β;[0,T ])
2(|||X1|||β;[0,T ] + |||X2|||2β;[0,T ]),

as desired. Thus we obtain the claim of the proposition.

The readers may find in [6, Proposition 8.3] sharper estimates than those provided above.
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4.2.4 Basic lemmas for shift operators

We provide several lemmas which will be used later. Let V be a finite-dimensional normed space
and let ψ ∈ C1(V ) and Ψ ∈ C2(V ). For each u ∈ [0, T ], we define θu(ψ) and θu(Ψ) by θu(ψ)t := ψu+t

for t ∈ [0, T − u] and θu(Ψ)s,t := Ψu+s,u+t for (s, t) ∈ ∆T−u, respectively.

Lemma 4.13. Let X = (1, X1, X2) ∈ Ωβ,T (E) and Y = (Y (0), Y (1)) ∈ Qβ,2
X,T (F ). Then, for each

u ∈ [0, T ], the following statements hold true:

(1) θu(X) := (1, θu(X
1), θu(X

2)) belongs to Ωβ,T−u(E);

(2) If X ∈ SΩβ,T (E), then θu(X) ∈ SΩβ,T−u(E);

(3) If X ∈ GΩβ,T (E), then θu(X) ∈ GΩβ,T−u(E);

(4) θu(Y ) := (θu(Y
(0)), θu(Y

(1))) belongs to Qβ,2
θu(X),T−u(F );

(5) If X ∈ GΩβ,T (E) and θu(Y ) ∈ ΠX(Sβ,T (E,F )), then θu(Y ) ∈ Πθu(X)(Sβ,T−u(E,F )).

Lemma 4.13 follows immediately from the definition of θu. The following lemma is used in
the proof of Theorem 4.2 when we prove the existence of global solutions to rough differential
equations.

Lemma 4.14. Let φ ∈ C2,1(F,L(E,F )) such that ∇φ and ∇2φ are bounded on F , X ∈ GΩβ(E),
and Y ∈ ΠX(Sβ(E,F )). Then, for each u ∈ [0, T ] and v ∈ [0, T − u],

Iγ(θu(X), φ(θu(Y )))0,v = Iγ(X,φ(Y ))u,u+v. (4.18)

Proof. From Lemma 4.13 (5) and Proposition 4.7, (θu(X), φ(θu(Y ))) belongs to Sβ,T−u(E,L(E,
F )). Then, from Proposition 3.14,

(left-hand side of (4.18))

= lim
|P0,v |→0

m−1∑
i=0

{
φ(θu(Y

(0))ui)θu(X
1)ui,ui+1 +∇φ(θu(Y (0))ui)θu(Y

(1))uiθu(X
2)ui,ui+1

}

= lim
|P0,v |→0

m−1∑
i=0

{
φ(Y

(0)
u+ui

)X1
u+ui,u+ui+1

+∇φ(Y (0)
u+ui

)Y
(1)
u+ui

X2
u+ui,u+ui+1

}
= (right-hand side of (4.18)),

where the limits are taken over all finite partitions P0,v = {u0, u1, . . . , um} of the interval [0, v]
such that 0 = u0 ≤ u1 ≤ · · · ≤ um = v and |P0,v| := max0≤i≤m−1|ui+1 − ui|. Thus we obtain the
claim of the lemma.

Lemma 4.14 yields the following lemma, which is used in the proof of Theorem 4.2 when we
prove the uniqueness of global solutions to rough differential equations.

Lemma 4.15. Let ξ ∈ F , φ ∈ C2,1(F,L(E,F )) such that ∇φ and ∇2φ are bounded on F , X = (1,
X1, X2) ∈ GΩβ,T (E), and Y = (Y (0), Y (1)) ∈ ΠX(Sβ,T (E,F )). Assume that Y is a solution on
[0, T ] to the rough differential equation driven by X along φ and starting at ξ. Then, for each
u ∈ [0, T ], θu(Y ) := (θu(Y

(0)), θu(Y
(1))) ∈ ΠX(Sβ,T−u(E,F )) is a solution on [0, T − u] to the

rough differential equation driven by θu(X) := (1, θu(X
1), θu(X

2)) ∈ GΩβ,T−u(E) along φ and

starting at Y
(0)
u .
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Proof. For the claim of the lemma, it suffices to show that, for each t ∈ [0, T − u],

θu(Y
(0))t = Y (0)

u + Iγ(θu(X), φ(θu(Y )))0,t and θu(Y
(1))t = φ(θu(Y

(0))t). (4.19)

Since Y is the solution on [0, T ], the second identity of Eq. (4.19) is obvious from the definition of
θu. Also, the first identity of Eq. (4.19) follows immediately from the assumptions that Y is the
solution on [0, T ] and Lemma 4.14; indeed, we get

θu(Y
(0))t = Y

(0)
u+t

= ξ + Iγ(X,φ(Y ))0,u+t

= ξ + Iγ(X,φ(Y ))0,u + Iγ(X,φ(Y ))u,u+t

= Y (0)
u + Iγ(θu(X), φ(θu(Y )))0,t, (from (4.18))

as desired. Here, we used the additivity of Iγ(X,φ(Y )), which follows from Proposition 4.7 and
the assumptions that X ∈ GΩβ,T (E) and Y ∈ ΠX(Sβ,T (E,F )). Thus the claim of the lemma
holds true.

4.3 Proof of Theorem 4.2

In this subsection, we provide a proof of Theorem 4.2, which is inspired by those of [8, Theorem 8.4]
and [9, Propositions 7 and 8]. Although a part of the proof is given along the same lines of them,
some further discussions are needed when we construct the global solution by concatenating the
local solutions as in the proof of Proposition 4.17 stated below. This is because it is uncertain
whether Iγ(X,φ(Y )) is additive on ∆T even for every X ∈ GΩβ(E) and Y ∈ Qβ,2

X (F ). For this

reason, we have to discuss the construction of the global solution in ΠX(Sβ(E,F )) ⊂ Qβ,2
X (F ) for

X ∈ GΩβ(E).

4.3.1 Main part of the proof of Theorem 4.2

First, we show the local existence and uniqueness of solutions to rough differential equations.

Proposition 4.16. Under the assumptions of Theorem 4.2, there exists T0 ∈ (0, 1] and a unique
element Y = (Y (0), Y (1)) of ΠX(Sβ,T0(E,F )) which satisfies Eq. (4.2) for any T ≤ T0. Here, T0
can be taken independently with respect to ξ.

Proof. For Y = (Y (0), Y (1)) ∈ ΠX(Sβ(E,F )), we define GT (Y ) = (GT (Y )(0), GT (Y )(1)) as

GT (Y )
(0)
t := ξ + Iγ(X,φ(Y ))0,t and GT (Y )

(1)
t := φ(Y

(0)
t ) for t ∈ [0, T ].

From Propositions 3.15 and 4.7, GT (Y ) belongs to ΠX(Sβ(E,F )). Thus, GT leaves ΠX(Sβ(E,F ))
invariant, that is, GT : ΠX(Sβ(E,F )) → ΠX(Sβ(E,F )). For r > 0, we define BT (r) as

BT (r) := {Y ∈ ΠX(Sβ(E,F )) : Y
(0)
0 = ξ, Y

(1)
0 = φ(ξ), ∥GT (Y )∥X,β ≤ r}.

It is straightforward to show that the subset {Y ∈ ΠX(Sβ(E,F )) : Y
(0)
0 = ξ, Y

(1)
0 = φ(ξ)} of

ΠX(Sβ(E,F )) is a complete metric space under the distance mX,β and BT (r) is a closed ball of
radius r centered at Ψ = (Ψ(0),Ψ(1)) in the subspace, where

Ψ
(0)
t := ξ + φ(ξ)X1

0,t and Ψ
(1)
t := φ(ξ) for t ∈ [0, T ].
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Let Y ∈ ΠX(Sβ(E,F )) such that Y
(1)
0 = φ(ξ). From Eq. (4.8), we have

∥GT (Y )∥X,β ≤ K∥∇φ∥C0,1(∥φ∥∞ + ∥Y ∥X,βT
β + (1 + ∥φ∥∞ + ∥Y ∥X,β)(∥φ∥∞ + ∥Y ∥X,β)T

β),

where K is a constant which depends only on β, γ, and X = (1, X1, X2), as long as T ≤ 1. We
define r := K∥∇φ∥C0,1(∥φ∥∞ + 1). If T ∈ (0, 1] is sufficiently small,

K∥∇φ∥C0,1(∥φ∥∞ + rT β + (1 + ∥φ∥∞ + r)(∥φ∥∞ + r)T β) ≤ r.

Then, GT leaves BT (r) invariant, that is, GT : BT (r) → BT (r). Moreover, for each Y, Ỹ ∈ BT (r),

mX,β(GT (Y ), GT (Ỹ )) ≤ C∥∇φ∥C1,1C4
X1CXC

2
rmX,β(Y, Ỹ )T β,

where Cr := 1 + 2(∥φ∥∞ + r) and C is a constant which depends only on β and γ. This follows

from Eq. (4.9) with X = X̃, Y
(0)
0 = Ỹ

(0)
0 , and Y

(1)
0 = Ỹ

(1)
0 = φ(ξ) and T ≤ 1. Furthermore, by

choosing T = T0 smaller such that

C∥∇φ∥C1,1C4
X1CXC

2
rT

β
0 = κ0 < 1,

we obtain mX,β(GT0(Y ), GT0(Ỹ )) ≤ κ0mX,β(Y, Ỹ ). Hence, GT0 is a strict contraction in BT0(r).
Therefore, GT0 admits a unique fixed point Y ∈ BT0(r). This is the unique solution on the small
interval [0, T0] as desired. Thus we obtain the claim of the proposition.

Next, we construct a global solution on the whole interval [0, T ] by concatenating the local
solutions. For this, we introduce a few more notations. Let Sφ,ξ(X) = (Sφ,ξ(X)(0), Sφ,ξ(X)(1))
denote the local solution on [0, T0] constructed in Proposition 4.16. We define N0 := ⌈T/T0⌉ and
ti := min{iT0, T} for i = 0, 1, . . . , N0. We note that t0 = 0, tN0−1 < T , tN0 = T , and the obvious
relations tN0 − tN0−1 ≤ T0 and ti+1 − ti = T0 for each i = 0, . . . , N0 − 2. Then, concatenating the
local solutions, we define Ŷ (0) ∈ C1(F ) and Ŷ (1) ∈ C1(L(E,F )) as follows: for each l = 0, 1,

Ŷ
(l)
t := Sφ,ξ0(θt0(X))

(l)
t−t0

for t ∈ [t0, t1]

with ξ0 := ξ and

Ŷ
(l)
t := Sφ,ξi(θti(X))

(l)
t−ti

for t ∈ [ti, ti+1]

with ξi := Sφ,ξi−1
(θti−1(X))

(0)
T0

for i = 1, . . . , N0 − 1, inductively. It follows from Proposition 4.16
that T0 does not change when the starting point ξ is replaced by ξ1, . . . , ξN0−1. Our candidate of
the global solution is defined by Ŷ := (Ŷ (0), Ŷ (1)). Furthermore, from the definition of Ŷ ,

∥Ŷ (l)∥β-Höl;[ti,ti+1] = ∥Sφ,ξi(θti(X))(l)∥β-Höl;[0,ti+1−ti] <∞, l = 0, 1,

and

|||R1
0(X, Ŷ )|||2β;[ti,ti+1] = |||R1

0(θti(X), Sφ,ξi(θti(X)))|||β;[0,ti+1−ti] <∞

hold for each i = 0, 1, . . . , N0 − 1. Then we see from Lemma 4.11 that Ŷ belongs to Qβ,2
X (F ).

Moreover, for Ŷ to be a global solution, the following proposition should be valid.
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Proposition 4.17. Under the above notation, Ŷ belongs to ΠX(Sβ(E,F )).

We prove this later in this subsection. Using Proposition 4.17, we now prove Theorem 4.2.

Proof of Theorem 4.2. We first prove that Ŷ = (Ŷ (0), Ŷ (1)) defined above is a solution on the
whole interval [0, T ], that is, the following identities hold true: for each t ∈ [0, T ],

Ŷ
(0)
t = ξ + Iγ(X,φ(Ŷ ))0,t and Ŷ

(1)
t = φ(Ŷ

(0)
t ). (4.20)

The second identity of Eq. (4.20) follows immediately from the definition of Ŷ . Indeed, by the
definition of ti, there exists i = 0, 1, . . . , N0 − 1 such that ti ≤ t ≤ ti+1 and then

Ŷ
(1)
t = Sφ,ξi(θti(X))

(1)
t−ti

= φ(Sφ,ξi(θti(X))
(1)
t−ti

) = φ(Ŷ
(0)
t ).

We now prove the first identity of Eq. (4.20). First of all, we note that Iγ(X,φ(Ŷ )) is additive
on ∆T . This follows from Theorems 3.11, 3.12, Propositions 4.7, and 4.17. By using this property
and Lemma 4.14, we can show that

ξ + Iγ(X,φ(Ŷ ))0,t = ξi + Iγ(X,φ(Ŷ ))ti,t. (4.21)

Indeed, the left-hand side of Eq. (4.21) is decomposed as follows:

ξ + Iγ(X,φ(Ŷ ))0,t = ξ + Iγ(X,φ(Ŷ ))0,t1 + Iγ(X,φ(Ŷ ))t1,t

= Sφ,ξ(X)
(0)
T0

+ Iγ(X,φ(Ŷ ))t1,t

= ξ1 + Iγ(X,φ(Ŷ ))t1,t

and moreover

ξ1 + Iγ(X,φ(Ŷ ))t1,t = ξ1 + Iγ(X,φ(Ŷ ))t1,t2 + Iγ(X,φ(Ŷ ))t2,t

= ξ1 + Iγ(θt1(X), θt1(Ŷ ))0,T0 + Iγ(X,φ(Ŷ ))t2,t

(from (4.18) with Y = Ŷ , u = t1, and v = t2 − t1 = T0)

= ξ1 + Iγ(θt1(X), Sφ,ξ1(θt1(X)))0,T0 + Iγ(X,φ(Ŷ ))t2,t

(from θt1(Ŷ ) = Sφ,ξ1(θt1(X)) on [0, T0])

= Sφ,ξ1(θt1(X))
(0)
T0

+ Iγ(X,φ(Ŷ ))t2,t

= ξ2 + Iγ(X,φ(Ŷ ))t2,t.

By repeating this argument with t3, t4, . . . , ti, Eq. (4.21) holds true. Then, from Eq. (4.21),
Lemma 4.14, and the definition of Ŷ , we get

Ŷ
(0)
t = Sφ,ξi(θti(X))t−ti

= ξi + Iγ(θti(X), φ(Sφ,ξi(θti(X))))0,t−ti

= ξi + Iγ(θti(X), φ(θti(Ŷ )))0,t−ti (from θti(Ŷ ) = Sφ,ξi(θti(X)) on [0, T0])

= ξi + Iγ(X,φ(Ŷ ))ti,t (from (4.18) with Y = Ŷ , u = ti, and v = t− ti)

= ξ + Iγ(X,φ(Ŷ ))0,t, (from (4.21))
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as desired. Hence, the first identity of Eq. (4.20) holds.
We next prove the uniqueness of global solutions to Eq. (4.2). Let Y = (Y (0), Y (1)), Ỹ =

(Ỹ (0), Ỹ (1)) ∈ ΠX(Sβ(E,F )) be solutions on the whole interval [0, T ], driven by X = (1, X1,

X2) ∈ GΩβ(E) along φ and starting at ξ. We define τ := inf{t ∈ [0, T ] : Y
(0)
t ̸= Ỹ

(0)
t or Y

(1)
t ̸=

Ỹ
(1)
t } and assume that τ < T . From Lemma 4.15, θτ (Y ) := (θτ (Y

(0)), θτ (Y
(1))) and θτ (Ỹ ) :=

(θτ (Ỹ
(0)), θτ (Ỹ

(1))) are solutions on the interval [0, T−τ ], driven by θτ (X) = (1, θτ (X
1), θτ (X

2)) ∈
GΩβ,T−τ (E) along φ and starting at Y

(0)
τ = Ỹ

(0)
τ . Since we already know local uniqueness of the

solution from Proposition 4.16, we see that θτ (Y ) = θτ (Ỹ ) on [0, T0 ∧ (T − τ)]. Hence, it follows
that Y = Ỹ on [0, (τ + T0) ∧ T ] and so (τ + T0) ∧ T ≤ τ . This contradicts the assumption τ < T .
Thus we establish the uniqueness of the global solutions.

4.3.2 Proof of Proposition 4.17

In the remainder of this subsection, we will prove Proposition 4.17.

Lemma 4.18. Let X ∈ GΩβ(E) and {X(n)}∞n=1 ⊂ SΩβ(E) such that limn→∞ dβ,2(X(n), X) = 0.

Take Y ∈ Qβ,2
X (F ) and positive numbers {uk}mk=0 such that 0 = u0 < u1 < · · · < um = T and

suppose that, for each n, there exists Y (n) ∈ Q1,2
X(n)(F ) that satisfies

lim
n→∞

|||R1−l
l (X,Y )−R1−l

l (X(n), Y (n))|||(2−l)β;[uk,uk+1] = 0

for each l = 0, 1 and k = 0, 1, . . . ,m− 1. Then, for each l = 0, 1

lim
n→∞

|||R1−l
l (X,Y )−R1−l

l (X(n), Y (n))|||(2−l)β;[0,T ] = 0.

Proof. Set (s, t) ∈ ∆T with s < t and positive integers i and j such that 0 ≤ i ≤ j ≤ m − 1,
ui ≤ s ≤ ui+1, and uj ≤ t ≤ uj+1. In the same way as in the proof of Lemma 4.11, for each
n = 1, 2, . . . , we get

|R0
1(X,Y )s,t −R0

1(X(n), Y (n))s,t|

= |(Y (1)
t − Y (1)

s )− (Y (n)
(1)
t − Y (n)(1)s )|

≤ |(Y (1)
t − Y (1)

uj
)− (Y (n)

(1)
t − Y (n)(1)uj

)|+
j−1∑

k=i+1

|(Y (1)
uk+1

− Y (1)
uk

)− (Y (n)(1)uk+1
− Y (n)(1)uk

)|

+ |(Y (1)
ui+1

− Y (1)
s )− (Y (n)(1)ui+1

− Y (n)(1)s )|

≤ ∥Y (1) − Y (n)(1)∥β-Höl;[uj ,uj+1](t− uj)
β +

j−1∑
k=i+1

∥Y (1) − Y (n)(1)∥β-Höl;[uk,uk+1](uk+1 − uk)
β

+ ∥Y (1) − Y (n)(1)∥β-Höl;[ui,ui+1](ui+1 − s)β

≤ (t− s)β
m−1∑
k=0

∥Y (1) − Y (n)(1)∥β-Höl;[uk,uk+1].
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This yields limn→∞ |||R0
1(X,Y )−R0

1(X(n), Y (n))|||β;[0,T ] = 0. Also, from Eq. (4.16), we have

R1
0(X,Y )s,t −R1

0(X(n), Y (n))s,t

= (R1
0(X,Y )uj ,t −R1

0(X(n), Y (n))uj ,t)

+

j−1∑
k=i+1

(R1
0(X,Y )uk,uk+1

−R1
0(X(n), Y (n))uk,uk+1

)

+ (R1
0(X,Y )s,ui+1 −R1

0(X,Y )s,ui+1)

+ (Y (1)
uj

− Y (1)
s )X1

uj ,t − (Y (n)(1)uj
− Y (n)(1)s )X(n)1uj ,t

+

j−1∑
k=i+1

{
(Y (1)

uk
− Y (1)

s )X1
uk,uk+1

− (Y (n)(1)uk
− Y (n)(1)s )X(n)1uk,uk+1

}
.

So, by inequalities of the form |ab− ãb̃| ≤ |a− ã||b|+ |ã||b− b̃|, we get

|R1
0(X,Y )s,t −R1

0(X(n), Y (n))s,t|
= |||R1

0(X,Y )−R1
0(X(n), Y (n))|||2β;[uj ,uj+1](t− uj)

2β

+

j−1∑
k=i+1

|||R1
0(X,Y )−R1

0(X(n), Y (n))|||2β;[uk,uk+1](uk+1 − uk)
2β

+ |||R1
0(X,Y )−R1

0(X(n), Y (n))|||2β;[ui,ui+1](ui+1 − s)2β

+ (∥Y (1) − Y (n)(1)∥β-Höl;[ui,uj ]|||X
1|||β;[uj ,uj+1]

+ ∥Y (n)(1)∥β-Höl;[ui,uj ]|||X
1 −X(n)1|||β;[uj ,uj+1])(uj − s)β(t− uj)

β

+

j−1∑
k=i+1

{
∥Y (1) − Y (n)(1)∥β-Höl;[ui,uk]|||X

1|||β;[uk,uk+1]

+ ∥Y (n)(1)∥β-Höl;[ui,uk]|||X
1 −X(n)1|||β;[uk,uk+1]

}
(uk − s)β(uk+1 − uk)

β

≤ (t− s)2β
m−1∑
k=0

|||R1
0(X,Y )−R1

0(X(n), Y (n))|||2β;[uk,uk+1]

+ (t− s)2βM
m−1∑
k=1

{
|||R0

1(X,Y )−R0
1(X(n), Y (n))|||β;[0,uk] + |||X1 −X(n)1|||β;[uk,uk+1]

}
,

where

M := |||R0
1(X,Y )|||β;[0,T ] ∨ |||X1|||β;[0,T ] ∨ sup

n≥1
{|||R0

1(X(n), Y (n))|||β;[0,T ] ∨ |||X(n)1|||β;[0,T ]}.

This yields limn→∞ |||R1
0(X,Y )− R1

0(X(n), Y (n))|||2β;[0,T ] = 0. Thus the claim of the lemma holds
true.

We are now ready to prove Proposition 4.17.
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Proof of Proposition 4.17. By the definition of X ∈ GΩβ(E), there exists a sequence of smooth
rough paths {X(n)}∞n=1 ⊂ SΩβ(E) which converges to X with respect to the distance dβ,2. Then,
for each n = 1, 2, . . . , there exists a unique element y(n) ∈ C1

1(F ) such that

y(n)t = ξ +

∫ t

0
φ(y(n)u) dX(n)10,u for all t ∈ [0, T ].

Here, the right-hand side is the Riemann–Stieltjes integral of φ(y(n)) along X(n)10,·. This follows
from the usual theory of ordinary differential equations; for example, see [21, Theorem 2.3.1]. Set

Y (n)
(0)
t := y(n)t and Y (n)

(1)
t := φ(y(n)t) for t ∈ [0, T ].

We first show that Y (n) := (Y (n)(0), Y (n)(1)) belongs to Q1,2
X(n)(F ). From the definition of Y (n),

we can easily verify that Y (n)(0) and Y (n)(1) are Lipschitz continuous on [0, T ]. We now prove
that R1

0(X(n), Y (n)) ∈ C2
2(F ). Set (s, t) ∈ ∆T with s < t. Then,

R1
0(X(n), Y (n))s,t =

∫ t

s
(φ(y(n)u)− φ(y(n)s)) dX(n)10,u

= lim
|Ps,t|→0

m−1∑
i=0

(φ(y(n)vi)− φ(y(n)s))X(n)1vi,vi+1
,

where the limit is taken over all finite partitions Ps,t = {v0, v1, . . . , vm} of the interval [s, t] such
that s = v0 ≤ v1 ≤ · · · ≤ vm = t and |Ps,t| := max0≤i≤m−1|vi+1 − vi|. So, we get

|R1
0(X(n), Y (n))s,t| ≤ lim

|Ps,t|→0

m−1∑
i=0

∥φ∥1-Höl∥y(n)∥1-Höl(vi − s)|||X(n)1|||1(vi+1 − vi)

≤ ∥φ∥1-Höl∥y(n)∥1-Höl|||X(n)1|||1(t− s)2.

Thus, R1
0(X(n), Y (n)) ∈ C2

2(F ) and so Y (n) ∈ Q1,2
X(n)(F ). We also note that Y (n) is a solution

to the rough differential equation driven by X(n) along φ and starting at ξ. This fact is used
frequently in this proof without being explicitly noted. For the claim of the proposition, it remains
to prove that

lim
n→∞

dX,X(n),β(Ŷ , Y (n)) = 0 (4.22)

since we already know that limn→∞ dβ,2(X(n), X) = 0, Ŷ
(0)
0 = Y (n)

(0)
0 = ξ, Ŷ

(1)
0 = Y (n)

(1)
0 = φ(ξ),

Y (n) ∈ Q1,2
X(n)(F ), and Ŷ ∈ Qβ,2

X (F ). For this, we introduce the following symbols:

ĈX1 := 1 + |||X1|||β;[0,T ] + sup
n≥1

|||X(n)1|||β;[0,T ],

ĈX := ĈX1 + |||X2|||2β;[0,T ] + sup
n≥1

|||X(n)2|||2β;[0,T ],

and

ĈŶ := 1 + |||Ŷ |||X,β;[0,T ] + sup
n≥1

|||Y (n)|||X(n),β;[0,T ].
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Here, from Proposition 4.12 with Y = Y (n), we can easily verify that supn≥1 |||Y (n)|||X(n),β;[0,T ] is
finite. Furthermore, we take T1 ∈ (0, T0] such that

C∥∇φ∥C1,1Ĉ4
X1ĈXĈ

2
Ŷ
T β
1 = κ1 < 1, (4.23)

where constant C is the same as in Eq. (4.9). We define N1 := ⌈T/T1⌉ and ui := min{iT1, T} for
i = 0, 1, . . . , N1. We arrange {ti}N0

i=0 ∪ {ui}N1
i=0 in the ascending order and denote it by {sk}N∗

k=0,
namely, 0 = s0 < s1 < · · · < sN∗−1 < sN∗ = T . From Lemma 4.18, Eq. (4.22) is proven if we show
that

lim
n→∞

|||R1−l
l (X, Ŷ )−R1−l

l (X(n), Y (n))|||(2−l)β;[sk,sk+1] = 0 (4.24)

holds for each l = 0, 1 and k = 0, 1, . . . , N∗ − 1. We will prove Eq. (4.24) by induction on k. Set
(s, t) ∈ ∆T with 0 = s0 ≤ s < t ≤ s1. Then, for each l = 0, 1,

|||R1−l
l (X, Ŷ )s,t −R1−l

l (X(n), Y (n))|||(2−l)β;[0,s1]

= |||R1−l
l (X, I(X,φ(Ŷ )))−R1−l

l (X(n), I(X(n), φ(Y (n))))|||(2−l)β;[0,s1]

(since Ŷ is the solution on [0, T0])

≤ dX,X(n),β(I(X,φ(Ŷ )), I(X(n), φ(Y (n))))

≤ (1− κ1)
−1C∥∇φ∥C1,1

{
Ĉ3
X1ĈXĈ

3
Ŷ

(
|Ŷ (0)

sk
− Y (n)(0)sk

|

+ |||X1 −X(n)1|||β;[0,s1] + |||X2 −X(n)2|||2β;[0,s1]
)
+ Ĉ4

X1ĈXĈ
2
Ŷ
|Ŷ (1)

0 − Y (n)
(1)
0 |

}
(from (4.9) and (4.23))

= (1− κ1)
−1C∥∇φ∥C1,1Ĉ3

X1ĈXĈ
3
Ŷ
(|||X1 −X(n)1|||β;[0,s1] + |||X2 −X(n)2|||2β;[0,s1]) → 0

(from Ŷ
(0)
0 = Y (n)

(0)
0 and Ŷ

(1)
0 = Y (n)

(1)
0 )

as n tends to infinity. Hence, Eq. (4.24) holds for k = 0. Suppose that Eq. (4.24) holds for each
k = 0, 1, . . . ,K with 0 ≤ K ≤ N∗−2. Set (s, t) ∈ ∆T with sK+1 ≤ s < t ≤ sK+2. By the definition
of {sk}N∗

k=0, there exists i = 0, 1, . . . , N0 − 1 such that ti ≤ sK+1 ≤ s < t ≤ sK+2 ≤ ti+1. Then, for
each l = 0, 1 and u ∈ [0, sK+2 − sK+1],

θsK+1(Ŷ
(l))u = θsK+1−ti(θti(Ŷ

(l)))u = θsK+1−ti(Sφ,ξi(θti(X))(l))u.

Since Sφ,ξi(θti(X)) is the solution on [0, ti+1− ti] driven by θti(X) and starting at ξi = Ŷ
(0)
ti

, we see
from Lemma 4.15 that θsK+1−ti(Sφ,ξi(θti(X))) is the solution on [0, (ti+1 − ti)− (sK+1 − ti)] = [0,

ti+1 − sK+1] driven by θsK+1−ti(θti(X)) = θsK+1(X) starting at θsK+1−ti(Ŷ
(0))ti = Ŷ

(0)
sK+1 . In

particular, θsK+1(Ŷ ) is the solution on [0, sK+2 − sK+1] ⊂ [0, ti+1 − sK+1] driven by θsK+1(X)

starting at Ŷ
(0)
sK+1 . Letting

ZsK+1 := I(θsK+1(X), φ(θsK+1(Ŷ )) and ZsK+1(n) := I(θsK+1(X(n)), φ(θsK+1(Y (n))),
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we have

R1−l
l (X, Ŷ )s,t −R1−l

l (X(n), Y (n))s,t

= R1−l
l (θsK+1(X), θsK+1(Ŷ ))s−sK+1,t−sK+1 −R1−l

l (θsK+1(X(n)), θsK+1(Y (n)))s−sK+1,t−sK+1

(from the definition of θsK+1)

= R1−l
l (θsK+1(X), ZsK+1)s−sK+1,t−sK+1 −R1−l

l (θsK+1(X(n)), ZsK+1(n))s−sK+1,t−sK+1

(since θsK+1(Ŷ ) is the solution on [0, sK+2 − sK+1])

for each l = 0, 1. Hence, using Eqs. (4.9) and (4.23), we get

|||R1−l
l (X, Ŷ )s,t −R1−l

l (X(n), Y (n))|||(2−l)β;[sK+1,sK+2]

= |||R1−l
l (θsK+1(X), ZsK+1)−R1−l

l (θsK+1(X), ZsK+1(n))|||(2−l)β;[0,sK+2−sK+1]

≤ dθsK+1
(X),θsK+1

(X(n)),β(ZsK+1 , ZsK+1(n))

≤ (1− κ1)
−1C∥∇φ∥C1,1

{
Ĉ3
X1ĈXĈ

3
Ŷ

(
|Ŷ (0)

sK+1
− Y (n)(0)sK+1

|
+ |||θsK+1(X

1)− θsK+1(X(n)1)|||β;[0,sK+2−sK+1] + |||θsK+1(X
2)− θsK+1(X(n)2)|||2β;[0,sK+2−sK+1]

)
+ Ĉ4

X1ĈXĈ
2
Ŷ
|Ŷ (1)

sK+1
− Y (n)(1)sK+1

|
}
.

Then, for the proof of Eq. (4.24) with k = K + 1, it suffices to prove that limn→∞|Ŷ (l)
sK+1 −

Y (n)
(l)
sK+1 | = 0 for each l = 0, 1. First of all, from the induction hypothesis and Lemma 4.18 with

Y = Ŷ , uk = sk, and T = sK+1, we already know that

lim
n→∞

|||R1−l
l (X, Ŷ )−R1−l

l (X(n), Y (n))|||(2−l)β;[0,sK+1] = 0 (4.25)

holds for each l = 0, 1. Furthermore, from Ŷ
(0)
0 = Y (n)

(0)
0 = ξ and Ŷ

(1)
0 = Y (n)

(1)
0 = φ(ξ),

|Ŷ (0)
sK+1

− Y (n)(0)sK+1
|

= |(Ŷ (0)
sK+1

− Ŷ
(0)
0 )− (Y (n)(0)sK+1

− Y (n)
(0)
0 )|

= |(Ŷ (1)
0 X1

0,sK+1
− Y (n)

(1)
0 X(n)10,sK+1

) + (R1
0(X, Ŷ )0,sK+1 −R1

0(X(n), Y (n))0,sK+1)|

≤ |φ(ξ)||||X1 −X(n)1|||β;[0,sK+1]s
β
K+1 + |||R1

0(X, Ŷ )−R1
0(X(n), Y (n))|||2β;[0,sK+1]s

2β
K+1

and

|Ŷ (1)
sK+1

− Y (n)(1)sK+1
| = |(Ŷ (1)

sK+1
− Ŷ

(1)
0 )− (Y (n)(1)sK+1

− Y (n)
(1)
0 )|

= |R0
1(X, Ŷ )0,sK+1 −R0

1(X(n), Y (n))0,sK+1 |

≤ |||R0
1(X, Ŷ )−R0

1(X(n), Y (n))|||β;[0,sK+1]s
β
K+1.

Then, from Eq. (4.25), we have limn→∞|Ŷ (l)
sK+1 − Y (n)

(l)
sK+1 | = 0 for each l = 0, 1. Thus, Eq. (4.24)

holds for k = K + 1. Consequently, we obtain the claim of the proposition.

Remark 4.19. The above proof requires the result of global existence of solutions y(n) using the
basic theory of ordinary differential equations. It is uncertain whether there are more direct proofs
of Proposition 4.17 without using the approximate solutions Y (n) = (y(n), φ(y(n))) of Ŷ .
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[1] M. Besalú, D. Márquez-Carreras, and C. Rovira, Delay equations with non-negativity con-
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