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Abstract

In this paper, we develop an alternative approach to the fundamental theory of rough paths
on the basis of fractional calculus. First, using fractional derivatives, we introduce integration
along -Holder rough paths for any roughness 3 € (0, 1] and prove that this integral coincides
with the first level path of the rough integral along geometric -Holder rough paths that were
introduced by Lyons [19]. Next, we generalize the formulation to adapt for the concept of
controlled paths introduced by Gubinelli [9]. As an application, we provide an alternative
proof of Lyons’ extension theorem for geometric S-Hoélder rough paths together with an explicit
expression of the extension map. Finally, using the integration of controlled paths based on
fractional derivatives, we formulate rough differential equations and establish existence and
uniqueness results of solutions to rough differential equations driven by geometric S-Holder
rough paths with 8 € (1/3,1/2].
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1 Introduction

The theory of rough paths introduced by Lyons [19] has produced a framework of multidimen-
sional controlled differential equations driven by non-smooth functions, known as rough differential
equations. These differential equations have led to useful methods for studying stochastic calcu-
lus; in particular, it has enabled us to take a pathwise approach to classical stochastic calculus
and provided a convenient tool for the study of a large class of stochastic processes that are not
semimartingales, such as fractional Brownian motions. After this revolution, several different ap-
proaches have been proposed for the study of the theory of rough paths (e.g. [4,5,7,9-11,13]).
Among other things, controlling rough paths introduced by Gubinelli [9] gave a natural exten-
sion of rough integration, the integration of 1-forms along rough paths by Lyons; this extension
yielded another formulation of rough differential equations. Recent researches have shown that the
rough differential equations in the sense of Gubinelli [9] have produced new methods for studying
stochastic partial differential equations as well as stochastic differential equations; indeed, it has
provided appropriate frameworks for a number of classically ill-posed stochastic partial differential
equations, including Burgers type equations and the KPZ equations.

On the other hand, Hu and Nualart [13] introduced another different approach, which relies on
fractional calculus. They defined integration along Holder continuous functions of order § € (1/3,
1/2) generalizing Riemann—Stieltjes type integrals for more regular functions in terms of fractional
derivatives by Zéhle [25]. This integral can be regarded as an alternative definition of rough
integrals and provides an additional tool to study multidimensional controlled differential equations
driven by Holder continuous functions; for example, Besald and Nualart [2] made use of this concept
for a study of stochastic differential equations driven by fractional Brownian motions with Hurst
parameter H € (1/3,1/2). Furthermore, Besali, Marquez-Carreras, and Rovira [1] applied this
integral to a study of stochastic delay equations driven by fractional Brownian motions. The
results of [2,13] and [1] with 5, H € (1/3,1/2) can be considered as extensions of their previous
works [12,22] and [3] in the case 3, H > 1/2. Here it should be noted that, in the case 8, H > 1/2,
there is no need to use the theory of rough paths because of sufficient regularities of the functions
under consideration. This approach is beneficial in that the integration is not based on any
approximation arguments, in contrast to the rough integration of Lyons [19] as the limit of a type
of Riemann sums, and this explicit formula straightforwardly leads to quantitative estimates of the
integration. Therefore, we expect further developments in this direction to provide sophisticated
access to the fundamental theory of rough paths.

Motivated by these preceding studies, this paper develops the approach by Hu and Nualart [13]
to more general rough paths. Treating S-Holder continuous functions with g less than 1/3 is much
more involved since we have to consider rough paths up to the Nth level path, where N is the
unique integer such that N < 1/8 < N + 1. We first define the integral along S-Holder rough
paths for any roughness 5 € (0, 1] using fractional derivatives (Definition 3.1), which is explicitly
given by ordinary Lebesgue integrals. The definition is entirely new and generalizes preceding
studies [13,25]. To ensure the definition is reasonable, we prove that the integral is consistent with
the Riemann—Stieltjes integral along smooth curves (Theorem 3.3) and is a continuous functional
with respect to the S-Holder rough path metric (Theorem 3.4). As a result, this integral coincides
with the first level path of the rough integral along geometric S-Holder rough paths in the sense
of Lyons [19] (Theorem 3.5).

One of the key ingredients for the definition of our integral is the integration by parts of



fractional orders as described by Hu and Nualart [13, Theorem 3.3]. Due to less regularity of
functions, the integrand has to be decomposed into the regular part and the remainder part for
the integration to make sense. The latter is then replaced by the higher level path of the rough
path. In this procedure, we have to take care of additional terms that successively arise from
integration by parts formulas and the multiplicative property of the rough path. For this reason,
the resulting formula involves some complicated terms. Once we have explicit expressions for the
integral, however, it is not difficult to provide quantitative estimates for proving the continuity of
the integration operator.

We next generalize the integral of 1-forms along rough paths introduced in Definition 3.1
to that of controlled paths. The concept of controlled paths was introduced by Gubinelli [9] to
produce a more general framework of rough integrals and differential equations. This generalization
has an application to Lyons’ extension theorem (also called the first fundamental result in the
theory of rough paths) as follows. Let X = (1,X',...,X") be a B-Hélder rough path, that
is, a multiplicative functional of degree N with finite S-Holder estimates (see Eqs. (2.3) and
(2.4)). Lyons’ extension theorem states that for any integer k¥ > N + 1, the rough path X = (1,
X1, ..., X") extends to the unique multiplicative functional of degree k that possesses 3-Holder
estimates (see [19, Theorem 2.2.1] for the exact statement of the claim). This extension map has
been constructed by a discrete approximation similar to the Riemann sums [19]. By using our
integration, the extension map induced by geometric Holder rough paths is expressed explicitly by
ordinary Lebesgue integrals using fractional derivatives (Definition 3.17). This result can also be
regarded as an alternative proof of Lyons’ extension theorem for geometric Holder rough paths.
Gubinelli also proved Lyons’ extension theorem in his framework (cf. [9, Proposition 10]), but our
approach is different from his and the results are not comparable.

Lastly, we formulate rough differential equations driven by S-Holder rough paths with 5 € (1/3,
1/2] in our framework (Definition 4.1). Our definition of the solutions is consistent with that of
Gubinelli [9]. We first solve rough differential equations driven by geometric S-Holder rough
paths on a small interval by a classical fixed point argument in a suitable complete metric space
of controlled paths (Proposition 4.16). Next, concatenating the local solutions, we construct a
solution on the whole interval and then show uniqueness of the global solutions. As a result, we
establish global existence and uniqueness of solutions to rough differential equations driven by
geometric S-Holder rough paths (Theorem 4.2). For the fixed point argument, it is essential to
provide quantitative estimates of the integration of controlled paths. This follows easily from the
explicit formula of our integration. Accordingly, our arguments are more straightforward than
the original ones of Lyons [19] on the basis of discrete approximations. The main difference with
the formulation of Hu and Nualart [13] is described as follows. Their definition of the solutions
consists of a closed system of three integral equations and these are all defined by ordinary Lebesgue
integrals using fractional derivatives (see Eqs. (4.3), (4.4), and (4.5) of [13]), while ours is given by
a closed system of only two equations. One of them is an integral equation and is defined by the
integral of controlled paths based on fractional derivatives, but another equation is simply defined
without any integrations and can be regarded as the derivative of the former integral equation
with respect to (the first level path of) the rough paths. In this sense, our formulation is more
concise than that of Hu and Nualart.

The remainder of this paper is organized as follows. The basic framework is arranged in
Section 2. In Subsection 2.1, we provide a brief review of the concepts of rough paths and fractional
calculus. Our version of Lyons’ extension theorem is also described here. In Subsection 2.2, we



introduce some fractional operators and prove their continuity properties for later use.

The results concerning the rough integration are arranged in Section 3. In Subsection 3.1,
using the fractional operators, we define integrals of 1-forms along rough paths and state the
main theorems. In Subsection 3.2, we first provide a definition of controlled paths and their
examples. We next define integrals of controlled paths along rough paths and state some of their
properties. The application to Lyons’ extension theorem is also described. The proofs are given
in Subsection 3.3.

We discuss rough differential equations in Section 4. In Subsection 4.1, we formulate the
concept of solutions to rough differential equations and state the theorem on existence and unique-
ness results of the solutions. For the proof, we prepare some basic estimates and lemmas in the
subsequent subsection. The last subsection is devoted to the proof of the main theorem.
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2 Framework

2.1 Preliminaries

In this subsection, we briefly review some concepts of rough paths [6,8,17-21] and fractional
operators [23,25]. Our version of Lyons’ extension theorem is also described.

2.1.1 Notation

Throughout this paper, C' denotes a positive constant, which may change line by line. Let V' and
W denote finite-dimensional normed spaces with norms || - ||y and || - |, respectively. Although
the fundamental theory of rough paths is valid for suitable infinite-dimensional Banach spaces,
we consider only finite-dimensional cases in this paper to avoid technical difficulties that are not
relevant to our theme. We use L(V, W) to denote the set of all linear maps from V to W. Let U
be a subset of V. We use C'(U, W) to denote the space of all W-valued continuous functions on U.
Let A be a real number with 0 < A < 1. We use C*H/(U, W) to denote the space of all W-valued
A-Hélder continuous functions on U and define the corresponding semi-norm by ||- || x-ms1;07, namely

f(@) — fW)llw

flhmsy = sup WD =SWlw
z,yel, z#y H.%' — y”v

We also use || - ||oo;7 to denote the supremum norm of a W-valued function on U, namely

[ llocir == sup |[ £ (z)]lw-
zelU



We will omit U from the notation if there is no ambiguity; that is, we write ||f||x.zs1 and || f|loo
instead of || f||x-mesiu and || f||loo;t, respectively. For a subset Uy of U, we denote the restriction of
f on Uy by flvy. We can then write ||flssry and | fllsozn for | floo sy and [1£lvollsozn.
respectively. Let [ be a non-negative integer. We denote by C“*(V,W) the space of all W-
valued [-times continuously Fréchet differentiable functions on V' whose Ith derivative is A-Holder
continuous on V. For f € C(V,W) such that f, Vf,...,V'f are all bounded on V in addition,
we set

- k l
IFllou = ( max 19" Flloe) VI9" sy (1)

Here, pV ¢ denotes the maximum of real numbers p and g. We also use p/A ¢ to denote the minimum
of p and ¢. Furthermore, let |p| and [p]| denote the largest integer less than or equal to p and the
smallest integer more than or equal to p, respectively.

Let T denote a positive constant. This constant will be fixed throughout Sections 2 and 3.
The simplex {(s,t) € R? : 0 < s < ¢ < T} is denoted by A7, which is a closed subset of R%. Let
C1(V) and Cy(V) denote C([0,T],V) and C(Ar,V), respectively. For f € C1(C) and g € C2(C),
we define fg € C2(C) and gf € Co(C) by

(fg)s,t = fsgst and (gf)s,t = gstft for (s,t) € Ap. (2.2)

For g € Co(V'), u > 0, and (a,b) € Ap with a < b, we set

ol e sup J8sellv
;]a,b] a<s<t<b (t — S)N

and write [|g[l,, instead of [lg[l,;;jo,7r7- Furthermore, we set Cy (V) := {g € Ca(V) : ||gl|,, < oo} and
CMV) := N[0, T, V).

Hereafter, E and F denote the Euclidean spaces R? and R® respectively and | - | denotes the
Euclidean norms of E, F, and their tensor spaces. For a positive integer k, T(k)(E) denotes
@;?:0 E®7 and we define the norm on T (E) as

k
lallzo g =Y la’| fora=(a"a,...,a") € TW(E).
j=0

The set of all X = (X0, X',..., X*) € C(Ar,T®)(E)) such that X2, =1 for all (s,t) € Ap is
denoted by Co(Ar, T®(E)).

2.1.2 Rough paths and Lyons’ extension theorem

Let k be a positive integer. We say that X = (1, X',..., X*) € Co(Ar, T®(E)) is a multiplicative
functional of degree k in E if

J
> Xia® X=X, (2.3)
i=0



for each j =1,...,k and s,t,u € [0,T] with s < u < t. Let 5 be a real number with 0 < g < 1.
We say that X = (1, X',..., X*) € Co(Ar, T®)(E)) has finite 3-Holder estimates if

sup LM < 00 (2.4)
o<s<t<T (t — 8)7° '
for each j = 1,...,k. We denote by C075(AT,T(]“)(E)) the space of all X = (1, X',..., X*) ¢
Co(Ar, T (E)) with finite S-Holder estimates and define the distance on Cy s(Ar, T®)(E)) as

d,B,k(XaX) = lrél]aé(k H‘X] — Xj‘”j/j;[g,T] for X,X € CQﬁ(AT,T(k)(E))

Let z € C{(E). We set
X!, = / day, ® - @ day, (2.5)
s<uy <---<u; <t

for each j = 1,...,k and (s,t) € Ap. Then we see that X = (1,X',..., X*) is a multiplicative
functional of degree k in E with finite 1-Holder estimates and we call this the step-k signature
of z. Let N denote [1/8]. A multiplicative functional of degree N in E with finite S-Holder
estimates is called a S-Holder rough path in E. A step-NN signature is called a smooth rough path
and the elements in the closure of the set of all smooth rough paths with respect to the distance
dg n are called geometric -Holder rough paths. The spaces of all S-Holder rough paths, smooth
rough paths, and geometric S-Holder rough paths in E are denoted by Qg r(E), SQgr(E), and
GQpg1(E), respectively. We will omit 7" from the notations Qg r(E), SQgr(F), and GQg r(E) if
there is no ambiguity. The following property of geometric 3-Holder rough paths X = (1, X1, ...,
XN) e GOp(E) is used in Section 3: for each j =1,...,k and (s,t) € Ar,

the symmetric part of Xg’t is equal to (X} ,)%7/;!. (2.6)

Let us now introduce our version of Lyons’ extension theorem.

Theorem 2.1 (cf. [19, Theorem 2.2.1]). Let X = (1,X',...,X") € Qg(E). For any integer
k > N + 1, there exists a unique extension of the rough path X to a multiplicative functional of
degree k in E with finite S-Holder estimates.

In [19, Theorem 2.2.1], rough paths X of finite p-variation with p := 1/ are treated and the
exact claim includes quantitative estimates for the extension of X by using control functions w.
For Theorem 2.1 and the alternative proof of the theorem for geometric $-Holder rough paths
X € GQp(E) given in Section 3, we consider only a particular case where w is given by w(s,
t) = C(t — s) for some constant C for simplicity and are not concerned with uniform estimates for
the continuity of the extension map.

2.1.3 Fractional integrals and derivatives

Let a and b be real numbers with a < b. For p € [1,00), LP(a,b) denotes the real LP-space on the
interval [a,b] with respect to the Lebesgue measure. Let f € L'(a,b) and a € (0,00). The left-



and right-sided Riemann—Liouville fractional integrals of f of order « are defined for almost all
t € (a,b) by

[T = g [ (=97 (s)ds

ING))
and
= / ’ ~1
I f(t) := s—1)*""f(s)ds,
1) =S [ =0
respectively, where (—1)7% := e~ and I'(a) denotes the gamma function, namely I'(a) :=
o e dr. We use I?H (LP) to denote the image of LP(a,b) by the operator 1<, . Here,

b—) (b-)
we note a simple criterion for functions to belong to I%, (LP). This criterion is used frequently
)
in Section 3 without being explicitly noted: if f € C*H0([a,b],R) with @ < A < 1, then f €

IS¢ (LPYN I (LP) for any 1 < p < co. Let f € I%, (L') with 0 < @ < 1. The left- and right-sided
(b-)

Weyl-Marchaud fractional derivatives of f of order « are defined for almost all ¢ € (a,b) by

D2 f(t) = ml_a)<t_a /ft_ g s> (2.7)

Dy f(t):= Fg1_)c;)< /f a+1 > (2.8)

respectively. The integrals above are well-defined for almost all ¢ € (a,b). The following three
formulas are important in the subsequent sections. The first is the composition formula:

D%, (D, f)=D%Ff (2.9)
=) (b-) (b-)

and

for f € I‘HB(Ll) 0<a<l1,and 0 < 8 < 1 with a + 8 < 1. The second is the basic integration

by parts formula of order a:

b b
-1 [ D s de = [ 105 gt de (2.10)

for f e I¢ (LP), g€ If (L9),0<a<1,1<p<oo,and 1< ¢ <oowithl/p+1/¢ <1+ . The
third is also regarded as an integration by parts formula of order a.. Let f € CM10!([q,b], R) and
g € CHH8([q b],R) with A + p > 1. Then, the Riemann-Stieltjes integral fab f(t)dg(t) exists [24]
and is expressed as follows: for a € (1 — pu, \),

b b
/ f(t)dg(t) = (—1)0‘/ Dg far () Dy~ go-(t) dt + f(a)(g(b) — g(a)) (2.11)

b
-1 [ Dy fOD} g () dt, (2.12)

where fo1(t) := f(t) — f(a) and gp—(t) := g(t) — g(b). For proofs of Egs. (2.11) and (2.12),
see [25, Theorem 4.2.1 and Proposition 2.2].



2.2 Some fractional operators

In this subsection, we introduce some variants of the fractional derivatives and integral operators
for later use. Throughout this subsection, we will assume the following: (a,b) is an element of Ap
with a < b, 8 is a real number with 0 < g <1, k is a positive integer, and « is a real number with
0 <y < min{l/k,5}. We also recall V is a finite-dimensional normed space with norm || - ||y.

2.2.1 Definition of the operators and their properties
Let 4> 0 and ¥ € C5(V). For a € (0,0 A 1), we define D¢, ¥ and Dy ¥ as D¢, ¥(a) := 0,

Dy V(u) := ra 1_ ) <(u\p_a2)a + oz/au (u:Ij:);LaH dv) for u € (a,T] (2.13)

and Dy ¥(b) := 0,

(_1)1+a \I’Tb /b \Il'rv

Dy W(r):= : —_— f . 2.14
b W(r) I —a) (b—r)a+a : (U_T>a+1dv or r € [0,b) (2.14)

It is straightforward to show that, for each u € [a,T] and r € [0, 0],
D2, <Lty u-a 2.15
Dar ¥ (w)llv < = )M_a||| i1, (w0 = @) (2.15)

and

DY J < 1 H \\ b H—a 2.16
IDE VO < iy DVt (0= 10 (2.16)

If U € C3(V) is of the form Wy, = () — 1(s) for some ¢ € C(V) with 0 < A < 1, then the

identity D ot v = D¢ ot w at holds for a € (0, ) from the definition. Using these functlons we
-) (b— -)
further 1ntr0duce the followmg

Definition 2.2. Let X = (1, X',...,X*) € Cog(Ar, T®(E)) and {y}F_, be a set of positive
numbers that satisfy v; < 8 foreach I =1,...,k and Zle v < 1. Then, for each j =1,...,k, we
define a function R, X on [0,b] as follows: for each r € [0, ],

RILX(r) :== Dy X'(r)

and
R’“""’WX( - DZZ NZXJ ZDZz i1 XJ ’®R71""’%X)(7’)
b— b— -

for j = 2,...,k, inductively. If v1,..., v are all the same value v, we write R,()j_’V)X for R;TMWX-
Specifically, Rg&W)X(T) = DZ,Xl(T) and

R[()J;W))(( ) DJ’YX] ZrD(J Z)V(X] 1®R(%7) )(7“)
=1
for j=2,...,k.



We note that Rl(iw X is well-defined by the assumption that 0 < v < min{1/k, 3}. Further-
more, with regard to the second terms of R, X (r) and Rl(f_ﬁ)X(r),

Zj:i Vi 1—1 ooy Yi
IDb,l +1 Z(XJ Z®R2’i "/X)(,r) —

-1 IED DAY J b X7 @RIV X (p
( ) Zl_z+1 7[/ s b ( )dU (2'17)
s

F(l - E{:i—i-l 71) (U — T)Z{:i+1 v+1

and

DYTI(XIT @ R X)(r) =

VG s ng;i@)R(m)X
(=1) (j 2)7/ : b X(v) " (2.18)

P = (=) (v — )=l
hold for each i = 1,...,j — 1 from Egs. (2.2), (2.14), and R} X (b) = Rl()i_’V)X(b) =0.

Definition 2.3. Let X = (1, X',..., X" ¢ CO,B(AT,T(’“)(E)), j=1,...,k, 4 areal number with
f>1—jy and ¥ a function in Cy (L(E®U~Y, L(E, F))). An F-valued function Z%"(¥) on A is
defined as

. . t . .
TI(W)s = (~1)19 / DI W()RIV X (w) du for (s,t) € A (2.19)

These functions possess the following continuity properties.

Proposition 2.4. In the setting of Definition 2.3, the map ¥ — Igf(\ll) is bounded linear from
CH(L(E®U=Y L(E, F))) to Cgﬂﬂ(F); in particular, it is Lipschitz continuous.

Proposition 2.5. In the setting of Definition 2.3, the map (1, X%, ..., X7) Igp(‘li) is locally
Lipschitz continuous from Co (A7, TU)(E)) to chIP(F).

We will prove them in the remainder of this subsection.

2.2.2 Proof of Propositions 2.4 and 2.5

Let X, X € Cog(Ar, T®(E)). For each j = 1,...,k, we set K]g := maxy<i<; | X[ig;[a,p) and

a,

K(J(ng = maxi<i<j [ X ligifa)-
Lemma 2.6. Under the above notation and assumptions, for each j =2,...,k,

IREVX = R Kllociany < O+ CUEY Y+ K6 pmas X = Xl o (b — a0,

1<i<j
(2.20)
where C = (8/(8 —~))I'(1 —~)~'. If X = (1,0,...,0), then, for each j =2,... .k,
IR X ooy < OO+ K, VP KD (b —ap o). (2.21)

10



Proof. We prove Eq. (2.20) by induction on j. We set r € [a,b] with a < r < b since Rl()j_’v)X(b) =
Rlsj_’wf((b) = 0 holds from the definition. From Eq. (2.18),

REVX (1)~ REVX (1) < DY X2(r) — DY X2(0r)]

~ bIXL, — XL IR X (v)]
+ / ) i +1 d/U
T1—7) /) (v—r)7

L /b XLIR X () - RV X @)
o=/ (v =+

=: A; + Ay + As.

From Eq. (2.16), we have

Ars (1 i 27) 2;_62,y X% = X2[lagyrg (b — 7)*P 77 < CIX? = X |lapifpy (b — r)*P)
and
Ay < o /b( nP o X - X g : X gy (b — )P
NGV (1 — )5 ~y
= F(IV_ ) (bgi)ﬁ IX" = X5 CIX g (b — )77
<c? = XM =),

In a similar way, we get
2y v1 1 %1 2(8—
Az < CPIX g1 X = XM gy (b — 1) 27,
By combining these estimates, we obtain

Ay + Ay + A3 <C(1+ (C(] o)) masx X1 = X g4y (b — )P0,

1<I<2

Hence, Eq. (2.20) holds for j = 2. Suppose that Eq. (2.20) holds for each j = 2,...,J with
J < k — 1. By using the induction hypothesis and calculations similar to those shown above, we
have

‘RI()JJrl,'y)X(T) . R(J+1,7)X(T)|
J J e

- b XJ—i-l—i _ XJ-&-l—i R(Zv’)’)X
+ J +1 Z)'Y / | v v || b— (U)| dv
ZZ < T'(1—(J+1-1)y) (v — r)(JH1=i)y+l

+

St XLTIRY X @) - RV X @)
PA-(J+1=1)) (v — ) (THI=D)+
< OIX7T = XTI ganygyprp (b — ) FDED)
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J
+ Z {CWXJHZ — XTI iy gy (b — ) HEDE)
=1

x O(1+CKY DY K (b — )0

)

+ CIX T amippypr (b0 — )T
X C(l + C(K"('»lb_l) + K’,(‘j’b_l)))lfl 1H<l?§(z ”|Xl . Xl‘”lﬁ;[ryb} (b . T)i(bT)}

(from the induction hypothesis)

g XU R (b — ) THDE=)
_Clgrlnga}il Il llug;r5 (0 —7)

J
i o J+1—i i—1 S (i—1)\yi—
(1400 (KR 12 im0+ OO + R
1=1

- - _ D (B—)
<C o X'~ Xl b 1)

J
x (1 + O + K>S 1+ O(K') + I?f,,‘{,)))"*)
i=1
_ () | g (y\J I 5l AT+ (b—r)
CU+ O + RN max 1X' = Xl (b — )T,
as desired. Therefore, Eq. (2.20) holds for j = J + 1. O

Proof of Propositions 2.4 and 2.5. We first prove Proposition 2.4. The linearity of I_J)? follows
immediately from the definition. From Eq. (2.21) and the relation C < /(8 — ), we have

(.777) . ) i—1 . ,B_
IR Xl < Casn 1+ 1o IX g™ oo X g0 — a0, (222)
where Cj 5. := (8/(8 —7))’. Then, from Eq. (2.15), for each (s,t) € Ap with a < s <t <b,

T (0) st < 1D oot IRE X [|oorfer (£ — 5)
| | | i
< 01757’77u||‘\11|”u;[s,t](1 + 1%?%.}31 |||XZ|||i,B;[s,t])] 112?5}{3 H‘XZW’L'B;[S,I‘/] (t - S)‘LL J y

where Cj .., = (u/(n — (1 = 59)))L(j7)"*C; 5. Therefore,

IZX (O)llnsision < CopornllPligon 1+ max 1Xiggon) ™" max IXliggas.  (2:23)

1<i<j

It is also straightforward to show that Ig?(\ll) belongs to Ca(F'). Hence, Ig?(‘l/) echti A(F) and
7% is bounded. Thus we obtain the claim of Proposition 2.4. We next prove Proposition 2.5 in a
similar way. From Eq. (2.20) and the relation C < /(8 — 7),

||RI()]—7’Y)X - RI()JIY)XHOO;[a,b}
| | _ . R (o
< Cipa (L max X ligan + max 1X iggon) ™" max IX = X'lliggay (b —a)7

(2.24)
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and from Eq. (2.15),

IZ37 (¥) = T (9) 10t

j—1 i 1
< CopalWlugay (0 + o X g+ 1 1K i)™ oo IX7 = X'l
(2.25)

This yields Proposition 2.5. 0

3 Integrals along rough paths via fractional calculus

3.1 Integration of 1-forms

We introduce our definition of integrals of 1-forms along rough paths as well as the main theorems
of this section. Throughout this subsection, we will assume the following: (a,b) is an element of
Ar with @ < b and f is a real number with 0 < § < 1. We also recall N = |1/3] and V is a
finite-dimensional normed space with norm || - ||y-.

3.1.1 Definition of the integral

We introduce two symbols for the definition of our integral. For X = (1,X*',..., X%") € Q3(E)
and £ € E, we define X1¢ ¢ Cf(E) as

X\ =6+ X3, fortelo,T]. (3.1)

Let [ be an integer with 0 <[ < N — 1 and A a real number with 0 < A < 1. For f € CYNE,V)
and x € CIB(E), we define a V-valued function R'(f,z) on Ar as

1

l
R(f,a)ss = fla) =Y ﬂvif(xs)(mt —25)%" for (s,t) € Ar.

i=0

Then, R'(f, z) belongs to C§l+/\)’8 (V'); indeed, it is easy to prove that there exists a positive constant
(), such that
IR (f.) Bt (3:2)

We are now ready to define the integral of 1-forms along X.

Definition 3.1. Let X € Qg(F) and £ € E. Let A be a real number with 1/ — N < A <1 and
¢ € CN=VNE,L(E, F)). Take v such that (1 — A3)/N < v < 8. Then, for each (s,t) € Ap, we
define IJ(X,§)st € F as

N N
(X, sp = V" o(XIPOXT 4+ > TRV(RN (V" 0, X14)),. (3.3)
n=1 n=1

Remark 3.2. Let us make a few comments about the definition above.
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(1) The inequality 1 — ny < (N —n + \)S follows from the assumption (1 — A\3)/N < v < .
Then, Zy" (RN (V" 1y, X1%)) is well-defined from Eq. (3.2) and so is I} (X, £). Moreover,
we see from Proposition 2.4 that (X, ) belongs to Cg(F).

(2) If N =1, then I}(X, €) 4 coincides with the right-hand side of Eq. (2.11) with f(¢) = gp(th’f),
g(t) = Xg, and o = 1 —~. Hence, the equality I2(X,&)sp = fab <p(Xt1’§)dX&t holds. In
particular, this value is independent of the choice of . If N > 2, from Theorems 3.3 and 3.4
stated below, IJ(X, &), is independent of the choice of v for X € GQg(E). However, it is
uncertain whether such a property holds for non-geometric Hélder rough paths X € Qg(F).

(3) Although the definition of Rgf’W)X looks complicated, as seen in Subsection 3.3, this term
naturally comes out from the integration by parts of fractional orders and the multiplicative
property of the rough path as described by Hu and Nualart [13, Theorem 3.3]. Indeed,
if N = 2, the equality R\ X = D} (D}_X?) holds for X € SQ4(E) as scen from the
proof of Proposition 3.30. The right-hand side of this equality is also well-defined for every
X € Qg(F) and this appears in the integral introduced by Hu and Nualart [13, Definition 3.2].
On the other hand, the left-hand side of this equality and its generalizations Rgf”)X in our
integration appear for the first time.

3.1.2 Statement of main theorems

The following are the main theorems of this subsection.

Theorem 3.3. Let X € SQp(E), € € E, and ¢ € CN"VY(E,L(E,F)). Take v € ((1 —
B)/N,B). Then, for each (s,t) € Ap, I}(X,&)ss coincides with the Riemann—Stieltjes integral
Ji p(Xu®) dXG,.

S

Theorem 3.4. Let 0 < A < 1 and ¢ € CNNE, L(E, F)) such that V,... VN are bounded on
E. Take~ € ((1—B)/N,B). Then, the map (X, &) — 1}(X, &) is locally Lipschitz continuous from
Q3(E) x E to C3(F).

We prove Theorems 3.3 and 3.4 in Subsection 3.3. From these theorems, IJ(X,¢) is closely
related to the rough integral introduced in Lyons [19]. We refer to Section 4.3 of [20] for the
definition of the rough integral and the details of the construction. Let X € GQg(FE), £ € E, and
1/B—N < X< 1. Let p € CN-YNE,L(E, F)) such that ¢, Vo,...,V¥ "1y are bounded on E.
Then the rough integral fgo(Xi’g) dX is defined and the map X — fgo(Xi’g) dX is continuous
from GQg(E) to GQg(F) [20, Definition 4.9 and Theorem 4.12]. Moreover, if X € SQg(E),
then, for each (s,t) € Arp, the first level path of the rough integral fstcp(X&’g)dX 1 coincides
with the Riemann—Stieltjes integral f; @(X&’E) dX(%,u. Using these properties of [ @(Xi’g) dX and
Theorems 3.3 and 3.4, we obtain the following;:

Theorem 3.5. Let X € GQp(E), £ € E, and 0 < A < 1. Let p € CNNE, L(E, F)) such that o,
Ve,...,.VN¢ are bounded on E. Take v € ((1— B)/N,B). Then, for each (s,t) € A, IZ(X,€)ss
coincides with the first level path of the rough integral fst cp(X&’E) ax?t.

Remark 3.6. Let us make a few conceptual comments about our integration.
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(1) Because the definition of our integration is based on fractional derivatives, it is essential for
the rough paths to possess the finite Holder estimates (2.4). In the usual integration theory
of rough paths, the finite p-variation condition for p > 1 is imposed on rough paths instead
of (2.4), which are called p-rough paths. The space of p-rough paths is a complete metric
space with respect to the p-variation norm and this space contains the space of S-Holder
rough paths with p = 1/5. On the other hand, p-rough paths are identified with g-Holder
rough paths via re-parameterizations. In this sense, our framework is not very restricted as
compared with the usual theory of rough paths.

(2) The identification mentioned above is also valid for geometric p-rough paths. More precisely,
given a geometric p-rough path X in F, there exists a continuous increasing function 7 from
[0, 7] to itself such that X € GQg(E), where X, := Xr(s),r(t) for (s,t) € Ap. Then, from
Theorems 3.3 and 3.4, for each (s,t) € Ar, LZ(X,{)S,,: coincides with the first level path
of the rough integral fst (p(Xi’g) dX?' along p-rough path X and the value of I2(X,€)s; is
independent of the choice of re-parameterization 7. Similarly, I} (X' ,€)st is well-defined for
non-geometric p-rough paths X and the corresponding re-parameterizations. However, it is
unknown whether 17 (X,¢) s,t Possesses such two properties.

(3) The relation to the integral introduced by Hu and Nualart [13] is stated as follows. For
feC(F,L(E,F)), we define fe C(E®@ F,L(E® F,E®F)) as

A~

f(z,y)(u,v) := (u, f(y)u) for (z,y),(u,v) € E® F.
Let B € (1/3,1/2), £ € E® F, and Z € GQg(E @ F). Take v € ((1 — 8)/2,5). Then, for

sufficiently smooth f, the projection of I}(Z, é)a,b € F @ F onto F'is identical to the integral

in Definition 3.2 given by Hu and Nualart [13]. This follows from Theorems 3.3, 3.4, and the
corresponding results [13, Theorem 3.3, Propositions 3.4, and 6.4]. However, it is not known
whether such identification is true for non-geometric Hélder rough paths Z € Qg(E & F).

3.2 Integration of controlled paths and its application

In this subsection, we introduce integrals of controlled paths along rough paths. This is a gener-
alization of the integral introduced in Definition 3.1. As an application, we provide an alternative
proof of Lyons’ extension theorem for geometric Holder rough paths together with an explicit ex-
pression of the extension map. Throughout this subsection, we will assume the following: (a,b) is
an element of Apr with a < b, § is a real number with 0 < 5 < 1, k is a positive number, and +y is
a real number with 0 < v < min{1/k, 5}.

3.2.1 Controlled paths

Let X = (1, X',...,X*) € Co5(A7, T®)(E)). We say that a k-tuple Y = (YO vy [y k-1)
is a path controlled by X with values in F' if Y satisfies the following two properties:

(1) for each I =0,...,k—1, YD € C/(L(E®, F));
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(2) for each 1 =0,...,k—1, 14X, Y) e ¥ (L(E®, F)), where

k—1-1
B0V = Y0 = 30 VX o 1) € A 34
1=0

It is sometimes referred to as a controlled path for X € Cj g(Ar, T(k)(E)). The space of all paths
controlled by X € Cy g(Ar, T(k)(E)) with values in F' is denoted by Q Brk 7 (F), which is a normed

space under the norm Y — Z ]Y | + 1Y x

X,8,k:(0,7]- Here, in general, HYHX/g a3 18 defined by

k—1
Y llx phifary = O MR HX ) hepan) for Y € QU5 (F). (3.5)
=0

If there is no ambiguity, we omit 7" and [0,7] from the notations Q?T(F) and [|Y||x 8,%:(0,7]5
respectively. We also write ||Y'|| x g,[q,5) instead of | Y| x 5 n:a,p)- Although the highest level path X k

is not necessary for our definition of paths controlled by X € Cys(Az, T (E)), we need it in
applications. The multiplicative property (2.3) is not assumed for X € Cp g(Ar, T®)(E)) in the
definition of paths controlled by X. In the following examples, however, such properties play an
essential role in confirming property (2) in the definition above.

Example 3.7. Let ¢ € CN"VYE,L(E,F)) and X = (1,X%,...,X") € GQg(E). For € € E, we
define X1¢ ¢ Cf(E) as in Eq. (3.1). For each 1 =0,...,N — 1, we set Y(!) € CB(L(E@’Z,L(E,F)))
as

v\ = Vip(x ) for t € [0,T]. (3.6)
From the property (2.6) and the symmetry of the derivatives of ¢,
RY X, Y)gp = RV (Wi, X1E),, (3.7)
holds for each [ =0,..., N — 1 and (s,t) € Ap. Then, from Eq. (3.2), we have

IR Y sl < Call VY lhma XIS (8 = )07,

Thus, Y = (Y@, y® . y(N=1) belongs to Q%" (L(E, F)). In addition, if 1/3 < 8 < 1, then
Y belongs to Q%N(L(E,F)) for every X € Qg(E).

Example 3.8 (cf. [9, Proposition 4]). Let 1/3 < 8 < 1/2, X = (1, X', X?) € Cy5(A7, T?(E)),
Y = (YO, y) ¢ Q%Q(F), and ¢ € CYY(F,L(E, F)) such that V¢ is bounded on F. We set
oY) € C(L(E, F)) and o(Y)") € C/(L(E, L(E, F))) as

p(V) = (") and (V)Y = V()Y fort e [0,7].

Then, o(Y) := (o(Y)©, o(Y)M) belongs to Q§<’2(L(E, F)). For the proof, see Lemma 4.3.
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Example 3.9. Let X be a multiplicative functional of degree k in E with finite S-Ho6lder estimates.
For each 1 =0,...,k—1, we set Y € C/(L(E®, L(E, E®*+1)))) as

Y )(€) = (X on eE forte0,T), (3.8)

where 7 € E®! and ¢ € E. From Eq. (2.3), for each [ = 0,...,k — 1 and (s,t) € A,

k—1-1
Ry X YY) =Xg = Y. X exi, = xb (3.9)
1=0

Then, from Eq. (2.4), Y = (Y@, YD . vy belongs to Q%" (L(E, ES(k+D)).

The construction of multiplicative functionals with finite S-Holder estimates in Example 3.9 is
used in the proof of Lyons’ extension theorem (Theorem 3.20). The controlled path in Example 3.8
is used in the definition of rough differential equations (Definition 4.1).

3.2.2 Definition of the integral and its properties
We assume that (1 — 3)/N < < 3 in this subsection. We set

Mg (B, F):={(X,Y): X € Cop(Ar, T™(E)),Y € QRL(F)}

equipped with a distance

N
ma((X,Y),(X,7)) = dan(X, X) + DY) = VY| +dy 5 4(Y,Y) (3.10)
j=1

for (X,Y),(X,Y) € Mgr(E, F). Here,

N
. N N -
dy 3 5(Y,Y) =Y IR (X,Y) = R (X V)l vy nysfon- (3.11)
j=1
We define the subset Sz (E, F) of Mg (E,F) by Sgr(E,F) = {(X,Y) : X € SQzr(F),Y €
Q;Z\CIF(F)} and let Sg r(E, F') denote the closure of Sz r(E, F') with respect to the distance mg. We
will omit 7" from the notations Mg r(E, F), Sgr(E,F'), and Sgr(FE, F) if there is no ambiguity.
In Example 3.7, if ¢ is sufficiently smooth and all derivatives are bounded on E, then the pair
(X,Y) belongs to Sg(E, L(E, F)). This is proved by straightforward calculation. In Example 3.8,
if the pair (X,Y) is in Sg(E, F) and ¢ EEQ’l(E,L(E, F)) such that Vi and V2p are bounded
on F, then the pair (X, p(Y")) belongs to Sz(E, L(E, F)). See Proposition 4.7 for the proof. The
following is our definition of the integral of controlled paths along rough paths.

Definition 3.10. For (X,Y) € Mg(E,L(E,F)), an F-valued function I7(X,Y’) on Ar is defined
by

N N
I(X,Y)sp =Y YO UXE + Y TRV(RN (X, Y))sy for (s,t) € Ar.
n=1 n=1
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We note that the inequality 1—ny < (N —n+1)8 follows from the assumption that (1—3)/N <
5. Therefore, Z%" (RN "(X,Y))s, is well-defined and so is I7(X,Y)ss. The following theorem

justifies treating I7(X,Y") as the integral of Y along X.

Theorem 3.11. Let (X,Y) € Sg(E,L(E,F)). Then, for each (s,t) € Ap, I"(X,Y)s; coincides
with the Riemann—Stieltjes integral fst Yu(o) dXolju.

We prove Theorem 3.11 in Subsection 3.3.

Theorem 3.12. The map (X,Y) — I7(X,Y) is locally Lipschitz continuous from Mg(E, L(E, F))
to C5(F).

Proof. From Proposition 2.4, I7(X,Y’) belongs to CQ’B(F) Set (s,t) € Ar with s < t. For (X,Y),
(X,Y) € Mp(E, L(E, F)),

N
(X, Y ) = D(X,Y )5 <D {IY§”‘4)<— YODXE |+ VD)X, — X3
n=1

+ |I§(”Y(Rr]yiln(X’ Y) - Rfmvjln(X’ ?))S,t‘

Hﬁwﬁﬂxﬂm—gmﬁﬂx)m@ (3.12)

By the definition of controlled paths, we have

D~y D <y Y v 4 R Y Do — RY (XL Vol
e 144) (n—1+4)
+ Z ’YOn_l—H Xé,s - YvOn_l—H Xé,s’
=1

n—1 (n—1 —n S o
<"V =YY RN X, Y) = RYTX Y gy s T D8

N—n
—141) o (n—14i) ||y ~ (n—144) || vri .y
+§j{|¥é" D _ g x| g “|1X5,5—Xa,s|}
=1

N—n
< <1 WSS (mximw n %(““)\)Tw)mg((x YY), (X.7))

=1
(3.13)
for each n =1,..., N. Then, from Egs. (2.23), (2.25), (3.10), (3.11), (3.12), and (3.13), we obtain
the statement of the theorem immediately. O

Corollary 3.13. Let X € C’oﬁ(AT,T(N) (E)). Then, the map Y — I7(X,Y) is locally Lipschitz
continuous from Q%N(L(E,F)) to CQB(F)

Proof. Apply Egs. (2.23) and (3.5) to Eq. (3.12) with X = X. O
From Theorems 3.11 and 3.12, we see that, for each s,¢,u € [0,7] with s < u < t, the identity
(X, Y)su+17(X,Y )y = 1(X,Y) sy (3.14)

holds for (X,Y) € Sg(E, L(E, F)). Using this relation, we obtain the following propositions.
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Proposition 3.14. Let (X,Y) € Sg(E, L(E, F)). Then, for each (s,t) € Ar,

m—1 N
IN'X,Y)sy = lim ,
( s gt = \735 A0 z; z:: uz,uz+1
where the limit is taken over all finite partitions Py = {ug, u1,...,un} of the interval [s,t] such
that s = up < up < -+ <y =1t and |Psy| := maxo<i<m—1|Wit1 — Wil

Proof. From Eq. (3.14) and Definition 3.10, for any partition Ps; = {ug, u1, ..., un},

3

I'(X, Y)s = Z I'(X, Y)uiyuH»l

=0
m—1 N
Z { Z Y(n 1) ul?ul+1 + ZI;?’Y(RT];[:].n(X’ Y))uivui+1 }
1=0 n=1 n=1
It then suffices to show that, for each n =1,..., N,
m—1
. n,y N— _
\Pl,lzlln—ﬂ) ; |IX (Rn—ln(X7 Y))Ui,ui+l‘ - 0' (315)
From Eq. (2.23), we have
T (R (XY ) g |

< Cr IR (XY (v —ngnys(L + | Jnax 1X7l8)" max 17 15 (w41 — i) VHDS

Thus, from the relation (N 4+ 1)8 > 1,

m—1 m—1
Z ‘I;?’Y(Rfmv—_ln(X7 Y))ui,ui-H‘ < C Z (ui+1 - ui)(NJrl)ﬁ < C"Ps,t’(NJrl)’Bil(t — S) —0
i=0 i=0

as |Pst| — 0. Here, C' is a positive constant that does not depend on Pg;. Therefore, Eq. (3.15)
holds. Thus we obtain the claim of the proposition. O

Proposition 3.15. Let (X,Y) € Sg(E, L(E, F)). We set Z = (20,21 ... ZIN=1) g5
70 =X, Y)o; and ZV =YV forte|0,T)

and each l=1,...,N —1. Then, (X, Z) belongs to Sz(E, L(E,F)).

Proposition 3.15 will be used in Section 4 and the proof is given in Subsection 3.3.

Remark 3.16. Let us make a few comments about our integration.

(1) Take X € GQg(F) and Y € Q%N(L(E,F)) as in Example 3.7. Then, I7(X,Y) is the same
as the integral introduced in Definition 3.1. Thus we see from Theorem 3.5 that I7(X,Y)
coincides with the first level path of the rough integral along X € GQg(FE).
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(2) The relation to the integration of controlled paths introduced by Gubinelli [9] is stated as
follows. Let 1/3 < < 1/2. Based on Proposition 3.14 and [9, Corollaries 2 and 3|, we see
that I7(X,Y) coincides with the integral introduced in [9, Corollary 3] on Ar if I7(X,Y)
satisfies Eq. (3.14). Therefore, for (X,Y) € S3(E, L(E, F)), I"(X,Y) is consistent with the
integral introduced in [9, Corollary 3] on Ar. However, it is unknown whether Eq. (3.14) is
true for every X € Qg(F) and Y € Q%Q(L(E,F)).

(3) If N =1, then I"(X,Y ), coincides with the Riemann-Stieltjes integral ff Yt(o)dX&t for
(X,Y) € Mg(X,Y), which follows from Eq. (2.11) with f =Y®, g = XJ and o =1 — .
In particular, I7(X,Y ), is independent of the choice of v. If N > 2, then this value is
independent of the choice of v for (X,Y) € Sz(E, L(E, F)) from Proposition 3.14. However,
it is unknown whether such a property holds for every (X,Y’) € Mg(E,L(E, F)).

3.2.3 Application: Lyons’ extension theorem via fractional calculus

We assume the following: j is an integer with j > N and +; is a real number with (1 — 5)/j <
v; <min{1/j, 8}. To construct the extension map we first define the following functional.

Definition 3.17. For X = (1, X!,..., X7) € Cy g(Ar,TU)(E)), an E®U+D_valued function X7+t
on Ar is defined by

‘ J t o ]
X =3 (1)t / DX () @ RV X (u)du for (s,t) € Ag.
n=1 s

We note that the inequality 1 —ny; < (j+1—n)3 follows from the assumption that (1—-73)/j <
7. Thus, X7+ is well-defined and for each (s,t) € Ar,

I < o, i \2 TRV i V=14 _ \G+DB
KL< Gy (max X 1) (L4 max X7 s = D)( maxe X7 0i)~" (¢ = 9)

from Eqs. (2.4), (2.15), (2.19), and (2.23). Furthermore, from Propositions 2.4 and 2.5, we obtain
the following proposition.

Proposition 3.18. For X = (1,X!,...,X/) ¢ Coﬁ(AT,T(j)(E)), the map X — X1 s locally
Lipschitz continuous from Co g(Ar,TU)(E)) to CéJH)B(E@(jH)).

The following is a key proposition for the proof of Theorem 3.20.
Proposition 3.19. Let X = (1, XY ..., X7) be a step-j signature in E. Then, (1, Xt ... X7,
XIT1) is the step-(j+1) signature, that is, for each (s,t) € Ar, X;—[l coincides with the Riemann—
Stieltjes integral fst Xl ®dXg,.

We prove Proposition 3.19 in Subsection 3.3. From Propositions 3.18 and 3.19, for geometric

B-Holder rough paths X € GQg(E), we can see that the definition of X7+ is independent of the
choice of 7;. The following is our version of Lyons’ extension theorem for X € GQ3(FE).

Theorem 3.20. Let X = (1, X!,..., XN) € GQs(F). For any integer k > N + 1, there exists an
extension of the rough path X to a multiplicative functional of degree k in E with finite S-Holder
estimates.
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Proof. We define XN*1 as in Definition 3.17 and set XV+D = (1, X1 .. XN XN+1) Here,
we take an arbitrary vy such that (1 — 8)/N < yn < min{1/N, 3} = 8 to define XV*+!. From
Proposition 3.18, X (N1 belongs to Cos(Ar, TNFV(E)). By the definition of X € GQz(FE), there
exists a sequence of smooth rough paths X (m) which converges to X with respect to the distance
dg,n. Hence, from Propositions 3.18 and 3.19, lim, .« d57N+1(X(m)(N+1),X(N+1)) = 0, where
X (m)™+1 is the step-(N 4 1) signature of X(m)§. € C{(E). Thus, XN+ is a multiplicative
functional of degree (N + 1) in E. This implies the statement of the theorem for kK = N + 1. By
repeating this argument with the parameters yyy1,...,7x—1, the desired statement is proven for
any k> N + 1. O

We remark that [19, Theorem 2.2.1] implies the uniqueness of extensions even for X € Qg(E).
In particular, for X € G€3(E), the extension by Theorem 3.20 coincides with those introduced
by Lyons [19, Theorem 2.2.1] and by Gubinelli [9, Proposition 10]. However, it is unknown for
non-geometric Holder rough paths X € Qg(FE) whether X®) defined as in Theorem 3.20 is a
multiplicative functional of degree k in E.

3.3 Proofs

In this subsection, we prove Theorems 3.3, 3.4, 3.11, and Proposition 3.19. Throughout this
subsection, we assume the following: (a, b) is an element of Ap with a < b, § is a real number with
0 < 8 <1, and k is a positive integer. We also recall N = [1/3] and V is a finite-dimensional
normed space with norm || - ||y .

3.3.1 Proof of Theorem 3.4

We prove Theorem 3.4 along with some estimates of I}(X,€). Let X, X € Qg(E). For each

n=1,...,N, we set Kc(fb) = maxi<i<n | X' ligifa,p and f(ﬂ) = maxi <i<n | X7 [lig:(a,8)-

Proposition 3.21. In the setting of Definition 3.1, IJ(X, &) belongs to Cg(F) and there exists a
positive constant C' depending only on 8 and v such that

(X Ollpgen) < CCL(IVY pllana v max, [V PO KLY (3.16)

ab

where
N N—n
1 . (N=14+N)8 N—n+X\ k 1 N—n+X (n—1)\n—1
Clyi=(1Vb ) SIX o+ ST I s + IXTI (1 + KU )
n=1 k=0

Proof. From Proposition 2.4, I}(X,£) belongs to Cg(F) We prove Eq. (3.16). Set (s,t) € Arp
with a < s <t < b. Then,

(Lo (X, €) sl

Z{W" X+ 1D RY T X g |RED Xt =)
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Using Egs. (2.15), (2.22) and (3.2), we get

D RN (V" 0, X o ot IR Xl (£ — )
Ny n—1)\n—1,-(n
< CIRN (V" o, X s (1 KR (0= ) VY8

n 1)\n—1
< OVl X I (14 KD) TR (1= )NV,
From Eq. (3.2), we have
IV o (X1 XL

N-—n

< (!RN_"(V"_l%Xl’&)o,s! +> \V”_l’LkSO(Xé’g)!\Xg,s!) X" sy (8 = )™
k=0
N—n
< (CIV el X s 3 [0 X g8 ) KL~ o
k=0
Combining these estimates implies Eq. (3.16). O

Let [ be an integer with 0 <1< N —1, X a real number with 0 < A < 1, and f € CHAE, V)
such that V1 f is bounded on E. From simple estimates, there exists a positive constant Cia
such that, for each z,# € C5H([0,T], E),

|||Rl(f7 33‘) - Rl(fv j)m(l—i—l)ﬁ;[a,b}

3 3 A
e (||$ — #loosap) + 17 — Zll gmsifay (b — a)°)

T cunv’“fnoo(Z\ )nx I (3.17)

We recall Eq. (2.1) for the meaning of the symbol || Vpl|/onv-1,1 below.

Proposition 3.22. Let X, X ¢ Q3(E) and § € E. Under the assumptions of Theorem 3.4, there
exists a constant C' depending only on f and v such that

IT3(X,€) = IUX, Ol g o) < COZL (10O V IVRllon—12) (IXT = X 30 V don (X, X)),

(3.18)
where
N N—n ~
Cayi=(1V (b—a) NN v o) 3~ {mxnmnﬁ ] T IX S o + 2 IX ks
n=1 k=0

N—n
-n o —n— n—1)\n—1,-(n
+(|||X1u|gi[a,b]+1+(2ruX1|u;;[a,b]wxlmg[a,b] )Gy R

v 1 N—n+1 (n—1) ~(n—1)yn—1
IR KD+ R
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Proof. Set (s,t) € Ap with a < s <t <b. Then,

[I2(X, €)s0 — I2(X, €)s ]

N
<> {\V"_lcp(Xsl’g) = V(XX + [V (X091 X2 —

n=1
+ DL RNV g, X6 — RN (9 Lo, KY) || o R X soygog (8 5)

+ HDI n’YRN n(vn_1907 X17£)Hoo;[s,t] HRtTW)X - ,}—‘)’tﬁ’7 XHoo;[s,t] (t - 3)}

Xl

Using Egs. (2.15), (2.22) and (3.17), we obtain
D (RN (91, X1) = RN (V™ 0, X)) gy [RE™Y Xl oo (£ — )
< CIRN= (V" Y, X16) = RN (V"0 XY vy (1 + KU D)" T R (8 — )P

<C(HVNcthol\/HVNwHoo)OHX I3 X = X g (t = )Y

it n—1)\yn—1 n
(Z 10 g g I 16 = i ) (0 KE) R0 - )%
Using Egs. (2.15), (2.24) and (3.2), we have

IDE RN (V" o, X ot RV X = R X ooyt = 9)
< OURY (V"0 KM vy (4 K 4 KUY g (0, R (1 — )N 09
n n—1 -(n—1)yn—1 \
< OVl X G (1 KT 4+ KTY)" gy (X, X (8 =) D2,
We also have
VP o(X 1) = VP o(X 1) |1X 2] < IV ellool X = X 0,95 IX " Insie (E — 5)™

and

Vo (XoONIXE, — X

N—n
< <|RNn(Vn1§0,X1’£)O7s| 4 Z ’vnflJrk(p(Xéyﬁ)

¢ ) 1X" = Ko (¢ — )

k=0
N-—n
(CHVNsOHmWX I3 s Y !V”_”k@(&)\\HX'“\HW;[O,S]SW>dﬁ,N(X,X)(t — )"
k=0

Combining these estimates implies Eq. (3.18). O

Proposition 3.23. Let X € Qg(F) and g,é € E. Under the assumptions of Theorem 8.4, there
exists a constant C' depending only on  and v such that

2ol Vellen-1a K (1€~ & vie-4)), (3.19)
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where

N
Cyi=(1v-—a)NP)) {1 X S (1 + Kgf;—1>)n—1}.

n=1

Proof. Set (s,t) € Ap with a < s <t <b. Then,

112X, )50 — IN(X, s,

N ~
<3 {W"—lso(x,}f) v lp(x ) xT,

n=1

+ ||Dl n'y(RN n(vn ! XLS) - RN_n(vn_l‘PaXL&))HOO;[s,t]HRgTW)XHoo;[s,t] (t - 3)}

Using (2.15), (2.22) and (3.17), we get

DI (RN =V, X 1) = RN (V7 10, X)) | IRV X ocipsy (£ — 5)

< CIRN (V" 1o, X1 = RV (Vo X vy (1+ KL TR (6= )YV EDP

n = A n—1)\n—1 n
< CIVVlamall X IS e = €7 (0 + KD TR (6 )02,
We also have
V(X 1) = VP o(X 1) IX 2] < 119"l oo € = ENX lnpigs.p(t — )"

Combining these estimates implies (3.19). O

Proof of Theorem 3.4. Using Egs. (3.16), (3.18), and (3.19) proved above, we obtain the statement
of the theorem immediately. O

3.3.2 Proof of Proposition 3.15

We now prove Proposition 3.15. Let (X,Y) € Mg(FE,L(E,F)). We say that I7(X,Y) is additive
on Ar if I7(X,Y) satisfies Eq. (3.14), that is, the identity

(XY ) s+ T Y )up = (X, Y ) st
holds for each s,t,u € [0,T] with s < u < t. Also, we set Z = (2, zM . ZzN-1) a5
70 = D(X,Y); and 2z =V forte0,T] (3.20)
andeachl=1,...,N — 1.

Lemma 3.24. Let (X,Y) € Mg(E,L(E, F)). Suppose that I"(X,Y) is additive on Ar. Then, Z
belongs to Q%N(F).
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Proof. From the additivity of I7(X,Y) and Theorem 3.12, Z(®) belongs to C’IB(F) Also, from the
definition of controlled paths, Z® is in Clﬁ(L(E@)l,F)) foreach I = 1,...,N — 1. It then suffices
to show that RlN_l_l(X, Z) e CSN_I)B(L(E@,F)) foreach I =0,...,N — 1. Set (s,t) € Ap with
s < t. From the additivity of I7(X,Y"), we have

N
RYNX, Z)y = YN OXD, 4 ) TRV (RY (X Y)) s (3.21)
n=1

Then, from Eq. (2.23), Z¥” (RY"(X,Y)) belongs to CéNH) (F) and so RY7Y(X,Z) € CYP(F).
Furthermore, for each [ = 1,..., N — 1, from the definition of controlled paths,

RN VHX, Z) sy = RV THX,Y )y + YN D XN (3.22)

Then, RN '7!(X, 7) € SV PP (L(E®!, F)) and thus Z belongs to Q2™ (F). O

Remark 3.25. By an argument similar to the proof above, it is easy to verify that if (X,Y) € Sg(E
L(E, F)), then Z belongs to Q;N(F). This fact is used in the proof of Proposition 3.15.

Lemma 3.26. Let (X,Y),(X,Y) € Mg(E,L(E,F)) and M be a positive constant such that

N
S -1 o (n—1 ¥
Z{mxnmnwmxnmnﬁwé” 7" >r}+mrx,5+\|YHmSM-

n=1

Suppose that I'(X,Y) and I(X,Y) are additive on Ap. For (X,Y), we set Z = (20, zM ...
ZWN=1)Y as in Bq. (3.20). Then, we have a local Lipschitz estimate

dX,X',ﬁ(Z7 Z) < Lmﬁ((Xa Y)a (Xv Y/))
for a suitable constant L which depends only on 3, v, T, and M.
Proof. From Eq. (3.21),

Ry N X, Z)sa = Ry ~H(X, Z)sy

=YV OxN -y VDX 4+ Z{ YR TM(X,Y))s —I%’Y(RN—”(X,?))M}.

By inequalities of the form |ab — ab| < |a — a||b| + |a||b — b|, we get

Y NDXDN, - YINUXD /(- s)NP
N— ~ (N— S o
< (VY VY LIRS (X, Y) = R (X )T IXY s
v - -
+ (I RS (X D THIXY — XV s
o o .
< (A + TP XN vs + (VD + 1B (X, V) 5T2)ms (X, Y), (X, 7))
< (1+T7)Mmg((X,Y),(X,Y)).
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Also, from Egs. (2.23) and (2.25),
T (RY (X, Y ) s — T (RY(X,Y)) sl /(8 — s) V1A
< TRV (RYT(X,Y) = RYTH(X, Y )l /(8 — 5) VTP
TR (RY (X, Y))se — T (RQ] PXLY)) sl /(= 5) NP
< Cug IR0 Y) = RN Pl wcapl(1 4| 1) s 10

N-n . il . \n—1 i Y.
O IRV 14 max I+ e 1) s I — Kl

< COnypyM(L+ M)V Img((X,Y), (X,Y))
for each n =1,..., N. Furthermore, from Eq. (3.22),

|RY T UX, Z) 0 — RY UK, 2) sl /(2 — )N 0P
< (IRMTHX Y s = RYTHX Y )|+ YNV XN = YINTD XN /(= 5) V08

< IR Y )er — RY T (X V) v—i51)8(t — )°
+ (Y = TN IR (X, Y) = R (K ) s TAIX Y vy
+ (1N 4 IRy (X, )T XN = XV iy

< (TP + A+ TP)M + (1 + T )M)ms((X,Y), (X,Y))

for each [ = 1,...,N — 1. Then, combining these estimates, we obtain the statement of the
proposition immediately. O

Proof of Proposition 3.15. Under the assumption of Proposition 3.15, i.e., (X,Y) € S3(E, L(E,
F)), I'(X,Y) is additive on Ap. This follows from Theorems 3.11 and 3.12. Then, from
Lemma 3.24, (X, Z) belongs to Mz(E,F). By the definition of Sg(E, L(E, F)), there exists a
sequence {(X(n),Y (n))}>2, C Sg(E, L(E, F)) which converges to (X,Y’) with respect to the dis-
tance mg. For each n = 1,2,..., we set Z(n) = (Z(n)®, Z(n)V, ..., Z(n)N=1) as in Eq. (3.20).
From Remark 3.25, (X (n), (n)) belongs to Sg(F, F'). Furthermore, we see from Lemma 3.26 that
(X (n), Z(n)) converges to (X, Z) with respect to mg. Thus, (X, Z) belongs to Ss(E, F). O

3.3.3 Proof of Theorems 3.3, 3.11, and Proposition 3.19

Using Proposition 3.27 stated below, we prove Theorems 3.3, 3.11, and Proposition 3.19. Let
X € Cop(Ar, T®(E)) and Y € Q2F(L(E, F)). Foreach [ = 0,....k—1,m =0,....k—1—1,
and (s,t) € A, we set

RM(X,Y )or =YY =Y v X1 (3.23)
=0
Proposition 3.27. Let X be a step-k signature in E and Y € Q;ﬁk(L(E,F)). Take v € (0,
min{1/k, B}). Then, for eachl=0,...,k—1, m=0,...,k—1—1, and (s,t) € Ap,
m+1
/ RMX,Y )0 dXg, = Z T (RN X,Y)) s, (3.24)

where the left-hand side is the Riemann—Stieltjes integral of R*(X,Y)s. along X&_.
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Proof of Theorem 3.3. Under the assumptions of Theorem 3.3, we can take Y = (Y@ vy
y (V-1 ¢ Q;N(L(E, F)) as in Example 3.7. Then, from Eq. (3.4) for [ = 0 and £k = N and
Proposition 3.27 for [ =0 and m = N — 1,

/ vOdxi,

t
{Y; / X ®dX0u}+/ Rgil(X’Y)S,udX(%,u

1=0 §
N
S YO, 4 3 TR (KLY (3.25)
n=1 n=1
From Eq. (3.7), we obtain the claim of the theorem. O

Proof of Theorem 3.11. In the same way as in the proof of Theorem 3.3, that is, from Eq. (3.4)
for [ =0 and k£ = N and Proposition 3.27 for [ = 0 and m = N — 1, we have the same identity as
Eq. (3.25). This is the claim of the theorem. O

Proof of Proposition 3.19. Under the assumptions of Proposition 3.19, we can take Y = (Y(O),
YW y*-Dy e oW (L(E, E®*tD)) as in Example 3.9. Then, from Eq. (3.9) for [ = n — 1
and k = j and Proposition 3.27 for [ =0 and m = j — 1,

. t .
X = ZI TRITNX,Y))ss = / RyNX,Y )5 dXE -

From Eq. (3.9) for I = 0 and k = j, we obtain the claim of the proposition. O

3.3.4 Proof of Proposition 3.27

We first show the Holder continuity of RZI_"“’W”X for the proof of Proposition 3.30 stated below,
which is essential for the proof of Proposition 3.27. Although only the case v; = - -+ = =, appears
in Proposition 3.27, we need general cases for Propositon 3.30.

The following lemma is a slight reformulation of Lemmas 6.1 and 6.2 in [13].

Lemma 3.28. For 0 < 0 < e <1, there exists a positive constant Cs . such that
Y —a® < Cs5.aF(y—x)° for0<z<y. (3.26)
For 6,e >0 with 0 < e — 46 < 1, there exists a positive constant Cs such that

1
/ u® (u*(s*l —(u+ z)*‘s*l) du < Cs5.2°7°  for0 < z < oo, (3.27)
0

Proof. First, we prove Eq. (3.26). It suffices to prove this inequality with = 1 by homogeneity.
We define

6 _
h(y) := (z — 115 for y € (1,00)

and note that h is positive on (1,00). If ¢ = 1, then lim,|; h(y) = (°)'|,=1 = 6. Ife < 1, then, from
I'Hépital’s rule, we get limy; ~(y) = 0. Also, from the relation 0 < § < e, we get lim, o h(y) = 0.
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Hence, h is bounded on (1,00) and Eq. (3.26) holds with = 1. Thus we obtain Eq. (3.26). We
next prove Eq. (3.27). We may assume z > 0. Using the change of variables u = zv, we get

1/z
(left-hand side of (3.27)) = za_a/ v° (v_5_1 —(v+ 1)_5_1) dv
0

< 25_5/ v® (v_‘;_l —(v+ 1)_5_1) dv.
0

Then, from the relation € — 9§ > 0,

1 1
/ (0 = (v 1) ) do < / ¥ 0 dy < o0
0 0

Also, from the relation ¢ — 0 < 1,

!AKuF@_&J—(v+1yd_§dv::[wvs([7+%5+fuw_&adw>dv

o0
< (6+ 1)/ ¥ 02 dy < 0.
1

Hence, Eq. (3.27) holds with z > 0. Therefore, we obtain Eq. (3.27). O

Using this lemma, we show the Holder continuity of R} 7" X.

Lemma 3.29. In the setting of Definition 2.2, for each n = 1,...,k, the function Rgl_""’V"X 18
ming<;<j<n{min{(j —4)8,1} = >°7_, | ni}-Holder continuous on the interval [0,b]. In particular,

for v € (0,min{1/k, 8}), Ré’iﬂ)X is min{f3 — v, 1 — ny}-Holder continuous on the interval [0,b].

Proof. Let 8, = min{pf,1} and op = > [ . From Definition 2.2 and Eq. (2.17), it suffices to
prove the following;:

(1) foreach n=1,...k, DgELX” is mini<j<p{B; — 0{}—Hélder continuous on [0, b];

(2) foreachn=2,...,kand m=1,...,n—1

)

dv

b X © R X (1)
/r (v— T)U:Ln+1+1
is mini<j<j<n{Bj—i — af+1}—H61der continuous in r on [0, b].

We first prove claim (1). Take the real numbers s and ¢ such that 0 < s < ¢ < b. Concerning the
first term in the definition of D' X™ (see Eq. (2.14)), we have

Xy, o Xn,
-t (b—s)t
Using Eq. (3.26), we have
A1 < X gy (0 = O (0 = )77 (b= 8)7F (b — 5)F — (b —1)°T)
< X" g, (b= 1)L (b — 8) " Cop 5, (b — )7 7P (8 — )
< Cop 5, IX" g, (8 — 5)7 771

=: A1+ As.

Xy, Xp,
(b—t)F  (b—s)T

Xy, XD,
(b—s)7t  (b—s)t
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Using Eq. (2.3), we also obtain

AQSZ(E:MX”memXﬂﬂmm_Mwﬁt—SW%b—tW”ﬂ>UF—@_W

j=1

n—1 .

—oh ; i i — O™ —

< IX" s, (8 = 5)7 77+ D WX g, IX™ Ng, -y (b = 8)7 =97 (¢ — )5,
j=1

With regard to the second term in the definition of Dgin X"™ (see Eq. (2.14)), we have

b ngu g b X?,u
o | e v
¢ (v—1)n s (v—s)n

< L CLN tv . 8,0 _. ‘
- / (v—s)7iH! dot /t (v— )7 T (v — )7t dv=: By + By
Then,

t - . )

Br< [ X"l goai(v = )P < X7, (e

s Bn — 01

and
Z’lv Xg}v XZZ’U xXn

S,V .
(v —s)or ! B (v —s)or ! dv=: By + By.

b b
BQS/ dU+/
t t

By using the change of variables u = (v —t)/(b—t) and Eq. (3.27) with z = (t — s)/(b—t), we get

(v _ t)a{‘-&-l B (v _ S)of+1

b
Boy < / 1X7 5, (0 — B (0 — £~ — (0 — 5)~74=1) dy

1
<X o= 0 [T ()
0

<X g, (b = )~ Cop 5, 2P
= 1X"l,Cop 5, (t — )1

and, from Eq. (2.3),

b n ' ‘ | | o
B < [ (S Iyl s, i(t = 950 = 0% ) (0= 9o

j=1
n—1 b .
< IX W, 2t = 9P+ S U X",y [ (0= 5B du e )
< Bn o s B, Br—j ) v—8 v s .
1 .
7=1

Combining these estimates, we obtain claim (1).
Turning to claim (2), let ¢ denote R} X. We note that ¢ is bounded on [0, ], which is
proved as in the proof of Eq. (2.22). Select real numbers s and ¢ such that 0 < s < ¢ <b. We then
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have

/“WT%MWWM_/“X$m®wwd
t

(0=t LT J) (o= gL

Xiw " @P(v)  XE™ @ Y(v)

tXn—m® v b
Wwdv+/
¢

“Js (v—s) Tt (=)t (st 1+ 02

Then,

t i 1

€1 < [Wlotons | 1"l ot (0 = 5~ ons Lo
S
n—m 1 anm—o'n
< Nl X"y (¢ = 5P~
n—m — Omy1

and

X" ov()  Xp " o)

b
Cy < _ _
= /t (0 — £)7mr L (g — g)7mritl
=: C91 + Ca.

X" ey)  XImey(v)
- dv

(v—s)7matl (v — 5)Tmeat!

b
dv+/
t

By using the change of variables u = (v —t)/(b —t) and Eq. (3.27) with z = (¢t — s)(b — t), we get

b
Ca1 < |9 osfo,8) /t IX™ " g st (0 — t)fn=m ((v - t)"Tmer Tl — (v — s)*0m+1*1) dv

1
S ||/l/}”00animwﬂn77n (b - t)Bn_mio.g’l-’—l / uﬁn—m (uio-:::"‘klil - (u + Z)io.zl+171) d'LL
0

< HwHoomX"—man_m (b — t)ﬁn*m_grzl+1 Con

m+1’5n—m

= [ 1ol X™ ™ I, Cor . B (t — §)Bn-m=0Thi1

Zﬁn—m—0%+1

and, from Eq. (2.3),

b
Cox < ¥l | (mxn-mmﬁnmﬂs,ﬂ (t - 5)fnm

n—1
+ D IXTT s el X g, g (= 8) P (0 = t)ﬂ”‘j> (v—s)"7m1 " dy
j=m+1
n—m 1 Brn—m—0o
< lloo ( IX" " g ——(t = 5) L
m+1
n—1 . . b )
+ Z |||XJ—m”|Bj_m”|Xn—] |||ﬁn—j / (U _ S)/anj—tf?+1—1 dv (t _ S)ﬁj—mcrimul).
j=m+1 t
Combining these estimates, we obtain claim (2). O
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We remark the following identities for later use. Let f,g € CM([0,T],R) and 0 < o < .
From Egs. (2.13) and (2.14), for each ¢ € (a,b),

(0% ¢ S - S
DE(f0)(0) = D090 + oy [ TR g (3.2)

and

Dy_(f9)(t) = f(£)Dy_g(t) —

(-1 /” ((s) = S)gls) ;. (3.29)

'l -«

Proposition 3.30. Let X = (1,X',..., X*) be a multiplicative functional of degree k in E with
finite 1-Hélder estimates. Take positive numbers {’yl}le such that Zle v < 1. Then, for each
n=2,....k and r € (a,b),

n—1 " ‘ ‘
R X (r) = DE=LXT L () — > Dbzfj“ MXPTT @RI X) (1), (3.30)

a, ,b—
=1

In particular, for v € (0,1/k),

n—1
RUDX(r) = DIXE (1) = S DI (X2T @ RYVX) (1), (3.31)
j=1

Proof. From Lemma 3.29, the right-hand side of Eq. (3.30) is well-defined under our assumptions.

Let o denote ?:p vi- We note that Eq. (3.30) is equivalent to the following identity: for each
r € (a,b),

DyEXE (1) = DJEX"(r)
n—1 n
o” . .
— Z {Dbf—l(XZ-_] ® R’l;/iv---ﬁjX)(r) +
j=1

(D)7l XL @ RTX () 5.9
rlt—-o?,) ofatl vee o (332)
J+1 r ) /

(v—r
We prove this equation by induction with respect to n. From Eq. (2.3), we have
(left-hand side of (3.32) with n = 2) = X;jr ® Dgin(r).
By using Egs. (2.3), (3.29) and (2.9), we obtain
(right-hand side of (3.32) with n = 2) = X, , ® Dj* (R} X)(r) = Xp, @ D2 X (r).

Hence, Eq. (3.32) holds for n = 2.

Suppose that Eq. (3.32) holds for each n = 2,...,m with m < k — 1. By using the induction
hypothesis and Eq. (2.9), we have the following identity: for each n =1,...,m, o € (0,1 — o)
and r € (a,b),

D?_RZi’-"77n7177nX(T) — Rz177..'77n7177n+aX(’l"). (333)
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Using Eq. (2.3), we first have
m . m+1 .
(left-hand side of (3.32) withn=m+1) = Z X;’?j'l_J ®D,' XI(r).
j=1
We then calculate the right-hand side of Eq. (3.32) with n =m + 1. For each j =1,...,m,

m—+1 . )
Dy (XTI @ RYVIX) (1) + dv

m—+1 . .
(-7 ot / PXETT @ R X ()
s

F(l o O.m—f—l)

m+1
! +1
Jj+1

(v—r)7it
m—+1 . )
= Dy (X @ RV X ()
m—+1 . . )
(=17 ot /b (X = X)) @ RYV X (v)
T

mil m+1 dU
I - T+1 ) (v —1r)%i+ +1
j m+1 . _
m—j) ‘ —1)%+1 O'm+1 b Xm-‘rl—]—l ® R'ﬂ,.A.,'yJX v
-S> :Xé,,n@( ) I / o @ 4 (from (2.3))
i=1 LA —oiy) Jr (v—r)7t1 F

. m+1 - .
m—j ) (_1)O'j+1 O_m—l—l b Xm+1—]—z Q R’n,...,'ij(,U)
+1 v b—
-y X, ® o / g dv. (from (3.29)) (3.34)
i=1 F(l - Uj—‘,—l ) T (’U — ’f’) J+i

Therefore, we obtain

(right-hand side of (3.32) with n =m + 1)

m—+1

m
— Y1575 —1,0;
= X eR,TTT X (r)
j=1

. m+1 .. .

m m—j . (_1)‘7j+1 o_m+1 b Xm—f—l—]—z ® R'Yl"“ﬁ]X(U)
+1 7,0 b—
_§:§ X, ® T mjl) / pe e dv (from (3.33) and (3.34))

j=1 i=1 Tj+1 r (v —1r)%i+

omtl = 1— Vi Vj—1,0

=X @R X(r)+ E X oR, 7 X(r)
j=2

dv

m—+1

. o _
—)7E o / P XF @ R X ()
T (1) — r)gj+1 +1

m j—1 (
=) Xt ey
; +1
j=2 j=1 IO U?}H )
m

m+1 . m+1 .
=X @Dt X'(r)+ Z X @Dyt X(r).  (from Definition 2.2 and (2.17))
j=2
Hence, Eq. (3.32) holds for n = m + 1. Consequently, we obtain the claim of the proposition. [J

Let us introduce one more notation for the proof of Proposition 3.27. Let X be a multiplicative
functional of degree k. For j = 1,...,k, we set T(X)? € Co(E®/) as follows: for each (s,t) € Ar,

32



T(X)se = Xsl,t and
. . ‘]_1 . .
T(X)?s,t = Xz,t - Z T(X)ls,t ® Xg,;z (3.35)
i=1

for j =2,...,k, inductively. Then, for each j =2,...,k and (s,t) € Ap, the identity

]_1 . . j_i . .

D TX)eX =) X, oT(X) (3.36)

i=1 i=1

holds. This is proved by simple calculation and induction on j. By using Eq. (3.36) and induction
on j, we can show that, for each s,u,t € [0,7] with s < u <, the identity

j—1
XDy =X, - X1, - TX),® (X5 - X0 (3.37)
=1

holds for j = 2,..., k. We now have all the tools to prove Proposition 3.27.

Proof of Proposition 3.27. Fix [ with 0 <[ < k—1. We prove Eq. (3.24) by induction on m. Using
Egs. (3.23) and (2.11), we have

t
/ RO(X,Y)au dXE, = T (RIX, ).

Hence, Eq. (3.24) holds for m = 0. Suppose that Eq. (3.24) holds for m = M with0 < M < k—2—1.
Using Egs. (3.23) and (2.5) and the induction hypothesis, we have

t t !
[ R )Xy, = [ R OGY)axg, -y [ e axg,
M+1

_ Z I;?W(R{\i;ﬁ—li—l(X, Y))s,t _ Y;(lJrMJrl)X;\ﬁ-&-Q.
n=1

For the proof of Eq. (3.24) for m = M + 1, it then suffices to show the following identity:

M+1

3 TP RMTNX,Y) - RYSTNXY)) e = T T (RY, g (X,Y))g + YIFMAD X M2,
n=1

By the definition of Zy” (see Eq. (2.19)), for each n =1,..., M + 1, we have

T (R MTHX,Y) = RN Y )

t
= (-1t / DRI TTNX,Y) - RITATH X, Y)) ()R X (u) du.
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We calculate the integrand as follows: for each u € (s, 1),

DRI XY) = R Y)) ()

1 YS(Z+M+1)X%+1 —n+1 ” K)(l+M+1)X%+1_n+1
F(nry) < (u — 8)1—n’y + (1 TLPY) /5 (u _ v)(l_n’y)‘i‘l
1 Y'S(l"FM'i‘l)Xé\’{jrlfnJrl 1—ny /u K}(l'i‘M'i'l)(Xéf\’/qlflfnJrl _ X%]+1fn+1)

(u — U)(l_”’Y)+1

dv) (from (3.23))

dv

Ty - T(n)
M+1-n /u Y;;(I+M+l)(T(X)SU (XM—H —n+1—i X%)"—l_""'l_i))

Z 1 —ny
P I'(ny) (u — v)(1=n1+1

1 Y;(l""M'f‘l)XM—i-l—n—i-l
S,U

dv (from (3.37))

TTm) ()
+Dl nv(y(l—i-M—i-l)Xéf\’/.[—&-l—n—&-l)( ) — Dl- nfyy(l—i-M—i-l)( )X%LJFI_TLH

s+
M+1—n

B Z {Dl n’y(Y(H—M-i-l)T( ) .XM+1—n+1—i)(u)
=1

- D;+"’Y(Y(’+M+1)T(X);,)(u)XgﬁL+1—n+1—i} (from (3.28))

— _D;JWW(Y(H‘M'H) o Y*S(I+M+1))(U)Xé\i+17n+1
M+1—n
+ Dl n’Y(y(lJFMJFl)(XM—i-l—n—i-l . Z T(X)z ® XM—H—n—H—z'))(u)

M+1—n '
+ Z Dl n’y Z+M+1)7~( )’)(U)Xsl\ﬁ[u+1fn+lfz

_ —Dl n'y(y(l—l-M—i—l) _ n(l—&-M-i—l))(u)Xéi\i—i-l—n—f—l

+ DI (Y EMEDTXOMH= D (4) - (from (3.35))

M+1—n '
+ Z Dl n'y Z+M+1)7—( )’)(U)ij\ﬁ[u+1fn+lfz‘

Therefore, for each n =1,..., M + 1, we obtain

T (R MHXY) = RETHXLY))se

— _(_1)1_(M+2)’Y/ DSJ: M+2)7(Y(Z+M+1) _ Y;(l—‘y—M—i—l))(u)

% D§ﬁ4+lfn+1)7(XsJ\7/'[+1—n+l ® RET’Y)X)(U) du
(from (2.9), Lemma 3.29, and (2.10) with o = (M +1—n+1)y)
1AM A0+l

M+1—n
EDINC 7 [ DO T )
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x DM (MLm= g RV ) () du,

(from (2.9), Lemma 3.29, and (2.10) witha= (M +1—n+1—1)y) (3.38)
Here, AM+1=n+1 ig defined by
AT = (1)t / DL (M T (X)) ()R X () du
foreachn=1,....M+1and j=1,..., M + 1. Also, we have

t
AMAT / Y M T (XM aX g, (from (2.12))

t M ) )
- / Y M) ax e - N / Y HMEDT (X)L dX M2 (from (3.35) and (2.3))

t
_ (1)1—(M+2)7/ D;;(M+2)’Y(Y(I+M+1) . Ys(l+M+1))(U)Dt(yw)wXé\Mz(u) du

+ Y(1+M+1)(XM+2 _ XM+2)

—Z Ji-(r42-4 /Dl (20 (ML xyi () 2= ”Xj‘fj_z “(u) du.

S,

(from (2.11) and (2.12)) (3.39)

Hence, by combining Egs. (3.38) and (3.39), we have

M+1

Z I;z(,w le\ﬁnnH(X Y) R%:lln—i-l(x Y))

_ (_1)17(1\4+2)7 /t Di;(M+2)y(Y(z+M+1) B YS(HMH))(U)

M+1
x (D§M+2 XM (u Z pMFITY (X Mitontl Ri’i’”)X)(u)) du

n YS(HMH)X%H

M+1
+ Z AQJ—I—l—n—Q—l
n=2
_Z —(M+42— l)’y/ DI M2y M) i
M+1—1
X <Dt(f4+2 )VXéW;"_Q g Z DM+1 —nt1-i)y (XM-H ntl— 1®R(n7) X)(u )> du
M+1
:I?(4+277(R?+M+1(Xa Y))syt +Y(Z+M+1)XM+2+ Z AMAL=nH ZAMH% (from (3.31))
n=2 i=1

_ Ié\(/[Jr?,’Y (R?+M+1(X, Y))s,t + }/S(I+M+1)X%+2,
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as desired. Therefore, Eq. (3.24) holds for m = M + 1 and thus the claim of the proposition holds
by induction. O

4 Differential equation driven by rough paths via fractional cal-
culus

In this section, using the integral introduced in Definition 3.10, we study differential equations
driven by geometric S-Holder rough paths X = (1, X! X2) € GQpr(R?) with 8 € (1/3,1/2].
Throughout this section, we assume that J is a real number with 1/3 < 5 < 1/2 and 7 is a real
number with (1 —3)/2 <y < j.

4.1 Rough differential equations

We define the concept of solutions to rough differential equations on the basis of [6,9] and present
the main theorem of this section. We recall Example 3.8, where ¢(Y) = (o(Y)@, p(Y)) was
introduced for Y = (Y@ y(M) ¢ QiQT(F) with X = (1, X', X?) € Co3(Ar, T?(FE)) and ¢ €
CHY(F, L(E, F)) such that V¢ is bounded on F'. In Lemma 4.3 below, we prove p(Y) € Q%’?T(L(E,
F)).

4.1.1 Definition of the solution

The following is our definition of solutions to rough differential equations.

Definition 4.1. Let £ € F, p € CYY(F, L(E, F)) such that Vi is bounded on F, and X = (I,
X', X?%) € Cos(Ar, T?(E)). We say that Y = (Y(©) V(1)) is a solution to the rough differential
equation

&Y, = p(Y,)dX,, Yo=¢ (4.1)

. . . . 2
driven by X = (1, X!, X?) along ¢ and starting at &, if Y = (Y(©), Y1) is an element of Q%T(F)
such that

VO =+ D (X, 0oy and ¥V =¥ ) forall t € [0, 7). (4.2)

Here, I7(X,p(Y)) is the integral of p(Y) = (oY), o(¥)V) e Q%’QT(L(E, F)) along X = (1,
X1, X2) € Cos(Ar, T?(E)) in the sense of Definition 3.10, namely, for each (s,t) € Ar,

DX, (Y ))sg = o (VXL + VoYY DX, + T (RO (X, 9(V)))ss + T (RYUX, 9 (V)
4.1.2 Existence and uniqueness of solutions
Let X = (1,X%, X?) € GQg7(E). We define the subset ILx (Sgr(E, F)) of QE(QT(F) by
My (So(E, F)) = {Y : (X,Y) € Sr(E, F)}.
It is straightforward to show that IIx (S r(E, F)) is a complete metric space under the distance
mxs(Y,Y) :=ms((X,Y),(X,Y)) forY,Y € lix(Ss7(E,F)).

The following is a result on existence and uniqueness of the solutions to Eq. (4.1).
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Theorem 4.2. Given £ € F, ¢ € C*Y(F,L(E, F)) such that o, Vo, V?p are all bounded on F,
and X = (1, X1, X?) € GQzr(RY), the rough differential equation (4.1) admits a unique solution
Y = (YO vyW) in Tx(Ssr(E, F)).

4.2 Basic estimates

For the proof of Theorem 4.2, we will provide several estimates of p(Y) = (¢(Y)©, o(¥)M)
and I7(X,¢(Y)), and derive a priori estimates for solutions to rough differential equations. Also,
several lemmas for shift operators will be provided for later use. Throughout this subsection, we
use the following symbols: for X, X € Cog(Ar, TA(E)),

Ox1 =14+ | X s+ |X s and Cx := Cx1 + | X?]as + [|X2[|25;
for Y € Q%Q(F) and Y € Q?}’Q(F)a

Cy =1+ Y| + 7| + 7]

xp+t ||Y||)~(,5-

Recall Eq. (3.5) for the definition of ||Y| x g and ||17||X 5 above.

4.2.1 Estimates of p(Y)

Based on [8, Lemmas 7.3, 8.2, Theorem 7.5] and [9, Proposition 4], we provide several estimates
of p(Y) = (o(Y) @ p(Y)D). We remark that, in the assumptions of Lemmas 4.3, 4.5, 4.6,
Remark 4.4, and Proposition 4.7 stated below, X and X possess the second level paths X? and
X2 but these are not needed for the proofs. We also recall Eq. (2.1) for the meaning of ||V||co.1
below.

Lemma 4.3. Let Y € Q%Q(F) for some X € Co3(Ar, T?(E)) and ¢ € CH(F, L(E, F)) such
that Vg is bounded on E. Then, o(Y) = (o(Y) O, oY)V belongs to Q?f(L(E, F)) and there
exists a positive constant C' which depends only on 8 and T such that

1 1
le()lxs < ClIV@lcos (@ + 1X 2@ + [Yg ] + 1Y Dllpma) (Y3 ] + ¥ 1l x,6)- (4.3)
Moreover, C' can be taken independently with respect to T in each finite interval.

Proof. By definition, ¢(Y)(© = oY) and o(Y)®) = V(Y)Y () are f-Hblder continuous on
[0,T]. We now prove that R}(X,¢(Y)) belongs to Czﬁ(L(E,F)). Set (s,t) € Ar with s < ¢ and
decompose R} (X, p(Y))s+ as follows:

1
RY(X,0(Y))ss = / VovO 4+ 7(v? - v ) dr (v, — v(0) - V(v )y X!,
0
1
- /0 Vo¥ O 4+ 7(v? — ¥ O)) ar(Y(V XL, + RY(X,Y)sr) — V(Y)Y VXL,
1
- / (VoY + 7(v0 — Y0)) - Tp(v®)) dryVx],
0

1
4 [ Ve 4 r (10 - YO drRECX Y ).
0
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Then,
[Ro(X, o(Y))stl /(t = 5)%°
1
< VelmalY s (1Ye ] + 1Y Ol ama T IX s + IVl oo IR (X, Y ) s
Thus, R{(X, p(Y)) € CQ’B(L(E, F)) and so ¢(Y") belongs to Q%Q(L(E, F)). We next prove Eq. (4.3).
By inequalities of the form |ab — ab| < |a — al||b|] + |a||b — b],
0 1 1
[RYUX, o(V))sal /(8 = 9) < (1V(¥") = VoV DYV| + 19V )V = v D)/ (¢ - 5)°
1
< [IVelhmalY Ol s (Ve + 1Y Ol g T?) + [ Vellool[Y D 1161
Also, from the definition of controlled paths,
1
1Y Ollsmar < (Y] + 1Y D s T2)IX 5 + IRS(X,Y) [l25T7
1
< A+ IX ) (Y5 V1 + 1Y 1x,6T7).
Then, combining these estimates, we get
le()llx.8 = IR (X, 0 (Y)ll2s + 1R (X, 0(Y)ll 5
1
< [VelmslY s (Ve ] + 1Y O g T?) (1 + X 5)
+IVelloo (YDl gtz + IRG(X,Y) [126)
1 1
< [Velleoa (@ + IXM8)* (Y5 1+ 1Y xsT) (Y5 + 1Y OllsiaT?) + Y ]1x,6).
This yields Eq. (4.3) immediately. O

Remark 4.4. By an argument similar to the proof above, it is easy to verify that if Y € Q;f(F ) for
some X € SQg(F), then ¢(Y) belongs Q?(L(E, F)). This fact is used later in this subsection.

Lemma 4.5. LetY € Q%Q(F), Y € Q%Q(F) for some X, X € Cy 3(Ar, T?(E)), and ¢ € CH(F,
L(E,F)) such that Vi is bounded on F. Then, there ezists a positive constant C which depends
only on B and T such that

le(¥ @) = o (T ) lgna < CIVlleos Cxr Cy (1% = Vg1 + YO = YO lg ). (44)
Moreover, C' can be taken independently with respect to T in each finite interval.

Proof. Set (s,t) € Ap with s < t. Then,
(V) — o(v9)) — (o(¥[?) — (¥ [0))

1
= [ Vel + (10— O ar (v - v)
0

s

1
- [ 9T+ T - T ar(TO - 710)
0
1

O 4 (70 — V0 dr (v, — v )

s

- /O (Vo0 + r(10 — ¥[0)) — v

1
+ / V(YO 4+ (7 -
0



So, we get

(V) — (Y 9)) = (o(V\?) — (¥ [0))| /(¢ — 5)°

< IVellma (1Y ” = Y1+ 21 Y@ — YO 5 g )Y O gt + [V loo | YO = ¥ O 5111
0 (0 nd

< CIVellcoa L+ 1Y O pa) (Ve = Y32+ [[Y© = YO g 50).

Furthermore, from the definition of controlled paths, we have
L4V O e < (141X ) (1 + Y5V + Y ]1x,677) < Cxa Oy
B-Hol < B 0 X8 < Cx10y
Combining these estimates, we obtain Eq. (4.4) immediately. O

We recall Eq. (3.11) for the meaning of dy ¢ 5(0(Y), ©(Y)) below.

Lemma 4.6. LetY € Q§52(F), Y e sz’z(F) for some X, X € Cy 5(Ap, T?(E)), and ¢ € C*(F,
L(E, F)) such that Vi and V?p are bounded on F. Then, there exists a positive constant C which
depends only on B and T such that

dy 3 5(e(Y),0(Y)) < ClIVellera (CCE(1Yg” = 40| + X! = X1l5)
+ O Gy = ViV + dy 5 5(V. 7). (4.5)

Moreover, C' can be taken independently with respect to T in each finite interval.

Proof. Set
5= Y3 — YO+ YO — YO gy + | — X + [YeY — V| 4 dy 5 5 (V).

We first provide an estimate of || R} (X, p(Y)) — R§(X, 9(Y))|l25- Set (s,t) € Ap with s < t. Then,
in the same way as in the proof of Lemma 4.3, we have

1
RYX, oY ))ar — BAE o(F))r = ( /O (V¥ 4 7%~ YO)) - Vv 0) arv X1,
1
— /0 (Vo (YO + (7 — ¥y — wa@(o)»dﬁ;(”x;t)

1
+ ( | e+ - O ar Ry Y)

0
1
“Jo VoV 4+ (¥ - v(0)) drRY(X 7Y>s’t>

= A;i + Ag,t'
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We decompose Al st as follows:
Ase = // V(YO + (v = Y)) dry dr (v, - Y)YV X1,
// V2oV + (V) — ¥ 0)) dry dry (V) — V)YV XL,

// (V2o(YO + (¥ — Y (0)) - V2V 4 (VO = V) dry dry

—v[0 ))y(l)XSlt

’ / / V2V 4 (0 V) drpdra(V ¥ () = (7 -V O)y K,

/ / V2V + (7 = ¥(0)) dry dry (V) = VO (v, — ¥ 0).x]
/ / V(T 4 (T — V) dry dry (V) — VOWO(XL, - X1,).
So, we get
AL/ (t — 5)*P

< ||V290||1-H61(|Y0(0) - 570(0)| +2)y©® }7(0)||,8—H61T6)||Y(O)||B—H61(|Yo(1)’ F YO s T?) | XY 5
+ 1920l 1Y@ = YO g (YL + 1Y O g T2 1 X 5
+ V2@ oo |V Ol gmsn(1 Yy = To L+ YD = YO gy TP X |
+ V20l [V 1| Vg L+ 11V D i TN X — XY

< CV%llco (1Y Ol s (1Yy ]+ 1Y D ) 12X s

1 o o (1 o
+ (1Y + 1Y O sms) I X s + 1V O sl X 5 + 11V O s (Vo] + 11V DO porsn) ) 6
< C|IV%¢l o1 C5: G5,

where in the last inequality we used

1
YO smsr < (14 IX o) (Y5 + Y [[x,677) < CCxi Cy.

We also decompose Agt as follows:
A2, = / (VoY + (Y = Y)) = V(YO + 7(,©) - V(9))) dr RY(X, Y ).
/ V(Y. 7O = VO dr(RY(X, Y ) = RY(X,YV)s0).
So, we get

. )
142,1/(t — )% < |Vollima (Y = Vil + 2| Y@ — YO gy T RE(X, V) |25
+ IVl IRA(X, V) — RE(X, V) [l25
< CHV(,OHCO,1Cy(5.
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Hence, from the estimates of Al + and AZ, above, we have

IRG(X, 0(Y)) = Ro(X, o(Y))llz5 < ClIVepllc11Cx: CF0.

(4.6)

We next provide an estimate of [|R)(X, p(Y)) — RY(X, o(Y))| 5. Set (s,t) € Ap with s < t. Then,

RYX, 0(Y))st — RIUX, 0(Y))ss
= (VoY - V(v v V) — (Ve
= (Vo) = V(v )y + Vv
~ (Vo(¥") - waf( N = V(v - v )
= (Ve(Y”) = Vo(v(0)) — (v (n”))—w@(o)))m“)
+ (VoY) - V()
+ (Vp(Y{0) — V(¥ ))(Y” <1>>
+ VoV ) (v - v

)
) =

So, we get

IRY(X, o(Y))st — RUX, 0(Y))sul /(t— 5)°
< |[Ve(v©) — w<Y<°>HﬁHa<|Y0 |+|!Y<1>\|5H61Tﬁ>
)

+ IV 1-matl[V© HBHOMY Y+ YD — YO g g TP)
+kule<\¥<°> O 4 ye —Y(O)HB-HESIT’B)HY | 5-m61

+[Velloolly ™ — 37(1)”6—H61-
Using Eq. (4.4), we have
IR} (X, 0(Y)) = RI(X, o(Y))lls < ClIVellc11Cx:1 CF.
Finally, from Egs. (4.6), (4.7), and

YO — VO g < (1 + [ X ) (Vs — Y| + dy 5 5, V)T)
+ (VI + 1Y D pm TP X = X5

OOy Xt = X g + Cxr (1Y) = YV |+ dy 5 5V, 1)),

we get

dy 5(2(Y),0(Y)) = [R5(X, o(Y)) = Ro(X, 0(Y))llz + I RY(X, 0(Y)) —

< C|Vellg1aC3i CF6
< OVl C2CE (1Y — Y| + Cy | X' — X5
+Cxa (YY) = YVl +dy 5 (Y, 7).

Thus we obtain Eq. (4.5).
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Lemmas 4.3, 4.6, and Remark 4.4 yield the following proposition immediately.

Proposition 4.7. Let Y € lx(S3(E, F)) for some X € GQz(E) and ¢ € C*Y(F,L(E, F)) such
that Vi and V2¢ are bounded on F. Then, ¢(Y) belongs to llx(Ss(E, L(E, F))).

Proof. From Lemma 4.3, (X, (Y)) belongs to Ms(E, L(E, F)). By the definition of Y = (Y0,
Y) € Tix(S5(E, F)), there exists a sequence {(X(n),Y (n))}52, C Ss(E, F) which converges
to (X,Y) with respect to the distance mg. From Remark 4.4, (X(n), (Y (n))) belongs to Sg(F,
L(E,F)). Then, from Lemma 4.6, (X(n), (Y (n))) converges to (X, p(Y)) with respect to the
distance mg. Thus, (X, ¢(Y)) belongs to Ss(E, L(E, F)). O

4.2.2 Estimates of I(X,p(Y))
Let (X,Y) € Mg(E,F) and ¢ € CYY(F, L(E, F)) such that Vg is bounded on F. We set I(X,
p(Y) = (I(X, o(Y) O, I(X, p(Y))V) as
I(X (V)" = (X p(Y)os and  I(X, (V)" = o(¥") for t €[0,7).
For the proof of Theorem 4.2, we provide several estimates of I(X, p(Y)).

Lemma 4.8. Let (X,Y) € Mg(E,F) and ¢ € CYY(F,L(E,F)) such that V¢ is bounded on F.
Suppose that I7(X, o(Y)) is additive on Ap. Then, I(X,p(Y)) belongs to Q%Q(F) and there ezists

a positive constant C' which depends only on B, v, and T such that
(X, e(Y)llx,5 < ClIVellcor (1 + X s)> (1 + 1X 5 + 1 X>[l25)
1 1 1
< (Y + 1Y IxsT% 4+ @+ 1Y+ 1Y Ol (Y57 + [V ]1x,6)T7).
(4.8)

Moreover, C' can be taken independently with respect to T in each finite interval.

Proof. We first see from Lemmas 3.24, 4.3, and the additivity of I7(X, p(Y)) that I(X,¢(Y))
belongs to Qg}f(F). We prove Eq. (4.8). Set (s,t) € Apr with s < t. Then, from the additivity of
I"(X,p(Y)), Egs. (2.23), and (4.3), we get
[ROCX1(X, 0(V)))sal < VoYY DX+ 1T (B (X, oY) sl + 1T (RYUX, 9(V)))ss
1
< IVello (%51 + 1Y a1 7)1 X s (¢ — )
+ CIRG(X, o (Y ) l2sl X st — 5)*°
+ CIRY (X, o (V) lls(1 + |1 X [l5) max [|X Jis(t — 5)*

1
< 1Vlloo (Y] + 1Y D gt T2 | X 2|25 (¢ — 5)%°
+ Clle) s (X M5 + (141X ll5) mae 1X7lip) (¢ — )
1
< IVl (1Y + 1Y D g TP X2 s (¢ — 5)%°

1 1
+ O Vellcor (L+ X 5)2 (1 + [Ye D]+ 1Y Ollama) (Ve + 1Y [ x6)
< (IX s+ (141X l) max 1Xlas) (¢ — ).
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Also, by the definitions of I(X, ¢(Y)) and controlled paths, we get
IR (X, T(X, (YD) ls = (Y )11
<1V llool 1Y Ol 51101
< Velloo (Y3 1+ 1Y D g T2 X s + IRS(X, Y ) 26T
< [Velloo(1 + IX 5) 1YV + 1Y x,677)-
Combining these estimates, we have
100 x5 < IV@loo(1 41X s + IX2as) (Y] + ¥ [1x,5T)
+C|IVellcor (L + I X Ig) (1 + 11X s + 1X]26)
x (1 YL+ 1Y D ) (1Y) + 1Y 1x,0) T
This yields Eq. (4.8) immediately. O

Lemma 4.9. Let (X,Y),(X,Y) € Mg(E,F), and ¢ € C*'(F,L(E, F)) such that Vi and V¢
are bounded on F. Suppose that I7(X,p(Y)) and I"(X,p(Y)) are additive on Ap. Then, there
exists a positive constant C' which depends only on 5, v, and T such that

< O Vellort (CRaOx CH(IY,” = Y5 + X" = X' lg + | X° — X°Jz)
1) o >
+ COx (Y = V| + dy 5 (V. 7)TP)). (4.9)
Moreover, C' can be taken independently with respect to T in each finite interval.

Proof. Set
pi= 1" = Y5 + dg (X, X)

and denote I(X,¢(Y)) and I(X,o(Y)) by Z = (20, Z2M) and Z = (2, Z), respectively, that
is, for each t € [0, T, we set

7 =D (X, 0(Y))o, and 2V = o(v\),

70 =D (X, o(V)os and Z{" = o(¥").
First, from Eq. (4.4) and

Ve = VO 4 1Y@ — VO g < (1+ I X ) (Ve = VP + dy 5 5, V)TF)
+ @+ T+ IO amaT?) (Y - V) + 11X~ X))
< Cxr(|Yg) = YVl + dy ¢ 5V, V)T%) + CCyp, (4.10)
we have
IRY(X. 2) - RY(X, 2)l5 = [le(¥ ) — o(Y ) | g1
< C|Velloor Cx1 Cy (1% = Fg 2 + Y@ = VO g yi)

< O|Velleor (Cx1C3p + CoiCy (Vg = YoV + dy 5 5 (Y. V)T7)).
(4.11)

43



We next provide an estimate of H|R0(X Z) — R§(X, Z)||ap. Set (s,t) € Ar with s < t. From the
additivity of I7(X, ¢(Y)) and I7(X, p(Y)),
R§(X, Z)s1 = R§(X, Z)sp = (Vo (Y)W X2+ T (RY(X, oY) + T (RY (X, (V) ) 1)
— (Ve(VIY X2, + T (Ry(X, (V))ss + I3 (RYU(X, 0(Y))s1)
= (VSO(}/S(O)) s( ) s,t - V(,D( 3(0)) ( )th)
+(I)IZW(R(I)(X#P(Y))s,t—I}(’W(Ro( L 0(Y))s,t)
+ (T (BUX, (Y )st) — T3 (RY(X, (Y ))ss)
= Ag,t + A;,t + A?,t

By inequalities of the form |abc — abé| < |a — a||b||c| + |a||b — b||¢| + |a||b||c — &,

A3 < V(Y ))—V (¥ )HY(”HX tl
+ V(Y)Y - Y |Ix2,|
+ V(Y)Y HX X2l

< IVl ima(Yg” — Yo + HY‘O) — YO T (Y] + 1Y Ol e TP | X s (¢ — 5)%
+ IVl (VY = VI 4 YD = YO g TP [ X2 05 (t — 5)%°
+ IVl (VD] + 17O gt T2 | X2 — X2 os(t — )22

Then, using Eq. (4.10), we get
AL1/(t = 8 < C[Vglloor (CxCEp+ Coxa Cx Oy (I = YoV + dy ¢ 5 (V. V)T7)).
Also, from Egs. (2.23) and (2.25),
ALl < TRV (R§(X, oY) — Ré(ff @(Y)))stl
+ [T (R (X, (V)5 = T3 (RS (X, 0(V) st

(R
< CRy(X, ¢(Y) — Ry(X, 4/9( Dl2sl X st — 5)*
+ O RG(X, o(V))ll2sll Xt = X l5(t — 5)*

and

43 < IRV (RY (X, () = RY(X, 0(Y)) s
+ |IXZ’Y(R(1)(X’ @(}7))57,5 - I;W(R?(X, @(?)))s,t‘
< CIRY(X, o(Y)) = RY(X, (Y )lls(1 + X I5) max, IX " lig(t — 5)*

+ CIRY (X, o()lls(L + XI5 + 1 X ] 5)ds 2 (X, X)(t — 5)°.
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Combining these estimates, we get

(AL + AT/t = )

< C(dy £ e (V) (D) (1X s + (141X 5) ma 1X75)

el 5 (X = Xl + (141X s + 1K Is)ds (X, X))
< C(dy 5 5(0(Y), o(V))Cx1 Cx + [0V )l 5Cx1d2(X, X))
< CVgllens (CRCxCip+ CraCx CR(YSY = VgV 4 dy ¢ 4(V, 7)) + CRiChp),

where in the last inequality we used Eqgs. (4.3) and (4.5). Hence, from the estimates of A2, Al,,
and Ait above, we have

< ClIVpllon (C3aCxClp+ ChaCx GV = VY| + dy ¢ 5 (V. V)T)). (4.12)
Finally, from Eqs. (4.11) and (4.12), we thus obtain Eq. (4.9). O

4.2.3 A priori estimates

We now derive a priori estimates for solutions to rough differential equations, which will be used
in the proof of Proposition 4.17. For this, we first introduce the following two lemmas.

Lemma 4.10. Let ¢ € F, p € CYY(F,L(E,F)) such that ¢ and Vi are bounded on F, X €
GQp(E), andY € llx(S3(E, F)). Assume thatY is a solution to Eq. (4.1). Furthermore, we take
(a,b) € Ap such that a < b and

Coalillcrs (1 + max [ X i 0m)*(b —a)’ =k <1, (4.13)

where Cg~, = (B/(B —~))?. Then, we have the following bound
1Y llx 0 < (1= 8)Hiellool Veolloon (1 + IX Npias) IX oy + 1X s 10,61)-
Proof. Set (s,t) € Ap with a < s <t <b. From Eq. (4.2) and the definition of controlled paths,
IR )l < [Vellool Y = YO < [ Viplloo (IVONIXL |+ [RE(X, Y )sl).
Then, we get
IR (X, V) lsia) = IV @ lloollllool X g 0y < 1V lloo 1R (X, Y ) 2,10, (b — @)
From Eq. (4.2) and the additivity of I7(X, p(Y)),

RY(X,Y )5y = V(Y)Y VX2, + T (RY(X, @(Y))s + I (RYUX, 0(Y)))s s
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Then, from Egs. (4.2) and (2.23),

IR (X, Y ) llagifap — Ve llocll@llocl X N2
< Cp Al Ro(X, (V) lapfa s 12X 1l g:fap (b — @)”

+ Ca AR (X, (YD g:fap (1 + 1K  lgigasy) max, X510 (b — @)”

< O (L 1X sgo,1) s, I i o (V)1 x 01 (b — a)’.

Furthermore, in the same way as in the proof of Lemma 4.3, we get

|R(X, @(Y))sul /(t — 5)%
0
< (IVelmal Y, = YOUY DXL+ [V lloo ROX, Y )sal) /( — )2
< IVellimalllloolY Ol gsonan 1X g + 1Vl | RS (X, Y ) 2800

and

|R?<X,¢<Y>>st|/<t—s>ﬁ
< (IVe(Y”) = V(Y)Y D] + Vo (Y)Y, — YD) /(1 - 5)°
< IVellmal[@lloollY Ol smsngas) + IV ellool BRI, Y pifas-

Then, we have

()| x giap) = IR6(X, 0(Y))ll25 + IRI(X, o(Y))ll
< Vellimalelloo (X + 1X g0 1Y Ol smstas + 1VeloollY x50
< IVellimallolloo (141X g51am) (12l X 510 + IR (X, Y) 20,5 (b — @))
+ Vel Y 1 x,8:a,b)-

Combining these estimates yields

IR (X, Y ) llagifap — Ve llocll@locll X N2

< Cpy (141X g 1a)? max || X* {

< [IVellmaill@loo (llloo X lgia,e) + 1RO (X, Y)llagyfa,0) (b — a)) (b —
+Cay(1+ I1X 5,1a) max [1X"llig, ab]HV‘PHOOHYHX,ﬁ 0 (b — )’

1<i<2
< [Veolli-pe max X ligigati (Il R§(X,Y)llag o) (0 — a)”)

+Cﬁw||v<ﬂ”oo(1+|||X Il ab])ln<13<XQ”|szzﬁ i) 1Y 1 g0y (0 — @),
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where in the last inequality we used Eq. (4.13). Therefore, we get

1Y llx 50,0 = NRO(X, Y ) laga ) + NRY (XY )10,
< IVellsollelloo X 510 + 1X*N26:10,)
+ Vel B (X, Y) a0,y (b — @)’

%
HIVelnallello max |X s,

+ IVl nsi nax) 12 3510, |||R(1)(X ; Y)|||2B;[a,b] (b—a)’

L+ 10X g, (ad]) A, 12X Nigfa iy 1Y 11,11,y (b — @)

< [lelloo I Velleon (141X Hlgiga,6) NX sy + 1K N2;1a1)
+IVelcor(+ max 1 i1, I RS (X Y) |2,y (b — @)

+Cp I Velloo (L + X I gjas) max 12X Wi 1Y Nl 0.y (0 — @)°

< elloolIVellcon (1 + 11X gi1am) IX 510y + 11X 2 N28:0a,61)
+ Cp AVl cor (1 + max 1XWig:100) 1Y 1 x 520t (B — @)

< lellsoIVellcoa (1 + I1X M e X g0y + 1X 2 N2g:100) + EIY [ x,6:(0.0-
Thus we obtain the claim of the lemma. O

Lemma 4.11. Let X € Qg(E) and {ui}]", be a set of positive numbers such that 0 = ug < uy <
-+ <y = T. Take continuous functions YO € C1(F) and YY) € C1(L(E, F)) and suppose that
Y := (YO, Yy satisfies

HY(l)‘|,6’—H6l;[uk,uk+1] < oo and H‘R(%(X7Y)m2,3,[uk, < 00

Uk+ﬂ

for eachl=0,1 and k=0,...,m —1. Then, Y belongs to Q%Q(F) and the following bounds hold
true:

m— m—1
1 Ro (X, Y ) ll26:00, Z RS (X Y o) + 2 IR Y i0,u X g ey (4-14)
k=0 k=1
and
m—
IR (X, Y) llagio.r Z RS (X Y)W i - (4.15)
k=0

Proof. Set (s,t) € Ap with s < t and positive integers ¢ and j such that 0 < i < j < m — 1,
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u; <8 < uiqq, and u; <t < wjqq. For each [ = 0,1, we get

! !
YO -yO < - v 0+ Z Y h, - YO+ v, - v
k=i+1

S HY(l) ||B—H61;['LLJ',1LJ'+1} (t - u])ﬁ
7j—1
+ IV D sttt g ] (1 — ug)”
k=it1
+ ||Y(l) ”,B—Hél;[ui,ui+1](ui+l - 3)5
m—1
< (t—s)’ Z 1Y Ol 5161 g ]
k=0

Hence, Y and YV are S-Hélder continuous on [0, 7] and also Eq. (4.15) holds. We next prove
Eq. (4.14). In the same way, we decompose R (X,Y) as follows:

RY(X,Y)se =YY - YO vy x],
j—1
=2 -+ Y (O, - ¥+ (O, - Y®) - yIx],
k=i+1
= Y(1>X1 ot R(X,Y ), ¢

+ Z { (1)X’ik Uk 41 + Ré (X7 Y)ukyuk-&-l}
k=i+1

+yWx!

S,Uj41

+ Ro(X Y)sui41

_ < ot Z uk,ukﬂ + X;u +1> (from (2.3) and (3.4))

k=i+1
j—1
= Ré (X7 Y)uj7t + Z R(l)(Xﬂ Y)Ukzvuk+l + R(l)(X? Y)57ui+1
k=i+1
+ (v - Xooo+ Z —YINX0 (4.16)

k=i+1

So, we get

’R(l)(Xv Y)S,t’ < |||R(%(X7 Y)”|25;[uj,u3-+1}(t - uj)Q/B
j—1

+ Z IRS(X, Y ) lop gy ) (Wit — u)®
k=it1

+ IR (X, Y ) 2 i) (i1 — 5)°
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j—1
+ Z HY(l) Hﬁ—Hél;[ui,uk]|||X1|”ﬁ;[uk,uk+1}(uk - s)ﬁ(uk-&-l - uk)ﬁ

k=i+1
m—1 m—1
< (t—s)¥ { D IR Y o i) + D 1Y Pl gnon o, I1X 1”’ﬁ;[uk,uk+1]}-
k=0 k=1

Hence, Eq. (4.14) holds and so R}(X,Y) € CSB(F). Thus we obtain the claim of the lemma. [

Lemmas 4.10 and 4.11 yield the following proposition.

Proposition 4.12. Under the notation and assumptions of Lemma 4.10, we take positive numbers
{u; Ly such that 0 =up <wuy < -+ <upy =T and

Coallellon (1 + max 1 X igpo.m) (w1 — ) = rj <1 (4.17)

for each j =0,1,...,m — 1. Then, we have the following bound
1Y llx g0 < m*(1 = 8) " HlelloolVellcor (141X g0.21) (WX g0,y + 1Xll2:j0.27)

where Kk 1= MaXo<;j<m—1K;-
Proof. From Egs. (4.14) and (4.15), we have

1Y [l g0.77 = IR Y)llog. 0.7 + IR (X, Y )l go,7y

m—1 m—1
< MRS Y oy s + D DR Y ) 0,0 X D iy sy
7=0 Jj=1
m—1
RS (X Y ) g1 1)
=0
m—1

m—1
1Y 1l 5y g + IRECE 0.1 D X H 24y )
JZO 7j=1

m—1

m—1
<1+ Z ”|X1|||6;[uj,uj+1]) Z Y1 %83 ;5 11]-
i=1 7=0

Then, using Lemma 4.10 with a = u; and b = u;41, we get

m—1

Y 1lx a0 < (1 D IX lsifug,,a) lolloo Vel o
1=1

—_

X (1 - '%j)_l(l + H‘Xl|||ﬁ;[uj-7uj+1])(”’X1mﬁ;[uj,uj-+1} + H‘X2|”25;[uj-,uj+1])
J

3

I
o

m—1
m(1 = k)"l Vellcor (1 + 1X Naor) D X gy s ia) + 1K D28y 0y000)
7=0

<m?(1 = 1) ellool Vellcor (1 + IX Nsg0,m1) X lgij0,71 + 1Xl2gi0,70),

as desired. Thus we obtain the claim of the proposition. ]

The readers may find in [6, Proposition 8.3] sharper estimates than those provided above.
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4.2.4 Basic lemmas for shift operators

We provide several lemmas which will be used later. Let V be a finite-dimensional normed space
and let ¢ € C1(V) and ¥ € Co(V). For each u € [0, T], we define 6,,(1)) and 6,,(¥) by 0,(1))¢ := Vutt
for t € 0,7 — u] and 0, (V)5 := Wyps st for (s,t) € Ap_y, respectively.

Lemma 4.13. Let X = (1, X1, X?) € Qp7(E) and Y = (YO, YW) € Q%°.(F). Then, for each
u € [0, T, the following statements hold true:

(1) 0,(X) = (1,0,(X"), 0,(X?)) belongs to Qg r—y(E);
If X € SQﬁ 7(E), then 0,(X) € SQ@T_U(E);
If X € GQur(E), then 0,(X) € G ru(E);

W(Y) = (0u(Y ), 0,(Y D)) belongs to Q7 ) 1, (F):

2

) 0
)
)
4) 0

(
(3
(
(5) If X € G 1 (E) and 6,(Y) € Tx (Spr(E, F)), then 6,(Y) € Ty, (x(Sgr—u(E, F)).

Lemma 4.13 follows immediately from the definition of 6,. The following lemma is used in

the proof of Theorem 4.2 when we prove the existence of global solutions to rough differential
equations.

Lemma 4.14. Let ¢ € C*'(F,L(E, F)) such that Vo and V*¢ are bounded on F, X € GQ3(E),
and Y € lx(Ss(E, F)). Then, for each u € [0,T] and v € [0,T — ul,
D(0u(X), 0(0u(Y)))ow = I'(X, (Y))ujuto- (4.18)

Proof. From Lemma 4.13 (5) and Proposition 4.7, (6,(X), ¢(6.(Y))) belongs to Sgr_,(E, L(E,
F)). Then, from Proposition 3.14,

(left-hand side of (4.18))
m—1

— : 0 1 0 1 2
= i, 3 L DX s + T K

m—1

. 0 0 1

= |77(}H|n%0 {(P(Yler)ul)X&—l—u“u-l—qu + ch(Yu( )u )Yu(Jr)u X3+u1,u+uz+1}
" i=0

= (right-hand side of (4.18)),

where the limits are taken over all finite partitions Py, = {uo,u1,...,un} of the interval [0, ]
such that 0 = up < u; < -+ <y = v and [Py, := maxp<i<m—1|uit1 — u;|. Thus we obtain the
claim of the lemma. ]

Lemma 4.14 yields the following lemma, which is used in the proof of Theorem 4.2 when we
prove the uniqueness of global solutions to rough differential equations.

Lemma 4.15. Let £ € F, ¢ € C*Y(F,L(E, F)) such that Vi and V?p are bounded on F, X = (1,
X1, X%) € Gpr(E), and Y = (YO YW)) € Ty (Spr(E, F)). Assume that Y is a solution on
[0,T] to the rough differential equation driven by X along ¢ and starting at . Then, for each

€ 0,7, 0,(Y) := (0,(Y),0,(YV)) € x(Ss7r_u(E,F)) is a solution on [0,T — u] to the
rough differential equation driven by 0,(X) = (1,04,(X1),0,(X?)) € GQsr_u(E) along ¢ and

starting at YU(O) .
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Proof. For the claim of the lemma, it suffices to show that, for each t € [0, T — u],
0u(Y D)y = YO + I (0u(X), 0(0u(Y))or and 0, (YD)r = (6 (Y O)y). (4.19)

Since Y is the solution on [0, T, the second identity of Eq. (4.19) is obvious from the definition of
6,. Also, the first identity of Eq. (4.19) follows immediately from the assumptions that Y is the
solution on [0,7] and Lemma 4.14; indeed, we get

0.(Y?), =Y.,
— £+ (X, oY)t
— £+ (X, (V)0 + I7(X, oY) uurt

=Y+ 17(0,(X), @(Gu(Y)))o,t, (from (4.18))
as desired. Here, we used the additivity of I7(X, ¢(Y')), which follows from Proposition 4.7 and

the assumptions that X € GQgr(F) and Y € IIx(Sgr(E,F)). Thus the claim of the lemma
holds true. O

4.3 Proof of Theorem 4.2

In this subsection, we provide a proof of Theorem 4.2, which is inspired by those of [8, Theorem 8.4]
and [9, Propositions 7 and 8]. Although a part of the proof is given along the same lines of them,
some further discussions are needed when we construct the global solution by concatenating the
local solutions as in the proof of Proposition 4.17 stated below. This is because it is uncertain
whether I7(X, p(Y)) is additive on Ar even for every X € GQg(E) and Y € Q’f(’Q(F). For this

reason, we have to discuss the construction of the global solution in IIx (Sg(E, F)) C Qi’z(F ) for
X e GQB(E).

4.3.1 Main part of the proof of Theorem 4.2

First, we show the local existence and uniqueness of solutions to rough differential equations.

Proposition 4.16. Under the assumptions of Theorem 4.2, there exists Ty € (0,1] and a unique
element Y = (YO YD) of TIx(Ss 1, (E, F)) which satisfies Eq. (4.2) for any T < Ty. Here, Tp
can be taken independently with respect to &.

Proof. For Y = (YO Y1) € TIx(S3(E, F)), we define Gr(Y) = (Gr(Y)O, Gr(Y)) as
Gr(Y)\V = ¢+ (X, 0(Y))os and Gr(Y)\") = o¥,”) forte[0,T].

From Propositions 3.15 and 4.7, Gr(Y') belongs to IIx (Sz(E, F)). Thus, Gr leaves IIx(Ss(E, F))
invariant, that is, Gr: Ix(Ss(E, F)) — llx(Sg(E, F)). For r > 0, we define Bp(r) as

Br(r) :=={Y € Ix(S5(E, F)) : V" = £,Y3" = ¢(€), |Gr(Y) x5 < }.

It is straightforward to show that the subset {Y € Ux(S3(E,F)) : YO(O) = f,YO(l) = ¢(&)} of
IIx(Ss(E,F)) is a complete metric space under the distance mx g and Br(r) is a closed ball of
radius  centered at U = (¥, (M) in the subspace, where

U = e+ o)X, and WY =€) for t € [0,T).
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Let Y € IIx(S3(E, F)) such that Yo(l) = p(§). From Eq. (4.8), we have

IGT()x5 < K[IVellcor(lellso + 1Y 11x,6T7 + 1+ l[¢lloo + 1Y llx,5) (lelloo + 1Y 11x,8)T7),

where K is a constant which depends only on 3, v, and X = (1, X!, X?), as long as T < 1. We
define r := K||Vl|co1(||¢llec + 1). If T € (0, 1] is sufficiently small,

K[Vellcoa(llloo + T + (1 + ll¢lloo + ) (lI@lloo +7)T7) <
Then, G leaves Br(r) invariant, that is, Gp: Br(r) — Brp(r). Moreover, for each Y,Y € Brp(r),
mx(Gr(Y),Gr(Y)) < C|Vollori Cx Cx Clmx 5 (Y, Y)T?,

where C; := 1+ 2(]|¢||oc + ) and C' is a constant which depends only on 8 and ~. This follows
from Eq. (4.9) with X = X, YO(O) = }70(0), and Yo(l) = }70(1) = (&) and T < 1. Furthermore, by
choosing T' = T smaller such that

C|IVell 11 Chi Cx C2TY = ko < 1,

we obtain mx s(Gr, (Y),Gr,(Y)) < womx 5(Y,Y). Hence, Gr, is a strict contraction in Br, (r).
Therefore, G, admits a unique fixed point Y € By, (r). This is the unique solution on the small
interval [0, Tp] as desired. Thus we obtain the claim of the proposition. ]

Next, we construct a global solution on the whole interval [0,7] by concatenating the local
solutions. For this, we introduce a few more notations. Let Sy ¢(X) = (Sy (X)), S, (X)D)
denote the local solution on [0, Tp] constructed in Proposition 4.16. We define Ny := [T/Tp]| and
t; »= min{iTp, T} for i = 0,1,..., Ng. We note that to =0, ty,—1 < T, tn, = T, and the obvious
relations ¢y, —tn,—1 < Tp and t;41 — t; = Tp for each @ = 0,..., Ny — 2. Then, concatenating the
local solutions, we define Y(©) € C;(F) and YV € Cy(L(E, F)) as follows: for each [ = 0,1,

A~

V= Sy (01 (X)), for t € [to,11]

with & := ¢ and

Yt(l) — S¢,gi(9ti(X))£l—)ti for t € [ti, tit1]

with &; := Sap,&q(etiq(X))g/%) for i =1,..., Ny — 1, inductively. It follows from Proposition 4.16
that Ty does not change when th@ starting point ¢ is replaced by &1,...,&N,—1. Our car}didate of
the global solution is defined by Y := (Y(O), Y(l)). Furthermore, from the definition of Y,
H?(l)Hﬁ-Hﬁh[ti,tiJrl] = Hs%éi (0, (X))(l)HB-H&;[O@H—Q] <oo, =01,
and
IRS XY ) apifes i) = 1RGO, (X), S (Ors COD o1 < 00

hold for each ¢« = 0,1,..., N9 — 1. Then we see from Lemma 4.11 that Y belongs to Q%Q(F).
Moreover, for Y to be a global solution, the following proposition should be valid.
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Proposition 4.17. Under the above notation, Y belongs to Ilx (Ss(E, F)).
We prove this later in this subsection. Using Proposition 4.17, we now prove Theorem 4.2.

Proof of Theorem 4.2. We first prove that ¥ = (?(O),Y(l)) defined above is a solution on the
whole interval [0, 7], that is, the following identities hold true: for each t € [0, 7],

VO — e+ (X, 0(V))oy and VY = o). (4.20)

The second identity of Eq. (4.20) follows immediately from the definition of Y. Indeed, by the
definition of ¢;, there exists ¢ = 0,1,..., Ng — 1 such that ¢; <t < ;11 and then

VY = S, (01 ()Y, = 0(Spe, (01, (XN, ) = 0 (V).

We now prove the first identity of Eq. (4.20). First of all, we note that I7(X, p(Y)) is additive
on Arp. This follows from Theorems 3.11, 3.12, Propositions 4.7, and 4.17. By using this property
and Lemma 4.14, we can show that

E+T(X,0(Y))os =&+ I'(X, oY)t (4.21)
Indeed, the left-hand side of Eq. (4.21) is decomposed as follows:

E+ (X, o(V))or = €+ DX, 0(Y))ous +17(X, 0(V))era
e (OR + (X, (V) 4
=&+ (X, o(V))ra

and moreover

&+ DX, p(V)ere = &+ 1K p(V))ests + 171X (Dt
=&+ 1 (04, (X), 00, (V))om, + 17(X,0(Y))iys
(from (4.18) with Y = V,u=t;,and v=1ty —t; = To)
= &+ 17 (01,(X), S (00, (X))o, + 17 (X, 0(Y) )1
(from 6, (V) = Sy, (61, (X)) on [0, )
= St (00 (X)) + I (X 0V
=&+ (X, oY)t

By repeating this argument with ts,t4,...,%;, Eq. (4.21) holds true. Then, from Eq. (4.21),
Lemma 4.14, and the definition of Y, we get

VO = 8,6, (60, (X)) s,
=& + 17 (0,(X), (Sp.e: (01:(X))))o,t—t,
=& + 17(0,(X), 00, (Y))ou—t,  (from 6, (Y) = Sy, (6:,(X)) on [0, T))

=&+ 1(X (Y))t“t (from (4.18) with Y =Y, u =t;, and v = t — t;)
(from (4.21))

=+ 11X, (V))oss
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as desired. Hence, the first identity of Eq. (4.20) holds.

We next prove the uniqueness of global solutions to Eq. (4.2). Let Y = (Y(O),Y(l)),l? =
(YO, vy ¢ TIx(Ss(E, F)) be solutions on the whole interval [0,7], driven by X = (1,X",
X?%) € GQp(E) along ¢ and starting at . We define 7 := inf{t € [0,7T] : Yt(o) # }th(o) or Yt(l) +
f/;(l)} and assume that 7 < 7. From Lemma 4.15, 6.(Y) = (0,(Y©),0,(Y()) and 6,(Y) :=
(0, (Y©),6,(Y (1)) are solutions on the interval [0, T —7], driven by 6,(X) = (1,60,(X"),0,(X?)) €
GQpr_-(F) along ¢ and starting at YT(O) = }N/T(D). Since we already know local uniqueness of the
solution from Proposition 4.16, we see that 0,(Y) = 6.(Y) on [0, Ty A (T — 7)]. Hence, it follows
that Y =Y on [0, (7 + Tp) AT] and so (7 4+ Tp) AT < 7. This contradicts the assumption 7 < 7.
Thus we establish the uniqueness of the global solutions. O

4.3.2 Proof of Proposition 4.17

In the remainder of this subsection, we will prove Proposition 4.17.

Lemma 4.18. Let X € GQ3(E) and {X(n)}o2, C SQg(E) such that lim, o dg2(X(n), X) = 0.
Take Y € Qi’z(F) and positive numbers {u}" o, such that 0 = ug < uy < -+ < wy, =T and
suppose that, for each n, there exists Y (n) € Q;%n)(F) that satisfies

nll)nolo ”’R}_I(X7 Y) - Rll_l(X(n)v Y(n))|||(27l)/3;[uk,uk+1] =0
for eachl =0,1 and k=0,1,...,m — 1. Then, for eachl =0,1
Tim [BHXY) ~ RN (), Y () oo = 0.

Proof. Set (s,t) € Ar with s < t and positive integers i and j such that 0 < i < j < m — 1,
u; < 8 < uiqq, and u; <t < ujqp. In the same way as in the proof of Lemma 4.11, for each
n=12,..., we get

|RY(X,Y)st — R)(X(n),Y (n))s]

1 1
=1 =¥ - (v () — Y () )]

7j—1
< | =YDy — (v -y + Y 1Y, - v — (v - Y (m)D)]

Uk+1
k=it1
+ (), =Y = (v (), =Y (n){Y)]
j—1
< HY(l) - Y(n)(l)HB-HGI;[uj,uJ'Jrﬂ(t - uj)/B + Z HY(l) - Y(n)(l) Hﬁ-Hél;[uk,uk+1}(uk+l - uk)ﬁ
k=i+1

+ HY(l) - Y(n)(l) ”ﬁ-Hél;[ui,ui+1](ui+1 - S)ﬁ

—_

< (t—s)’ ly® — Y(n)(l)”B-Hijl;[
0

3

Uy Uk 1]

>
Il
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This yields lim, o [R)(X,Y) — RY(X (n),Y (n))l ;0,11 = 0. Also, from Eq. (4.16), we have

Ry(X,Y )50 — Ry(X (n),Y (n))ss
- (R(l)(Xu Y)uj,t (X(n)7Y(n))uj,t)
j—1

+ Z (R(l)(X7 Y)uk7uk+1 - Ré (X(n)7 Y(n))uk7uk+1)
k=i+1

(Ré (X Y)S Uiyl R[l)(X7 Y)S,Uiﬂ)
+ (¥ =YX, = (Y(n)) =Y (n))X (n),

U j s uj,t

j—1
s {(YJS YKL () —Y<n>§1>>X<n>ak,ukH}.
1

So, by inequalities of the form |ab — ab| < |a — al|b| + |a||b — b|, we get

[RO(X,Y)sp = RO(X (), Y (1)),

= |R§(X,Y) — Ro(X (n), Y () ll2gifu 1) (E — 15)>°
j—1

+ ) IR(X,Y) = Ry(X (1), Y (1) g fug g 1) (k1 — g)*?
k=i+1

+ IR (X,Y) = Ry(X (), Y (1)) lapifus up ] (i1 — 5)
+ (HY(l) - Y(n)(l) H,B—Hé')l;[ui,uj']H‘X1”|B;[uj,uj+1]
+ IIY( )M ettt 1 X = X () gy y 1) (g — )7 (8 = )?

.S {nY L TN Dt T
k=i+1

+ Y () W gt s X = X (n)1”|ﬁ;[uk,uk+1]}(uk —8)% (w1 —wp)”

m—1
< (0= 57 S IRYXY) — BYX (), Y (m)lapiun s
k=0
m—1
(t - )P M {HRO (X,Y) = RYX (1), ¥ ()30 + IX" —X<n>1|||6;[uk,um]},
k=1

where

M = |RY(X, V)l 0.1y V IX I 350,17 V Slil'l){WR?(X(n)a Y (n)) (n) ;0,13

This yields lim, o [|RS(X,Y) — R} (X (n), Y (n))ll2;0,71 = 0. Thus the claim of the lemma holds
true. O

We are now ready to prove Proposition 4.17.
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Proof of Proposition 4.17. By the definition of X € GQg(FE), there exists a sequence of smooth
rough paths {X(n)}22, C SQg(FE) which converges to X with respect to the distance dg . Then,
for each n = 1,2, ..., there exists a unique element y(n) € C{(F) such that

yn) = €+ /0 o(y(n)u) dX (m)h, for all t € [0,T].

Here, the right-hand side is the Riemann-Stieltjes integral of p(y(n)) along X (n)(l) This follows
from the usual theory of ordinary differential equations; for example, see [21, Theorem 2.3.1]. Set

Y(n)go) :=y(n); and Y(n)gl) = p(y(n);) fortel0,T].

We first show that Y'(n) := (Y (n)©, Y (n)V) belongs to Qf(n)(F). From the definition of Y (n),

we can easily verify that Y (n)(® and Y (n)(") are Lipschitz continuous on [0,7]. We now prove
that R}(X(n),Y (n)) € C3(F). Set (s,t) € Ar with s < t. Then,

RY(X (1), Y (n))ey = / (p(y(n)) — p(y(n)s)) dX ()},

m—1
. 1
= lim Z (‘P(y(n)vl) - w(y(n)s))X(n)vi,vi+17
"Ps,t|—>0 i—0
where the limit is taken over all finite partitions Ps; = {vo,v1,..., v} of the interval [s,t] such
that s =wvg < vy < -+ <y, =t and |[Psy| := maxg<i<m—1|vit1 — vi|. So, we get

m—1
|Ry(X (), Y (n))s ] < |Plif‘n_>0 > lellerally(m) s (vi — $)IX ()l (vi1 — vs)
st i=0

< llellmally(m)limal X (n) (= 5)*.

Thus, R{(X(n),Y (n)) € C3(F) and so Y(n) € Q;Q(n)(F) We also note that Y (n) is a solution
to the rough differential equation driven by X(n) along ¢ and starting at £. This fact is used
frequently in this proof without being explicitly noted. For the claim of the proposition, it remains
to prove that

n—o0

since we already know that lim,,_, dg2(X(n), X) =0, };0(0) = Y(n)(()o) =&, Yo(l) = Y(n)[()l) = (),
Y(n) € Q;%n)(F), and Y e Q%Q(F). For this, we introduce the following symbols:

Cxr = 1+ | X oz + sup [1X (n) 0,71
nz

Cx = Cx1 + | X% ||ap 01 + sup I1X () ll25500.7);
n>
and

Cy =1+ Y llx 0,1 + sup 1Y (7))l x (), 850,17
n>
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Here, from Proposition 4.12 with Y = Y (n), we can easily verify that sup,~1 [|Y ()|l x(n),g0,77 18
finite. Furthermore, we take 77 € (0, Tp] such that

CVello1aCir Cx CETY = k1 < 1, (4.23)

where constant C is the same as in Eq. (4.9). We define Ny := [T'/T1] and w; := min{i7y, T} for
i =0,1,...,N;. We arrange {ti}f\fo U {ui}i\go in the ascending order and denote it by {sk},]f:"o,
namely, 0 = 59 < s1 < -+ < $N,—1 < Sy, = I. From Lemma 4.18, Eq. (4.22) is proven if we show
that

lim IR~ (X,Y) = By~ (X (n), Y ()l 2—1)8:[sy35.1] = O (4.24)

n—o0

holds for each | = 0,1 and k =0,1,..., N, — 1. We will prove Eq. (4.24) by induction on k. Set
(s,t) € Ap with 0 = 59 < s <t < s;1. Then, for each [ =0, 1,
IR, (X, Y )5 = RITHX (), Y (n) 2-1)3:[0.01]

= IR} (X, L(X, o(Y))) = BN (X (), I(X (n), (Y (0)))l2-1)s0.51]
(since Y is the solution on [0, Tp))

A~

< dx x(n),s(1(X,0(Y)), I(X(n),¢(Y(n))))
< (1- k1) 'OVl {C5: Cx CE (VI — v ()|
X" = X () g0, + 1X? = X(0)llapgo 01)) + Chi CxCEITY =Y (m)P1}
(from (4.9) and (4.23))
= (1= r1) 'OVl 11 C3 Cx CL(IXT — X (n)!
(from YO(O) = Y(n)(()o) and Yo(l) = Y(n)(()l))

0,61 + 1X% = X (1) l25,10,517) — O

as n tends to infinity. Hence, Eq. (4.24) holds for k¥ = 0. Suppose that Eq. (4.24) holds for each
kE=0,1,..., K with0 < K < N,—2. Set (s,t) € Ap with sg11 < s <t < sg9. By the definition
of {sk}ivz*o, there exists i = 0,1,..., Ng — 1 such that t; < sg11 < s <t < sgy2 < tir1. Then, for
each [ =0,1 and u € [0, Sxy2 — SK+1],

SK41 (Y(l))u = 95K+1—ti (eti (Y(l)))u = 98K+1—ti(‘9%§i(9ti (X))(l))U'

Since S, ¢, (0, (X)) is the solution on [0, t; 1 —t;] driven by 6;,(X) and starting at & = SA/tEO), we see
from Lemma 4.15 that 05, ., ¢+, (Sy¢, (0, (X))) is the solution on [0, (t;11 —t;) — (sx+1 — ti)] = [0,
tivr — skr1] driven by O~ (05 (X)) = s,y (X) starting at 0,0, (VO), = Yar,,. In
particular, 0, (Y) is the solution on [0, sx12 — sx11] C [0,ti41 — skx41] driven by O, (X)
starting at ﬁ(}ﬂll. Letting

ZSK+1 = I<08K+1 (X)7 90(981(+1 (Y)) and Z5K+1 (n) = 1(05K+1 (X(n))a 90(981(+1 (Y(n)))v
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we have
RIUX,Y)es — RIHX(n), Y (1)) sy

= Rl1 l(05K+1 (X SK+1( ))s SK41,t—SK+1 Rll_l(95K+1 (X(n))7 05K+1 (Y(n)))S_SKHvt_SKH
(from the definition of 0, )

= Rllil(HSK.H (X)v ZSK+1 )S*SK-Q—l,t*SK-H - Rllil(esxﬂ (X(n))v ZSK+1 (n))S*SK-Q—l,t*SK-;—l
(since QSKH(Y) is the solution on [0, Sx4+2 — Sk +1])

for each [ = 0, 1. Hence, using Eqgs. (4.9) and (4.23), we get

IR} (X, Y )se = REHX (), Y () 20yl rsrc o]

= IR} O (X)s Zosern) = B s (X)s Zisse i M) 2-1)110,55 42— s5041]

S oy (00, (X008 (Zsrcns Dsgcia (n))
< (1 =)' ClIVeller, 1{C§(1CXC3 (| Y(n)gg{)+1|
+ |H95K+1( 1) B 08K+1(X( ) )|||5§[075K+2_5K+1] + ”|03K+1(X2) - ‘95K+1(X(n)2)|||2,3;[0,8K+2—5K+1})
+CLCxCLYY  — Y (n)()

3K+1|}'

5K+1

Then for the proof of Eq. (4.24) with & = K + 1, it suffices to prove that hmn%oo|Ys —

K+1
Y(n ) s +1| = 0 for each [ = 0,1. First of all, from the induction hypothesis and Lemma 4.18 with
Y =Y, u, = s, and T = SK+1, we already know that

Tim IR0 Y) — REHX ), Y (1) o typonse ] = O (4.25)

holds for each [ = 0, 1. Furthermore, from YO(O) = Y(n)((]o) =¢ and }}0(1) = Y(n)él) = (&),

| SK+1 (n)g(22+1|
=170 ¥~ v (), ~Y())

= (Vg X3 ey = Y ()X () o) + (REX, YV )ossyesy — REX (1), Y (1))o5c, )]
< lp(©IIX* — X (n)t 1801 + 1B (X, Y) — RE(X (1), Y (0))lag: 0,551 S 2o sn

and

VA, v, =108, ¥4 — ), — V)]

= [RYX, Y o0 — RYX (1), Y (1))o,sc.
< IRY(X,Y) = RYX (1), Y ()0, s5041] S 41

Then, from Eq. (4.25), we have hmnﬁooﬁ/g}l{)+l —-Y(n )3K+l| = 0 for each | = 0,1. Thus, Eq. (4.24)
holds for £ = K + 1. Consequently, we obtain the claim of the proposition. ]

Remark 4.19. The above proof requires the result of global existence of solutions y(n) using the
basic theory of ordinary differential equations. It is uncertain whether there are more direct proofs
of Proposition 4.17 without using the approximate solutions Y (n) = (y(n), ¢(y(n))) of Y.
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