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Abstract

We consider stochastic stability of expanding maps and partially ex-
panding maps under quenched random perturbations. In the first part,
we consider quenched random perturbations of skew products of rotations
on the unit circle over uniformly expanding maps on the unit circle. It is
known that if the skew product satisfies a certain condition (shown to be
generic in the case of linear expanding maps), then the transfer operator
of the skew product has a spectral gap. Using semiclassical analysis we
show that the spectral gap is preserved under small random perturbations.
This implies exponential decay of quenched random correlation functions
for smooth observables at small noise levels. In the second part, adapting
another previously developed spectral approach, we also show stochastic
stability of expanding maps under quenched random perturbations whose
base dynamics are not invertible necessarily.

In dynamical systems theory, two questions have been studied for a long
time; one is how the typical orbits asymptotically behave as time goes to infinity,
and the other is how stable the dynamical behaviour is under perturbations of
the systems. In this thesis, we consider a stability of statistical behaviours of two
broad classes of dynamical systems ― expanding maps and partially expanding
maps, under small noise perturbations, which is called stochastic stability.

It is typical in dynamical systems theory to find dynamics whose orbits ex-
hibit an extremely complex behaviour despite of its simple evolution law. This
is true also in our case of partially expanding maps. A successful approach in er-
godic theory to understanding such dynamical systems with complex behaviour
is through establishing the existence of an absolutely continuous ergodic invari-
ant probability measure (abbreviated aceip). We recall that given a dynamical
system f : X → X in a measurable space (X,Σ), a probability measure µ on X
is said to be invariant with respect to f when µ(f−1A) = µ(A) for all A ∈ Σ.
Furthermore, we say that µ is ergodic when µ(A) is 0 or 1 for any f -invariant
A ∈ Σ (i.e., f−1A = A). By Birkhoff’s ergodic theorem, for each L1 observable
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φ : X → R, we get that

lim
n→∞

1

n

n−1∑
j=0

φ(f j(x)) =

∫
φ(x)dµ

if x is in a µ-full measure set X0. This implies that the time average of ob-
servables along the orbits of f issued from the point x coincides with the space
average of the observables, if x is in a typical set X0 in the sense of µ. Moreover,
if X is a compact smooth Riemannian manifold, the absolute continuity of µ
(with respect to the normalized Lebesgue measure m on X) provides a phys-
ical meaning since it implies this relation holds for any initial point x in the
Lebesgue positive measure set X0. For more detailed background of aceip (such
as the relation with the border theory of thermodynamical formalism) and its
history in dynamical systems theory, the reader is referred to, e.g., [7, 15].

Stochastic stability was introduced as the stability of the time average, the
most basic statistical data, under small perturbations by Kolmogorov and Sinai
[44]. However, stochastic stability is a rather vague notion depending on the
nature of the dynamical systems under consideration and subjects of interest. In
the context of random perturbations of uniformly hyperbolic maps by Markov
chains, the theory was basically completed by Kifer [36, 37], see also Young
[40] for the case of Axiom A diffeomorphisms. A substantial progress after
Kifer’s early work was established by Katok and Kifer [35] for a real quadratic
map with Misiurewicz parameter, which has been further developed by several
authors to prove stochastic stability of non-uniformly hyperbolic maps. See
for example [12], [1] and reference therein for recent development in this area.
Another extension was done by Kifer [38] in the case of perturbations induced
by skew-product mappings or random dynamical systems, which we will adopt
as our perturbation scheme throughout this paper (refer to [15, Appendix D], [6]
for the relation between random perturbations by Markov chains and random
dynamical systems; see also [2] for general description of random dynamical
systems). Precise definition of our perturbation models will appear in (2) and
(5)

In this thesis, we consider stochastic stabilities in two different contexts. One
is stochastic stability of partially expanding maps on the torus. In contrast to
the (non-uniformly) hyperbolic case, only a few stochastic stability results are
known for dynamical systems with nonhyperbolic directions (such as hyperbolic
flows or partially hyperbolic maps). Stochastic stability for Anosov flow was
first proved by Butterley and Liverani [18, 19] by showing the spectral stabil-
ity of the generator of the transfer operator. Although their stability results
may give us more information than stochastic stability, their results require the
perturbation to be deterministic. In Theorem 1 of Part I, we show stochastic
stability of partially expanding maps on the torus satisfying a certain condition
(shown to be generic in the case of linear expanding maps in Chapter 3) under
perturbation induced by skew-product mappings. To the best of our knowledge,
this is the first result for stochastic stability of partially expanding maps. Our
main technique to analyse the dynamics is through adapting microlocal and
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semiclassical analysis of transfer operators, which is a technique developed in
the last decade (see the introduction in Part I for more historical comments).
As a result of this spectral technique, we also show that the exponential decay
of correlation functions of these partially expanding maps is preserved under
small noise perturbations, which will be precisely stated in Theorem 2. After
completing this thesis, we learned that Dyatolov and Zworski [25] also showed
stochastic stability of Anosov flow by some microlocal technique, although their
technique seems quite different from ours.

A significant restriction on our perturbations in Part I is that the base trans-
formations of the skew-product mappings inducing the perturbations are re-
quired to be invertible. This is partly because the multiplicative ergodic theorem
to cocycles of linear operators which we shall employ for the spectral analysis
of random transfer operators is now only available for invertible base transfor-
mations, compare with [33, Section 1]. Thus, as an attempt to remove the in-
vertibility, we show stochastic stability of expanding maps under non-invertible
perturbations by adapting another spectral approach in Part II. Although only
expanding maps are considered in Part II to keep our presentation transparent,
this approach is expected to be applicable to partially expanding maps on the
torus exhibiting the exponential decay of correlation functions.

Notes
This article is a summary of the thesis “Stochastic Stability of Partially Expand-
ing Maps via Spectral Approaches”, which has been submitted in fulfilment of
the requirements for the degree of doctor of Human and Environmental Studies
at Kyoto university. The result in Part I is a modified version of the paper "On
the Spectra of Quenched Random Perturbations of Partially Expanding Maps
on the Torus", which is a joint work with Jens Wittsten and will be published
in Nonlinearity.

Part I: On the Spectra of Quenched Random Per-
turbations of Partially Expanding Maps on the
Torus
Let X be a compact smooth Riemannian manifold. Recall that a dynamical
system f : X → X is said to be mixing with respect to an invariant measure
µ when µ(A ∩ f−nB) converges to µ(A)µ(B) as time n goes to infinity for any
Borel sets A and B. This means that the events A and f−nB are asymptotically
independent, so mixing indicates a certain amount of complexity of the dynam-
ical system. For mixing dynamical systems, a fundamental question is how fast
the correlation functions decay (see Section for definitions). In fact, if the
correlation functions of a mixing system decay exponentially fast, then several
other statistical properties of the dynamical system also hold. For an extensive
background on such matters we refer to Bonatti, Díaz and Viana [15, Appendix
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E] and the references therein.
For a hyperbolic dynamical system f , individual trajectories tend to have

chaotic behavior. Statistical properties of the system, such as exponential de-
cay of correlations, are therefore preferably obtained by instead studying how
densities of points evolve under a so-called transfer operator Mf induced by f .
The typical approach to proving exponential decay of correlations is through
the construction of a functional space H adapted to the dynamics such that
the transfer operator Mf : H → H has a spectral gap, that is, there exists a
disc of strictly smaller radius than the spectral radius of Mf outside of which
the spectrum of Mf consists only of discrete eigenvalues of finite multiplicity.
Essentially, exponential decay of correlations is equivalent to the existence of a
gap in the spectrum between the eigenvalue 1 and the second largest eigenvalue
of Mf , counting multiplicities. (In the presence of noise, spectral stability thus
becomes a natural object of study.) Early work in this area was done by Bowen,
Ruelle and Sinai, see for example the newly revised edition of Bowen’s book [16]
for a historical account. A celebrated construction of anisotropic Banach spaces
was later established by Blank, Keller and Liverani [13], whose approach has
been further developed by several authors. Recently, these techniques have
been shown to also be applicable to dynamical systems with a one dimensional
nonhyperbolic direction (such as hyperbolic flow), see for example Liverani [41],
Butterley and Liverani [18,19] and Tsujii [45,46]; see also Baladi and Liverani [9]
for a historical account. As evidenced by the mentioned articles, the spectral
analysis becomes more delicate for systems with a nonhyperbolic direction.

Let the two dimensional torus be denoted T2 = S1 × S1, where S1 = R/Z.
Consider skew products on T2 of the form

(x, s) 7→ (E(x), s+ τ(x) mod 1)

where E : S1 → S1 is a hyperbolic system, and τ is a real valued function on S1.
Known as compact group extensions, these were studied by Dolgopyat [23] who
proved superpolynomial decay of correlations under Diophantine conditions in
the case when E is an Anosov diffeomorphism. Tsujii [45] considered the closely
related model given by the semi-flow obtained by suspending a uniformly ex-
panding map E under a ceiling function τ , and obtained a precise description of
the spectra of the corresponding transfer operators by imposing a transversality
condition on the dynamics. Tsujii [45] showed that this condition is generic for
linear maps E, and that it fails precisely when the ceiling τ is cohomologous to
a constant. The corresponding smooth compact group extension was studied
by Faure [27] who introduced a similar condition on the dynamics, using the
terminology partially captive for such systems. (These satisfy the transversality
condition, and the conditions are comparable when the expanding map E is
linear. In particular, if f0 is partially captive then the function τ0 in (1) can-
not be cohomologous to a constant.) Here we mention the recent preprints by
Butterley and Eslami [17] and Eslami [26], wherein the same dynamics is stud-
ied under much weaker regularity assumptions, utilizing an extension of Tsujii’s
transversality condition.
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The map studied by Faure [27], which throughout this article shall be referred
to as our unperturbed dynamical system, is the simplest model of a hyperbolic
system with a central direction. It is defined as follows: Let g0 : S1 → S1 be
a C∞ diffeomorphism and let τ0 : S1 → R be a C∞ function. Let k ≥ 2 be a
positive integer, and consider the skew product f0 : T2 → T2 of class C∞ given
by

f0 :

(
x

s

)
7→
(

kg0(x) mod 1
s+ 1

2π τ0(x) mod 1

)
(1)

on the torus. The map E0 : x 7→ kg0(x) mod 1 is assumed to be an expanding
map on S1 in the sense that minxE

′
0(x) > 1, and we then say that f0 is a

partially expanding map on T2. (Since the differential of x 7→ E0(x) is linear and
TxS1 ≃ R, it follows that (dE0)x : TxS1 → TE0(x)S1 is a scalar, which we denote
by E′

0(x).) Note that with this terminology, the derivative of an expanding map
is always positive, and that g0 is orientation-preserving by assumption.

Faure [27] establishes the existence of a spectral gap through semiclassical
analysis, which is an asymptotic theory in which the Planck constant appearing
in the Shrödinger equation is regarded as a small parameter h > 0. It is a
fairly recent discovery that spectral properties of transfer operators of (partially)
hyperbolic maps are naturally studied within this framework, the ideas having
appeared in Baladi and Tsujii [10, 11] (see also Avila, Gouëzel and Tsujii [5]),
and formalized in a series of papers primarily by Faure, Roy and Sjöstrand
[28–30]. This approach has been getting traction lately with contributions in
this and related areas also by Arnoldi [3], Arnoldi, Faure and Weich [4], Dyatlov
and Zworski [24], Faure and Tsujii [31, 32], and Tsujii [47], among others. For
partially expanding maps, the first two references are particularly relevant. So
far, the focus seems to have been on deterministic systems, and one of our
goals is to show that the semiclassical approach is also applicable in the case of
random perturbations.

To circumvent the lack of hyperbolicity of f0 in the s direction, Faure [27]
uses Fourier analysis in the s direction to decompose the transfer operator in-
duced by f0 into a collection of (weighted) transfer operators of the expanding
map E0 : S1x → S1x, indexed by a Fourier parameter ν ∈ Z. The resulting op-
erators are examples of Fourier integral operators, and thus naturally studied
using microlocal analysis (when ν ∈ Z is fixed) and semiclassical analysis (with
a semiclassical parameter of size h ∼ 1/|ν|, tending to 0). Roughly speaking,
if f0 is partially captive, then the spectral radius decreases in the semiclassi-
cal limit |ν| → ∞. On the other hand, outside a small disc, the spectrum of
each transfer operator (for fixed ν ∈ Z) consists of discrete eigenvalues of fi-
nite multiplicity (the so-called Ruelle resonances), resulting in a spectral gap
for the collection. This (and an additional assumption on the peripheral spec-
trum) is known to give exponential decay of operational correlations for smooth
observables (Faure [27, Theorem 5]).

In this thesis we show that the presence of the spectral gap observed in the
deterministic case (as described above) is preserved under quenched random
perturbations at small noise levels. For random transfer operators, the notion
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of spectrum needs clarification; in particular, the notion of discrete spectrum
should be understood in terms of Lyapunov exponents and invariant subspaces
instead of eigenvalues and eigenfunctions, see Section . We also show existence
and strong stability of random measures, see Theorem 1. Using the spectral
results we then establish our main theorem: if f0 is partially captive then the
quenched random correlations for C∞ observables decay exponentially fast, see
Theorem 2.

The perturbation model
Let (Ω,F) be a Lebesgue space with a probability measure P. Let θ : Ω → Ω be
an ergodic P-preserving bi-measurable bijection. Let C∞(T2,T2) be the space
of smooth endomorphisms on T2 endowed with a C∞ metric,

dC∞(f, g) =
∞∑
j=0

2−j
dC j (f, g)

1 + dC j (f, g)
,

where dC j (f, g) is the usual C j distance between f and g. We endow C∞(T2,T2)
with the Borel σ-algebra.

Let {fϵ}ϵ>0 be a family of measurable mappings fϵ : Ω → C∞(T2,T2) such
that for each ϵ > 0, fϵ(ω) is for P-almost every ω ∈ Ω of the form

fϵ(ω) :

(
x

s

)
7→
(

kgϵ(ω, x) mod 1
s+ 1

2π τϵ(ω, x) mod 1

)
, (2)

where ω 7→ fϵ(ω)(z) is a measurable mapping from Ω to T2 for each z = (x, s) ∈
T2. Here gϵ(ω) = gϵ(ω, ·) : S1 → S1 is a C∞ diffeomorphism and τϵ(ω) =
τϵ(ω, ·) : S1 → R is a C∞ function, P-almost surely. We also assume that

ess sup
ω

dC∞(fϵ(ω), f0) → 0 as ϵ→ 0, (3)

where f0 is the partially expanding map given by (1). The value fϵ(ω)(z) is
denoted simply by fϵ(ω, z). For each ϵ > 0, it follows that (ω, z) 7→ fϵ(ω, z) is a
measurable mapping from Ω×T2 to T2, see Castaing and Valadier [21, Lemma
3.14]. When convenient, we will identify f0 : T2 → T2 with the constant map
Ω ∋ ω 7→ f0.

For each ϵ ≥ 0 and ω ∈ Ω we let Eϵ(ω) denote the map Eϵ(ω) : x 7→ kgϵ(ω, x)
mod 1, interpreted for ϵ = 0 to mean Eϵ=0(ω) ≡ E0 for all ω. The value
Eϵ(ω)(x) is denoted simply by Eϵ(ω, x). In view of (3) it then follows that
Eϵ(ω) is an expanding map P-almost surely if ϵ is sufficiently small. In fact, if
λ0 = minxE

′
0(x) and we set λ = (λ0 + 1)/2, then λ > 1 and we can find an

ϵ0 > 0 such that

ess inf
ω

min
x

dEϵ(ω, x)

dx
≥ λ, 0 ≤ ϵ < ϵ0. (4)

In the sequel, the quantity dEϵ(ω, x)/dx will sometimes be denoted simply by
E′
ϵ(ω, x).
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Remark. When there is no ambiguity, the noise level ϵ will sometimes be omit-
ted from the notation, in particular when the dependence on the noise param-
eter ω ∈ Ω is already displayed. In fact, with the exception of the underlying
probability space (Ω,F ,P) and the map θ : Ω → Ω, dependence on the noise
parameter ω ∈ Ω will always be taken to imply dependence on the noise level
ϵ. Throughout the rest of the paper we will also permit us to use ϵ0 as a way
to denote the upper bound of a range 0 ≤ ϵ < ϵ0 for which (4) holds, even if
ϵ0 may change between occurrences. This will mostly be showcased only in the
statements of our results; we shall in fact always assume that ϵ belongs to such
a range.

Given ϵ > 0 and n ≥ 1, let f (n)ϵ (ω, z) be the fiber component of the nth
iteration of the (double) skew product mapping

Θϵ(ω, z) = (θω, fϵ(ω, z)), ω ∈ Ω, z ∈ T2,

and let f (0)ϵ (ω) = IdT2 for all ω ∈ Ω. With the notation f (n)ϵ (ω) = f
(n)
ϵ (ω, ·) we

explicitly have

f (n)ϵ (ω) = fϵ(θ
n−1ω) ◦ fϵ(θn−2ω) ◦ · · · ◦ fϵ(ω).

The mapping given by (n, ω, z) 7→ f
(n)
ϵ (ω, z) is an RDS on T2 over θ : Ω → Ω,

which we call the RDS induced by fϵ. (Naturally, this RDS depends also on θ,
but since θ will be fixed throughout, mention of this map will be omitted; For
definition of RDS, see [42, Subsection 1.1].) For convenience we introduce the
notation

E(n)
ϵ (ω, x) = Eϵ(θ

n−1ω) ◦ . . . ◦ Eϵ(ω)(x), n ≥ 1,

τ (n)ϵ (ω, x) =
n−1∑
j=0

τϵ(θ
jω,E(j)

ϵ (ω, x)), n ≥ 1.

In the last sum, θ0 and E(0)
ϵ (ω, ·) are to be interpreted as the identity maps on

Ω and S1, respectively, so that E(1)
ϵ (ω, ·) = Eϵ(ω) and τ (1)ϵ (ω, ·) = τϵ(ω). Then

f (n)ϵ (ω) :

(
x

s

)
7→

(
E

(n)
ϵ (ω, x)

s+ 1
2π τ

(n)
ϵ (ω, x) mod 1

)
, n ≥ 1.

The Perron-Frobenius transfer operator M∗
f
(n)
ϵ (ω)

: C∞(T2) → C∞(T2) cor-

responding to f (n)ϵ (ω) is defined as the random operator cocycle

M∗
f
(n)
ϵ (ω)

ψ(z) =
∑

f
(n)
ϵ (ω,z′)=z

ψ(z′)

|det ∂f (n)ϵ (ω, z′)/∂z|
, ψ ∈ C∞(T2),

where ∂f (n)ϵ (ω, z′)/∂z is the Jacobian matrix of z 7→ f
(n)
ϵ (ω, z) at z′ ∈ T2, and

C∞(T2) is the space of complex valued functions on T2 of class C∞. Note that
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by (2) and (4) we P-almost surely have that

det (∂f (n)ϵ (ω, z)/∂z) = dE(n)
ϵ (ω, x)/dx ≥ λn, z = (x, s).

Thus, the operator M∗
f
(n)
ϵ (ω)

extends to a bounded operator on L2(T2), P-almost
surely. The extension will also be denoted by M∗

f
(n)
ϵ (ω)

. Its adjoint M
f
(n)
ϵ (ω)

with

respect to the usual scalar product on L2(T2) is the Ruelle transfer operator
given by M

f
(n)
ϵ (ω)

ψ(z) = ψ(f
(n)
ϵ (ω, z)).

Invariant measures
Let f : Ω → C∞(T2,T2) be a measurable mapping. Let B(T2) be the Borel
σ-field of T2. Recall that a measure µ on Ω × T2 is called f -invariant when µ
is invariant with respect to the skew product mapping Θ(ω, z) = (θω, f(ω, z))
and the marginal πΩµ of µ coincides with P, where πΩ : Ω×T2 → Ω is given by
πΩ(ω, z) = ω. It is known that when µ is an f -invariant probability measure,
there is a unique function µ·(·) : Ω×B(T2) → [0, 1], (ω,B) 7→ µω(B), such that

(i) ω 7→ µω(B) is measurable for each B ∈ B(T2),

(ii) µω is P-almost surely a probability measure on T2,

(iii)
∫
udµ =

∫
udµωdP for each u ∈ L1(µ).

Moreover, since we assume that θ is measurably invertible, the pushforward
f(ω)∗µω of µω by f(ω) P-almost surely coincides with µθω, see Arnold [2, Chap-
ter 1]. We call the function µ·(·) the disintegration of µ (with respect to P).

For the perturbation scheme fϵ given by (2), the existence of an absolutely
continuous invariant probability measure on Ω×T2 is an immediate consequence
of established results concerning the existence of such measures for uniformly
expanding maps.

Theorem 1. For each 0 ≤ ϵ < ϵ0, there exists an fϵ-invariant probability
measure µϵ on Ω × T2 such that if µϵ· (·) is the disintegration of µϵ then µϵω is
P-almost surely equivalent to normalized Lebesgue measure on T2, and dµϵω =
hϵ(ω, x)dxds. Each density hϵ(ω) is the uniquely defined positive function in
C∞(S1) such that

∫
S1 hϵ(ω, x)dx = 1 and M∗

f
(n)
ϵ (ω)

hϵ(ω) = hϵ(θ
nω) for n ≥ 1.

Moreover,
ess sup

ω
∥hϵ(ω)− h0∥(m) → 0 as ϵ→ 0

for all m ∈ N, where h0 ≡ hϵ=0(ω) is independent of ω.

Decay of random correlation functions
Let µ be an f -invariant measure, and µ·(·) the disintegration of µ. For each
ϕ, ψ ∈ C∞(T2) let us define the quenched operational correlation function
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Coropϕ,ψ(ω, n) of (f, µ) by

Coropϕ,ψ(ω, n) =

∫
ϕ ◦ f (n)(ω) · ψ̄dxds−

∫
ϕdµθnω

∫
ψ̄dxds.

We say that the operational correlation functions of (f, µ) decay exponentially
fast when there exists a number 0 < ρ < 1 (independent of ω) and a set Ω̃ of
full measure such that for any ω ∈ Ω̃ and ϕ, ψ ∈ C∞(T2) there is a constant
c(ω) (depending on ϕ and ψ) such that

|Coropϕ,ψ(ω, n)| ≤ c(ω)ρn.

Similarly, we define the quenched classical correlation function Corclϕ,ψ(ω, n) of
(f, µ) by

Corclϕ,ψ(ω, n) =

∫
ϕ ◦ f (n)(ω) · ψ̄dµω −

∫
ϕdµθnω

∫
ψ̄dµω,

and define exponential decay in the same way. We can now state our main
result.

Theorem 2. Let {fϵ}ϵ>0 be a family of C∞(T2,T2) valued random variables
satisfying (2) and (3), and let µϵ be the fϵ-invariant measure provided by Theo-
rem 1 with disintegration µϵω(dxds) = hϵ(ω, x)dxds. Assume that f0 is partially
captive (see [42, Definition 2.3]). Then there is an ϵ0 such that if 0 ≤ ϵ < ϵ0
then the quenched random (operational and classical) correlation functions of
(fϵ, µ

ϵ) decay exponentially fast.

Part II: Stochastic Stability for Expanding
Maps via a Perturbative Spectral Approach
The typical approach to proving statistical properties of expanding maps (such
as the existence of SRB measures, the exponential decay of correlations, and the
central limit theorem) is through demonstrating the spectral gap of the trans-
fer operator of expanding maps in a suitable Banach space. In addition, these
statistical properties and quantities are expected to be stable if "the spectrum
of the transfer operator" is also stable. This perturbative spectral approach
was developed by Baladi and Young and their contemporaries, who sought a
simple proof that a (piecewise) expanding map is stochastically stable (i.e., the
densities of the unique absolutely continuous invariant probability measures for
the dynamics are stable) under independent and identically distributed pertur-
bations, and that its related statistical quantities, such as the rate of the ex-
ponential decay of correlations, are also stable (see [7] and references therein).
This approach was extended by Baladi [6] and independently by Bogenschütz
[14], to the case of perturbations induced by skew-product mappings. However,
these extensions are restricted to mixing or invertible base dynamics. In this
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appendix, an alternative perturbative spectral approach based on the Baladi-
Young perturbation lemmas is presented, in which the base dynamics need not
be mixing or invertible. Consequently, stochastic stability and upper bounds of
the exponential decay of correlations for expanding maps under perturbations
induced by skew-product mappings whose base dynamics are not invertible nec-
essarily are demonstrated. Our result extends the result established by Baladi,
Kondah, and Schmitt in [8].

Definitions and results
Let C r(X,X) be the space of all C r endomorphisms on a compact smooth
Riemannian manifold X, endowed with the usual C r metric dC r (·, ·) with r > 1.
(Given that r = k + γ for some k ∈ N, k ≥ 1 and 0 ≤ γ ≤ 1, f ∈ C r(X,X)
denotes the k-th derivative of f is γ-Hölder.) f in C r(X,X) is said to be an
expanding map when there exist constants C > 0 and λ > 1 such that

∥Dfn(x)v∥ ≥ Cλn∥v∥, n ≥ 1

for each x ∈ X and v ∈ TxM . For the properties of expanding maps, the
reader is referred to [34]. The expanding constant Λr(f) of an expanding map
f : X → X is defined by

Λr(f) = lim sup
m→∞

sup
x∈X

∑
fm(y)=x

∥D(f−my )(x)∥r

| detDfm(y)|

1/m

,

which is strictly smaller than 1 (see (2.16) in [8]). Here, f−my is the corresponding
local inverse branch in a neighborhood of x for each y ∈ f−m({x}).

Let Ω be a separable complete metric space endowed with the Borel σ-
field B(Ω) with complete probability measure P. Given an expanding map
f0 : X → X of class C r, let {fϵ}ϵ>0 be a family of continuous mappings defined
on Ω with values in C r(X,X) such that

ess sup
ω∈Ω

dC r (fϵ(ω), f0) → 0 as ϵ→ 0. (5)

For each ϵ > 0, adopting the notation fϵ(ω, ·) = fϵ(ω), the distance between
fϵ(ω, x) and fϵ(ω′, x) is bounded by dC r (fϵ(ω), fϵ(ω

′)) for each x ∈ X and each
ω, ω′ ∈ Ω. Thus, it is straightforward to realize that fϵ : Ω × X → X is a
continuous (in particular, measurable) mapping. Note also that if ϵ > 0 is
sufficiently small, fϵ(ω) is P-almost surely an expanding map of class C r.

Let θ : Ω → Ω be a measure-preserving measurable transformation on (Ω,P).
For each ϵ > 0 and n ≥ 1, let f (n)ϵ (ω, x) be the fiber component in the n-th
iteration of the skew product mapping

Θϵ(ω, x) = (θω, fϵ(ω, x)), (ω, x) ∈ Ω×X,
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where we simply write θω for θ(ω). Setting the notation f (n)ϵ (ω) = f
(n)
ϵ (ω, ·),the

explicit form of f (n)ϵ (ω) is

f (n)ϵ (ω) = fϵ(θ
n−1ω) ◦ fϵ(θn−2ω) ◦ · · · ◦ fϵ(ω).

In [8] and other articles on fiber dynamics, θ is required to be a bimeasur-
able transformation, i.e., an invertible measurable transformation whose inverse
mapping is also measurable (see, for example, [14,20,33]; a significant exception
is described in Baladi [6]). However, some framework accommodates important
examples that are not generally invertible, as shown in Example 6. Let Lpν(S) be
the usual Lp space on a measurable space (S,Σ, ν) endowed with the Lp norm
∥ · ∥Lp where 1 ≤ p ≤ ∞. For each u ∈ L∞

P (Ω), a functional ℓθu : L1
P(Ω) → C is

defined as by ℓθu(φ) =
∫
u(ω)·φ(θω)dP for each φ ∈ L1

P(Ω). Since P is an invari-
ant measure, |ℓθu(φ)| ≤ ∥u∥L∞∥φ ◦ θ∥L1 = ∥u∥L∞∥φ∥L1 , i.e., ∥ℓθu∥(L1

P(Ω))∗ ≤
∥u∥L∞ . Thus, by the Riesz representation theorem, ℓθu ∈ L∞

P (Ω) ∼= (L1
P(Ω))

∗

and ℓθ : L∞
P (Ω) → L∞

P (Ω) is a bounded operator on L∞
P (Ω) such that∫

ℓθu(ω) · φ(ω)dP =

∫
u(ω) · φ(θω)dP, φ ∈ L1

P(Ω).

(ℓθ is called the transfer operator of θ with respect to P.)
Let C r−1(X) be the space of all complex-valued functions on X of class

C r−1 endowed with the usual C r−1 norm ∥ ·∥C r−1 , and let m be the normalized
Lebesgue measure on X. Let L∞

P (Ω,C r−1(X)) be the Lebesgue-Bochner space
of mappings defined on Ω taking values in the Banach space C r−1(X) endowed
with the L∞ norm ∥u∥L∞ := ess supω∈Ω ∥u(ω)∥C r−1 . Here the usual abuse
of notation is adopted (where an L∞ mapping is identified by its equivalence
class). The definition and properties of this space are provided in [22]. Here it
is merely stated that if u ∈ L∞

P (Ω,C r−1(X)), then u is Bochner measurable,
i.e., u = limn→∞ un P-almost surely, where un : Ω → C r−1(X) is a simple
function of each n ≥ 1. Setting u(ω, ·) = u(ω), for each x ∈ X the mapping
ω 7→ u(ω, x) is P-almost surely the limit of the sequence {un(·, x)}n≥1 of simple
functions, and is thus measurable because P is a complete probability measure.
Furthermore, ∥u(·, x)∥L∞ ≤ ∥u∥L∞ ; that is, u(·, x) ∈ L∞

P (Ω) for each x ∈ X. It
is supposed that for ℓθ (and therefore θ), there exists a bounded operator ℓ̃θ on
L∞
P (Ω,C r−1(X)) such that the following holds for each u ∈ L∞

P (Ω,C r−1(X)),
each bounded linear functional A : C r−1(X) → C, each bounded operator
A : C r−1(X) → C r−1(X), each x ∈ X and P-almost every ω ∈ Ω:

ℓ̃θu(ω, x) = ℓθ[u(·, x)](ω) (6)

ℓθ[Au(·)](ω) = Aℓ̃θu(ω), ℓ̃θ[Au(·)](ω) = Aℓ̃θu(ω), (7)

and
∥ℓ̃θu∥L∞ ≤ ∥u∥L∞ . (8)

Now, some definitions are provided on measure-preserving skew-product
transformations. Let B(X) be the Borel σ-field of X. It is known that for
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each probability measure µ on Ω × X with marginal P on Ω, there exists a
function µ·(·) : Ω × B(X) → [0, 1], (ω,B) 7→ µω(B) that satisfies the following
three conditions: ω 7→ µω(B) is measurable for each B ∈ B(X); µω is P-almost
surely a probability measure on X;

∫
φdµ =

∫
φdµωdP for each φ ∈ L1

µ(Ω×X).
This function, which is P-almost surely unique, is called the disintegration of µ
[2, Chapter 1]. Let f : Ω×X → X be a measurable mapping. A measure µ on
Ω ×X is called invariant under f when µ is invariant under the skew-product
mapping Θ(ω, x) = (θω, f(ω, x)) and the marginal measure of µ coincides with
P. 1 Given an absolutely continuous invariant probability measure µ of a mea-
surable mapping f : Ω×X → X, the operational forward quenched correlation
function Corφ,u(ω, n) of φ ∈ L1

m(X) and u ∈ L∞
m (X) at ω ∈ Ω is defined by

Corφ,u(ω, n) =

∫
φ ◦ f (n)(ω) · udm−

∫
φdµθnω

∫
udm,

and we call ℓnθ Corφ,u(ω, n) the operational backward quenched correlation func-
tion of φ and u at ω ∈ Ω. (Since µω is P-almost surely absolutely continuous,
Corφ,u(·, n) is in L∞

P (Ω) and ℓnθ Corφ,u(·, n) is well defined.) The backward
quenched correlation functions of (f, µ) are said to decay exponentially fast in
a Banach space E ⊂ L∞

m (X) when there exist constants C > 0 and 0 < ρ < 1
(independent of ω) such that for any φ ∈ L1

m(X) and u ∈ E,

|ℓnθ Corφ,u(ω, n)| ≤ Cρn∥φ∥L1∥u∥E P-a.s., (9)

where ∥ · ∥E is the norm of E. Similarly, the operational integrated correlation
functions of (f, µ) decay exponentially fast in a Banach space E ⊂ L∞

P×m(Ω×X)
when there exist constants C > 0 and 0 < ρ < 1 (independent of ω) such that for
any φ ∈ L1

P×m(Ω ×X) and u ∈ E, the mapping Ω ∋ ω 7→ Corφ(θnω),u(ω)(ω, n)
is integrable for each n ≥ 1. Setting φ(ω) = φ(ω, ·),∣∣∣∣∫ Corφ(θn·),u(·)(·, n)dP

∣∣∣∣ ≤ Cρn∥φ∥L1∥u∥E . (10)

The smallest number ρ̄ such that (9) (or(10)) holds for any ρ > ρ̄ is called the
rate of exponential decay of backward quenched correlation functions (resp. inte-
grated correlation functions) in E. When θ is bimeasurable, since ℓθu = u ◦ θ−1

(see Example 6), then ℓnθ [Corφ(θn·),u(·)(·, n)](ω) = ℓnθ [Corφ(ω),u(θ−nω)(·, n)](ω) P-
almost surely. Thus, the exponential decay of backward quenched correlations
in C r−1(X) yields the exponential decay of forward quenched correlations in
C r−1(X) (i.e., (9) holds, where ℓnθ Corφ,u(ω, n) is replaced by Corφ,u(ω, n)) and
also the exponential decay of integrated correlations in L∞

P (Ω,C r−1(X)). Under
these conditions, the mixing of the skew-product mapping is equivalent to the
mixing of the base dynamics (see comments in [20, Subsection 0.2]). As is well
known, any expanding map f : X → X admits a unique absolutely continuous

1When θ is a bimeasurable transformation, it follows from Theorem 1.4.5 in [2] which the
pushforward measure of µω by f(ω) coincides with µθω P-almost surely if and only if µ is
invariant under f . Such measures µω where ω ∈ Ω are called stationary measures in [8].
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ergodic invariant probability measure (abbreviated to aceip) on X with a den-
sity function of class C r−1. In addition, the correlations decay exponentially
fast in C r−1(X) (see e.g. [43]). The aceip of the expanding map f0 : X → X
is denoted by µ0. Let h0 : X → C be the density function of µ0. The rate of
exponential decay of correlations of (f0, µ0) is denoted by ρ0.

Finally, a Banach space KP(Ω,C r−1(X)) of random observables is intro-
duced as the Kolmogorov quotient (by equality P-almost everywhere) of the
space

KP(Ω,C
r−1(X)) =

{
u ∈ L∞

P (Ω,C r−1(X)) : ω 7→
∫
u(ω)dm is constant P-a.s.

}
endowed with the L∞ norm. Here, L∞

P (Ω,C r−1(X)) is the space of all Bochner
measurable mappings u : Ω → C r−1(X) with finite L∞ norm. (It shall be proved
that KP(Ω,C r−1(X)) is a Banach space and that

∫
u(·)dm is measurable.) As

before, a mapping in KP(Ω,C r−1(X)) is identified by its equivalence class in
KP(Ω,C r−1(X)).

The following theorem is essentially an extension of Theorems A, B and C
in [8] to perturbations induced by skew-product mappings whose base dynamics
satisfy (6), (7) and (8).

Theorem 3. Let f0 : X → X be an expanding map, and {fϵ}ϵ>0 be a family of
continuous mappings on (Ω,P) with values in C r(X,X) satisfying (5). Suppose
that θ : Ω → Ω is a measure-preserving transformation satisfying (6), (7) and
(8). Then, for any sufficiently small ϵ > 0, there exists a unique absolutely
continuous invariant probability measure µϵ on Ω × X whose density function
hϵ = dµϵ

d(P×m) is in KP(Ω,C r−1(X)) in the notation hϵ(ω) = hϵ(ω, ·), and we
have

ess sup
ω∈Ω

∥hϵ(ω)− h0∥C r−1 → 0 as ϵ→ 0.

Moreover, for each sufficiently small ϵ > 0, the backward quenched corre-
lation functions and the integrated correlation functions of (fϵ, µ

ϵ) decay ex-
ponentially fast with rate 0 < ρϵ < 1 in C r−1(X) and in KP(Ω,C r−1(X)),
respectively, and we have

lim
ϵ→0

ρϵ ≤ max{ρ0,Λr(f0)}.

Remark 4. Bogenschütz [14] and Baladi [6] also investigated stability problems
of expanding maps using perturbative spectral approaches. Apart from the
invertibility of the base dynamics, Theorem 3 differs from Bogenschütz’s result
in which he postulated a perturbation lemma for linear cocycles. Therefore,
in his result, the "coefficient" C in (9) may depend on ω, and the integrated
correlations may not decay exponentially fast, as demonstrated by Buzzi in
[20, Appendix A]. Within the setting of mixing base dynamics, Baladi obtained
a sharper spectral stability, which yields a more satisfactory result for the decay
rate stability; compare [6, Theorem 5 and Proposition 3.1] and her Banach space
B(α) with Theorem 3 and KP(Ω,C r−1(X)). However, the quasi-compactness
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of the transfer operator of the skew-product mapping in the Banach space B(α)
implies the mixing in the skew-product mapping (in particular, the mixing in the
base dynamics). Thus, Baladi’s Banach space B(α) is not applicable to setting
used in this study, in which the base dynamics are not necessarily mixing.
Remark 5. It follows from Theorem 3 that if (θ,P) is ergodic, then (Θϵ, µ

ϵ)
is ergodic for any sufficiently small ϵ > 0. Indeed, let A ∈ B(Ω) × B(M) be
invariant under Θϵ, and suppose that 0 < µϵ(A) < 1. Then, it follows from
Theorem 3 and the invariance of A that for each B ∈ B(Ω) × B(M), if the
length of Bω = {x ∈ X : (x, ω) ∈ B} is P-almost surely constant (where the
constant is denoted as ℓ(B)), then

(P×m)(A ∩B) = µϵ(A) · (P×m)(B). (11)

Let Γ1 = {ω ∈ Ω : m(Aω) = 0}. Then, noting that Aω = (f(ω))−1Aθω

by the invariance of A and that f(ω) is non-singular with respect to m for
each ω ∈ Ω, θ−1Γ1 = Γ1. Since (θ,P) is ergodic and P(Γ1) ̸= 1 (otherwise,
µϵ(A) = 0 by the absolute continuity of µϵ), P(Γ1) = 0. On the other hand,
Γ2 = {ω ∈ Ω : m(Aω) = 1} is not a full measure set since µϵ(A) < 1. Thus,
the set Γ3 = {ω ∈ Ω : 0 < m(Aω) < 1} is a positive measure set, and we can
find a positive measure set Γ ⊂ Γ3 and B1, B2 ∈ B(Ω)×B(M) such that m(Bω1 )
and m(Bω2 ) are P-almost surely constant, ℓ(B1) = ℓ(B2) ̸= 0, Bω1 ∩Aω = ∅ and
Bω2 ⊂ Aω for each ω ∈ Γ, and Bω1 = Bω2 for each ω ∈ Ω\Γ. Since these results
contradict (11), (Θϵ, µϵ) is ergodic.

Example 6. We consider examples of measure-preserving transformations sat-
isfying conditions (6), (7), and (8). The most trivial example is a bimeasurable
transformation. When θ : Ω → Ω is bimeasurable, ℓθu(ω) = u(θ−1ω) for each
u ∈ L∞

P (Ω) and P-almost every ω ∈ Ω since u(ω) = u(θ(θ−1ω)). For each
u ∈ L∞

P (Ω,C r−1(X)), let us define ℓ̃θu : Ω → C r−1(X) by ℓ̃θu = u◦ θ−1. Then,
ℓ̃θu is Bochner measurable since ℓ̃θu is the composition of the Bochner measur-
able mapping u : Ω → C r−1(X) and the measurable mapping θ−1 : Ω → Ω. It is
straightforward to verify that ℓ̃θu ∈ L∞

P (Ω,C r−1(X)) and that ℓ̃θ is a bounded
operator on L∞

P (Ω,C r−1(X)) satisfying (6), (7) and (8).
Now we consider a piecewise smooth mapping θ : Ω → Ω of class C 1 on

a compact region Ω ⊂ Rd, i.e., Ω is the disjoint union of connected and open
subsets Γ1, . . . ,Γk up to a set of Lebesgue measures 0 such that θ|Γj agrees with
a C 1 map θj defined on a neighborhood of Γj and θj is a diffeomorphism on the
mapped image for each 1 ≤ j ≤ k. For a detailed study of these mappings, the
reader is referred to [33]. Let V be the normalized Lebesgue measure on Ω and
define the transfer operator ℓθ,V : L1

V (Ω) → L1
V (Ω) of θ with respect to V as

ℓθ,V u =
k∑
j=1

1Γj · u
| detDθj |

◦ θ−1
j , u ∈ L1

V (Ω).

From the change of variables formula, it follows that
∫
ℓθ,V u·φdV =

∫
u·φ◦θdV

for each u, φ ∈ L1
V (Ω) satisfying u · φ ◦ θ ∈ L1

V (Ω) (in particular, φ ∈ L∞
V (Ω)).
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Thus, if P is an absolutely continuous invariant measure of θ, then the density
function p ∈ L1

V (Ω) of P is a fixed point of ℓθ,V . It is assumed that P is an
absolutely continuous invariant probability measure whose density function p
is strictly positive V -almost everywhere. Extensive examples of such measure-
preserving transformations (θ,P) are given in [7]. Then, for each u ∈ L∞

P (Ω)
and φ ∈ L1

P(Ω), we have∫
u · φ ◦ θdP =

∫
ℓθ,V (u · p) · φdV =

∫
ℓθ,V (u · p)

p
· φdP.

Thus, for each u ∈ L∞
P (Ω), ℓθu = ℓθ,V (u · p)/p P-almost surely. For each

u ∈ L∞
P (Ω,C r−1(X)), a mapping ℓ̃θu : Ω → C r−1(X) is defined as ℓ̃θu =

[
∑k
j=1(1Γj · u · p · | detDθj |−1) ◦ θ−1

j ]/p. Since every subspaces of a separable
metric space C r−1(X) is itself a separable space (see e.g. [48, Theorem 16.2.b
and 16.11]), the (weakly) measurable mappings 1Γj , p, | detDθ|−1 (1 ≤ j ≤ k),
and therefore ℓ̃θu, are Bochner measurable by the Pettis measurability theorem.
Note that ∥ℓ̃θu(ω)∥C r−1 ≤ ∥u∥L∞ |ℓθ1Ω(ω)| P-almost surely, since all of 1Γj ,
p, | detDθ|−1 (1 ≤ j ≤ k) are independent of x. It follows from this and
the fact ℓθ1Ω = 1Ω (note that ℓθ,V p = p) that ℓ̃θ is a bounded operator on
L∞
P (Ω,C r−1(X)) satisfying (8). It is straightforward to check by construction

that ℓ̃θ satisfies (6) and (7).
Finally, the one-sided shift θ : Ω → Ω is considered: (Ω,P) = (Ω̃N, P̃N)

is the product space of a probability separable metric space (Ω̃, P̃), in which
(θω)j = ωj+1 for each j ∈ N = {0, 1, . . .} and each ω = (ω0ω1 . . .) ∈ Ω. We note
that for each u ∈ L∞

P (Ω) and φ ∈ L1
P(Ω),∫ (∫

u(ω̃ω)dP̃(ω̃)
)
· φ(ω)dP =

∫
u(ω̃ω0ω1 . . .) · φ(θ(ω̃ω0ω1 . . .))dP̃(ω̃)dP(ω).

Thus, ℓθu(ω) =
∫
u(ω̃ω)dP̃(ω̃) for P-almost every ω ∈ Ω. By Fubini’s theo-

rem (consider the equivalence between the weak measurability and the Bochner
measurability of a mapping u : Ω → C r−1(X)), for any u ∈ L∞

P (Ω,C r−1(X)),
there exists a Bochner measurable mapping ℓ̃θu : Ω → C r−1(X) given by

ℓ̃θu(ω) =

∫
u(ω̃ω)dP̃(ω̃), ω ∈ Ω.

Furthermore, (8) for this bounded operator ℓ̃θ on L∞
P (Ω,C r−1(X)) follows from

the Bochner integrability of Ω̃ ∋ ω̃ 7→ u(ω̃ω) for P-almost every ω ∈ Ω (by
Fubini’s theorem) and the triangle inequality. (6) and (7) are immediately
obtained by construction.
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