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Non-negative Matrix Factorization with
Auxiliary Information on Overlapping Groups

Motoki Shiga and Hiroshi Mamitsuka, Senior Member, IEEE

Abstract—Matrix factorization is useful to extract the essential low-rank structure from a given matrix and has been paid
increasing attention. A typical example is non-negative matrix factorization (NMF), which is one type of unsupervised learning,
having been successfully applied to a variety of data including documents, images and gene expression, where their values are
usually non-negative. We propose a new model of NMF which is trained by using auxiliary information of overlapping groups.
This setting is very reasonable in many applications, a typical example being gene function estimation where functional gene
groups are heavily overlapped with each other. To estimate true groups from given overlapping groups efficiently, our model
incorporates latent matrices with the regularization term using a mixed norm. This regularization term allows group-wise sparsity
on the optimized low-rank structure. The latent matrices and other parameters are efficiently estimated by a block coordinate
gradient descent method. We empirically evaluated the performance of our proposed model and algorithm from a variety of
viewpoints, comparing with four methods including MMF for auxiliary graph information, by using both synthetic and real world
document and gene expression datasets.

Index Terms—Non-negative matrix factorization, auxiliary information, semi-supervised learning, sparse structured norm
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1 INTRODUCTION

A general and prevalent data format in real world
is a table or matrix, where columns are instances (or
examples) and rows are their features, and vice versa.
Matrix factorization is useful to extract essential low-
rank structures from a given matrix and has been in-
creasing interest in data mining and machine learning.
A frequently-used matrix factorization is Principal
Component Analysis (PCA), which is an eigenvalue
decomposition that reduces the dimension of a feature
space. Another well-used method is Singular Value
Decomposition (SVD), by which informative low-rank
structures of both instances and their features can be
found. Indeed these methods are useful and easily im-
plemented by basic linear algebra, but they are unable
to be applied to several real-world applications, where
matrix elements are all non-negatives. For example,
documents, images and gene expression data have
values of more than or equal to zero, and matrix
factorization under non-negativity, which is called
Non-negative Matrix Factorization (NMF), is useful
for these types of data. In fact NMF has been consid-
ered in machine learning and data mining to detect
informative and sparse low-rank structures of a given
non-negative matrix, keeping the non-negativity in
the low-rank matrices. Currently various approaches
for NMF, such as scalable and fast algorithms for
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huge datasets, have been developed and successfully
applied to a wide range of applications [1], [2], [3].

In many applications, available auxiliary informa-
tion, such as groups of instances or network links over
instances, can be given and in most cases improve the
performance of clustering or classification [4], [5], [6].
A typical application is web page clustering, where
page group information can be given and hyperlinks
are also available. Such auxiliary information allows
better clustering. This is a typical semi-supervised
setting, and a variety of methods have been developed
for semi-supervised learning in the past decade [7].

We address the issue of using overlapping groups
as auxiliary information, where overlapping groups
mean that instances can be included in more than
one groups. This setting can be found in many appli-
cations. For example, documents can be assigned to
more than one topics, such as news and sports. This is
more pronounced when we use thesaurus or ontology,
in which topics are hierarchical [8], [9], [3]. Another
example of overlapping groups is gene functions,
where many genes have more than one functions.
In addition, gene function categories, such as MIPS
functional categories [10], Gene Ontology (GO) [11],
etc., are hierarchical, by which gene functions can
be heavily overlapped. Thus overlapping groups are
realistic and reasonable.

We propose a new NMF-based approach, which
allows to consider auxiliary information on over-
lapping groups. The group information is, in the
optimized cost function, a regularization term that
is a mixed norm on a low rank matrix, consisting
of ℓ2 norms within groups and ℓ1 norms between
groups. A similar regularization term for overlapping



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

groups was already used for regression [12], in which
parameters are vectors, while parameters in our NMF
are matrices, implying that our regularization is a
generalization of the regression case in [12].

We then present efficient algorithms for optimiz-
ing parameters, i.e. low-rank matrices, of our NMF
model by using a block coordinate descent (BCD)
method [13], which alternately optimizes blocks in the
low-rank matrices, where we can consider two type
of blocks: 1) vectors and 2) matrices. The optimization
of each block is a convex problem, even with our
regularization term. Thus we propose two ideas of
using 1) latent matrices or 2) a dual problem with-
out estimating latent matrices directly (we call this
method a direct method). Latent matrices correspond
to given auxiliary groups and at the same time are
components of low-rank matrices to be optimized,
and then the total cost is optimized through the
latent matrices, allowing the optimization manner
very smooth. The direct method does not use latent
matrices explicitly and optimizes blocks directly in
a dual problem manner, which requires a sequential
optimization algorithm for a semi-definite problem.
We thus develop totally four different algorithms by
the combination of two block types and two ideas.

Empirically we first evaluated the efficiency of the
four proposed algorithms by using well-organized
synthetic datasets. Experimental results showed that
the combination of latent matrices and of using vec-
tors for blocks achieved the best performance. We then
selected this combination for our proposed method
hereafter. We further evaluated the effectiveness of
our method on both synthetic and real datasets, com-
paring with three existing NMF-based methods and k-
means. Experimental results showed that our method
was clearly advantageous in performance against the
competing methods. From these results we can con-
clude that our method favorably combines the input
matrix with the auxiliary information on overlapping
groups.

2 SEMI-SUPERVISED NMF FOR OVERLAP-
PING GROUPS

2.1 Notations

Let X ∈ RM×N
+ be a data matrix, where R+ is the set

of all non-negative real numbers, M is the number
of features (or row entities), and N is the number of
instances (or column entities). The goal of NMF is a
factorization of X into two low-rank matrices U ∈
RM×K

+ and V ∈ RN×K
+ , where rank K satisfies K <

min(M,N). Thus a basic factorization model of X is

X ≈ UV T , (1)

as shown in Fig. 1 (a). U and V are optimized by
minimizing an approximation error such as the sum
of squared errors or KL-divergence.

We have a set of groups1 {G1, . . . ,GG′} over in-
stances. Assume that groups Gg, where g = 1, . . . , G′,
are given auxiliary information, where each group Gg

is a set of instances, i.e. Gg ⊆ {1, 2, . . . , N}. Fig. 1 (b)
shows an illustrative example of instances with over-
lapping groups. Auxiliary groups can be overlapped,
meaning that one instance belongs to more than one
groups. We consider a semi-supervised setting, in
which part of instances are unlabeled and not in any
groups. That is, we set groups GG′+1, . . . ,GG, where
each of these groups has an unique instance and is
not overlapped with any other groups. In summary
we have a set of groups G = {G1, . . . ,GG}, in which
the first G′ groups (G1, . . . ,GG′) are given auxiliary
groups and the rest G−G′ groups (GG′+1, . . . ,GG) are
with an unlabeled node.

Let Xm· be the m-th row vector of X , and X ·n be
the n-th column vector of X . Let

[
X
]
+

be the matrix,
which is obtained by replacing negative values in X

with zeros. Let X(g) ∈ R
M×|Gg|
+ be the sub-matrix

of data matrix X which correspond to instances in
Gg . Similarly the sub-matrix of V is V (g) ∈ R

|Gg|×K
+

and the sub-vector of V ·k is V
(g)
·k ∈ R

|Gg|×1
+ . Gg is

the complement set of Gg , and V (g) is the sub-matrix
corresponding to instances in the complement set Gg.
V (1:G′) is the sub-matrix corresponding to instances
in the union set ∪G′

g=1Gg . Let ∥X∥F =
√∑

i

∑
j X

2
ij be

the Frobenius norm of matrix X . For q > 0, let ∥x∥q
be the ℓq norm of vector x, i.e. ||x||q = (

∑
n x

q
n)

1
q . Let

∥V ∥1,q =
∑K

k=1 ∥V ·k∥q be ℓ1/q mixed norm of matrix
V , which is ℓ1 norm of the vector that consists of ℓq
norm of columns, V ·k, k = 1, . . . ,K.

2.2 Problem Setting

The basic NMF model (1) minimizes the following
cost, i.e. the sum of squared errors:

min
U≥0,V ≥0

1

2

∥∥X −UV T
∥∥2
F
. (2)

This optimization has been conducted by various
methods, including matrix multiplication [14], an ac-
tive set method [15], and a block coordinate descent
(BCD) method [13].

Our objective is to incorporate auxiliary information
on overlapping groups G in the NMF framework to
detect essential low-rank structures from given data
matrix X more accurately. We then add two regular-
ization terms (to consider group information G) to the
squared error, resulting in the following optimization
problem:

min
U≥0,V ≥0

1

2

∥∥X −UV T
∥∥2
F
+ α∥U∥2F + β · ΩG(V ), (3)

1. Both groups and clusters indicate sets of instances, while we
use “group” for give information and “cluster” for estimates from
given data.
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Fig. 1. Our NMF: (a) model, (b) auxiliary information on overlapping groups, (c) latent matrices for the overlapping
groups in (b).

where α and β are weight parameters of the two
regularization terms. The first regularization term is
ℓ2 regularization for U , and the second term ΩG(V )
is to incorporate auxiliary group information, which
is our main result of this paper and will be de-
scribed in the next section and later more. We need
the regularization terms for both U and V , because
the regularization for one matrix only, say U , still
allows to keep the other matrix, say V , flexible. The
regularization on groups should cover all instances,
while real applications have a semi-supervised set-
ting, where group information is usually given to only
part of all instances. Thus our setting has group g for
G′ < g ≤ G, which has an unique instance.

If given auxiliary information is disjoint groups,
this minimization problem is already solved by [16],
which however cannot be applied to the case that
given groups are overlapped. On the other hand, our
problem setting considers overlapping groups, and in
this sense, our problem is a generalization of [16].
We emphasize that this generalization is essential for
real applications, because overlapping groups can be
found in many applications, typical examples being
documents labeled by multiple topics and genes la-
beled by multiple functions.

2.3 Regularization with Overlapping Groups
For a penalty term, we introduce a mixed norm to
incorporate auxiliary group information. We briefly
explain the effect of the mixed norm using a simple
sample, where we have three variables a1, a2 and a3,
for which auxiliary groups are defined as G1 = {1, 2}
and G2 = {3}. In this setting, the ℓ1-penalty used by
Lasso is defined by |a1| + |a2| + |a3|, in which three
coordinate directions are independently considered as
three linear terms, leading to the sparsity in indi-
vidual variables. On the other hand, the ℓ2-penalty
defined by

√
a21 + a22 + a23, in which all three direc-

tions are equally considered, by which the sparsity is
not encouraged. The mixed norm of the group lasso,√
a21 + a22 + |a3|, considers directions of a1 and a2

equally, meaning that two directions a1 and a2 are
equal in group G1, but the coordinate directions of
G1 and G2 are differently considered, because of the
convexity of the norm. This indicates that the mixed
norm encourages the sparsity at the group level.

Extending this idea, we can introduce a regulariza-
tion term for non-overlapping groups, i.e. Gi ∩ Gj =
∅, for i ̸= j, which is a mixed norm, i.e. a ℓ1/q
norm [16], as follows:

Ω
G,non-overlap
1,q (V ) =

G∑
g=1

∥∥V (g)
∥∥
1,q

. (4)

The above norm is ℓ1 norm of vector V
(g)
·k (k =

1, . . . ,K, g = 1, . . . , G) which is the sub-vector of V in
both column k and group Gg. This regularization over
matrices is a generalization of group information in a
regression model where parameters are vectors [17].
The regularization term in (4) induces group-wise
sparsity in each column of optimized matrix V , be-
cause of the ℓ1 norm. Similarly, for each group g,
the regularization term in (4) induces selectivity over
columns of V (g), allowing only a few columns to
have non-zero values, because of the ℓ1 norm over
columns of V (g). In fact, this regularization can be
applied directly to the case with overlapping groups,
i.e. Gi ∩ Gj ̸= ∅ for i ̸= j. However if we apply
this norm to overlapping groups, this will cause a
problem that if one group has instances which are not
selected by this norm, this group and its all instances
may not be selected even if these instances are in
other groups [12], [18]. More formally, using the result
in [12], we can easily prove that the support of the
optimal column vector V ·k is

supp(V ·k) =

( ∪
G∈S0

G

)C

,

where S0 is the set of groups such that
∥∥V (g)

·k
∥∥ = 0

and SC means the complement of set S. That is, this
regularization is likely to induce excessive sparsity
that will eliminate even groups, which are closely
related with the essential low-rank structure.

To avoid this excessive sparsity, we introduce latent
matrices, Z = {Z(1),Z(2), . . . ,Z(G)} (Z(g) ∈ RN×K),
by which V can be defined as follows:

V =
G∑

g=1

Z(g), s.t. Z(g) = 0, g = 1, . . . , G. (5)

Fig. 1 (c) shows an illustrative example of the latent
matrix for the overlapping groups in Fig. 1 (b). This
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figure shows that each matrix corresponds to a group,
and all elements of the complement set of a group are
fixed to zeros, which do not have to be optimized. We
note that, for non-overlapping groups, latent matrices
Z are clearly equivalent to V .

We further assume a weight for each group,
√
|Gg|,

to balance among the regularization terms for groups,
because the number of instances can be different
by groups [19]. This weight is important, since our
problem is a semi-supervised setting where one group
may have a very small number of instances, say
only one instance, which is definitely much smaller
than the size of given groups. We finally define our
regularization term on overlapping groups as follows:

ΩG
1,q(Z) =

G∑
g=1

√
|Gg|

∥∥∥Z(g)
∥∥∥
1,q

. (6)

From the result in [12], the support of norm (6) is

supp(V ·k) =
∪

G∈S1

G,

where S1 is the set of groups such that
∥∥∥V̂ (g)

·k

∥∥∥ > 0.
This result shows that the excessive sparsity problem
is solved by our regularization term in (6).

Our optimization problem with overlapping group
information is thus given as follows:

min
U≥0,V ≥0,V =

∑G
g=1 Z(g)

J(U ,V ), (7)

where

J(U ,V ) =
1

2

∥∥X −UV T
∥∥2
F
+ α

∥∥U∥∥2
F
+ βΩG

1,q(Z). (8)

While (8) is not convex for both U and V , optimizing
V with fixed U and optimizing U with fixed V
are both convex. We present an efficient optimization
algorithm which updates U and V alternately, under
q = 2. We note that we can further develop an
optimization algorithm for the general case of q > 1.
Hereafter we call our NMF formulation (shown in
(7)) MFOG, which stands for non-negative Matrix
Factorization with Overlapping Groups.

3 OPTIMIZATION ALGORITHM

3.1 Optimization for U

We first present optimization for U , where auxiliary
information is not considered. In this case, (8) can be
easily transformed to optimize U as follows:

JU (U ;α) =
1

2

∥∥X̂ −UV̂
∥∥2
2
, (9)

where

V̂ =

(
V T ,

√
2αIK

)
, X̂ =

(
X, 0M×K

)
.

(9) is a convex function for U . The minimization for
(9) can be solved by computing the solution of the
following equation:

V̂ V̂
T
UT = V̂ X̂

T
, (10)

and replacing negative values in the solution U∗ with
zeros [20], as follows:

U ←
[
U∗]

+
. (11)

The above algorithm, which is alternative least
squares (ALS), is less sensitive for poor initialization
than usual multiplicative algorithms [14], meaning
that ALS avoids a path to a poor local minima [20].

3.2 Optimization for V (or Z)
This section presents optimization algorithms for V ,
which is equal to the sum of Z(1), . . . ,Z(G). This
optimization is more difficult than that for U , because
of the mixed norm with overlapping groups. The
optimization for a regression model with overlapping
groups leads to two different ideas: 1) the first one
is latent matrices. The approach by latent matrices is
an extension of [12], where variables are duplicated,
because instances can belong to multiple groups. This
results in a slight increase in the space complexity.
2) the other idea is a dual problem approach, which
directly optimizes V via the dual problem of the
original optimization [21], skipping the optimization
of latent matrices Z, and so hereafter we call this ap-
proach a direct method, since we compute V directly.
This method has to solve a semi-definite problem
(SDP), which requires much more computational cost
than the approach by latent matrices.

In the updating rule of the both optimization meth-
ods, the block unit can be two types: 1) a vector
or 2) the entire matrix. We call the case of a vector
Vector-BCD (or Vec), standing for Vector based Block
Coordinate Descent, while we call the entire matrix
case Matrix-BCD (or Mat), standing for Matrix based
Block Coordinate Descent.

We combine these two types of blocks with two
different ideas of optimization, finally resulting in
four different algorithms. Fig. 2 summarizes these
four combinations with related approaches, where
four different algorithms are named as Lat-Vec, Lat-
Mat, Dir-Vec and Dir-Mat, where Lat and Dir stand
for latent matrices and a direct method based on a
dual problem, respectively. We describe each of the
four algorithms in the following sections.

3.2.1 Lat-Vec:Optimization of Z by vector-BCD
We have theorems for updating rules as follows:

Theorem 1. The optimal value of Z
(g)
·k , g = 1, . . . , G′

under fixed U and Z
(c)
·j (j ̸= k, c ̸= g) is

Z
(g)
·k ←

[
1−

λ
(g)
LV∥∥s(g,k)LV

∥∥
2

]
+

· s(g,k)LV , (12)
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M. Yuan, etc., and Y. Lin
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Our Four Optimizations

Matrix Factorization
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J. Kim, etc., SDM, 2006.
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(2a) Dir-Vec,  (2b) Dir-Mat

Fig. 2. Related optimization problem with auxiliary
group information.

——————————————————————–
Input : data matrix X , groups G and rank K
Output : low rank matrices U and V

1: Initialize U and Z.
2: repeat
3: Update U by Eq. (11)
4: for k = 1 . . . ,K do
5: for g = 1 . . . , G′ do
6: Update Z

(g)
·k by Eq. (12)

7: end for
8: V

(1:G′)
·k ←

∑G′

g=1 Z
(g)
·k

9: Update V
(0)
·k by Eq. (14)

10: end for
11: until convergence
——————————————————————–

Fig. 3. Optimization of MFOG by Lat-Vec

where λ
(g)
LV =

β
√

|Gg|
∥U ·k∥2

2
and

s
(g,k)
LV =

[(
X(g)T − V (g)UT +Z

(g)
·k UT

·k
)
U ·k

∥U ·k∥22

]
+

(13)

Theorem 2. For the joint group G0 = ∪Gg=G′+1Gg , the
optimal Z(0)

·k is equal to V
(0)
·k , which is given by

V
(0)
·k ←

[
1−

λ
(0)
LV∥∥s(0,k)LV

∥∥
2

]
+

· s(0,k)LV . (14)

where λ
(0)
LV = β

∥U ·k∥2
2

.

Proofs of these theorems are described in Appendix.
These theorems give us an optimization algorithm,
Lat-Vec. Fig. 3 shows a pseudocode of Lat-Vec.

3.2.2 Lat-Mat:Optimization of Z by Matrix-BCD
Theorem 3. Under fixed U and Z(c), c ̸= g, the update
rule for Z(g), g = 1, . . . , G′

Z(g) ←

(
1−

λ
(g)
LM∥∥S(g)
LM

∥∥
2

)
+

S
(g)
LM , (15)

can reduce cost J(U ,V ) defined in (8), where

S
(g)
LM =

[
Z(g) +

1

LL

(
X(g)T − V (g)UT

)
U

]
+

, (16)

——————————————————————–
Input : data matrix X , groups G and rank K
Output : low rank matrix U and V

1: Initialize U and Z.
2: repeat
3: Update U by Eq. (11)
4: for g = 1 . . . , G′ do
5: Update Z(g) by Eq. (15)
6: end for
7: V ←

∑G
g=1 Z

(g)

8: Update V (0) by Eq. (17)
9: until convergence

——————————————————————–

Fig. 4. Optimization of MFOG by Lat-Mat

λ
(g)
LM =

β
√

|Gg|
LL

and LL is the Lipchitz constant which is
obtained by multiplying K by the maximum eigen values
of UTU .

Because of equation V (g) = Z(g), g = G′+1, . . . , G,
we can update V (0) directly as follows:

Theorem 4. Under fixed U and Z(c), c ̸= g, the update
rule for Z(g), g = G′ + 1, . . . , G

V (0) ←

(
1−

λ
(0)
LM∥∥S(0)
LM

∥∥
2

)
+

S
(0)
LM . (17)

can reduce cost J(U ,V ) defined in (8), where λ(0)
LM = β

LL
.

The proofs of these theorems are given in Ap-
pendix, and these theorems give us algorithm Lat-
Mat. Fig. 4 shows a pseudocode of Lat-Mat. We note
that the iterative update of Z under fixed U (i.e. lines
4-5 of Fig. 4) can be accelerated by minor modification
of using an idea called FISTA [22].

3.2.3 Dir-Vec:Direct optimization of V by vector-BCD

Theorem 5. The updating rule of Dir-Vec can be formal-
ized as follows:

V ·k ← s
(k)
DV − Proj

KĜ
µk

(
s
(k)
DV

)
, (18)

where

s
(k)
DV =


(
X −UV T +U ·kV

T
·k

)T
U ·k∥∥U ·k

∥∥2
2


+

,

Proj
KĜ

µk

(
s
(k)
DV

)
= arg min

a∈KĜ
k

∥∥∥a− s
(k)
DV

∥∥∥2
F
,

KĜ
k =

{
s;
∥∥∥(s(k)DV

)(g)∥∥∥
2
≤ λ

(k,g)
DV , g ∈ Ĝ

}
,

λ
(k,g)
DV =

β
√
|Gg|

∥U ·k∥22
,

Ĝ =
{
Gg;

∥∥∥(s(k)DV

)(g)∥∥∥
2
> λ

(k,g)
DV

}
⊆ G.
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——————————————————————–
Input : data matrix X , groups G and rank K
Output : low rank matrix U and V

1: Initialize U and V .
2: repeat
3: Update U by Eq. (11)
4: for k = 1 . . . ,K do
5: Update V ·k by Eq. (18)
6: end for
7: until convergence

——————————————————————–

Fig. 5. Optimization for MFOG by Dir-Vec

The proof of this theorem is shown in Appendix. In
(18), the projection operator cannot be solved analyti-
cally. Thus in order to obtain the projection, we use a
projected newton method on the dual problem, which
turns into a constrained semi-definite problem [21].
Fig. 5 shows a pseudocode of Dir-Vec.

3.2.4 Dir-Mat:Direct optimization of V by matrix-BCD
Theorem 6. The updating rule of Dir-Mat can be formal-
ized as follows:

V ← SDM − ProjHG(SDM ), (19)

where

SDM =

[
V +

1

LD

(
XT − V UT

)
U

]
+

,

Proj
HG(SDM ) = arg min

S∈HG

∥∥S − SDM

∥∥2
2
,

HG =
{
S;
∥∥S(g)

·k
∥∥
2
≤ λ

(g)
DM ,

g = 1, . . . , G, k = 1, . . . ,K
}
,

λ
(g)
DM =

β
√
|Gg|

LD
,

and LD is the Lipchitz constant which is obtained by the
maximum eigen values of UTU .

The proof of this theorem is shown in Appendix.
As shown in Dir-Vec, we cannot solve the projection
analytically, because of the mixed norm of overlap-
ping groups. However, note that the mixed norm is
computed by the sum of the norm over columns of
V , meaning that the convex set does not overlap with
any column, resulting in that the projection for each
column of V can be computed individually. Finally
we can solve the projection by using the solver used
in Dir-Vec. Fig. 6 shows a pseudocode of Dir-Mat.

4 RELATED WORK

The most basic model of NMF, i.e. (1), which we
hereafter call MFBS, has been solved by many differ-
ent algorithms. The most classical algorithm is matrix
multiplication [14], while the performance of this

——————————————————————–
Input : data matrix X , groups G and rank K
Output : low rank matrix U and V

1: Initialize U and V .
2: repeat
3: Update U by Eq. (11)
4: Update V by Eq. (19)
5: until convergence

——————————————————————–

Fig. 6. Optimization for MFOG by Dir-Mat

method heavily depends on initial values. This disad-
vantage has been improved by many later methods,
such as alternating least squares (ALS) [20], a block
coordinate descent method (BCD) [13] and an active
set method [15]. See the detail of these algorithms in
review articles on NMF, such as [23].

MFBS has been extended in many different direc-
tions. One way was to incorporate auxiliary informa-
tion, such as semi-supervised NMF under must- and
cannot-link constraints [6], for which one solution is to
learn matrices from constraints before low-rank ma-
trices are optimized [24]. Auxiliary information with
must-link and cannot-link can be simply a graph, in
which nodes are instances. Graph Laplacian has thus
been used to impose that nodes connected by edges
should have the same label or similar values. There
exist at least two different types of NMF which in-
corporate auxiliary graph information by using graph
Laplacian which we call 1) MFGL, which stands for
non-negative Matrix Factorization with Graph Lapla-
cian [25], and 2) MFGC, which stands for non-negative
Matrix Factorization with Graph Laplacian for Clus-
tering [26]. In both of them, the regularization term
has graph Laplacian, i.e. Tr(V TLV ), where Tr(·) is
matrix trace and L is graph Laplacian. For example,
the objective function of MFGL is as follows:

min
U≥0,V ≥0

1

2

∥∥X −UV T
∥∥2
F
+ β Tr(V TLV ), (20)

The optimization can be performed based on matrix
manipulation similar to that for the basic model [14].
MFGC is two-way clustering, where low rank matrix
V is restricted to a binary cluster indicator matrix [26].
When we consider the setting of one-way clustering,
the optimization problem can be given as follows:

min
U≥0,V ∈CI

1

2

∥∥X −UV T
∥∥2
F
+ β Tr(V TLV ), (21)

where CI is the entire set of binary cluster indicator
matrices. The optimization can be performed by a
SVD-based fast algorithm, using the nature of binary
cluster indicator matrices [26].

The difference between (20) (or (21)) and (8) is the
regularization term for V . The regularization term in
MFGL and MFGC makes V i· and V j· of any instance
pair (i, j) close (or same) values if (i, j) are connected
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in the given graph, while the objective function in
(8) of MFOG makes V i· and V j· of any instance
pair (i, j) a similar sparse pattern, if the pair is in
an auxiliary group. As a regularization term, graph
Laplacian is more strict, because two values must
be the same when two instances in the same group.
This makes MFGL and MFGC perform better than
MFOG if given auxiliary groups are totally correct and
not overlapped. However, MFOG would outperform
MFGL and MFGC, if auxiliary groups are noisy and
overlapped, which is we note often the case with real-
world applications. In fact the advantage of MFOG
was confirmed by our experiments in the later exper-
imental section.

Groups are also typical auxiliary information, and
NMF for disjoint group information is already pro-
posed [16], but the approach in [16] cannot be ap-
plied to the case that given groups are overlapped.
Similarly group sparse coding [27] is also low-rank
approximation with non-negative parameters under
disjoint groups, while the problem setting of [27] is
equivalent to [16]. We emphasize that the disjoint
group setting is practically rare, and our setting of
overlapping groups is more realistic. Our approach
of using latent matrices and the mixed norm can
handle overlapping groups appropriately and can be
a generalization of [16]. Possible similar work on
overlapping groups is structured principal component
analysis [28], which however does not assume non-
negatively in low-rank factorized matrices, resulting
in a totally different optimization manner from ours.

5 EXPERIMENTS

We first compared our four optimization algorithms:
Lat-Vec, Lat-Mat, Dir-Vec, and Dir-Mat, each other, by
using synthetic datasets, and selected the best perfor-
mance method in this experiment as our proposed
method, MFOG. We then, by using both synthetic and
real datasets, compared the clustering performance
of MFOG with other methods, including three NMF-
based methods, MFBS, MFGL2 and MFGC and k-
means (KM), under the setting that group information
is given. Here MFGC and MFGL are rather competing
methods, while MFBS and KM are baseline methods.

For all NMF-based methods, the cluster assignment
was performed by cn = argmaxk Vn,k (n = 1, . . . , N),
meaning single (or hard) cluster assignment. We used
this setting, because of no standard methods for as-
signing multiple clusters to each instance from the
output of NMF.

The performance was measured by normalized mu-
tual information (NMI) [29], [3]. NMI between a set
of predicted clusters CP and a set of true clusters CT

2. Group information was transformed into a graph for MFGL
and MFGC by connecting an edge between two nodes (instances)
if these two instances are in the same group.

is calculated as follows:

NMI =
MI(CP ,CT )

max
(
H(CP ),H(CT )

) ,
where MI(CP ,CT ) = H(CP ) + H(CT ) − H(CP ,CT ),
H(C) = −P (C) logP (C), H(CP ,CT ) =
−P (CP ,CT ) logP (CP ,CT ), and P (C) is the empirical
distribution of cluster assignment C.

All experiments were performed by using MacPro
Early 2009 (Intel Xeon Quad-Core 2.66GHz, Mem-
ory 16GB) and Matlab 2013a. Throughout the exper-
iments, weight α for U of MFOG was fixed at 0.01.
Optimization was terminated when either of the fol-
lowing two conditions was satisfied: 1) δ = ||V (t+1)−
V (t)||2F , which is the squared difference between the
two matrices obtained by two consecutive iterations,
was less than or equal to ϵ, and 2) the number of
iterations reached Itrmax. The values of ϵ and Itrmax

were set to 10−8 and 1000, respectively, if any specific
value is not shown.

5.1 Synthetic Datasets

We generated synthetic datasets by the following
manner: We first set the size of data matrix X to be
M×N , and the rank of true low rank matrices U∗ and
V ∗ be K. We then generated true low rank matrices
U∗ and V ∗ as follows: U∗

m,k = cu for (k−1)M
K + 1 ≤

m ≤ kM
K (m = 1, . . . ,M, k = 1, . . . ,K); otherwise

zero, where cu =
√
K/M is a constant value, which

was set to normalize each column of U∗. Similarly
V ∗
n,k = cv for (k−1)N

K + 1 ≤ n ≤ kN
K (n = 1, . . . , N, k =

1, . . . ,K); otherwise zero, where cv =
√
K/N is also

a constant value for normalizing each column of V ∗.
We further assigned true cluster labels by cn = k

for (k−1)N
K + 1 ≤ n ≤ kN

K (n = 1, . . . , N), by using
true low rank matrix V ∗. Finally we generated data
matrix X by

[
U∗V ∗T + E

]
+

, where noise matrix
E ∈ RM×N was generated from Gaussian distribution
N(0, σ2). We generated auxiliary group information
G1 = {1, . . . , C + L}, . . . , Gg = {(g − 1) · C − L +
1, . . . , g · C + L}, . . . , GG = {G · C − L + 1, . . . , N},
where C is the number of instances in an auxiliary
group, G (= N

C ) is the number of auxiliary groups
and L is a parameter to adjust the overlap between
given groups. In our experiments, we generated a
semi-supervised learning setting, for which, we gave
auxiliary group labels to only Ns instances, which
were chosen randomly.

5.1.1 Comparing Optimization Algorithms for MFOG
We compared our four proposed optimization algo-
rithms: Lat-Vec, Lat-Mat, Dir-Vec and Dir-Mat. The
default parameters for synthetic datasets were set as
follows: N = 500, M = 50, K = 5, σ2 = 10−2,
Ns = 500, L = 25, C = 100 and β = 0.01. So these
values were taken if any specific values are not shown.
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Fig. 7. Optimization convergence by Lat-Vec (LV) and
Lat-Mat (LM) for (a) L = 25, β = 10−2, (b) L = 25, β =
10−3, (c) L = 50, β = 10−2 and (d) L = 50, β = 10−3.
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Fig. 8. Difference between V (t) and V (∞) by Lat-Vec
(LV), Lat-Mat (LM), Dir-Vec (DV) and Dir-Mat (DM) for
(a) L = 25, β = 10−2, (b) L = 25, β = 10−3, (c)
L = 50, β = 10−2 and (d) L = 50, β = 10−3

Comparison of our four optimization methods was
conducted by varying L, G and β, while all other
parameters were fixed.

First, we compared the convergence of cost J(U ,V )
in (8) under four typical settings. Fig. 7 shows the
learning curves, i.e. J(U ,V ) at each iteration, of Lat-
Vec (LV) and Lat-Mat (LM), showing that LV always
achieved lower errors under all settings.

Second, we computed ||V (t) − V (∞)||2, i.e. the ℓ2
norm of the difference between V (t) and V (∞) (matrix
obtained at a stationary point), where V (t) and V (∞)

were V after the t-th and 5000-th iterations. Fig. 8
shows the result of ||V (t) −V (∞)||2. Similar to Fig. 7,
Fig. 8 shows that the error obtained by vector blocks
was clearly different from that by matrix blocks.
For all four parameter settings, significantly smaller
differences were obtained by Lat-Vec or Dir-Vec, i.e.
vector blocks. So from Figs. 7 and 8, we can conclude
that Lat-Vec achieved the best performance.

Third, we evaluated the average computational
time and the average number of iterations until con-
vergence (ϵ ≤ 10−8 or Itrmax = 5, 000) over 20 runs,
by changing L, G and β. Tables 1 and 2 show the
summary over this experiment. These tables show
that, in all cases, the computational time of latent
matrix-based approaches was much lower than that
of direct approaches, while the number of iterations
was comparable. The slowness of the direct approach
is due to the projection operators, which require se-
quential optimization. Thus from a real computational
complexity viewpoint, latent matrices-based methods
were better than the direct methods. Another finding
was that the number of iterations of vector blocks
could be smaller than that of matrix blocks, probably
because an exact analytic solution can be obtained at

TABLE 1
Real computational time.

(A)
L Lat-Vec Lat-Mat Dir-Vec Dir-Mat
0 1.4 ± 0.8 6.4 ± 2.6 61.0 ± 39.1 256.8 ± 106.0
25 1.6 ± 1.2 4.1 ± 2.1 75.6 ± 66.5 279.5 ± 118.3
50 1.5 ± 0.9 4.6 ± 2.2 64.7 ± 44.1 310.8 ± 114.0

(B)
G Lat-Vec Lat-Mat Dir-Vec Dir-Mat
5 1.4 ± 0.8 5.2 ± 2.5 57.3 ± 35.7 245.1 ± 64.9
10 2.6 ± 1.5 6.4 ± 3.0 112.7 ± 71.8 449.4 ± 189.6
20 4.1 ± 2.0 7.8 ± 4.4 186.6 ± 128.8 895.3 ± 371.3

(C)
β Lat-Vec Lat-Mat Dir-Vec Dir-Mat
10−1 1.1 ± 0.8 3.6 ± 1.5 11.5 ± 9.0 153.5 ± 78.0
10−2 1.5 ± 0.8 4.4 ± 2.2 31.7 ± 19.4 415.6 ± 172.0
10−3 1.2 ± 0.5 4.3 ± 1.9 51.9 ± 26.6 303.9 ± 104.3

TABLE 2
The number of updates until convergence.

(A)
L Lat-Vec Lat-Mat Dir-Vec Dir-Mat
0 473 ± 271 3389 ± 1358 473 ± 271 3389 ± 1358
25 495 ± 384 2165 ± 1134 577 ± 500 2665 ± 980
50 430 ± 249 2391 ± 1179 469 ± 310 2663 ± 959

(B)
G Lat-Vec Lat-Mat Dir-Vec Dir-Mat
5 419 ± 252 2752 ± 1309 433 ± 272 2387 ± 697
10 523 ± 315 2245 ± 1039 563 ± 380 3103 ± 1308
20 501 ± 244 1657 ± 932 602 ± 383 2605 ± 1002

(C)
β Lat-Vec Lat-Mat Dir-Vec Dir-Mat
10−1 334 ± 234 1906 ± 781 344 ± 266 2045 ± 994
10−2 472 ± 252 2341 ± 1162 517 ± 304 2618 ± 1058
10−3 382 ± 170 2270 ± 1013 401 ± 208 2974 ± 1059

each iteration of the vector-based approaches. Overall
we decided to select Lat-Vec as our proposed opti-
mization algorithm for MFOG.

5.1.2 Comparing Performance of MFOG with Com-
peting Methods
We first checked the values of cluster assignment ma-
trix V of MFOG, comparing with competing methods,
using a certain synthetic dataset (N = 100, M = 20,
K = 4, L = 10, σ2,= 0.01 and Ns = 75). Fig. 9 shows
(a) given groups (auxiliary information on groups),
(b) true low-rank matrices V ∗, and (c-e) matrices V ,
which are optimized by MFOG, MFGL and MFBS.
We note that given information on groups cover a
larger number of instances in V ∗, meaning that input
groups are overlapped with each other. We further
note that V of MFGC is a binary matrix, by which
MFGC could not be compared in this experiment.
The shown results of MFOG, MFGL and MFBS are
the best cases in terms of NMI. This figure indicates
that V obtained by MFOG has the largest number of
zero and the smallest number of non-zero, where the
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Fig. 9. (a1) – (a4) show given information on groups,
which are overlapped with each other, (b1) – (b4) show
the columns of true matrices V ∗, (c1) – (c4), (d1) – (d4)
and (e1)–(e4) show the matrices optimized by MFOG,
MFGL and MFBS, respectively.

points with non-zero are well consistent with the true
cluster structure. On the other hand, the values of the
corresponding part of MFGL and MFBS were likely
to be larger than zero, which blurs cluster estimation.

We then used four different types of datasets, ob-
tained by changing L and Ns while keeping σ2 = 0.08
to check NMI values. Fig. 10 shows NMI values
of five competing methods, changing regularization
parameter β. We note that the performance can be
changed by varying the regularization parameter, and
so the highest NMI in the range of all values of β
should be checked. The first finding was that for all
datasets, MFOG, MFGL, and MFGC outperformed
MFBS and KM in the best NMI. Secondly, for disjoint
groups (L = 0: A and C), MFOG, MFGL and MFGC
achieved almost the same performance in terms of the
highest value, while for overlapping groups (L = 10:
B and D), MFOG clearly outperformed MFGL and
MFGC.

Figs. 11 and 12 show that the norm and variance,
respectively, of one block (corresponding to a given
auxiliary group) of V , when β was changed, under
two typical experimental settings. From these figures,
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Fig. 10. Performance results on synthetic datasets
under σ2 = 0.01, and (A) L = 0, Ns = 50, (B)
L = 10, Ns = 50, (C) L = 0, Ns = 75, (D)
L = 10, Ns = 75. left: MFOG, middle: MFGL, right:
MFGC, solid line: MFBS, and dotted line: KM

for MFOG and larger β, the variance decreased to
almost zero, and the norm was all reduced to zero
except a few cases. This result indicates that group-
wise sparse patterns in optimized V are generated
by the regularization of MFOG. On the other hand,
for MFGL and MFGC, the norm was always positive
even if the variance was reduced to zero for larger β.
This result indicates that, for larger β, elements in V
were almost the same non-zero values in each block,
implying no group-wise sparsity.

These difference on the performance and optimized
V are caused by the difference in regularization terms.
MFOG uses a group norm, which regularizes V rather
loosely, keeping group-wise sparsity (elements in op-
timized V can be either zero or non-zero values).
On the other hand, MFGL and MFGC provide the
same non-zero values to the instances within a group
in optimized V . Then, if one instance is in multiple
groups, the element value (in V ) of this instance is
like an average value over the groups containing this
instance, finally the optimized V being likely to be
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Fig. 11. The norm of each block of V corresponding to
given groups under σ2 = 0.01, and (A) L = 0, Ns = 75,
(B) L = 10, Ns = 75. left: MFOG, middle: MFGL, right:
MFGC
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Fig. 12. The variance of each block of V corre-
sponding to given groups under σ2 = 0.01, and (A)
L = 0, Ns = 75, (B) L = 10, Ns = 75. left: MFOG,
middle: MFGL, right: MFGC

inconsistent with the true cluster structure. This differ-
ence makes MFOG detect essential cluster structures
more precisely than MFGL and MFGC, resulting in
that MFOG could outperform MFGL and MFGC.

5.2 Real Document Datasets
We examined the performance of MFOG by using
three different real text datasets: 20NewsGroups3,
Reuters-217584, and TDT25, again comparing with
MFGL, MFGC, MFBS and KM.

For the three datasets, we first discarded all doc-
uments that are in multiple categories, to clarify the
true clusters and then randomly selected 1,000 doc-
uments uniformly, which can be in the four largest

3. Available from http://qwone.com/ jason/20Newsgroups/
4. Available from http://www.daviddlewis.com/resources/testcolle

ctions/reuters21578/
5. Nist Topic Detection and Tracking corpus at

http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

TABLE 3
The number of documents in the nine largest topics.

20NewsGroups Reuters-21758 TDT2
N 8932 7195 7289
|G1| 999 3713 1844
|G2| 997 2055 1828
|G3| 996 321 1222
|G4| 994 298 811
|G5| 991 245 441
|G6| 990 197 407
|G7| 990 142 272
|G8| 988 114 238
|G9| 987 110 226
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Fig. 13. NMI on 20Newsgroups. The rate of labeled
documents, Rs, was (a) 0.9, (b) 0.8 and (c) 0.7.

categories (corresponding to the four true clusters)
and the 500 most frequent words, to generate the
input document-term matrix. We computed TF-IDF
values from the input matrix and normalized each
column. By repeating the above manner, we gener-
ated 20 datasets for each of the above three datasets,
meaning that the results were averaged over 20 runs.
We generated overlapping groups by assigning group
labels to Ladd pairs of group–document randomly,
meaning that for larger Ladd, groups are overlapped
more heavily. We tested Ladd = 0, 100, . . . and 500.
We finally generated unlabeled documents by discard-
ing all group labels of randomly chosen documents,
where the parameter we used was Rs, which was
the rate of labeled documents in any groups, and
Rs = 0.9, 0.8 and 0.7 were tested. Under each setting,
we fixed α = 0.05 while for β, twenty values between
10−3 and 103 were examined at an equal interval in
the logarithmic scale to have the best average NMI.
We initialized V using auxiliary group information as
follows: for labeled instance n, Vn,k = ck if n ∈ Gk,
otherwise Vn,k = ck

N , and for unlabeled instance
n ∈ Gk, Vn,k = ck

K (k = 1, . . . ,K), where ck is a
constant value for normalizing each column of V . We
note that we need to initialize only V , because for the
t-th iteration, U is updated, depending on V {t}.

Figs. 13, 14 and 15 show the averaged NMI of
five competing methods for 20NewsGroups, Reuters-
21758 and TDT2, respectively. MFOG, MFGL, and
MFGC outperformed MFBS and KM, for all cases,
confirming the effectiveness of auxiliary group in-
formation. When Ladd = 0, where groups do not
overlap, MFOG, MFGL and MFGC were comparable
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Fig. 14. NMI on Reuters-21758. The rate of labeled
documents, Rs was (a) 0.9, (b) 0.8 and (c) 0.7.
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Fig. 15. NMI on TDT2. The rate of labeled documents,
Rs was (a) 0.9, (b) 0.8 and (c) 0.7.

in performance with each other for 20Newsgroups
and TDT2, while MFGC and MFGL were better than
MFOG for Reuters-21758. On the other hand, when
Ladd > 0 where groups overlapped with each other,
MFOG clearly outperformed MFGC and MFGL, par-
ticularly being significant for 20Newsgroups. In fact
the performance of MFOG was kept very high for
20Newsgroups and TDT2, even for large Ladd, i.e.
a larger number of overlapping groups. This result
indicates the robustness of MFOG against overlapping
groups. The weakness of MFGL and MFGC regard-
ing this point is caused by the strict regularization
of graph Laplacian. This strong restriction of graph
Laplacian causes hard to find the optimum weight β
(in fact β is unstable), by which the curve of MFGC
was fluctuating a lot.

We finally checked the NMI of five competing meth-
ods by changing the number of clusters under one
typical setting. We note that this is a semi-supervised
setting with heavily overlapped groups, which can be
real world settings. Table 4 shows the averaged NMI
over twenty runs for (a) 20NewsGroups, (b) Reuters-
21758 and (c) TDT2. The largest NMI value for each
column is indicated by boldface. This figure clearly
shows that MFOG achieved the best performance for
all 27 cases except seven cases, confirming the perfor-
mance advantage of MFOG over the four competitive
methods.

5.3 Real Gene Expression Datasets
We used two gene expression datasets: 1) Human
tumor [30] and 2) Yeast cell cycle [31]. Human has
expression values of 7129 genes from 42 human cells,
and Yeast has those of 696 genes from 18 cells. We
used Gene Ontology (GO) [11] to generate true clus-

TABLE 4
Performance results with Rs = 0.7 and Ladd = 500 on

(a) 20Newsgroups, (b) Reuters-21758, (c) TDT2.

(a)
G MFOG MFGL MFGC MFBS KM
2 0.9457 0.9122 0.9488 0.9115 0.9246
3 0.9393 0.8773 0.7353 0.8747 0.8690
4 0.8925 0.7020 0.5829 0.6221 0.7570
5 0.8773 0.7157 0.6055 0.6783 0.6789
6 0.8732 0.6814 0.6136 0.6449 0.6410
7 0.8374 0.6506 0.6106 0.6090 0.6006
8 0.8507 0.6475 0.6416 0.6027 0.5956
9 0.8012 0.6002 0.6450 0.5405 0.6156

(b)
G MFOG MFGL MFGC MFBS KM
2 0.3588 0.4972 0.2399 0.3477 0.3377
3 0.4172 0.4219 0.3881 0.3810 0.3615
4 0.5180 0.4526 0.4232 0.3607 0.3479
5 0.5423 0.4554 0.5260 0.3793 0.3570
6 0.5956 0.4590 0.6113 0.3453 0.3824
7 0.5855 0.4514 0.5678 0.3480 0.3958
8 0.6028 0.4465 0.5750 0.3283 0.4011
9 0.6225 0.4503 0.6180 0.3542 0.3833

(c)
G MFOG MFGL MFGC MFBS KM
2 0.3588 0.4972 0.2399 0.3477 0.3377
3 0.4172 0.4219 0.3881 0.3810 0.3615
4 0.5180 0.4526 0.4232 0.3607 0.3479
5 0.5423 0.4554 0.5260 0.3793 0.3570
6 0.5956 0.4590 0.6113 0.3453 0.3824
7 0.5855 0.4514 0.5678 0.3480 0.3958
8 0.6028 0.4465 0.5750 0.3283 0.4011
9 0.6225 0.4503 0.6180 0.3542 0.3833

ters (each true set has three clusters) by the following
procedure: We first chose the adequate size of GO
terms: 50 ≤ |G| ≤ 200 for Human and 10 ≤ |G| ≤ 50 for
Yeast and then discarded the GO terms with heavily
overlapped with each other (Jaccard coefficient is over
0.75). We then computed the ratio of inter- and intra-
cluster variance for all possible sets of three GO terms
and chose the top 20 sets in terms of the largest ratios
as the true cluster sets, removing the sets with genes,
to which multiple true clusters are assigned. We
then randomly generated additional groups, where
the cluster size is the mean of the true clusters and
randomly discarded group information of (1 − Rs)N
nodes for a semi-supervised setting.

Figs. 16 and 17 show the performance results on
Human and Yeast, respectively, under the same pa-
rameter setting as the document clustering experi-
ments. From these figures, the performance advantage
of MFOG over the other methods is clear, particularly
for a larger number of additional groups. This result
indicates the high performance of MFOG for the
setting of choosing correct clusters out of possible
candidates.

6 CONCLUDING REMARKS
We have proposed a new model of non-negative
matrix factorization, MFOG, and efficient algorithms
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Fig. 16. NMI on Human. The rate of labeled genes Rs

was (a) 0.9, (b) 0.8 and (c) 0.7.
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Fig. 17. NMI on Yeast. The rate of labeled genes Rs

was(a) 1.0, (b) 0.9, (c) 0.8 and (d) 0.7.

for learning the model, to use auxiliary information
on overlapping groups. Two key features of MFOG
are a mixed norm with latent matrices, which allow to
detect the true clusters, relaxing the excessive sparsity,
and the efficient factorization algorithm based on a
vector block coordinate descent method (vector-BCD).
MFOG combines these two points cooperatively in
terms that latent matrices allow to use vector-BCD.
Experimental results with both synthetic and real
dataset clearly showed the performance advantage of
MFOG over four competing methods.

One issue is to find the optimal β (or best β), in
terms of the highest performance. We checked the
distribution of the best β obtained for all settings in
experiments of each real dataset. Table 5 shows the
variance of the best log(β) of three methods (MFOG,
MFGL and MFGC), indicating that the variance of
MFOG is the smallest and the best β was obtained
most stably by MFOG. This result reveals that MFOG
is easiest in terms of choosing β among the three
competing methods.

Possible future work is to optimize the number of
clusters, which might be possible by using another
regularization term, such as [32]. Missing value es-
timation (or matrix completion) [33] would be also
possible future work. We think that our framework
with auxiliary information would be useful under
these two issues.

APPENDIX

Proof of Theorem 1
By some algebra, optimization of Z

(g)
·k (g =

1, . . . , G′) under fixed U and Z
(c)
·j (j ̸= k, c ̸= g) can

TABLE 5
The variance of best log(β).

MFOG MFGL MFGC
News20 0.0705 1.7495 0.7043
Reuters 0.0593 1.2211 1.1187
TDT2 0.0802 1.5348 2.2973
Human 0.0519 0.9256 0.8909
Yeast 0.1009 2.5736 1.0980

be transformed from (7) to

min
Z

(g)
·k ≥0

1

2

∥∥∥Z(g)
·k − s

(g,k)
LV

∥∥∥2
2
+ λ

(g)
LV

∥∥∥Z(g)
·k

∥∥∥
2
. (22)

Taking Fenchel duality with dual variable s ≥ 0, the
dual problem of (22) is given as follows:

max
∥s∥2≤λ

(g)
LV

− sup
Z

(g)
·k ≥0

Z
(g) T
·k (−s)− 1

2

∥∥∥Z(g)
·k − s

(g,k)
LV

∥∥∥2
2


The minimum for Z(g)

·k is given by the first derivative,
and then we have Z

(g)
·k = s

(g,k)
LV − s. Using this

equation, the dual problem can be transformed to

min
∥s∥2≤λ

(g)
LV

1

2

∥∥∥s− s
(g,k)
LV

∥∥∥2
2
. (23)

Using the solution of (23), which is given by

s∗ =

(
1−

[
1−

λ
(g)
LV

∥s(g,k)LV ∥2

]
+

)
s
(g,k)
LV (24)

and Z
(g)
·k = s

(g,k)
LV − s∗, then we have (12).

Proof of Theorem 2
Each group Gg (g = G′ + 1, . . . , G) has only one

instance and does not overlap with another group, ob-
viously meaning V (g) = Z(g) (g = G′+1, . . . , G). Thus
we can directly optimize V (0), which corresponds to
G0 = ∪Gg=G′+1Gg . By the same manner as the proof of
Theorem 1, we can have (14).

Proof of Theorem 3
Here we define a matrix for all latent matrices as

Z =
(
Z(1)T , Z(2)T , . . . , Z(G)T

)T
.

Fixing U , the optimization for Z is as follows:

min
Z≥0

fZ(Z) + β ΩG
1,2(Z),

where

fZ(Z) =
1

2

∥∥∥X −U

(
G∑

g=1

Z(g)

)T ∥∥∥2
F
.

By a proximal gradient approach, updating Z from
the current matrix after t-th update Z{t} is given by

Z{t+1} ← min
Z≥0

fZ(Z
{t}) +∇fZ(Z{t})(Z −Z{t})

+β · ΩG
1,2(Z) +

LL

2
∥Z −Z{t}∥2F ,
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where LL is the Lipchitz constant which is obtained
by multiplying K by the maximum eigen values of
UTU . Calculating fZ(Z

{t}) and ∇fZ(Z{t}), the right
side can be transformed as follows:

min
Z≥0

1

2
∥Z − SLM∥2F +

β

LL
ΩG

1,2(Z),

where the sub-matrix of SLM , related to group g (g =

1, . . . , G), is described as S
(g)
LM ∈ R|Gg|×K . We analyti-

cally derive the update via the dual problem. Here we
define a dual matrix S where the size of S is equal to
that of Z. Then the dual problem is given as follows:

max
S

{
− sup

Z

[
Tr
(
ZT (−S)

)
− 1

2

∥∥∥Z − SLM

∥∥∥2
F

]}
such that Ω∗(S) ≤ λ

(g)
LM , g = 1, . . . , G,

where Ω∗(·) is the dual norm of ΩG
1,2(·). When q =

2, then Ω∗(·) is the ℓ2 norm. We note that function
Tr
(
ZT (−S)

)
− 1

2

∥∥Z−SLM

∥∥2
F

is convex, by which the
solution satisfies that the derivation of the above cost
respect to Z is zero. Thus we have Z = SLM − S as
the solution. By substituting Z into the equation of the
dual problem, the dual problem can be transformed
to

min
S

1

2

∥∥S − SLM

∥∥2
F

s.t. Ω∗(S) ≤ λ
(g)
LM , g = 1, . . . , G.

Then the optimal S(g) related to each group g =
1, . . . , G can be given as follows:

S∗(g) =

1−

[
1−

λ
(g)
LM∥∥S(g)
LM

∥∥
2

]
+

S
(g)
LM .

Substituting the above equation into Z = SLM − S∗,
we have (15).

Proof of Theorem 4
Because of equation V (g) = Z(g) (g = G′+1, . . . , G),

we can update V (0) simultaneously. Using the same
manner of the proof of Theorem 3, we have (17).

Proof of Theorem 5
From (7), the optimization for V ·k can be trans-

formed into the following equation:

min
V ·k≥0, V ·k=

∑
g Z

(g)
·k

1

2

∥∥∥V ·k − s
(k)
DV

∥∥∥2
F
+

G∑
g=1

λ
(k,g)
DV

∥∥∥Zg
·k

∥∥∥
2
.

The dual problem of the above optimization is given
as follows:

max
s∈KG

k

{
− sup

V ·k

[
V T

·k(−s)−
1

2

∥∥∥V ·k − s
(k)
DV

∥∥∥2
F

]}
where s is a dual vector, which has the same size as
V ·k., and KG

k is the dual norm of
∑G

g=1 λ
(k,g)
DV

∥∥Zg
·k
∥∥
2
,

which is the intersection of convex sets (or cylinders

specifically) KG
k By some algebra, the dual problem

can be transformed to the projection as follows:

Proj
KG

k
(s

(k)
DV ) = arg min

s∈KG
k

∥∥∥s− s
(k)
DV

∥∥∥2
F
.

By using Moreau’s decomposition [34], the optimiza-
tion for V ·k can be performed by the following up-
dating rule:

V ·k ← s
(k)
DV − Proj

KG
k

(
s
(k)
DV

)
.

We note that the projection can be performed more
easily by checking only active groups Ĝ because of
the following equation

Proj
KĜ

µk

(
s
(k)
DV

)
= Proj

KG
µk

(
s
(k)
DV

)
.

Thus we have (18).

Proof of Theorem 6
In (8), the cost related to V is as follows:

fV (V ) + β · ΩG
1,2(Z), s.t. V =

G∑
g=1

Z(g),

where

fV (V ) =
1

2

∥∥∥X −UV T
∥∥∥2
F
.

By using a proximal gradient approach, updating V
from the current matrix V {t} is given by

V {t+1} ← min
V ≥0

fV (V
{t}) +∇fV (V {t})(V − V {t})

+β · ΩG
1,2(Z) +

LD

2

∥∥V − V {t}∥∥2
2
.

where LD is the Lipchitz constant which is obtained
by the maximum eigen values of UTU . Dividing
this by constant LD, the above optimization can be
transformed to

min
V ≥0

1

2

∥∥V − SDM

∥∥2
2
+

β

LD
ΩG

1,2(Z).

Similar to the derivation of Dir-Vec, the dual problem
of the above optimization with dual matrix S is given
as follows:

Proj
KG(SDM ) = arg min

S∈HG

∥∥S − SDM

∥∥2
2

where HG is the dual norm of norm β
LD

ΩG
1,2(Z). By

using Moreau’s decomposition [34], we have update
rule (19).
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