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We investigate correlations of the Polyakov loop fluctuations with eigenmodes of the lattice Dirac
operator. Their analytic relations are derived on the temporally odd-number size lattice with the normal
nontwisted periodic boundary condition for the link variables. We find that the low-lying Dirac modes yield
negligible contributions to the Polyakov loop fluctuations. This property is confirmed to be valid in
confined and deconfined phases by numerical simulations in SU(3) quenched QCD. These results indicate
that there is no direct, one-to-one correspondence between confinement and chiral symmetry breaking in
QCD in the context of different properties of the Polyakov loop fluctuation ratios.
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I. INTRODUCTION

Color confinement and chiral symmetry breaking are the
striking nonperturbative phenomena in low-energy QCD,
which are of particular importance in particle and nuclear
physics [1–5].
Several scenarios of the confinement mechanism have

been proposed [3–8] in which the ghost and gluon
propagators in the deep infrared need to be quantified;
thus, this requires a nonperturbative quantization of QCD.
Whereas this issue has been investigated extensively, it
remains challenging to comprehend the nonperturbative
aspects from the first-principle calculations.
In a pure SU(3) gauge theory, the Polyakov loop is an

exact order parameter of the Z3 center symmetry and for
deconfinement, which dictates a first-order phase transition
[3,9–11]. In the presence of light dynamical quarks, the
Polyakov loop loses its interpretation as an order parameter
and is smoothly changing with temperature. However,
contrary to the broad Polyakov loop, a particular ratio of
the Polyakov loop susceptibilities retains a clear remnant of
the underlying Z3 center symmetry fairly well even in full
QCDwith the physical pion mass [12,13]. Thus, the ratio of
the Polyakov loop fluctuations can serve as observables to
identify the onset of deconfinement in QCD.
In the presence of light dynamical quarks, the tran-

sition from the hadronic phase to quark-gluon plasma
becomes a crossover and accompanies the partial resto-
ration of chiral symmetry at a finite temperature [14–16].
Spontaneous chiral symmetry breaking is characterized
by a nonvanishing condensation of quark-bilinear oper-
ators. The low-lying Dirac modes, which are the eigenm-
odes of the Dirac operator with small eigenvalues, are
known to be responsible for saturating the chiral con-
densate of light quarks hψ̄ψi, through the Banks–Casher
relation [17].

In fact, at vanishing and small baryon chemical potentials,
the lattice QCD results suggest that there is an interplay
between quark deconfinement and chiral crossovers as they
take place in the same narrow temperature range [18]. Also,
in the maximally Abelian gauge, confinement, chiral sym-
metry breaking, and instantons simultaneously disappear,
when the QCD monopoles are removed [19–22]. On the
other hand, there exist several observations that unbroken
chiral symmetry does not dictate deconfinement: given a
tower of hadron spectrawith eliminating the low-lyingDirac
modes [23], the hadrons keep their identity even in a chirally
restored phase where parity doublers are all degenerate. In
addition, it has been shown in the SU(3) lattice simulations
that the low-lying modes have little contribution to the
Polyakov loop and to the confining force, indicating that the
two features are rather independent [24–26].
In the context of the interplay between confinement

and chiral symmetry breaking [15,18,20,21,23–30], it is
important to make a reliable separation of one from another,
whereas those phenomena are supposed to be correlated.
The apparent coincidence in the change of properties of the
Polyakov loop fluctuation ratios and the chiral condensate
and its susceptibility near the chiral crossover might
indicate that there is a tied relation between the confine-
ment and chiral symmetry breaking in QCD. However,
such a possible relation has not been quantified yet.
Utilizing the Dirac-mode expansion method formulated

on the lattice [24], the low-lying modes can be systemati-
cally removed in calculating expectation values of different
operators.
In this paper, we apply the above expansion method to

investigate the relation between confinement and chiral
symmetry breaking in terms of the Polyakov loop fluctua-
tions and their ratios. We pay particular attention to the
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contribution of the low-lying Dirac modes to the Polyakov
loop fluctuations.
We derive the analytic relations between the real and

imaginary parts and modulus of the Polyakov loop and
their fluctuations with the Dirac modes on the temporally
odd-number size lattice with periodic boundary conditions.
These analytical relations are applicable to both full and
quenched QCD. We show, through numerical simulations
on the lattice in quenched QCD, that the low-lying Dirac
modes yield negligible contribution to the Polyakov loop
fluctuations. With these results, also not observed is a direct
relation between confinement and chiral symmetry break-
ing in QCD through the Polyakov loop fluctuation ratios.
The paper is organized as follows. In the next section, we

derive a set of analytic relations linking the Polyakov loop
fluctuations to the Dirac eigenmodes. In Sec. III, we
examine the role of the low-lying Dirac modes in the
Polyakov loop fluctuations and present our numerical
results within quenched lattice QCD. Section IV is devoted
to a summary and conclusions.

II. POLYAKOV LOOP FLUCTUATIONS

We utilize the SUðNcÞ lattice QCD formalism and
consider a square lattice with spacing a. Each site is
indicated by s ¼ ðs1; s2; s3; s4Þ with sμ ¼ 1; 2;…; Nμ. A
gauge field, AμðsÞ ∈ SUðNcÞ with the gauge coupling g, is
introduced as a link variable, UμðsÞ ¼ eiagAμðsÞ. We use the
spatially symmetric lattice, i.e., N1 ¼ N2 ¼ N3 ≡ Nσ and
N4 ≡ Nτ, with Nσ ≥ Nτ.
For each gauge configuration, the Polyakov loop L is

defined as

L≡ 1

NcV

X
s

trc

�YNτ−1

i¼0

U4ðsþ i4̂Þ
�
; ð1Þ

where μ̂ is the unit vector in the direction of μ in the lattice
unit andV is the four-dimensional lattice volume, V¼N3

σNτ.
Under the Z3 rotation, the Polyakov loop is transformed

into

~L ¼ Le2πki=3 ð2Þ
with k ¼ 0, �1 [12,13]. In the confined phase, k ¼ 0 is
taken. In the deconfined phase, k is chosen such that the
transformed Polyakov loop ~L lies in its real sector.
We introduce the Polyakov loop susceptibilities,

T3χA ¼ N3
σ

N3
τ
½hjLj2i − hjLji2�; ð3Þ

T3χL ¼ N3
σ

N3
τ
½hðLLÞ2i − hLLi2�; ð4Þ

T3χT ¼ N3
σ

N3
τ
½hðLTÞ2i − hLTi2�; ð5Þ

where LL ≡ Reð ~LÞ and LT ≡ Imð ~LÞ, and consider their
ratios,

RA ≡ χA
χL

; ð6Þ

RT ≡ χT
χL

: ð7Þ

The Polyakov loop susceptibility ratios (6) and (7) were
shown to be excellent probes of the deconfinement phase
transition in a pure gauge theory [12,13]. They are almost
temperature independent above and below the transition
and exhibit a discontinuity at the transition temperature.
This characteristic behavior is understood in terms of the
global Z3 symmetry of the Yang–Mills Lagrangian and the
general properties of the Polyakov loop probability dis-
tribution [12].
In the presence of dynamical quarks, the Polyakov loop

is no longer an order parameter and stays finite even in the
low-temperature phase. Consequently, the ratios of the
Polyakov loop susceptibilities are modified due to explicit
breaking of the Z3 center symmetry. Indeed, both RA and
RT vary continuously with the temperature across the chiral
crossover; however, RA interpolates between the two
limiting values set by the pure gauge theory. This property
of RA is illustrated in Fig. 1. Also seen in this figure is that,
in spite of smoothening effects observed in the presence of
quarks, there is an abrupt rate change with T in RA near the
chiral crossover T ≃ 155 MeV [13]. The ratio RA in Fig. 1
has its inflection point at T ≃ 150 MeV, which is fairly in
good agreement with the chiral crossover range calculated
in lattice QCD. Such behavior of the Polyakov loop

FIG. 1 (color online). The temperature dependence of the
Polyakov loop susceptibilities ratio RA ¼ χA=χT from Eq. (6)
and the chiral condensate of light quarks hψ̄ψil, normalized to its
zero-temperature value. The lattice QCD Monte Carlo results are
from Refs. [13] and [31], respectively. The horizontal dashed
lines are the limiting values of RA in a pure SU(3) lattice gauge
theory [12]. The vertical dashed lines indicate the chiral crossover
temperature and the range of its errors [31–33].
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fluctuation ratio can be regarded as an effective observable
indicating deconfinement properties in QCD [13].
The apparent modification of RA and RT near the chiral

crossover may suggest that there are certain correlations
between the confinement and chiral symmetry breaking.
Such correlations can be best verified when expanding the
Polyakov loop and its fluctuations in terms of the Dirac
eigenmodes.
In the following, we formulate the relevant quantities,

based on this expansion method, and study the influence
of the low-lying Dirac modes on the properties of the
Polyakov loop fluctuation ratios.

III. DIRAC-MODE EXPANSION

To derive the analytic relation between the Polyakov
loop and the Dirac modes, we consider the temporally odd-
number lattice with the normal nontwisted periodic boun-
dary condition for link variables, in both temporal and
spatial directions [25,26].
We introduce the link-variable operator Û�μ, with the

matrix element

hsjÛ�μjs0i ¼ U�μðsÞδs�μ̂;s0 : ð8Þ

The covariant derivative operator on the lattice is
introduced as

D̂μ ¼
1

2a
ðÛμ − Û−μÞ; ð9Þ

and the Dirac operator

D̂ ¼ γμD̂μ ¼
1

2a

X4
μ¼1

γμðÛμ − Û−μÞ; ð10Þ

with its matrix element

Ds;s0 ¼
1

2a

X4
μ¼1

γμ½UμðsÞδsþμ̂;s0 − U−μðsÞδs−μ̂;s0 �; ð11Þ

where U−μðsÞ ¼ U†
μðs − μ̂Þ and γ†μ ¼ γμ.

Since the Dirac operator is anti-Hermitian, the Dirac
eigenvalue equation reads

D̂jni ¼ iλnjni; ð12Þ

where λn ∈ R. Using the Dirac eigenfunction ψnðsÞ≡
hsjni, one arrives at the eigenvalue equation

1

2a

X4
μ¼1

γμ½UμðsÞψnðsþ μ̂Þ −U−μðsÞψnðs − μ̂Þ�

¼ iλnψnðsÞ: ð13Þ

At finite temperature, imposing the temporal antiperio-
dicity for D̂4 acting on quarks, it is convenient to add a
minus sign to the matrix element of the temporal link-
variable operator Û�4 at the temporal boundary of
t ¼ Ntð¼ 0Þ [25]:

hs; NtjÛ4js; 1i ¼ −U4ðs; NtÞ;
hs; 1jÛ−4js; Nti ¼ −U−4ðs; 1Þ ¼ −U†

4ðs; NtÞ: ð14Þ

Then, the Polyakov loop in Eq. (1) is expressed as

L ¼ −
1

NcV
TrcfÛNτ

4 g ¼ 1

NcV

X
s

trc

�YNt−1

n¼0

U4ðsþ nt̂Þ
�
;

ð15Þ

where Trc denotes the functional trace, Trc ≡P
strc, and

trc is taken over the color index. The minus sign stems from
the additional minus on U4ðs; NtÞ in Eq. (14).
Note that the functional trace of a product of link-

variable operators corresponding to nonclosed path is
exactly zero. Indeed, followed by Eq. (8), one obtains

TrcðÛμ1Ûμ2…ÛμNP
Þ

¼ trc
X
s

hsjÛμ1Ûμ2…ÛμNP
jsi

¼ trc
X
s

Uμ1ðsÞ…UμNP

�
sþ

XNP−1

k¼1

μ̂k

�

×

�
sþ

XNP

k¼1

μ̂kjs
�

¼ 0; ð16Þ

with
PNP

k¼1 μ̂k ≠ 0 for any nonclosed path of length NP.
This is understood from Elitzur’s theorem [34] that the
vacuum expectation values of gauge-variant operators
are zero.
In the following, we show that the Polyakov loop can be

explicitly expanded in terms of eigenmodes of the Dirac
operator.

A. Relation between the Polyakov loop
and Dirac modes

We introduce the key quantity

I ¼ Trc;γðÛ4D̂
Nτ−1Þ; ð17Þ

where Trc;γ ≡P
strctrγ and trγ is taken over spinor indices.

From the definition of D̂ in Eq. (10), it is clear that the
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Û4D̂
Nτ−1 operator is expressed by a sum of products of Nτ

(link variables).
Note that, on a square lattice, it is not possible to

construct any closed loop using the products of an odd
number of link variables (see Fig. 2 for an illustration).
By construction, one considers a square lattice with
odd Nτ, and thus Û4D̂

Nτ−1 in Eq. (17) does not contain
any contributions from the products of Nτ (link variables)
along the closed paths. However, due to the periodic
boundary condition in the time direction, the only excep-
tion is a gauge-invariant term proportional to ÛNτ

4 . This
term is thus related with the Polyakov loop operator.
Based on the above discussion, and applying Eqs. (15),

(16), and (9) to Eq. (17), one finds that

I ¼ 12V
ð2aÞNτ−1

L; ð18Þ

and thus I is directly proportional to the Polyakov loop.
On the other hand, since I in Eq. (17) is defined through

the functional trace, it can be expressed in the basis of Dirac
eigenmodes as

I ¼
X
n

hnjÛ4D̂
Nτ−1jni

¼ iNτ−1
X
n

λNτ−1
n hnjÛ4jni: ð19Þ

Consequently, from Eqs. (18) and (19), one finds that, on
the temporally odd-number lattice, there is a direct relation
between the Polyakov loop and the Dirac modes [25,26],

L ¼ ð2aiÞNτ−1

12V

X
n

λNτ−1
n hnjÛ4jni; ð20Þ

which is a Dirac spectral representation of the Polyakov
loop.
The relation (20) is a mathematical identity and is exactly

satisfied for arbitrary gauge configurations. Consequently,
this relation is valid, regardless of whether the link
variables are generated in full QCD or quenched QCD [25].
The relation (20) enables us to investigate the contribu-

tion of different Dirac modes to the Polyakov loop. Of
particular interest is the role of the low-lying eigenvalues
which are essential to identify chiral symmetry restoration
in QCD at a finite temperature.
In principle, it is possible to calculate numerically the

contribution of the Dirac modes to the Polyakov loop through
Eq. (20) by using Monte Carlo simulations. However, a very
large ð4 × Nc × VÞ2 dimension of a Dirac operator implies
also a large cost of numerical calculations. This can be,
however, remarkably reduced by the use of the modified
Kogut–Susskind (KS) formalism [26].
We rewrite Eq. (20) into the equivalent form

L ¼ ð2aiÞNτ−1

3V

X
n

λNτ−1
n ðnjÛ4jnÞ; ð21Þ

where the KS Dirac eigenstate jnÞ is obtained by solving
the eigenvalue equation,

ημDμjnÞ ¼ iλnjnÞ: ð22Þ

Here, the KS Dirac operator ημDμ is defined as

ðημDμÞss0 ¼
1

2a

X4
μ¼1

ημðsÞ½UμðsÞδsþμ̂;s0 − U−μðsÞδs−μ̂;s0 �

ð23Þ

with the staggered phase ημðsÞ,

η1ðsÞ≡ 1; ημðsÞ≡ ð−1Þs1þ���þsμ−1ðμ ≥ 2Þ: ð24Þ

Consequently, each Dirac-mode contribution to the
Polyakov loop is obtained by solving the eigenvalue
equation of the KS Dirac operator of which the dimension
is now ðNc × VÞ2, instead of ð4 × Nc × VÞ2, as in the
original Dirac operator.
In terms of the KS Dirac eigenfunction χnðsÞ ¼ hsjnÞ,

the KS Dirac matrix element ðnjÛμjmÞ is explicitly
expressed as

ðnjÛμjmÞ ¼
X
s

ðnjsihsjÛμjsþ μ̂ihsþ μ̂jmÞ

¼
X
s

χnðsÞ†UμðsÞχmðsþ μ̂Þ: ð25Þ

From the gauge transformation property of link variables
and the KS Dirac eigenfunctions, the matrix element
ðnjÛμjmÞ is gauge invariant [25,26].

FIG. 2 (color online). The link path structure on a temporally
odd-number lattice with Nτ ¼ 5 and with the periodic boundary
condition. The left configuration is gauge variant, whereas the
middle is gauge invariant. The right configuration represents a
closed path withNτ (link variables) because of the periodicity in a
temporal direction, and thus this path corresponds to a gauge-
invariant Polyakov loop.
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Note that the modified KS formalism applied here is not
an approximation but is a method for spin diagonalization of
the Dirac operator. In this study, we do not use specific
fermions, such as the KS fermion, but apply the modified KS
formalism as a prescription to reduce the numerical cost.
The relations of the Polyakov loop and Dirac eigenm-

odes in Eqs. (20) and (21) are exact. They are valid at finite
temperature and density and are independent of the
particular implementation of fermions on the lattice [25]
and thus can be used to identify the interplay between
deconfinement and chiral symmetry restoration in QCD.

B. Polyakov loop fluctuations and Dirac modes

The expansion of the Polyakov loop in terms of the Dirac
eigenmodes, formulated in the previous section, can be also
applied to the fluctuations of the real and imaginary parts
and modulus of the Polyakov loop.
Multiplying Eq. (20) by the Z3 factor e2πki=3, one obtains

the relation between the Z3 transformed Polyakov loop ~L
and the Dirac modes,

~L ¼ ð2aiÞNτ−1

12V

X
n

λNτ−1
n e2πki=3hnjÛ4jni; ð26Þ

where k ¼ 0, �1 is chosen such that, for each gauge
configuration, the ~L lies in a real sector.

Taking the real and the imaginary parts of Eq. (26), the
Dirac spectral representation of the longitudinal and trans-
verse Polyakov loops reads

LL ¼ ð2aiÞNτ−1

12V

X
n

λNτ−1
n Reðe2πki=3hnjÛ4jniÞ; ð27Þ

LT ¼ ð2aiÞNτ−1

12V

X
n

λNτ−1
n Imðe2πki=3hnjÛ4jniÞ; ð28Þ

respectively, whereas, taking the absolute value of Eq. (20),
the following relation is also obtained:

jLj ¼ ð2aÞNτ−1

12V

����
X
n

λNτ−1
n hnjÛ4jni

����: ð29Þ

Since Eqs. (26), (27), (28), and (29) are valid for each
gauge configuration, the Dirac spectral representation for
different fluctuations of the Polyakov loop and their ratios
are directly obtained by substituting Eqs. (27)–(29) to
Eqs. (3)–(5). As an example, we quote an explicit expres-
sion for the Dirac spectral representation of the RA ¼
χA=χL ratio as

RA ¼ hjPnλ
Nτ−1
n hnjÛ4jnij2i − hjPnλ

Nτ−1
n hnjÛ4jniji2

hðPnλ
Nτ−1
n Reðe2πki=3hnjÛ4jniÞÞ2i − hPnλ

Nτ−1
n Reðe2πki=3hnjÛ4jniÞi2

; ð30Þ

where hxi denotes an average over all gauge configurations.
The explicit analytic relations of the Dirac spectral

decomposition of the real and imaginary parts and modulus
of the Polyakov loops and their fluctuations are the key
results of our studies. Note here that, like Eq. (20), these
relations (26)–(29) are applicable to both full and quenched
QCD, since we just use Elitzur’s theorem [34]: only gauge-
invariant quantities survive. All these relations are derived
on the temporally odd-number lattice for practical reasons.
However, a particular choice of the parity for the lattice size
in the time direction does not alter the physics, since in the
continuum limit, a → 0 and Nτ → ∞, any number of large
Nτ should give the same result [25,26]. In fact, similar
relations are derived also on the even lattice, whereas a
more compact form can be obtained on the temporally odd-
number lattice [25,26]. It is, however, difficult to take the
continuum extrapolation. For instance, the continuum
limit of the Polyakov loop itself is still unsettled because
of the uncertainty of its renormalization. However, at least,
the ambiguity of the multiplicative renormalization of
the Polyakov loop can be avoided by considering the ratio
of the Polyakov loop susceptibilities [12,13].

IV. NUMERICAL RESULTS

To study numerically the influence of different Dirac
modes on the Polyakov loop fluctuations and their ratios,
we further apply the modified KS formalism. This amounts
to replacing the diagonal Dirac matrix element hnjÛ4jni in
Eqs. (27)–(29) by the corresponding KS Dirac matrix
element ðnjÛ4jnÞ [26], as

hnjÛ4jni ¼ 4ðnjÛ4jnÞ: ð31Þ

We analyze the contributions from the low-lying Dirac
modes to the Polyakov loop fluctuations in the SU(3) lattice
QCD through Monte Carlo simulations. In the mathemati-
cal sense, all the obtained relations (26)–(29) hold for both
full and quenched QCD. In this paper, we perform SU(3)
lattice QCD calculations with the standard plaquette action
at the quenched level on the 103 × 5-size lattice. Numerical
studies are carried out both in the confined and deconfined
phases for different couplings β ¼ 2Nc

g2 and the correspond-
ing temperatures, T ¼ 1=ðNτaÞ. We use the Linear Algebra
PACKage (LAPACK) [35] in diagonalizing the KS Dirac
operator to obtain the eigenvalues λn and the eigenfunctions

POLYAKOV LOOP FLUCTUATIONS IN THE DIRAC … PHYSICAL REVIEW D 92, 094004 (2015)

094004-5



χnðsÞ. The lattice spacing a is determined by the zero-
temperature string tension of σ ¼ 0.89 GeV=fm on a large
lattice at each β ¼ 6=g2. In fact, we calculate here the static
quark-antiquark potential VðrÞ on the 164 lattice at each β
and fit it by the Cornell potential, i.e., the Coulomb plus
linear form [3], to extract the string tension σ.
In the confined phase, we fix β ¼ 5.6 on the 103 × 5

lattice, which corresponds to a≃ 0.25 fm and T≃
160 MeV. We also calculate the Creutz ratio χð3; 3Þ≃
0.35ð2Þ, for an estimate of the string tension or the
lattice spacing on the precise lattice [3,36], in spite of an
additional contamination from the Coulomb potential.
Nevertheless, this value is consistent with the string
tension σ obtained from the potential VðrÞ and leads to
a≃ 0.28 fm. Here, the average plaquette value is obtained
as hUμνi ¼ 0.53ð2Þ, which is consistent with the previous
SU(3) lattice studies [36]. In deconfined phase, the sim-
ulations are performed at β ¼ 6.0 on the 103 × 5 lattice,
i.e., for a≃ 0.1 fm and T ≃ 400 MeV. On this lattice, the
average plaquette value is hUμνi ¼ 0.60ð2Þ, which is also
consistent with the previous works [36]. For each value of
β, we use 20 gauge configurations, which are taken every
500 sweeps after the thermalization of 5000 sweeps.
Since the Polyakov loop and its different fluctuations

are expressed as the sums over all Dirac modes, we divide
the entire tower of the Dirac eigenvalues into the low- and
higher-lying modes with the insertion of the infrared
cutoff Λ.
Based on Eq. (21), we introduce the Λ-dependent

Polyakov loops,

jLjΛ ¼ ð2aÞNτ−1

3V

����
X
jλnj>Λ

λNτ−1
n ðnjÛ4jnÞ

���� ð32Þ

for the modulus and

ðLLÞΛ ¼ Cτ

X
jλnj>Λ

λNτ−1
n Reðe2πki=3ðnjÛ4jnÞÞ; ð33Þ

ðLTÞΛ ¼ Cτ

X
jλnj>Λ

λNτ−1
n Imðe2πki=3ðnjÛ4jnÞÞ ð34Þ

for the real and the imaginary parts, respectively, with
Cτ ¼ ð2aiÞNτ−1=3V.
Applying the cutoff-dependent Polyakov loops from

Eqs. (32), (33), and (34) to Eqs. (3)–(5), we also introduce
the Λ-dependent susceptibilities

T3ðχÞΛ ¼ N3
σ

N3
τ
½hY2

Λi − hYΛi2�; ð35Þ

where Y stands for jLj, LL, or LT, and their ratios

ðRAÞΛ ¼ ðχAÞΛ
ðχLÞΛ

; ðRTÞΛ ¼ ðχTÞΛ
ðχLÞΛ

: ð36Þ

To differentiate the importance of the low-lying Dirac
modes on the properties of the Polyakov loop fluctuations
and the chiral condensate, we introduce the cutoff-
dependent chiral condensate hψ̄ψiΛ. In terms of the Dirac
modes, the hψ̄ψiΛ is expressed as [24]

hψ̄ψiΛ ¼ −
1

V

X
jλnj≥Λ

2m
λ2n þm2

; ð37Þ

where m is the current quark mass.
The chiral condensate is strongly affected by the low-

lying Dirac modes. Taking a typical value for the infrared
cutoff Λ≃ 0.4 GeV and the quark mass m≃ 5 MeV leads
to a drastic reduction of the chiral condensate,

Rchiral ¼
hψ̄ψiΛ
hψ̄ψi ≃ 0.02; ð38Þ

in a confined phase at T ≃ 0 [24,26].
Figure 3 shows the Dirac eigenvalue distribution ρðλÞ ¼

1=V
P

nhδðλ − λnÞi in the confined (β ¼ 5.6) and decon-
fined (β ¼ 6.0) phases. Note here that the near-zero Dirac-
mode density ρðλ≃ 0Þ is apparently finite in the confined
phase, whereas it is highly suppressed in the deconfined
phase. We show in Fig. 4 the bare chiral condensate jhψ̄ψij
per a flavor in the confined phase as a function of the quark
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FIG. 3 (color online). The lattice QCD result of the Dirac
eigenvalue distribution ρðλÞ in the lattice unit: (a) the confinement
phase at β ¼ 5.6 (i.e., a≃ 0.25 fm) on 103 × 5; (b) the decon-
finement phase at β ¼ 6.0 (i.e., a≃ 0.10 fm) on 103 × 5 [26].
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mass m in the lattice unit. The chiral condensate remains
finite in the small-m region. Thus, from Figs. 3 and 4, it
is clear that the chiral symmetry is definitely broken in
the confined phase, whereas it is restored in the decon-
fined phase.
In the same spirit, we introduce the ratio,

Rconf ¼
ðRAÞΛ
RA

; ð39Þ

to quantify the sensitivity of the Polyakov loop fluctuations
to the particular Dirac modes. When, with some Λ, the ratio
stays Rconf ≃ 1, then the low-lying Dirac modes below the
cutoff Λ have a negligible contribution to the Polyakov
loop fluctuations.
In Fig. 5, we show the Monte Carlo results for Rconf in a

confined phase at β ¼ 5.6, for various values of the infrared

cutoffΛ. For the sake of comparison, we also show in Fig. 5
the Rchiral ratio, calculated at the same temperature and with
the light quark mass, m ¼ 5 MeV. The ratios, Rconf and
Rchiral, indicate the influence of removing the low-lying
Dirac modes with the infrared cutoff Λ on confinement and
chiral symmetry breaking, respectively.
From Fig. 5, it is clear that the Rchiral ratio is strongly

reduced by removing the low-lying Dirac modes. Thus, the
low-lying Dirac modes, which are important modes for
chiral symmetry breaking, are also dominant to quantify
the chiral condensate. In contrast to Rchiral, the Rconf ratio is
almost unchanged when removing the low-lying Dirac
modes even with relatively large cutoff Λ≃ 0.5 GeV.
Thus, the essential modes for chiral symmetry breaking

in QCD are not important to quantify the Polyakov loop
fluctuation ratios, which are sensitive observables to con-
finement properties in QCD. The same result is also found
in the deconfined phase, as seen in Table I, which
summarizes our numerical results on different fluctuations
of the Polyakov loop and their ratios, obtained on the lattice
at β ¼ 5.6 and β ¼ 6.0, with 20 gauge configurations. Note
here that the analytical relation (20) and the subsequent
formulas of Eqs. (27)–(29) hold for each gauge configu-
ration, and the contribution from the low-lying Dirac modes
to the Polyakov loop L is found to be negligible [26]. This
fact inevitably leads to almost equivalence between the
Polyakov loop fluctuations and those without the low-lying
Dirac modes, although the statistical error is significant
because of the small statistics.
The differences in the influence of the low-lying Dirac

modes on the chiral condensate and the Polyakov loop
fluctuations can be understood semianalytically. From
Eqs. (27)–(29), it is clear, that the contribution of the
low-lying Dirac-modes with jλnj≃ 0 is suppressed, relative
to the higher-lying Dirac modes, due to the damping factor
λNτ−1
n . In fact, a Dirac matrix element hnjÛ4jni does not
yield a stronger singularity than 1=λNτ−1

n ; therefore, the
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FIG. 4 (color online). The absolute value of the bare chiral
condensate jhψ̄ψij per a flavor in the confinement phase plotted
against the quark mass m in the lattice unit. The lattice QCD
calculation is done at β ¼ 5.6 (i.e., a≃ 0.25 fm) on 103 × 5.
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FIG. 5 (color online). The numerical results for the Rchiral and
Rconf ratio from Eqs. (38) and (39), respectively, as a function of
an infrared cutoff Λ introduced on Dirac eigenvalues, expressed
in lattice units. The Monte Carlo calculations have been per-
formed on the 103 × 5 lattice at β ¼ 5.6 and for the quark mass of
m ¼ 5 MeV.

TABLE I. Numerical results for different Polyakov loop fluc-
tuations (original) and those without the low-lying Dirac modes
(IR removed) below the IR cutoff Λ≃ 0.4 GeV. The results are
obtained in quenched QCD on the 103 × 5 lattice at β ¼ 5.6
(confined phase) and β ¼ 6.0 (deconfined phase) with 20 gauge
configurations.

β Original IR removed

β ¼ 5.6 T3χA 3.475 × 10−4 3.470 × 10−4

T3χL 5.307 × 10−4 5.298 × 10−4

T3χT 6.005 × 10−4 5.994 × 10−4

RA 0.6548 0.6549
RT 1.131 1.131

β ¼ 6.0 T3χA 2.965 × 10−3 2.965 × 10−3

T3χL 3.015 × 10−3 3.015 × 10−3

T3χT 7.848 × 10−4 7.848 × 10−4

RA 0.9834 0.9834
RT 0.2603 0.2603
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contribution from the low-lying Dirac modes to the
Polyakov loop [26], as well as to its fluctuations, is
negligible. Hence, the essential modes for chiral symmetry
breaking do not contribute to a sensitive probe for decon-
finement in QCD. Thus, this finding suggests no direct one-
to-one correspondence between confinement and chiral
symmetry breaking in QCD.

V. SUMMARY AND CONCLUSIONS

The main objective of these studies was to establish the
relation between the Polyakov loop and its fluctuations
with the eigenmodes of a Dirac operator. Based on the
lattice QCD formalism, we have derived a Dirac spectral
representation of the real and imaginary parts and modulus
of the Polyakov loop and their fluctuations. Although the
formulation was done on a temporally odd-number lattice,
this choice of the parity for the lattice size does not alter the
physics in the continuum limit with any large number of
Nτ. The analytical decomposition of the Polyakov loop and
its fluctuations is fully general. It is independent from the
gauge group, the implementation of fermions on the lattice,
and is also valid at a finite baryon density.
To quantify the influence of Dirac modes over the

Polyakov loop fluctuations, we have performed
Monte Carlo simulations in the SU(3) lattice QCD. Our
calculations were carried out with the standard plaquette
action at the quenched level on a (103 × 5)-size lattice at
two different temperatures, corresponding to the confined
and deconfined phases.
We have shown that the low-lying Dirac modes have a

negligible contribution to the Polyakov loop fluctuations.
This result is intact both in the confined and deconfined
phases. On the other hand, the low-lying Dirac modes are
essential, in both phases, to quantify the chiral condensate.
These findings, both in analytical formulas and in

numerical calculations, suggest no direct, one-to-one cor-
respondence between confinement and chiral symmetry
breaking in QCD. However, this does not exclude a
coincidence of these two properties in QCD since the
abrupt change of the ground state from the chiral broken
phase to the restored phase may drive the onset of
deconfinement.
The above conclusion is based on the numerical simu-

lations on a rather small-size lattice, being far from a
continuum limit. Thus, our result on the Polyakov loop
fluctuations suffers from finite size effects. Such effects
can certainly modify the values of fluctuations at a given
temperature but will not change our conclusion on the

influence of the low-lying Dirac modes on their properties.
The low-lying Dirac modes have a negligible contribution
to the Polyakov loop fluctuations because of the damping
factor λNτ−1

n which appears in Eq. (20). Although our
numerical calculation was performed at the quenched level,
the derived analytic formulas are fulfilled even in the
presence of dynamical quarks. It is one of the future
prospects to perform full-QCD simulations in the present
formalism to further justify our conclusion.
In addition, the derived analytic relations connecting the

Polyakov loop and Dirac modes are mathematically exact
for arbitrary odd temporal size Nτ. Thus, we expect that our
conclusion is rather robust in the continuum limit [25,26].
Moreover, the ambiguity of the multiplicative renormali-
zation of the Polyakov loop has been avoided in the ratio
of the Polyakov loop susceptibilities. Yet, it is left as an
important but difficult task to extrapolate these analytic
relations to the continuum.
In addition to the Polyakov loop fluctuations, there are

further observables which are linked to deconfinement
properties in QCD and show an abrupt, but smooth, change
across the chiral crossover. One of such observables is the
kurtosis of the net-quark number fluctuations [37–39].
Besides, the QCD monopole, in the maximally Abelian
gauge, is a relevant degree of freedom in the low-energy
QCD [20,21] and plays a fundamental role for nonpertur-
bative phenomena such as confinement and chiral sym-
metry breaking. Thus, from the future perspectives, it
would be of particular interest to investigate such quantities
in terms of the Dirac-mode expansion and to explore the
influence of the low-lying eigenmodes on their properties
near the chiral crossover.
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