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Abstract 

Oil bodies act as lipid storage compartments in plant cells. In seeds they supply energy for 

germination and early seedling growth. Oil bodies are also present in the leaves of many 

vascular plants, but their function in leaves has been poorly understood. Recent studies with 

oil bodies from senescent A. thaliana leaves identified two enzymes, peroxygenase (CLO3) 

and α-dioxygenase (α-DOX), which together catalyze a coupling reaction to produce an 

antifungal compound (2-hydroxy-octadecanoic acid) from α-linolenic acid. Leaf oil bodies 

also have other enzymes including lipoxygenases, phospholipases, and triacylglycerol lipases. 

Hence, leaf oil bodies might function as intracellular factories to efficiently produce stable 

compounds via unstable intermediates by concentrating the enzymes and hydrophobic 

substrates.  
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Oil bodies 

Lipids have an essential role for living organisms. In plants, lipids function as components of 

biomembranes (phospholipids and phytosterols), phytohormones (jasmonic acid), antifungal 

compounds (oxylipins), and storage lipids (triacylglycerols). Lipid metabolic pathways are 

localized in organelles such as endoplasmic reticulum (ER), plastids, peroxisomes, and 

mitochondria [1]. Some lipids are stored as lipid droplets in the cytosol or plastids. In this 

review, we define cytosolic lipid droplets as oil bodies, and plastidial lipid droplets as 

plastoglobules. 

Oil bodies are surrounded by a phospholipid monolayer membrane with associated 

proteins, and contain neutral lipids inside [2]. Oil bodies are found in tissues such as seeds, 

tapetum in anthers, and leaves [3]. Seed oil-body membrane protein families include oleosins, 

caleosins, and steroleosins [4]. Oleosins are the major protein family in seed oil bodies, and 

function to inhibit oil-body fusion [5]. Oleosin action prevents formation of large oil bodies 

and preserves small oil body sizes. In Arabidopsis thaliana oleosin mutants, oil bodies are 

larger than those in wild type because the oil bodies easily fuse with each other [6,7]. The 

germination rate of oleosin mutant seeds is lower than that of wild-type seeds, and oleosin 

mutant seeds are susceptible to freezing [7]. These results suggest that oleosins have an 

important role in seed germination by preventing oil-body fusion. Some oleosin homologs are 

expressed in tapetum and are important for pollen formation [8-10]. 

Oleosin is abundant in seeds and tapetum, whereas oleosin levels are low in leaves [11], 

although leaf cells have oil bodies [12]. The functions of leaf oil bodies are unclear. However, 

recent research revealed the protein components of leaf oil bodies and their function. This 

review will explore leaf oil bodies. 

 

Leaf oil-body-localized proteins 

Leaf oil-body proteins have been identified as shown in Figure 1 and Table 1. Caleosins have 

the calcium-binding domain EF-hand and have a peroxygenase activity [13,14]. The 

CALEOSIN3/RESPONSIVE TO DESSICATION20/PEROXYGENASE3 (CLO3/RD20/PXG3) 

gene in A. thaliana is expressed in response to abiotic stresses [15]. The CLO3-GFP fusion 

protein localizes on leaf oil-body membranes [13], indicating that CLO3 is a leaf oil-body 

protein. CLO4 is expressed in leaves and the protein localizes on oil bodies [16], showing that 

CLO4 is a leaf oil-body protein. A. thaliana α-dioxygenase1 (α-DOX1) was identified as a 
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leaf oil-body protein by proteomics analysis of isolated leaf oil bodies [13]. Lipoxygenases 

[17], phospholipases [18,19], and triacylglycerol lipases [20] are oil-body proteins in 

seedlings. Lipoxygenases are involved in oil-body lipid metabolism. Phospholipases catalyze 

the conversion of oil-body membrane phospholipids to free fatty acids. Triacylglycerol lipases 

catalyze the conversion of oil-body storage lipids to free fatty acids. The A. thaliana 

triacylglycerol-lipase SUGAR-DEPENDENT1 (SDP1) localizes on oil bodies [21].  

 

Caleosins 

Caleosins are 2030 kDa proteins containing a proline-knot motif, which is an oil-body 

binding domain, and an EF-hand motif, which is a calcium-binding domain [23]. The A. 

thaliana genome encodes at least eight caleosins. CLO1 (At4g26740) and CLO2 (At5g55240) 

are expressed in seed, whereas CLO3 (At2g33380) and CLO4 (At1g70670) are expressed in 

several tissues, including leaf [24]. According to the AtGenExpress database, CLO5 

(At1g23240) is expressed in flower, CLO6 (At1g70680) is ubiquitously expressed in various 

organs, and CLO7 (At1g23250) is expressed in flower and seed, although CLO8 (At5g29560) 

has no expression data. CLO1, CLO2 and CLO3 have peroxygenase enzymatic activity 

[13,14]. CLO3 is expressed in response to the pathogenic fungus Colletotrichum 

higginsianum [13], abscisic acid, drought, and NaCl [15]. A study of seed-type caleosins 

reported that caleosins have peroxygenase activity, which catalyzes the oxidation of an 

unsaturated fatty acid by a hydroperoxy fatty acid to form a hydroxyl fatty acid and epoxy 

fatty acids [14]. This result suggests that caleosins function as enzymes involved in oxylipin 

metabolism. 

Both CLO3 and α-DOX1 are localized on leaf oil bodies during C. higginsianum 

infection [13]. CLO3 and α-DOX1 cooperatively function to synthesize 

2-hydroxy-octadecatrienoic acid (2-HOT) from α-linolenic acid (Figure 2a) [13]. 2-HOT is an 

oxylipin with antifungal activity against Colletotrichum, and 2-HOT levels increase during 

senescence and C. higginsianum infection [13]. These results suggest that 2-HOT is an A. 

thaliana phytoalexin. Leaf oil bodies may function as a scaffold for the production of 2-HOT. 

In Nicotiana attenuata, 2-HOT is required for defense responses against larvae [25,26]. 

2-HOT has an additional function in inhibiting cell death [27,28]. Caleosins are conserved in 

several plants including angiosperms (SALAD Database [29], 

http://salad.dna.affrc.go.jp/salad/), Cycas revoluta [30], Physcomitrella patens [31], and 
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Chlorella species [32]. These results suggest that land plants have an oil-body mediated 

defense mechanism that utilizes oxylipin production  

Analysis of CLO3 mutant and overexpression lines indicates that CLO3 produces 

13-hydroxyoctadecatrienoic acid (13-HOT) and 15,16-epoxy-13-HOT (Figure 2b) [33]. The 

13-HOT oxylipin has antimicrobial activity against oomycete (Phytophthora parasitica) and 

fungi (Cladosporium herbarum, Botrytis cinerea) [34]. It is thought that 13-HOT is produced 

by caleosins from 13-hydroperoxyoctadecatrienoic acid (13-HPOT), which is produced by 

13-lipoxygenase (13-LOX) using α-linolenic acid (Figure 2b). A. thaliana has four 13-LOXs 

(LOX2, LOX3, LOX4 and LOX6) [35] that are expressed in rosette leaves (ATTED-II [22], 

http://atted.jp/). According to subcellular localization prediction by WoLF PSORT 

(http://www.genscript.com/psort/wolf_psort.html), LOX3 and LOX4 localize in cytosol. 

These cytosolic 13-LOXs might be associated with leaf oil bodies together with caleosins to 

produce the antimicrobial oxylipin 13-HOT.  

 

α-Dioxygenase 

α-Dioxygenase adds a hydroperoxy group to a branched chain of fatty acids and synthesizes 

2-HPOT from α-linolenic acid (Figure 2a) [36]. 2-HPOT is unstable and easily degrades to the 

aldehyde [36]. Because both CLO3 and α-DOX1 are localized on leaf oil bodies, they 

efficiently synthesize 2-HOT utilizing the unstable intermediate 2-HPOT [13]. These results 

suggest that leaf oil bodies function as subcellular factories to efficiently produce the 

antifungal oxylipin 2-HOT. 

A. thaliana has two α-dioxygenase homologs, α-DOX1 and α-DOX2 [37,38]. α-DOX1 

is localized on leaf oil bodies, whereas α-DOX2 is localized on ER [13]. The 2-HOT content 

in senescent and infected leaves of α-dox1 mutants is less than that of wild type, whereas the 

2-HOT content of α-dox2 mutants is similar to that of wild type [13]. These results suggest 

that only α-DOX1 is necessary for 2-HOT production in vivo. The fact that α-dioxygenase is 

localized on oil bodies may be important for 2-HOT production. Defective α-dioxygenase 

also reduces 2-HOT content in N. attenuata [25]. Silencing of α-dioxygenase in N. attenuata 

produces plants that are smaller than wild type [25], whereas no phenotype was observed for 

α-dox1 α-dox2 double mutants of A. thaliana [39]. A. thaliana plants lacking α-DOX1 

enhances susceptibility to green peach aphid (Myzus persicae) [40]. These results suggest that 

α-dioxygenase and 2-HOT have functional diversity among different plant species. The 

http://atted.jp/
http://www.genscript.com/psort/wolf_psort.html
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question regarding whether α-dioxygenases in other plants are localized on leaf oil bodies 

should be the subject of future work. Infection of the pathogenic fungus Botrytis cinerea and 

treatment with elicitors of the pathogenic bacterium Pectobacterium carotovorum induce 

α-DOX in P. patens [41], suggesting that α-DOX-dependent defense mechanisms are 

conserved in land plants. 

 

Triacylglycerol lipase 

Fatty acids are the substrates of oxylipin production and energy sources. In oil bodies, fatty 

acids are bound with glycerol to produce triacylglycerol. Triacylglycerol lipases catalyze 

triacylglycerol metabolism to fatty acids. The triacylglycerol-lipase SDP1 [21], which is 

localized on oil bodies, is expressed in A. thaliana rosette leaves (ATTED-II [22], 

http://atted.jp/). Triacylglycerol contents in sdp1 leaves are slightly higher than those of the 

wild-type leaves, whereas triacylglycerol contents in sdp1 roots are much higher than those of 

the wild-type roots [42]. SDP1 may function on leaf oil bodies. 

 

Leaf oil bodies in senescent leaves 

Senescent leaves contain more leaf oil bodies than young leaves (Figure 3) [43]. During 

senescence, CLO3 and α-DOX1 expression and the amount of 2-HOT increase [13]. These 

results suggest that senescence is a key factor in leaf oil-body function. Old membranes and 

organelles are digested in senescent leaves, and some products of digestion can be 

translocated to new tissues. Peroxisomes in senescent leaves become specialized for fatty acid 

beta-oxidation and the glyoxylate cycle [44-46]. It is believed that lipids from old membranes 

and organelles are sequestered into leaf oil bodies, and then are metabolized by peroxisomes 

to provide an energy source. 

Leaf oil bodies have an important role in defense mechanisms through oxylipin 

production, suggesting that senescent leaves containing abundant leaf oil bodies function as a 

defensive shield to inhibit pathogen invasion into new or healthy tissues [43]. Leaf oil bodies 

actively function in oxylipin production and defense response as well as lipid storage (Figure 

3). This mechanism may protect the whole plant from pathogens [43]. 

 

Sterol ester storage in leaf oil bodies 
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Leaf oil bodies may have a role in storage of sterol esters. Over-production of sterols in plant 

cells enhances the formation of oil bodies [47]. Application of squalene, which is a sterol 

precursor, to the leaf surface elevates the sterol ester content and the number of leaf oil bodies 

[48]. By contrast, the amount of free sterols after squalene application is similar to that before 

application [48]. Phospholipid:sterol acyltransferase (PSAT) catalyzes the transfer of 

phospholipid fatty acyl groups to sterols [48]. Treatment of the A. thaliana psat1 mutant with 

squalene enhances leaf senescence but has no effect on the number of oil bodies [48]. These 

results suggest that excess sterols (which are toxic to plant cells) may be converted to sterol 

esters by PSAT and stored in leaf oil bodies (Figure 1). In the A. thaliana psat1 mutant, 

irregular cell death occurs in response to infection from the oomycete Phytophthora infestans 

[49]. Sterol storage in leaf oil bodies may have an important function in defense responses. 

 

Conclusion 

Plants produce bioactive lipids (oxylipins), usually in chloroplasts, to defend against 

pathogens and herbivores. A recent study provided evidence of bioactive compound 

production on leaf oil bodies of plants [13]. Plants have leaf oil body-mediated defense. Leaf 

oil bodies have an important role in plant defense by producing antimicrobial oxylipins 

[13,33,34], one of which is the stable compound 2-HOT with antifungal activity against 

Colletotrichum, a fungus that causes significant damage to crops [43]. Senescent leaves 

contain a massive amount of leaf oil bodies. Leaf oil bodies produce 2-HOT in dying cells to 

accumulate high levels of the stable antifungal compound in dead cells, which could 

otherwise provide a source of fungal proliferation. Abscised leaves accumulating a large 

amount of antimicrobial compounds might prevent pathogenic fungi from replicating then 

spreading into healthy and young tissues. Considering the fact that leaf oil bodies and genes 

similar to CLO3 and α-DOX1 are widely found in various land plants, plants might have 

evolved the leaf oil body-mediated phytoalexin production for defense against fungal 

proliferation.  
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Figure Legends 

 

Figure 1. A schematic view of a leaf oil body and associated proteins. Enzyme families 

localized on leaf oil bodies and their substrates and products. PSAT, phospholipid:sterol 

acyltransferase; 2-HOT, 2-hydroxy-octadecatrienoic acid; 13-HOT, 

13-hydroxy-octadecatrienoic acid. 

 

Figure 2. Lipid metabolic pathways of leaf oil bodies. (a) Two leaf oil-body proteins, caleosin 

and α-dioxygenase, cooperatively produce 2-HOT from α-linolenic acid. 2-HPOT, 

2-hydroperoxy-octadecatrienoic acid. Fatty acid epoxides are possible products. (b) A 

biosynthetic pathway to produce 13-HOT from α-linolenic acid. 

 

Figure 3. Induction of leaf oil bodies during senescence. Leaf oil bodies are few in green 

leaves and then are induced in senescent leaves. Leaf oil bodies actively function in oxylipin 

biosynthesis and defense response, although seed oil bodies function in lipid storage. 
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Table1 | Leaf oil-body proteins 

Protein 

CLO3/RD20/PXG3 

CLO4 

CLO6 

α-DOX1 

SDP1 

patatin-like protein1 

Accession 

At2g33380 

At1g70670 

At1g70680 

At3g01420 

At5g04040 

Y12793 

Enzymatic activity 

peroxygenase 

peroxygenase2 

peroxygenase2 

α-dioxyganase 

triacylglycerol-lipase 

phospholipase A2 

Species 

Arabidopsis thaliana 

Arabidopsis thaliana 

Arabidopsis thaliana 

Arabidopsis thaliana 

Arabidopsis thaliana 

Cucumis sativus 

Reference 

[13, 15, 24, 33] 

[16, 24] 

[24] 

[13, 36, 37, 38] 

[21, 42] 

[18, 19] 

1induced in seedling, 2possible roles 




