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A SuzukiMiyaura coupling reaction between unactivated
alkyl halides and lithium alkynylborates was performed using an
ironbisphosphine catalyst. The reaction shows high chemo-
selectivity and is applicable to a broad scope of substrates bearing
electrophilic functional groups. A radical probe experiment using
cyclopropylmethyl bromide was conducted to investigate the
nature of the intermediate in the reaction, showing that an alkyl
radical species is generated from the alkyl halide substrate.

The SuzukiMiyaura coupling reaction has been widely
used for the synthesis of functional organic molecules, such
as pharmaceuticals, agrochemicals, and electronic materials.1

In particular, the SuzukiMiyaura coupling of alkynyl borate
reagents has become recognized as a powerful tool for installing
a CC triple bond moiety without altering other reactive
functional groups on the substrates.2 Since Soderquist and
Fürstner independently reported the palladium-catalyzed alky-
nylation between alkynyl borate reagents and aryl or alkenyl
halides,2b,2c the reaction has been successfully applied as a key
step in the synthesis of natural products.3 However, while aryl
and alkenyl halides have been widely employed in this
alkynylation reaction, the use of unactivated alkyl halides
has remained challenging due to their reluctance to oxidative
addition and the competing nonproductive β-hydrogen elimi-
nation from the alkylmetal intermediate. Consequently, there
has been no report on the use of alkynylborates in CspCsp3

bond-forming reactions with unactivated alkyl halides, despite
extensive studies using various combinations of alkynyl
donors and transition-metal catalysts such as palladium,4a,4b,5a

nickel,4c,4d,5b cobalt,5c5f and iron.5g,5h

We have previously reported a Sonogashira-type coupling
between alkyl halides and alkynyl Grignard reagents with the
ironbisphosphine catalyst [FeCl2(SciOPP)]5g,6 (Scheme 1A).
Although this reaction demonstrated the potential of the iron
catalyst in the alkynylation of alkyl halides, significant synthetic
limitations have remained, i.e., low functional group compati-
bility, the inapplicability of the reaction to secondary alkyl
chlorides, and the need for overly elaborate protocols such as the
slow addition of Grignard reagents at refluxing temperature.
Herein we present the first example of SuzukiMiyaura coupling
between alkynylborates and unactivated alkyl halides in the
presence of an iron catalyst,7,8 which overcomes these limita-
tions to provide a facile route to alkyl-substituted functionalized
alkynes in good to excellent yields (Scheme 1B).

We began our investigation by evaluating the coupling
reaction of chlorocycloheptane (1) and lithium (triisopropyl-

silyl)ethynyltrimethoxoborate (2),9 readily prepared from the
terminal alkyne, BuLi, and trimethyl borate, and found that by
using 5mol% of [FeCl2(SciOPP)] the target coupling product 3
was obtained in 80% yield, along with cycloheptene (4) and
cycloheptane (5) (Table 1, Entry 1). Further investigation into
the reaction conditions was conducted by altering individual
reaction parameters from those considered to be optimal.10 In the
absence of the iron catalyst, 1 was recovered quantitatively and
no other products were observed (Table 1, Entry 2). Without
the SciOPP ligand, the coupling reaction gave 3 in only 10%
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Scheme 1. Ironbisphosphine-catalyzed CspCsp3 bond-forming re-
action of unactivated alkyl halides.

Table 1. Effect of reaction parameters on iron-catalyzed alkynylation
Optimal condition 

1

[FeCl2(SciOPP)]
(5 mol %)

THF/hexane
80 °C, 5 h  iPr3Si B(OMe)3Li

3

2 (1.50 equiv) 

4

5

iPr3Si

Cl

Entrya Variations from the optimal conditions
Yield/%b Recovery

of 1/%b3 4 5

1 none 80 16 3 <1
2 without [FeCl2(SciOPP)] 0 0 0 >99
3 5mol% of FeCl2c 10 4 5 74
4 5mol% of [FeCl2(dppbz)2] 0 0 0 >99
5 5mol% of FeCl2 and DPPEc <1 <1 <1 94
6 5mol% of FeCl2d with NMP (2mL) 8 5 1 63
7 B(OiPr)3 instead of B(OMe)3 in 2 0 1 1 97
8 9-MeO-9-BBN instead of B(OMe)3 in 2 0 <1 <1 94

aReactions were carried out at the 0.50mmol scale. bYields were
determined by quantitative GC analyses using dodecane as an internal
standard. cFeCl2(thf)1.5 was used. dAnhydrous FeCl2 was used.
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yield, and showed diminished selectivity (Table 1, Entry 3).
DPPBz,7e7g DPPE,11 and NMP,5h,7a which are well-recognized
modifiers for iron-catalyzed cross-coupling reactions, were
totally ineffective (Table 1, Entries 46). Other alkynylborates
derived from B(OiPr)32e and 9-MeO-9-BBN2b,2c did not take part
in the cross-coupling reaction (Table 1, Entries 7 and 8).

We next investigated the scope of the current protocol and
found that it was applicable to various combinations of alkyl
halides and alkynylborates (Table 2). (Triethylsilyl)ethynyl-
borate also showed good reactivity toward bromocyclohexane,
affording the target alkyne 3c in 83% yield. A cyclic acetal was
tolerant to the reaction conditions to give 3d in 73% yield.
(Phenyl)ethynylborate reacted to give 3e albeit in a low yield.
Reactions of primary alkyl-substituted alkynylborates were also
found to be sluggish, yet they reacted with primary or secondary
alkyl iodides to afford the coupling products 3f and 3g in
moderate yields. The reaction of 1-bromo-4-(2-bromoethyl)ben-
zene with 2 occurred selectively at the Csp3Br position to afford
3h in 83% yield, leaving the Csp2Br bond completely intact.
In the case of sterically small alkyne substituents, such as the
(cyclopropyl)ethynyl group, the target product 3i was not
obtained, even with refluxing in THF. We assumed that even
the borate reagent, which possesses a small substituent on the
alkyne carbon, could form inert iron intermediates such as
ferrate complexes in a polar solvent like THF (Table 2 and

Figure 1). We thus replaced the THF solvent with toluene, and
found that the coupling reaction worked well even with the
sterically unhindered alkynylborate and obtained the cyclo-
propylethynylated compound 3i in 53% yield. Toluene solvent
was effective also for the alkyl halides possessing a reactive
functional group, such as nitrile, imide, and ketone (3j3l). We
reasoned that the low polarity of the toluene solvent prevented
the side reactions on these functional groups with alkynyl iron
species.12

To investigate the reaction mechanism, we conducted the
reaction of (bromomethyl)cyclopropane (6) with 2 (Scheme 2).
The linear 1,5-enyne 7 formed in 41% yield selectively,
suggesting that the reaction proceeds via formation of an alkyl
radical species. Based on the experimental observations de-
scribed above, and accumulated knowledge of iron-catalyzed
cross-coupling reactions,5g,7,8 we present a possible catalytic
cycle, shown in Figure 1. We assume that the dialkynyliron
SciOPP intermediate A is responsible for the selective cross
coupling through the putative iron intermediates B and C, whilst
the ferrate complexes D that can form in the presence of an
excess of the Grignard reagent13 do not possess sufficient
reactivity towards the alkyl halides. Presumably, the steric bulk
of SciOPP prevents the formation of the undesired ferrate
formation.

In summary, we have developed the iron-catalyzed Suzuki
Miyaura coupling of unactivated alkyl halides with alkynylbo-
rate reagents. The reaction has synthetic advantages over more
traditional methods, such as its simple operation, its applicability
to a broad scope of alkyl halides including chlorides, and its
high functional group compatibility. At present, details of the
reaction mechanism are unclear, and evaluation of the postulated
catalytic cycle is imperative. Further efforts on the elucidation of
the mechanism are currently underway.
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Table 2. Scope of substrates in iron-catalyzed SuzukiMiyaura
coupling with lithium alkynylboratesa
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3l, 44% (X = Br) b
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3d, 73% (X = Cl) 
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O

O
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O
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N

O

O
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40 °C, 8 h 

Hex

aReactions were carried out at the 0.50mmol scale. Yields of isolated
products are reported. b10mol% of [FeCl2(SciOPP)] and 2 equivalents
of 2 were used.
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Figure 1. A plausible catalytic cycle for the current reaction.
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Scheme 2. Radical probe experiment.
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