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Abstract 

 The ability to categorize social information is essential to survive in a primate’s social 

group. In the monkey brain, there are neural systems to categorize social information. Among 

these, the relationship between the amygdala and the ventrolateral prefrontal cortex (vlPFC) 

has recently gained focus with regard to emotion regulation. However, the processing of facial 

information and the functional differences in these two areas remain unclear. Thus, in this 

study, we examined the response properties of single neurons in the amygdala and vlPFC 

while presenting video clips of three types of facial emotions (aggressive threat, coo, and 

scream) in Macaca mulatta. Neurons in the amygdala were preferentially activated upon 

presentation of a scream facial expression, which is strongly negative, whereas the neurons in 

the vlPFC were activated upon presentation of coo, a facial expression with multiple 

meanings depending on the social context. Information analyses revealed that the amount of 

information conveyed by the amygdala neurons about the type of emotion transiently 

increased immediately after stimulus presentation. In contrast, the information conveyed by 

the vlPFC neurons showed sustained elevation during stimulus presentation. Therefore, our 

results suggest that the amygdala processes strong emotion roughly but rapidly, whereas the 

vlPFC spends a great deal of time processing ambiguous facial information in communication, 

and make an accurate decision from multiple possibilities based on memory. 
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INTRODUCTION 

Because the ability to categorize social information is essential to survive in primate’s 

social group, it is assumed that primates possess neural systems to categorize social 

information in the brain. Two of several candidates for those systems are located in the 

amygdala and ventrolateral prefrontal cortex (vlPFC). The primary function of the primate 

amygdala is emotion processing (LeDoux, 2000; Phelps and LeDoux, 2005), and the 

amygdala activity is linked with autonomic physiological reactions (Laine et al., 2009). The 

human amygdala is specifically activated when the subjects see fearful facial expressions 

(Morris et al., 1996) in addition to body movements of others expressing emotion (Hadjikhani 

and de Gelder, 2003). Moreover, several researches reported neurons that show different 

responses to different facial expressions or different directions of gaze of others in the 

monkey amygdala (Nakamura et al., 1992; Kuraoka and Nakamra, 2006, 2007; Gothard et al., 

2007; Hoffman et al., 2007; Tazumi et al., 2010). On the other hand, neurons in the monkey 

vlPFC have been reported to respond to faces and vocalizations (Ó Scalaidhe et al., 1997; 

Sugihara et al., 2006; Tsao et al., 2008; Romanski and Diehl, 2011). There are also neurons 

that show responses to social behaviors of others in the monkey vlPFC (Tsunada and 

Sawaguchi, 2012). 

The interaction between the amygdala and the vlPFC has recently received attention in 

relation to emotion regulation (Townsend and Altshuler, 2012). Hariri et al. (2000) reported an 
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increase in regional cerebral blood flow in the right vlPFC during a face cognition task, and a 

decrease in regional cerebral blood flow in the left and right amygdala. These data imply that 

the vlPFC regulates emotional responses generated by the amygdala in face perception, 

through conscious evaluation and appraisal (Hariri et al., 2003). 

The primate amygdala and vlPFC are closely related with each other as described above. 

Then, what are the functional differences in categorizing social information between the 

amygdala and vlPFC? One candidate for the differences is time of processing. The amygdala 

has been known to process emotion roughly (Vuilleumier et al., 2003) but rapidly (Balderston 

et al., 2014). In contrast, neurons in the primate vlPFC have been reported to be involved in 

complex cognitive functions such as memory (Goldman-Rakic, 1995), behavioural planning 

(Tanji and Hoshi, 2008) and decision-making (Sakagami and Pan, 2007) that require a little 

time to be accomplished. Thus, we hypothesized that the role of the amygdala is larger than 

that of the vlPFC at an early stage of the processing of social information, whereas the role of 

the vlPFC becomes larger at a late stage. 

In the present study, we directly compared neuronal activity between the amygdala and 

vlPFC of Macaca mulatta during the presentation of face stimuli under the same experimental 

conditions to elucidate the role of neurons in these two brain regions in face processing. We 

found rapid phasic peak of information processing about the type of emotion in the amygdala: 

the information reached a peak 260 ms after stimulus onset, and maintained more than half of 
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the peak for 170 ms. We also found long-lasting information processing in the vlPFC: the 

information reached a peak 630 ms after stimulus onset, and maintained more than half of the 

peak for 720 ms. 

 

EXPERIMENTAL PROCEDURES 

Subjects We used three rhesus monkeys (Macaca mulatta, 5–7 kg) for neuron recordings 

in the amygdala and two rhesus monkeys (5–7 kg) for neuron recordings in the vlPFC. Water 

was withheld before each daily session and juice was given as a reward in the experimental 

room. Supplemental water and vegetables were given after the session when needed, and 

monkey chow was available ad libitum. All experiments were carried out in accordance with 

the ‘Guide for the Care and Use of Laboratory Animals’ of the National Institute of Health 

(1996), the ‘Guide for Care and Use of Laboratory Primates’ published by the Primate 

Research Institute, Kyoto University (2002, 2010). The research was conducted under 

experimental license No. 2010-012 approved and issued by Kyoto University, and the ‘Guide 

for Care and Use of Laboratory Primates’ published by the National Institute of Neuroscience, 

National Center of Neurology and Psychiatry (2005) under experimental license No. 002; 

approved and issued by the NCNP. The research adhered to the legal requirements of Japan. 

Behavioural tasks and stimuli: All experiments were performed in a dark, soundproof room 

where a monkey sat in a primate chair and faced a 21 inch multiscan monitor (GDM-F520; 
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SONY, Tokyo, Japan, or FlexScan T961; EIZO NANANO, Ishikawa, Japan) placed 30–40 cm 

from its eyes. When the monkey pressed a lever, a yellow fixation spot appeared at the center 

of the monitor. After keeping the lever pressed and fixating on the spot for 1000 ms, a test 

stimulus was presented for 1000 ms behind the fixation spot; thereafter, the yellow fixation 

spot was replaced with a red spot after 300–1500 ms. If the monkey released the lever within 

800 ms of spot replacement, it was rewarded. Eye position was continuously monitored using 

a charge-coupled device camera system. If the monkey’s gaze deviated more than 1.5° from 

the fixation spot or if it released the lever during a trial, the trial was terminated without 

providing any reward. The test stimuli were 13 full colour video clips (approximate size was 

20 x 15 in degree of visual angle), each lasting 1000 ms, presented on a grey background. All 

stimuli were from monkey, human, or artefact categories, with nine monkey species-specific 

facial expressions, two human faces, and two artefacts. The monkey face stimuli consisted of 

three types of emotion recorded from three model monkeys, who were unfamiliar to the 

subject monkeys. The three types of facial expressions were aggressive threats, screams, and 

coos. An aggressive threat is often expressed by a dominant individual demonstrating an 

inclination to attack. A scream is often expressed by a subordinate who is attacked or 

threatened by a dominant individual. A coo has multiple meanings, and it is often expressed in 

response to food or separation from the mother or social group (Hinde and Rowell, 1962; Van 

Hooff, 1962). The type of video clips was not associated with reward. We separately 
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presented the visual elements and auditory elements of the video clips. However, we only 

analysed the data for the visual elements because few neurons recorded from the vlPFC 

responded to the auditory elements. 

Recording procedure: The action potentials of single neurons were recorded extracellularly 

from the amygdala in four hemispheres of three monkeys and the vlPFC in three hemispheres 

of two monkeys using a polyurethane-coated tungsten microelectrode (1.5–3.0 MΩ, 0.3 mm 

in diameter). The tungsten microelectrode was inserted through a guide tube (1.1 mm in 

diameter) that was fixed to a grid into the brain without distortion. A stainless steel guide tube 

was inserted through the dura to a depth of ~5 mm above the amygdala or to just below the 

dura over the vlPFC, as estimated from magnetic resonance images taken in advance of the 

placement. The electrode was advanced using a hydraulic Microdrive (Narishige, Tokyo, 

Japan) while neuronal activity was monitored. The action potentials were discriminated and 

converted into pulses using a window discriminator (Model DIS-1; BAK Electronics, 

Germantown, MD) or a multi-spike detector (Alpha Omega Engineering, Nazareth, Israel). 

The timing of action potentials and task events was stored on a personal computer with a time 

resolution of 0.5 ms in four monkeys or 1.0 ms in one monkey. When the activity of a single 

neuron was isolated, a recording session was started. We presented the visual stimuli 

pseudo-randomly until each had appeared 10 times. We tested all stimuli 10 times during a 

recording session even if a single neuron did not appear to show responses to any stimuli. 
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After the test, we advanced the electrode further until the activity of the next single neuron 

was isolated.  

Data analysis: The stored data were processed off-line using custom-made MATLAB 

programs and the statistical analyses were conducted using IBM SPSS Statistics software. A 

neuron was regarded as responsive to the stimulus if the number of spikes during a 1000 ms 

period, from 100 to 1100 ms after the onset of a stimulus (stimulation period), was 

significantly different from the 1000 ms period immediately before the stimulus onset 

(baseline period) (P < 0.01, Wilcoxon signed-ranks test). Next, to construct neuronal 

population activity curves in response to the stimuli, peristimulus time histograms (PSTH) 

were sampled in 10 ms non-overlapping bins and convolved with a Gaussian kernel of 30 ms 

standard deviation. 

We have previously reported neuronal discrimination of stimuli among monkey, human, 

and artefact categories in the amygdala (Kuraoka and Nakamura, 2012). Therefore, in this 

study, we focused our analyses on neuronal discrimination of the stimuli among the monkey 

sub-category, i.e., ‘type of emotion’ and ‘identity’. To quantitatively examine the difference in 

neuronal responses to different emotions (aggressive threat, scream, and coo) and different 

identities (three model monkeys), we calculated the mutual information about each emotion 

and identity contained in the neural activity of single neurons using neuron-by-neuron spike 

counts. We then averaged the mutual information across the population of neurons. We 
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followed the calculation method reported by Sugase et al. (1999). The information associated 

with an occurrence of neuronal responses (I(S; R)) was quantified as a decrease in entropy of 

the stimulus occurrence (H(S)):  

I(S; R) = H(S) – H(S|R) = ∑−
s

spsp )(log)(  - ∑−
s

rsprsp
r

)|(log)|(  

where S is the set of stimuli s, R is the set of signals r (counts of a spike), p(s|r) is the 

conditional probability of stimulus s given an observed spike count r, and p(s) is the prior 

probability of stimulus s. The brackets indicate an average of the signal distribution p(r). We 

evaluated the significance of information using the chi-square test (Kitazawa et al., 1998). We 

calculated the information about emotion or identity in 50 ms sliding windows that were 

moved in 10 ms steps for each neuron using the spike counts during the stimulation period 

minus the firing rate during the baseline period. 

We also examined if there was any deviation of the distribution of neurons preferring each 

emotion type. Firstly, we calculated the centre of balance of all recorded loci, and thereafter 

we divided our recorded area into quadrants with the centre and the antero-posterior and 

dorso-ventral axes. Then, we counted the number of neurons preferring each emotion type 

within each quadrant and compared the number of neurons among quadrants. 
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RESULTS 

We recorded the activity of 227 single neurons from the amygdala and 125 single neurons 

from the vlPFC. Of these, 77 in the amygdala and 61 in the vlPFC were tested on the visual 

element condition and showed face-responsiveness. The data set from the amygdala neurons 

is the data presented in our previous study (Kuraoka and Nakamura, 2006, 2007, and 2012), 

but only the visual element condition is used in this study. 

Figure 1 shows examples of the response to faces of a neuron in the amygdala (Fig. 1a) 

and vlPFC (Fig. 1b). This amygdala neuron showed the best response to the scream expressed 

by monkey B and the second best response to the scream expressed by monkey C. The 

response started just after the stimulus onset but the magnitude of the response gradually 

decreased during the stimulation. The response magnitude (the number of spikes) during the 

1000 ms stimulation period, from 100 to 1100 ms after the stimulus onset, was compared 

among the nine monkey stimuli. A two-way ANOVA with ‘type of emotion’ and ‘identity’ as 

main factors revealed that there were significant main effects of both, type of emotion 

(F(2,81) = 39.5, P < 0.001) and identity (F(2,81) = 45.8, P < 0.001) on the activity of this 

amygdala neuron. The post-hoc analysis revealed that the mean firing rate during the 

stimulation period in response to the scream stimuli was significantly higher than to the threat 

and coo stimuli (P < 0.001, Tukey least significant difference [LSD] test). The mean firing 

rate during the stimulation period in response to the coo stimuli was also significantly higher 
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than to the threat stimuli (P = 0.001). With respect to Identity, the mean firing rate during the 

stimulation period in response to monkey C stimuli was significantly higher than to monkey A 

(P < 0.001) and B (P = 0.003) stimuli. The mean firing rate during the stimulation period in 

response to monkey B stimuli was also significantly higher than to monkey A stimuli (P < 

0.001). By contrast, the vlPFC neuron showed the best response to the coo stimuli expressed 

by monkey B. This neuron exhibited a clear response peak just after the stimulus onset and 

maintained a high firing rate throughout stimulation. This neuron showed the second and third 

best responses to the coos expressed by monkey C and monkey A, respectively. There were 

significant main effects of both Type of emotion (F(2,81) = 307.7, P < 0.001) and Identity 

(F(2,81) = 123.9, P < 0.001) on the activity of this vlPFC neuron. The post-hoc analysis 

revealed that the response to the coo stimuli was significantly higher than to the threat and 

scream stimuli (P < 0.001, Tukey LSD test). The mean firing rates during the stimulation 

period in response to the threat and scream stimuli were not significantly different (P = 0.96, 

Tukey LSD test). With respect to Identity, the mean firing rate during the stimulation period in 

response to monkey B stimuli was significantly higher than to monkey A (P < 0.001) and C (P 

< 0.001) stimuli. The mean firing rate during the stimulation period in response to monkey C 

stimuli was also significantly higher than to monkey A stimuli (P = 0.031).  

We examined the optimal stimulus, which elicited maximal neuronal firing during the 

stimulation period, for each neuron among the nine monkey faces for the 77 and 61 
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monkey-responsive neurons in the amygdala and the vlPFC, respectively. In the amygdala, 

about half of the monkey-responsive neurons (38/77; 49%) showed a maximal response to the 

scream stimuli, 29% (22/77) showed a maximal response to the coo stimuli, and the 

remaining 22% (17/77) showed a maximal response to the aggressive threat stimuli. Thus, the 

monkey-responsive amygdala neurons tended to ‘prefer’ the screams to the other types of 

emotion (P = 0.009, chi-square test, Fig. 2a). On Identity, monkeys A, B, and C elicited the 

maximal responses of 27% (21), 34% (26), and 39% (30) in the 77 monkey-responsive 

neurons, respectively. There was no significant tendency for any particular monkey model to 

elicit maximal responses more frequently from the amygdala neurons (P = 0.45, chi-square 

test, Fig. 2a). In the vlPFC, about half of the monkey-responsive neurons (28/61; 46%) 

showed a maximal response to the coo stimuli, 36% (22/61) showed a maximal response to 

the aggressive threat, and the remaining 18% (11/61) showed a maximal response to the 

scream. The monkey-responsive vlPFC neurons tended to “prefer” the coos to the other types 

of emotion (P = 0.026, chi-square test, Fig. 2b). On identity, monkeys A, B, and C showed 

maximal responses of 34% (21), 38% (23), and 28% (17) in the 61 monkey-responsive 

neurons, respectively. Therefore, like the amygdala neurons, there was no significant tendency 

for any particular monkey model elicit the maximal responses more frequently from vlPFC 

neurons (P = 0.63, chi-square test, Fig. 2b). Thus, both the amygdala and vlPFC neurons 

preferred a specific facial expression, irrespective of the identity of the monkey model; the 
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scream stimuli were optimal for amygdala neurons whereas the coo stimuli were optimal for 

the vlPFC neurons. It is noteworthy that screams have a strong emotional meaning, whereas 

the coos are often used in social communication. 

We then examined and compared the response profiles of the neuronal population in the 

amygdala and vlPFC. Figure 3 shows temporal changes in the mean neuronal response curves 

of the neuronal population in the amygdala (Fig. 3a) and vlPFC (Fig. 3b). The mean ± 

standard deviation (SD) of firing rate during the baseline period was 7.21 ± 7.76 and 6.82 ± 

8.83 spikes/s in the amygdala and vlPFC, respectively. A one-way ANOVA revealed that the 

magnitude of the baseline activity of the amygdala neurons was significantly higher than the 

vlPFC neurons (F(1,12395) = 6.93, P = 0.008). The mean ± SD of the firing rate during the 

stimulation period was 14.2 ± 15.5 and 10.1 ± 10.4 spikes/s in the amygdala and the vlPFC, 

respectively. The firing rate of the response of the amygdala neurons was also significantly 

higher than the vlPFC neurons (F(1,12395) = 274.8, P < 0.001). Interestingly, the response of 

the amygdala neurons showed a high peak just after stimulus onset and rapid decrease after 

this, whereas vlPFC neurons tend to show a sustained response during the stimulation period. 

As shown in Figure 3, the magnitude of the population response of the amygdala and 

vlPFC neurons varied, to some extent, among the three facial expressions (threat, coo, or 

scream) and the three monkey identities (monkey A, B, or C). Thus, to quantitatively evaluate 

the ability of neuronal responses in the amygdala and the vlPFC to discriminate different 
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types of emotion (aggressive threat, scream, and coo) and different identities (three model 

monkeys), we calculated the information about the type of emotion or identity contained in 

the neural activity of each single neuron (see Materials and Methods). For example, 

information about the type of emotion and identity contained in the activity of the amygdala 

neuron in Figure 1a during the stimulation period was 0.094 ± 0.37 bits (mean ± SD) and 

0.061 ± 0.30 bits, respectively. The information about type of emotion and identity contained 

in the activity of the vlPFC neuron in Figure 1b during the stimulation period was 1.4 ± 0.51 

and 0.49 ± 0.72 bits (mean ± SD), respectively. Figure 4 shows the distribution of the 

information about identity against that of emotion for each neuron in the amygdala (Fig. 4a) 

and vlPFC (Fig. 4b). Thirty-three neurons in the amygdala had more information about type 

of emotion than identity (below the diagonal line in Fig. 4a), while 37 neurons had more 

information about identity than emotion (above the diagonal line in Fig. 4a). On the other 

hand, 36 neurons in the vlPFC had more information about type of emotion than identity 

(below the diagonal line in Fig. 4b), whereas only 16 neurons had more information about 

identity than type of emotion (above the diagonal line in Fig. 4b). In the amygdala, the 

number of neurons conveying more information about type of emotion than identity was not 

significantly different from the number of neurons conveying more information about identity 

than type of emotion (P = 0.63, binomial test). However, in the vlPFC, the number of neurons 

conveying more information about type of emotion than identity was significantly higher than 
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the number of neurons conveying more information about identity than type of emotion (P = 

0.006, binomial test). We directly compared the amount of information about the type of 

emotion with that of identity conveyed by neuronal populations in the amygdala and vlPFC. 

In the amygdala, the amount of information about type of emotion was not significantly 

different from identity (P = 0.89, Wilcoxon signed-ranks test). However, in the vlPFC, the 

amount of information about type of emotion during the stimulation period was greater than 

about identity (P = 0.004, Wilcoxon signed-ranks test).  

Figure 6 shows temporal changes in the average information about the type of emotion (Fig. 

5a) and identity (Fig. 5b) conveyed by neuronal population responses in the amygdala and 

vlPFC, respectively. As shown in Figure 5a, information about type of emotion showed a 

sharp increase just after the stimulus onset and then decreased immediately in the amygdala. 

The information reached a peak 260 ms after stimulus onset, and maintained more than half of 

the peak from 210 to 380 ms after stimulus onset. By contrast, information about type of 

emotion showed a gradual increase after the stimulus onset and remained high until the 

stimulus offset in the vlPFC. The information reached a peak 630 ms after stimulus onset, and 

maintained more than half of the peak from 270 to 990 ms after stimulus onset. The 

information about identity was highest just after the stimulus onset in both the amygdala and 

vlPFC (Fig. 5b). The information in the amygdala reached a peak 250 ms after stimulus onset, 

and maintained more than half of the peak from 200 to 310 ms after stimulus onset. By 
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contrast, the information in the vlPFC reached a peak 190 ms after stimulus onset, and 

maintained more than half of the peak from 160 to 410 ms after stimulus onset. We next 

compared the information about type of emotion and identity between the amygdala and 

vlPFC in each 50 ms sliding window (see Materials and Methods). Immediately after the 

stimulus onset, the information about both emotion and identity conveyed by the amygdala 

neurons was significantly higher (P < 0.05, Mann-Whitney test) than the information 

conveyed by vlPFC neurons. By contrast, in the middle and latter period of stimulation, the 

information, in particular about the type of emotion, conveyed by vlPFC neurons became 

significantly higher (P < 0.05, Mann-Whitney test) than the information conveyed by 

amygdala neurons. Thus, as with population activity, the information conveyed by amygdala 

neurons showed a high peak just after stimulus onset and a rapid decrease thereafter in 

relation to the type of emotion, whereas the information conveyed by vlPFC neurons tended 

to show high levels during the stimulation period. In contrast, the information about identity 

conveyed by both the amygdala and vlPFC neurons showed peaks just after stimulus onset, 

although the amygdala peak was higher than the vlPFC peak. 

As stated in our previous study (Kuraoka and Nakamura, 2007), face-responsive neurons in 

the amygdala were mainly recorded from the lateral, basal, and central nuclei. In this study, 

we also examined the locations of the recorded vlPFC neurons, and found that 

face-responsive neurons in the vlPFC were mainly recorded from areas 45 and 12 (Fig. 6), 
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where previous studies have also reported visual responsiveness (Ó Scalaidhe et al., 1997; 

Sugihara et al., 2006; Romanski and Diehl, 2011). Our recording sites were mainly located in 

the caudal part of the vlPFC. This result corresponds to the fact that only a few recorded 

neurons responded to the auditory element of the video stimuli because the auditory 

responsive region of the vlPFC was located in more rostral region (Romanski, 2007). In fact, 

5 neurons that responded to the auditory element of the stimuli were recorded from the rostral 

part of our recording area. Moreover, analysing distribution of neurons within the recording 

area in the vlPFC resulted that there was no significant deviation of the distribution of 

neurons preferring each emotion type (P = 0.099, chi-square test). 

 

DISCUSSION 

Neuronal activity is known to encode information about the identity of faces in both the 

amygdala and the vlPFC (Ó Scalaidhe et al., 1997; Kuraoka and Nakamura, 2006; Gothard et 

al., 2007; Romanski and Diehl, 2011). However, the neuronal code for different types of 

emotion has not been examined in the vlPFC, although many studies have reported it in the 

amygdala (Nakamura et al., 1992; Kuraoka and Nakamura, 2006; Gothard et al., 2007; 

Hoffman et al., 2007). In this study, we first explicitly report that the population activity of 

neurons in the vlPFC showed discriminative responses to different type of emotion. 

Many previous studies have investigated the role of the monkey vlPFC in representation of 
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vocalization (Romanski and Goldman-Rakic, 2002; Romanski et al., 2005; Averbeck and 

Romanski, 2006; Cohen et al., 2007; Tunada et al., 2011). Neurons responding to the auditory 

stimuli have been mainly found in the anterior part of the vlPFC (Romanski, 2007). In fact, 

we also found neurons that showed auditory responsiveness at the anterior part of the 

recording area (Fig. 6). However, those neurons were small in number because our recording 

chamber centered at the caudal part of the vlPFC. Thus, we focused attention on the analysis 

of the neuronal responses to the face stimuli in this study. 

We found that there were mainly two differences in the characteristics of responses to face 

stimuli between the amygdala and the vlPFC. Firstly, the difference was observed in the 

preference for type of facial expressions. Amygdala neurons were preferentially activated 

during presentation of scream expressions, whereas vlPFC neurons were preferentially 

activated during the presentation of coo expressions. Secondly, the difference also appeared in 

the temporal characteristics of the neuronal activity. Although timing of the increase in the 

neuronal activity in response to face stimuli was not so different between the amygdala and 

vlPFC, the information analysis revealed that the information about emotion conveyed by 

amygdala neurons showed a phasic peak immediately after the face-stimulus onset, whilst 

information conveyed by vlPFC neurons showed a continuous elevation throughout facial 

stimulation. These results indicate that the difference in temporal characteristics of the 

neuronal activity between the monkey amygdala and vlPFC results not from detection of 
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social information but from discrimination of type of social information.  

 

Processing of facial expressions in the amygdala 

In our previous study (Kuraoka and Nakamura, 2007), we discussed a fear-detecting 

system in the monkey amygdala, based on the fact that the majority of amygdala neurons are 

preferentially activated during presentation of a scream expression. The population activity 

data in the present study also supported this notion. As shown in Fig. 3a, the population 

activity in response to the scream, exhibiting strong fear in the amygdala, was the highest 

among the three types of emotion. The fearful expressions of others provides information to 

the viewer about the presence of threat (Whalen et al., 2001), and a fight or flight response to 

a threat should be elicited rapidly for survival. Thus, the processing of discriminating facial 

expressions in the amygdala might be directly related to strong emotional responses. In fact, 

the amygdala projects to brain areas closely related to the production of emotional responses, 

such as the thalamus, hypothalamus, and brain stem (Amaral et al., 1992). 

The present study also revealed that information about the type of emotion in the 

amygdala showed a high peak more rapidly than in the vlPFC. The evidence that emotion 

discrimination in the amygdala precedes that in the vlPFC has been also reported in the recent 

human study (Kohno et al., 2015). The human amygdala has been known to process emotion 

roughly (Vuilleumier et al., 2003) but rapidly (Balderston et al., 2014). Rapid processing of 
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facial expressions is also known in the human amygdala (Sato et al., 2011). However, the 

timing of peak processing of facial expressions in the monkey amygdala in our present study 

(about 260 ms after stimulus onset) was later than that found in humans (about 135 ms after 

stimulus onset). The stimuli of facial expressions in the present study were dynamic picture 

images, whereas Sato et al. (2011) used static face photos. Our dynamic stimuli of facial 

expressions started from a frame showing subtle emotion. Consequently, emotional intensity 

was not very high in the first frame of the stimulus video clips. In contrast, representative 

facial expressions, i.e., a frame showing the maximal emotional intensity, appeared in the 

middle of our 1-second stimulus. These kinds of stimuli may delay the timing of peak 

processing of facial expressions when compared with the static images used in Sato et al. 

(2011). Nevertheless, it is interesting that the timing of peak processing for discriminating 

different facial expressions in the amygdala is more rapid than in the vlPFC. Moreover, as 

shown in Figure 5a, the rapid increase of the information about type of emotion in the 

amygdala ceased in a brief period (about 170 ms in half-value width of the amount of peak 

information). It is also noteworthy that the information about type of emotion was lower in 

the amygdala than in the vlPFC for a long time during stimulation period (Fig. 5a). These 

results suggest that the amygdala processes the information about type of emotion more 

roughly than the vlPFC does.  

Taken these evidences together, it is implicated that the amygdala processes strong 
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emotion roughly but rapidly for rapid reactions to the presence of threat even though the 

reactions could be inefficient in practice. 

 

Processing of facial expressions in the vlPFC 

Unlike the amygdala, the facial expression preferentially activating vlPFC neurons was the 

coo. The population activity of vlPFC neurons was highest in response to the coo throughout 

stimulation. The coo is not directly related to an emotion; rather it is often expressed in 

multiple context such as separation from a mother or social group, and is occasionally 

accompanied by a clear call, which provokes the response of a group member (Van Hooff, 

1962). Therefore, the present data suggest that vlPFC neurons are involved in the processing 

of information that is difficult to be categorized to a specific meaning in social 

communication. 

Nakamura et al. (1999) reported that the human inferior frontal cortex was associated with 

the processing of facial expressions. The human inferior frontal cortex and the macaque 

vlPFC are known to have comparable cytoarchitecture (Petrides and Pandya, 2002). The study 

of Nakamura et al. (1999) compared the brain activity of human participants when they were 

assessing facial expressions or attractiveness. The results showed that the right inferior frontal 

cortex, but not the amygdala, was activated during the assessment of facial expressions. 

Moreover, another human study reported that damage to the left vlPFC and adjacent anterior 
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insula, was associated with a specific difficulty in discriminating different subtle facial 

expressions (Tsuchida and Fellows, 2012). These studies suggest that the human vlPFC 

processes communicative information conveyed by slight and ambiguous changes in facial 

features but is not related to the induction of strong emotional reactions like the amygdala. 

The data in our present study support these suggestions. 

In our study, information analysis clarified that there was a greater mean amount of 

information about type of emotion during the stimulus period than identity in the vlPFC (Fig. 

4b). This result indicates that discriminating the type of emotion of other conspecifics forms 

an important part of face processing in the vlPFC. Additionally, time series analysis of 

information about the type of emotion revealed that this information conveyed by neurons in 

the vlPFC showed a gradual increase that continued after a sharp decrease in emotional 

information was seen in the amygdala (Fig. 5a). This result means that neurons in the vlPFC 

continue to process the type of emotion at a higher level, and for a longer period, than neurons 

in the amygdala. 

The monkey vlPFC is known to be involved in cognitive processing such as memory of 

communicative information (Hwang and Romanski, 2015), behavioural planning (Tanji and 

Hoshi, 2008) and decision-making (Sakagami and Pan, 2007). Thus, the continuous retention 

of information about the type of emotion in the vlPFC is useful to determine an appropriate 

response to a conspecific. This is because they should react adaptively and flexibly to a coo 
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expression, with multiple meanings, depending on the situation. In human, the vlPFC is 

reported to be involved in working memory of nonspatial content (Nee et al., 2013), and is 

also engaged in retrieval of mnemonic context especially in multiple context (Chapados and 

Petrides, 2015). Therefore, the vlPFC might spend a great deal of time processing ambiguous 

information in social communication, and try to make an accurate decision against multiple 

possibilities based on memory. 

The monkey area 45, which is a subdivision of the vlPFC, is reported to be activated when 

monkeys observe actions performed by others (Nelissen et al., 2005). Area 45 is connected to 

area 12 (Gerbella et al., 2010), which is another subdivision of the vlPFC, and area 12 

projects to area F5 (Borra et al., 2011), which is the ventral premotor cortex. Consequently, 

the monkey vlPFC sends output to area F5. Neurons in area F5 have been known to be 

activated not only during the execution of actions, but also during the observation of actions 

performed by others, i.e., mirror neurons (Rizzolatti and Fabbri-Destro, 2008). Interestingly, 

action recognition is strongly related to communication (Rizzolatti and Arbis, 1998). 

Moreover, in area F5, mirror neurons responding to the observation of communicative mouth 

actions are also found (Ferrari et al., 2003). Taken above evidences and our results together, 

social information represented in the vlPFC might be a source of communicative responses 

generated by the processing in the ventral premotor cortex. 
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Connections between the amygdala and vlPFC 

Previous studies regarding neural connections between the amygdala and the vlPFC have 

mainly reported indirect connections via the orbitofrontal or medial prefrontal cortex. A direct 

neural connection between the amygdala and vlPFC is thought to be weak (Barbas et al., 

2011); in contrast, the neural connection between the orbitofrontal cortex and amygdala is 

quite strong (Barbas et al., 2011). In addition, the neural connection between the orbitofrontal 

cortex and vlPFC is also strong (Borra et al., 2011). The medial prefrontal cortex is also 

known to have neural connections with the amygdala and vlPFC (Barbas et al., 2011; Borra et 

al., 2011). Recently, a direct connection between the amygdala and vlPFC has received a great 

deal of attention. Gerbella et al. (2014) reported reciprocal neural connections between the 

amygdala and vlPFC (mainly area 45). Thus, the different processing of facial expressions in 

the amygdala and vlPFC might be affected through both direct and indirect neural connections 

between the two areas. 

  

Conclusion  

In the present study, we elucidated the functional differences in processing facial expressions 

between the amygdala and vlPFC in monkeys. In summary, the amygdala neurons rapidly but 

roughly discriminated the type of facial expressions, and preferentially responded to the 

strong negative emotional face. By contrast, the vlPFC neurons gradually but stably 
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discriminated the type of facial expressions, and preferentially responded to the face that is 

difficult to be categorized to a specific meaning in social communication. These results 

suggest that the amygdala is involved in the rapid detection of emotion in faces for immediate 

emotional reactions even though the reactions could be inefficient in practice, whereas the 

vlPFC spends a great deal of time processing ambiguous information of facial expression, and 

make an accurate decision from multiple possibilities to communicate with conspecifics.  
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Figure Legends 

 

Figure 1. Response profiles of an amygdala neuron (a) and vlPFC neuron (b) showing visual 

responsiveness. Each diagram consists of a representative still image of a facial expression, 

raster display, and peristimulus time histogram, from top to bottom. The light gray area in 

each diagram indicates the period when the stimulus was presented. The first character of 

each monkey stimulus label corresponds to the monkey’s identity. For example, B_coo 

indicates the coo expression of monkey B. 

 

Figure 2. Frequency histogram for 77 amygdala neurons (a) and 61 vlPFC neurons (b) 

showing their optimal response to a stimulus among nine monkey stimuli. Coo, coo; Scr, 

scream; Thr, aggressive threat. The amygdala neurons showed greater response to the scream 

(dark gray) than to the coo and aggressive threat (white and black, respectively), regardless of 

monkey identity. The vlPFC neurons showed greater response to the coo than to the scream 

and aggressive threat, regardless of monkey identity. 

 

Figure 3. Population average of neuronal activity of amygdala (a) and vlPFC (b) neurons 

showing differential responses to different facial expressions (upper row) and different 

identities (lower row). To construct population-average neuronal activity curves, peristimulus 
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time histograms (PSTHs) were sampled in 10 ms non-overlapping bins and convolved with a 

Gaussian kernel of 30 ms standard deviation (SD). 

Figure 4. Individual neuron information regarding identity plotted against emotion. 

Histograms show the frequency distribution of neurons across a diagonal. 

Figure 5. Temporal changes for average information about emotion (a) and identity (b). The 

information was calculated using 50 ms sliding windows that were moved in 10 ms steps. 

Cross and circle marks denote bins showing a significant difference in magnitude of 

information between the amygdala and the vlPFC. 

Figure 6. Recording sites in the right vlPFC of one monkey. Dots denote locations of 

penetration. Circles and rectangles denote locations of visual and auditory responsive neurons, 

respectively. PS, principal sulcus; AS, arcuate sulcus. 
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