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Abstract 

-Background 

The choice of biomarkers for early detection of Alzheimer’s disease (AD) is important for 

improving the accuracy of imaging-based prediction of conversion from mild cognitive 

impairment (MCI) to AD. The primary goal of this study was to assess the effects of imaging 

modalities and brain atlases on prediction. We also investigated the influence of support 

vector machine recursive feature elimination (SVM-RFE) on predictive performance. 

-Methods 

Eighty individuals with amnestic MCI [40 developed AD within 3 years] underwent 

structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission 

tomography (FDG-PET) scans at baseline. Using Automated Anatomical Labeling (AAL) 

and LONI Probabilistic Brain Atlas (LPBA40), we extracted features representing gray 

matter density and relative cerebral metabolic rate for glucose in each region of interest from 

the baseline MRI and FDG-PET data, respectively. We used linear SVM ensemble with 

bagging and computed the area under the receiver operating characteristic curve (AUC) as a 

measure of classification performance. We performed multiple SVM-RFE to compute feature 

ranking. We performed analysis of variance on the mean AUCs for eight feature sets. 

-Results 

The interactions between atlas and modality choices were significant. The main effect of 

SVM-RFE was significant, but the interactions with the other factors were not significant.  

-Comparison with Existing Method 

Multimodal features were found to be better than unimodal features to predict AD. FDG-PET 

was found to be better than MRI. 

-Conclusions 
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Imaging modalities and brain atlases interact with each other and affect prediction. SVM-

RFE can improve the predictive accuracy when using atlas-based features. 

 

Keywords: Alzheimer's disease; mild cognitive impairment; 18F-fluorodeoxyglucose positron 

emission tomography; magnetic resonance imaging; support vector machine; feature 

selection. 

 

Introduction 

 

Alzheimer’s disease (AD), which is the main cause of dementia, is a slowly progressive 

neurodegenerative disorder that leads to declines in memory and other cognitive abilities 

(Alzheimer's Association, 2013). The revised diagnostic criteria and guidelines for AD (Jack 

et al., 2011) proposed three stages of AD, including preclinical AD (Sperling et al., 2011), 

mild cognitive dementia (MCI) due to AD (Albert et al., 2011), and dementia due to AD 

(McKhann et al., 2011). MCI is a heterogeneous clinical entity that pertains to characteristics 

between those associated with normal aging and AD, and some individuals with MCI 

develop AD later (Petersen et al., 1999, 2001). 

 

Among the neuropathological hallmarks of AD, neurofibrillary tangles (NFTs), and senile 

plaques are considered essential for neuropathological diagnosis of AD (Hyman et al., 2012). 

NFTs are, at least initially, intraneuronal fibrils primarily composed of hyperphosphorylated 

tau protein, whereas senile plaques are extracellular deposits of amyloid-β (Aβ) peptides. 

Progression of these AD neuropathological changes probably begins decades before the onset 

of cognitive decline (Mufson et al., 2012). Early detection of AD is, therefore, important as a 

basis for early intervention with disease-modifying drugs (Giacobini and Gold, 2013). 
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Three imaging biomarkers, as biomarkers to identify brain changes that precede the earliest 

symptoms, are included in the research criteria for diagnosis of MCI due to AD (Albert et al., 

2011). Positron emission tomography (PET) amyloid imaging can measure and visualize Aβ 

deposition. Hippocampal volume or medial temporal atrophy on magnetic resonance imaging 

(MRI) and brain glucose hypometabolism on 18F-fluorodeoxyglucose (FDG)-PET imaging 

are measures reflecting neuronal injury, namely, general damage to neurons and synapses 

(Jack and Holtzman, 2013). Besides structural MRI and FDG-PET, imaging techniques 

reflecting neuronal injury include single photon emission tomography (SPECT) perfusion 

imaging (Ito et al., 2013), diffusion tensor imaging (DTI) (Oishi et al., 2011), functional MRI 

(fMRI) (Li et al., 2015), and MRI perfusion (Chao et al., 2010). Among these, available data 

for MRI-related biomarkers except structural MRI are limited and less validated. These 

neuronal injury markers on MRI or FDG-PET are considered to be less direct or nonspecific 

evidence of AD, not direct evidence of the presence of Aβ or tau (Albert et al., 2011). 

 

However, these markers are considered to be associated with synaptic loss, which is one of 

the major neuropathological findings in the brains of individuals with early AD (Scheff et al., 

2006). Synaptic loss and neuronal loss are the major pathological substrates of cortical 

atrophy (Serrano-Pozo et al., 2011) and correlates with cognitive decline(Terry et al., 1991). 

Longitudinal progression of cognitive decline correlates brain glucose metabolic changes 

(Shokouhi et al., 2013). Synaptic loss occurs in the limbic regions and the neocortex in 

individuals with amnestic MCI (aMCI) (Scheff and D. A. Price, 2006). Different from the 

distribution of Aβ deposition, temporospatial accumulation of NFTs originates in the 

entorhinal cortex constituting the anterior portion of the parahippocampal gyrus and extends 

through the limbic regions to the neocortex (Braak and Braak, 1991). 
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Structural MRI and FDG-PET are topographical biomarkers that can help to characterize 

clinical subtypes with distinct regional patterns of cortical hypometabolism in FDG-PET and 

of cortical atrophy on structural MRI. FDG-PET has good sensitivity in detection of early 

brain dysfunction in AD among topographical markers (Dubois et al., 2014). In addition, 

structural MRI and FDG-PET are less invasive than CSF biomarkers and less expensive than 

Amyloid PET imaging. On the basis of these foundations, MRI and FDG-PET, particularly 

their multimodal combination (Price, 2012), can provide valuable biomarkers for early 

detection of AD. FDG-PET abnormalities are known to precede any cognitive symptoms in 

individuals who later develop AD (Jack et al., 2010). However, the relative diagnostic 

abilities of MRI and FDG-PET and of combinations of these different modalities for early 

disease detection remain controversial (Karow et al., 2010; Mosconi et al., 2006). To achieve 

scientific evidence of the diagnostic utility of FDG-PET and of MRI in early diagnosis of AD, 

the Studies on Diagnosis of Early Alzheimer’s Disease—Japan (SEAD-J) (Kawashima et al., 

2012) was launched in 2005 along with other multicenter clinical trials. 

 

Predictive models based on machine learning algorithms have been widely used for MCI 

classification (Cuingnet et al., 2011; Young et al., 2013; Zhang et al., 2011). The choice of 

distinguishing features has an important role in pattern classification (Duda et al., 2001). 

Atlas-based parcellation using a predefined anatomical brain atlas is a simple feature 

extraction method with good interpretability and general versatility (Cuingnet et al., 2011; 

Zhang et al., 2011). Because of the brain atlas concordance problem (Bohland et al., 2009), 

the use of different brain atlases for parcellation provides different features and can affect the 

ability to predict conversion from MCI to AD. We have recently reported the importance of 

the choice of brain atlases for feature extraction in the prediction of conversion by using 
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atlas-based MR biomarkers (Ota et al., 2014). Differences in imaging modalities can also 

affect predictive performance. However, the effects of imaging modalities and brain atlases 

for feature extraction on AD prediction have not been well documented. 

 

In addition to feature extraction, feature selection is also important in view of dimension 

reduction for improving generalization ability and identifying distinguishing features. The 

effects of feature selection on AD predictive performance remain controversial (Chu et al., 

2012; Cuingnet et al., 2011; Kerr et al., 2014). Our previous results (Ota et al., 2014) for MR-

based features suggest that support vector machine (SVM)-based recursive feature 

elimination (RFE) can be important in AD prediction. However, the effects of the use of 

FDG-PET features or multimodal combination of MRI and FDG-PET features on feature 

selection have not been clarified. 

 

The primary goal of this study was to assess the effects of imaging modalities and of brain 

atlases and their interactions on AD prediction. We performed atlas-based feature extraction 

from MRI and FDG-PET data by using different brain atlases. Using these unimodal or 

multimodal imaging feature sets, we performed SVM-based classification of MCI and added 

SVM-RFE feature selection to also evaluate the influence of feature selection on the 

classification performance. 

 

Materials and methods 

 

Participants 
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We identified 80 individuals with aMCI from a total of 114 participants in the SEAD-J (Ito et 

al., 2015). Diagnosis of MCI was based on an interview with neurologists as described 

previously (Ota et al., 2014). “Conversion” was defined as a change in diagnosis from aMCI 

to AD during a 3-year follow-up period, and 40 participants (50%) converted to AD within 3 

years. We excluded 34 participants from the analysis for the following reasons: two 

participants did not undergo baseline three-dimensional T1-weighted MRI scans, three 

participants converted to non-AD dementia (vascular dementia, dementia with Lewy bodies, 

and frontotemporal dementia), 23 participants withdrew from the study within 3 years, and 

six participants were excluded because of the lack of whole-brain coverage in their baseline 

T1-weighted MRI scans. Table 1 shows more details on the participants’ characteristics at 

baseline. The converter group (MCI-C) and nonconverter group (MCI-NC) significantly 

differed in baseline neuropsychological scores, including the Mini-Mental State Examination 

(Folstein et al., 1975) (p < 0.0009, r = 0.36), Alzheimer’s Disease Assessment Scale-

Cognitive Subscale, Japanese version (Homma et al., 1992) (p = 0.025, r = 0.25), the 

Wechsler Memory Scale-Revised Logical memory test (WMS-R-LM) (Sullivan, 1996) 

(immediate recall: p < 10−4, r = 0.42; delayed recall: p < 10−5, r = 0.48), and Geriatric 

Depression Scale (Nyunt et al., 2009; Yesavage et al., 1982) (p = 0.006, r = 0.30). No 

significant differences were observed in age (p = 0.55, r = 0.068), gender (χ2 test, p = 0.82, w 

= 0.025), and education (p = 0.46, r = 0.084). Student’s t-test was used to compare baseline 

differences between the two groups unless otherwise stated. We computed r for the t-test and 

w for the χ2 test as measures of effect size (Cohen, 1992). 

 

Magnetic resonance image acquisition and preprocessing 
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Three-dimensional structural MRI scans at the baseline were collected by using T1-weighted 

gradient echo sequences on a variety of 1.5-T MRI scanners at eight sites and a 3.0-T MRI 

scanner at one site. Of 80 participants, 77 (96%) participants were scanned on the 1.5-T 

scanners and 3 (4%) on the 3-T scanner. Details about MRI acquisition parameters are 

provided in Supplementary Table 2. We performed the following voxel-based morphometry 

(VBM) preprocessing procedures using the SPM8 software package 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and VBM8 Toolbox (Kurth et al., 2010) 

(http://dbm.neuro.uni-jena.de/vbm) in MATLAB 7.12. We performed VBM procedures 

including segmentation, spatial normalization, and smoothing as described previously (Ota et 

al., 2014). 

 

Fluorodeoxyglucose positron emission tomography image acquisition and preprocessing 

 

FDG-PET scans were collected in a resting state in a dark room 40–60 min after venous 

injection of 18F-FDG (Kawashima et al., 2012). The whole brain was used as the reference 

region for intensity normalization to compare the effects of two different brain atlases on the 

ability of prediction because of its higher signal-to-noise ratio compared with intensity 

normalization to the cerebellum (Dukart et al., 2010). The average whole brain uptake of the 

converters was 10143 ± 10289, that of nonconverters, 8451 ± 10912, (t-test, p = 0.48, 

Cohen’s d = 0.11). The images were normalized by using an in-house FDG-PET template 

created from FDG-PET and MRI brain scans of 23 normal elderly individuals. Partial volume 

effects (PVE) were not corrected according to a previous finding that PVE correction did not 

affect the detection of hippocampal hypometabolism in aMCI when using the global mean for 

scaling (Mevel et al., 2007). The resulting images were smoothed by using an 8-mm isotropic 
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Gaussian filter to blur individual variations in gyral anatomy and to increase the signal-to-

noise ratio (Mevel et al., 2007). 

 

Voxel-based comparison 

 

To determine the differences in MRI and FDG-PET data between converters and 

nonconverters, we performed voxel-based comparison of gray matter (GM) maps and of 

FDG-PET images between converters and nonconverters by using the SPM8 software 

package. We used analysis of covariance (ANCOVA) models with age, gender, and scan 

sites as covariates according to a previous report (Ota et al., 2014). The thresholds for the 

statistical parametric maps were set to p = 0.001, uncorrected for multiple comparisons at a 

voxel level, and p = 0.05, family-wise error corrected at a cluster level. Clusters were 

visualized by using the BrainNet Viewer 1.43 (http://www.nitrc.org/projects/bnv/) (Xia et al., 

2013). 

 

Feature extraction 

 

To assess the effects of brain atlases for template-based region-of-interest (ROI) analysis on 

the performance of prediction, we compared two brain atlases for simplicity: the Automated 

Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and the LONI Probabilistic 

Brain Atlas (LPBA40) (Shattuck et al., 2008) (Fig. 1). The AAL atlas has 116 ROIs, 

including 90 cerebral regions and 26 cerebellar regions, whereas the LPBA40 has 56 ROIs, 

including 54 cerebral regions, the brainstem, and the cerebellum. Using these two brain 

atlases, we extracted feature vectors from the preprocessed baseline MRI, which was 

modulated with the Jacobian, and from the FDG-PET data, as described previously (Ota et al., 
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2014) Accordingly, we obtained eight different feature sets, including two MR-based features 

(MRI-AAL and MRI-LPBA40) representing GM density in each ROI, two PET-based 

features (PET-AAL and PET-LPBA40) representing relative cerebral metabolic rate for 

glucose in each ROI, and four multimodal features (MRI-AAL + PET-AAL, MRI-AAL + 

PET-LPBA40, MRI-LPBA40 + PET-AAL, and MRI-LPBA40 + PET-LPBA40). 

 

Classification 

 

Fig. 1 is a schematic overview of our classification pipeline. SVMs (Vapnik, 1998) are one of 

the most popular supervised learning models and have been applied to the prediction of 

conversion from MCI to AD (Chu et al., 2012; Ota et al., 2014). To focus on comparison 

across imaging modalities and brain atlases for feature extraction, we used linear SVMs with 

the regularization parameter C of 1 for computational simplicity in the present study as 

described in a prior study (Zhang et al., 2011). 

 

To enable statistical analysis of the results, we used a bootstrap aggregating (bagging) 

method (Breiman, 1996) within each round of LOOCV (Dosenbach et al., 2010). In each 

LOOCV loop, the original data set having 80 participants was divided into a test set of one 

participant and a training set comprising 79 participants. Then a bootstrap sample of size 72 

(90% of the total number of participants) was obtained by bootstrap resampling of the 

original training set. In general, a smaller bootstrap sample size provides a better prediction 

performance and a greater variance. A sample size of 72 was determined arbitrarily with the 

aim of achieving a smaller variance. This procedure was repeated nine times to obtain a 

bagged ensemble of nine linear SVMs. The number of subsamples was determined 

empirically in view of a trade-off between computation time and classification performance. 
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These multiple linear SVMs were trained on different subsamples of training data to compute 

the weight vectors and the feature ranking scores, as mentioned below. The final prediction 

of the bagged ensemble for a given test set was determined by majority voting (Valentini et 

al., 2004). The final decision value of the bagged ensemble for a test vector was computed by 

averaging the decision values for the SVMs that voted for the majority class. After each 

round of LOOCV, we obtained decision values for all participants with regard to a given 

number of features. 

 

On the basis of these decision values, we generated the receiver operating characteristic 

(ROC) curve (Metz, 1978) and computed the area under the ROC curve (AUC) as a measure 

of the performance of a classifier (Fawcett, 2004; Huang and Ling, 2005) by using the pROC 

package for R (Robin et al., 2011). Other measures, such as accuracy, sensitivity, and 

specificity with regard to a given number of features, were also computed. We implemented 

the above classification algorithm by using the e1071 package for R (Dimitriadou et al., 

2005) based on the LIBSVM library (Chang and Lin, 2011). 

 

For the eight different feature sets, we repeated the above LOOCV procedure 20 times and 

computed mean AUC values for AD prediction across 20 LOOCV tests. To compare the 

ability of prediction across different feature sets, we formed averaged ROC curves with 95% 

confidence intervals for each feature set on the basis of the results of 20 LOOCV tests by 

using Fawcett’s vertical averaging algorithm (Fawcett, 2004). 

 

Feature selection 
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In our previous study (Ota et al., 2014), we used the SVM-RFE feature selection method 

(Guyon et al., 2002) to improve the ability of prediction and to identify the regions with high 

discriminating power. In the present study, we newly applied the multiple SVM-RFE 

(MSVM-RFE) feature selection method (Duan et al., 2005) to compute the feature ranking 

score for a given feature from weight vectors of multiple linear SVMs trained on bootstrap 

subsamples of the original training data. 

 

As described above, we had nine linear SVMs trained on different subsamples of the original 

training data. Let wj denote the weight vector of the jth linear SVM and wji be the 

corresponding weight value associated with the ith feature. The ranking criterion for the ith 

feature vji was given as vji = (wji)2. As a result of the majority voting, we selected the ranking 

criteria vk for a feature set Sk, where k represents the indices of the linear SVMs that voted for 

the majority class. The feature ranking scores ck for a feature set Sk was computed as: 

𝑐! =
𝑣!
𝜎!

 

where 𝑣! is the mean of vk and σk is the standard deviation of vk. 

 

On the basis of these feature-ranking scores, the feature with the smallest ranking score was 

removed, and the feature set was updated at the end of each SVM-RFE loop. After 

performing 20 LOOCV tests, the final average rank was determined as a mean of 20 average 

ranks for the respective LOOCV tests. Our implementation of the MSVM-RFE algorithm in 

R was adapted from 

http://www.uccor.edu.ar/paginas/seminarios/Software/SVM_RFE_R_implementation.pdf. 

Selected regions were visualized by using the BrainNet Viewer Version 1.43 

(http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). 
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Statistical analysis 

 

To test the differences between the means of AUC values for eight feature sets, we used 

AUCRFE− and AUCRFE+ for each feature set. AUCRFE− for a feature set was an AUC value that 

was obtained with the original features (with no feature selection), and AUCRFE+ was 

determined as the highest AUC during the SVM-RFE procedure for the feature set. To assess 

the main effects of different factors (SVM-RFE feature selection, brain atlases for 

parcellation, and imaging modalities) and interactions among them on the performance of 

prediction, we initially performed an overall three-way factorial analysis of variance 

(ANOVA) that included all the factors. The 2 × 4 × 3 ANOVA design included factor “RFE” 

with levels “RFE−” and “RFE+,” factor “atlas” with levels, “MRI-AAL + PET-AAL,” 

“MRI-AAL + PET-LPBA40,” “MRI-LPBA40 + PET-AAL,” and “MRI-LPBA40 + PET-

LPBA40,” and factor “modality” with levels “MRI,” “PET,” and “MRI + PET.” Then two-

way ANOVAs (atlas × modality) at each level of factor RFE were performed. To examine 

the effects of atlas and modality in unimodal features, we performed an additional two-way 

(atlas × modality) ANOVA at each level of RFE for four unimodal feature sets. Furthermore, 

to assess the effects of atlas combinations in multimodal feature sets, we performed a two-

way (MRI atlas × PET atlas) ANOVA for four multimodal feature sets. We performed post-

hoc analysis of interactions by using tests of simple main effects (one-way ANOVA) or 

Tukey’s test, where appropriate. Post-hoc multiple comparisons were performed by using 

Tukey’s test. We performed Type II analysis by using the car package for R (Fox and 

Weisberg, 2009) to compute sums of squares for ANOVA (Langsrud, 2003). To estimate 

effect sizes, we computed η2 as the ratio of sum of squares for an effect to the total sum of 

squares (Cohen, 1973). Values of p < 0.05 were considered to indicate statistical significance. 

The R Statistical Computing Environment, version 3.0.2 (R Development Core Team, 2013) 
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was used for classification, feature selection, and all statistical analyses except voxel-based 

comparisons. 

 

Results 

 

Voxel-based comparison of gray matter volume and cerebral metabolic rate of glucose 

 

As shown in Table 2, we found one significant cluster of GM reduction in the MCI-C group 

compared with MCI-NC on MRI and three significant clusters of cerebral glucose 

hypometabolism on FDG-PET. Fig. 2 shows the locations of the clusters mapped onto the 

surface of the brain. GM loss in the MCI-C group was found in the left parahippocampal 

gyrus and the left hippocampus. Brain glucose hypometabolism in the MCI-C group was 

found mostly in the left temporoparietal association cortex, including the precuneus, inferior 

temporal gyrus, middle temporal gyrus, and angular gyrus. Reverse contrast (MCI-NC < 

MCI-C) showed no significant regions on MRI or FDG-PET. 

 

Effects of imaging modality, brain atlas, and support vector machine recursive feature 

elimination on prediction 

 

Fig. 3 shows the plots of the mean AUC values of different feature sets versus the number of 

features. The arrows on the top of each plot indicate the number of features that provided the 

highest AUC (AUCRFE+) on each curve in the same color. In general, particularly in the 

multimodal feature sets, the AUC at the right end of each plot (no feature selection) tended to 

be the highest, whereas the plots of LPBA40-based features, particularly in the unimodal 
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feature sets, showed a local maximum where the number of features was <25. Tests for the 

statistical significance of the difference between mean AUCs are described below. 

 

Fig. 4 shows the ROC curves of eight different feature sets for MCI classification. For the 

MRI-based feature sets, the ROC curve of LPBA40 (shown in red) showed higher sensitivity 

than that of AAL (shown in green) at almost all specificities. For FDG-PET, in contrast, the 

ROC curve of AAL (shown in green) demonstrated higher sensitivity than that of LPBA40 

(shown in red) at the lower specificity range [false positive rate (FPR) range of 0.25–0.9]. In 

the multimodal feature sets, MRI-AAL + PET-AAL (shown in green) demonstrated higher 

sensitivity than any of the other feature sets in the FPR range of values >0.65. MRI-LPBA40 

+ PET-AAL (shown in orange) showed higher sensitivity than did the other combinations, 

including unimodal features in the FPR range of values <0.2. 

 

Table 3 shows the mean AUC and number of features for each feature set for use in our 

three-way ANOVA. Fig. 5A shows a bar plot of the mean AUCRFE− and AUCRFE+ values. As 

shown in Table 4, there were significant main effects for three factors: RFE [F (1, 456) = 

20.1, p < 10−5, η2 = 0.0065]; atlas [F (3, 456) = 333.0, p < 10−15, η2 = 0.32]; and modality [F 

(2, 456) = 466.3, p < 10−15, η2 = 0.30]. We found no significant three-way interactions [F (6, 

456) = 1.5, p = 0.19, η2 = 0.0028]. The two-way interactions between RFE and atlas [F (3, 

456) = 1.3, p = 0.26, η2 = 0.0013] and between RFE and modality [F (2, 456) = 1.1, p = 0.33, 

η2 = 0.0007] were not significant, whereas the two-way interaction between atlas and 

modality [F (6, 456) = 111.7, p < 10−15, η2 = 0.22] was significant. 

 

Our post-hoc analysis of the atlas × modality interaction demonstrated significant simple 

main effects of atlas at different levels of modality [F (3, 456) = 227.7, p < 10−15, η2 = 0.22 at 
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M1 (MRI); F (3, 456) = 137.4, p < 10−15, η2 = 0.13 at M2 (PET); and F (3, 456) = 191.2, p < 

10−15, η2 = 0.19 at M3 (MRI + PET)] and significant simple main effects of modality at 

different levels of atlas [F (2, 456) = 449.3, p < 10–15, η2 = 0.29 at A1 (MRI-AAL+PET-

AAL); F (2, 456) = 44.9, p < 10–15, η2 = 0.029 at A2 (MRI-AAL+PET-LPBA40); F(2, 456) = 

100.5, p < 10−15, η2 = 0.065 at A3 (MRI-LPBA40+PET-AAL); and F (2, 456) = 206.6, p < 

10−5, η2 = 0.13 at A4 (MRI-LPBA40+PET-LPBA40)]. 

 

Regarding atlas combinations, post-hoc multiple comparisons for factor atlas revealed 

significant differences between any of the four atlas combinations (p < 10−7) except between 

A1 (MRI-AAL + PET-AAL) and A4 (MRI-LPBA40 + PET-LPBA40) (p = 0.40). 

Consequently, marginal means of four groups of atlas combination were ranked in the 

following order: A3 (MRI-LPBA40 + PET-AAL, 0.724) > A1 (MRI-AAL + PET-AAL, 

0.704) and A4 (MRI-LPBA40 + PET-LPBA40, 0.701) > A2 (MRI-AAL + PET-LPBA40, 

0.668). Multiple comparisons for atlas at each modality revealed significant differences 

between any of the different groups (p < 10−7) except between A1 (MRI-AAL + PET-AAL) 

and A3 (MRI-LPBA40 + PET-AAL) (p = 0.84). Accordingly, we observed the following 

rankings for atlas at each modality: at M1 (MRI), LPBA40 > AAL; at M2 (PET), AAL > 

LPBA40; and at M3 (MRI + PET), A3 (MRI-LPBA40 + PET-AAL) and A1 (MRI-AAL + 

PET-AAL) > B4 (MRI-LPBA40 + PET-LPBA40) > A2 (MRI-AAL + PET-LPBA40). 

 

Post-hoc multiple comparisons for modality also demonstrated significant differences 

between MRI and PET, between MRI and MRI + PET, and between PET and MRI + PET, as 

shown in Fig. 5B. Accordingly, marginal means of three levels of modality were ranked in 

the following order: MRI + PET (0.727) > PET (0.688) > MRI (0.684). Multimodal feature 

sets were superior to unimodal feature sets, and PET-based feature sets were better than MRI-
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based feature sets. Multiple comparisons for modality at each level of factor atlas revealed 

significant differences between any of the groups (p < 0.001, except p = 0.02 for between 

MRI-AAL and PET-LPBA40 at A2) except between MRI-LPBA40 and PET-AAL at A3 (p = 

0.74). Consequently, the following rankings for modality at each level of atlas were obtained: 

at A1, M3 (MRI-AAL + PET-AAL) > M2 (PET-AAL) > M1 (MRI-AAL); at A2, M3 (MRI-

AAL + PET-LPBA40) > M2 (PET-LPBA40) > M1 (MRI-AAL); at A3, M3 (MRI-LPBA40 

+ PET-AAL) > M2 (PET-AAL) and M1 (MRI-LPBA40); and at A4, M3 (MRI-LPBA40 + 

PET-LPBA40) > M1 (MRI-LPBA40) > M2 (PET-LPBA40). In summary, multimodal 

combinations were superior to single unimodal feature sets at all levels of atlas. With regard 

to unimodal features, PET was better than MRI when using AAL, whereas MRI was better 

than PET when using LPBA40. 

 

Because the lack of significant three-way (RFE × atlas × modality) interactions indicated that 

the atlas × modality interaction was not significantly different depending on the levels of 

RFE (RFE− and RFE+), we focused on the atlas × modality interaction at RFE for simplicity. 

Our additional two-way (atlas × modality) ANOVA for comparing the effects of atlas and 

modality in unimodal feature sets at RFE− demonstrated a significant main effect of modality 

[F (1,76) = 5.2, p = 0.02, η2 = 0.008], whereas we found no significant main effect of atlas as 

shown in Fig. 5C. In contrast, the interaction between atlas and modality was significant (Fig. 

5D). Our post-hoc analysis of the atlas × modality interaction revealed the significant simple 

main effects of modality at AAL and at LPBA40, and of atlas at MRI and at PET. 

 

Another two-way (MRI atlas × PET atlas) ANOVA for comparing the effects of atlases in 

multimodal feature sets at RFE− showed significant main effects of MRI atlas [F (1,76) = 

191.6, p < 10−15, η2 = 0.17] and PET atlas [F (1,76) = 716.0, p < 10−15, η2 = 0.62], and as 
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shown in Fig. 5E, we also found significant interactions between these factors. Our post-hoc 

analysis of the interaction demonstrated significant simple main effects of MRI atlas at 

LPBA40 for PET, of PET atlas at AAL for MRI, and of PET atlas at LPBA40 for MRI. We 

found no significant simple main effect of MRI atlas at AAL for PET. 

 

According to our analysis, multimodal features generally yielded better AUC values than did 

unimodal features. Comparisons of mean AUCRFE–values for multimodal feature sets 

indicated the following ranking: MRI-LPBA40 + PET-AAL (0.748) and MRI-AAL + PET-

AAL (0.747) > MRI-LPBA40 + PET-LPBA40 (0.725) > MRI-AAL + PET-LPBA40 (0.680) 

(Tukey’s test, p < 10−7 except for p = 0.997 for a pair between MRI-LPBA40 + PET-AAL 

and MRI-AAL + PET-AAL). Regarding MRI-based unimodal features, MRI-LPBA40 

(0.705) was significantly better than MRI-AAL (0.655) (p < 10−7). In contrast, PET-AAL 

(0.709) was significantly superior to PET-LPBA40 (0.661) (p < 10−7). Comparisons between 

the unimodal data of MRI and FDG-PET revealed no significant differences between MRI-

AAL and PET-LPBA40 (p = 0.32) or between MRI-LPBA40 and PET-AAL (p = 0.91). No 

significant differences were observed between any of the other pairs (p < 10−6). 

 

Important regions determined by support vector machine recursive feature elimination 

feature selection 

 

Table 5 lists the top 10% ranked regions determined by the SVM-RFE feature selection 

method. The label abbreviations are listed in Table 6. Regarding MRI-based features, the left 

hippocampus ranked first in AAL, and the left parahippocampal gyrus ranked first in 

LPBA40. For the PET-based features, the left inferior temporal gyrus ranked first in AAL 

followed by the right hippocampus and right precentral gyrus, whereas the middle temporal 
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gyrus ranked first in LPBA40 followed by the left superior occipital gyrus and the right 

inferior frontal gyrus. When combining MRI and PET feature vectors, the PET-based regions 

generally ranked higher than did the MRI-based regions except for the combination of MRI-

LPBA40 and PET-AAL. 

 

As shown in Fig. 6, we mapped the regions listed in Table 5 to the surface of the brain. 

Compared with MRI-based features (upper left) in which the left medial temporal regions in 

both atlases ranked highest, PET-based features (upper right) selected the lateral temporal 

regions, not the medial temporal regions. When combining MRI and PET data (bottom), the 

right superior frontal gyrus in the AAL ranked high among the PET-based regions. 

 

Discussion 

 

The principal aim of this study was to assess the effects of imaging modalities and brain 

atlases for feature extraction on prediction of conversion from MCI to AD. The results of this 

study indicate that preferable brain atlases for feature extraction can differ on the basis of the 

imaging modality used for unimodal features and for multimodal features and that combining 

multimodal imaging biomarkers improved the ability to predict conversion from MCI to AD. 

We believe what is practically important for this prediction is the choice of biomarkers 

(features) to be used and how to combine these biomarkers (Frisoni et al., 2013). 

 

Our results suggest not only that multimodal features provide better performance for 

prediction than unimodal features but also that FDG-PET can be superior to MRI for early 

detection of AD, particularly when using AAL for feature extraction. For example, our two-

way ANOVA for comparing the effects of atlases in multimodal feature sets demonstrated 
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that the effect of MRI atlas at AAL for PET was not different. That is, the AAL-based 

multimodal combination (MRI-AAL + PET-AAL), which contained the weakest feature set 

(MRI-AAL), was comparable to the better heterogeneous multimodal combination (MRI-

LPBA40 + PET-AAL). The other combinations both comprised PET-LPBA40, which gave 

an AUC lower than that of PET-AAL but higher than that of MRI-AAL. One possible 

explanation is that FDG-PET biomarkers, particularly when extracted with AAL, can better 

detect the difference in temporospatial distribution patterns of synaptic loss in the brains of 

patients with aMCI. Besides amyloid plaques and NFTs, AD is also characterized by the loss 

of neurons and their synapses particularly in the cerebral cortex and hippocampus (Scheff and 

D. A. Price, 2006). Although amyloid plaques and NFTs are the major neuropathological 

hallmarks of AD, amyloid accumulation in the brains of patients with AD is probably not the 

cause of the neurodegeneration but merely a marker of some upstream alterations that can 

cause neuronal and synaptic loss (Drachman, 2014). Synaptic loss and neuronal loss are the 

major pathological substrates of cortical atrophy (Serrano-Pozo et al., 2011). Synaptic loss is 

the major correlate of cognitive impairment (Terry et al., 1991) and the most reliable index of 

cognition in both postmortem and biopsied AD brains (DeKosky et al., 1996). In vivo 18F-

FDG uptake is strongly correlated with cerebral synaptic density and activity (Rocher et al., 

2003). Cognitive decline is strongly associated with glucose hypometabolism in frontal and 

temporoparietal regions in patients with probable AD (Furst et al., 2012). Temporal and 

parietal glucose metabolism predict decline in global cognitive function, and medial temporal 

brain volumes predict memory decline in normal older people (Jagust et al., 2006). These 

findings and our results, therefore, support that FDG-PET biomarkers and particularly 

multimodal combinations with other imaging modalities, such as structural MRI, can have an 

important role in cognitive decline. 
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From Table 1 it is clear that the converters are more impaired cognitively than non-converters, 

particularly verbal memory measured by WMS-R LM. We tested the prediction accuracy 

using these cognitive scores (Supplementary Material). WMS-R LM II alone demonstrated 

the highest AUC value among the cognitive feature sets, which outperformed imaging 

biomarkers alone as we expected (Supplementary Fig. 1). However, some combined feature 

sets of cognitive scores and imaging biomarkers outperformed cognitive scores alone or 

imaging biomarkers alone, and the performance varied depending on how to combine these 

measures (Supplementary Figs. 2 and 3). First, diagnosis of dementia (due to AD) is done 

clinically. Cognitive scores such as episodic memory measures including WMS-R LM I and 

II immediate and delayed recall were used for cognitive assessment to differentiate MCI from 

AD. Thus cognitive scores are somewhat like supervisory signals, and use of cognitive scores 

for prediction may not be suitable. Second, even if the imaging biomarkers bring little 

additional discriminative information in terms of predictive accuracy, these injury biomarkers 

bring additional topographic information that may help to characterize clinical phenotypes 

(patterns of cortical atrophy or hypometabolism) (Dubois et al., 2014). Therefore we believe 

that imaging biomarkers have some advantages to unravel the underlying topographic 

pathophysiological features compared to cognitive scores. 

 

Regarding the effect of atlas on predictive performance, our two-way ANOVA for comparing 

the effects of atlas and modality in the unimodal feature sets demonstrated that the 

performance differed on the basis of the atlases on both MRI and PET. The major difference 

between AAL and LPBA40 is the number of ROIs. AAL has 116 ROIs, more than twice the 

number in LPBA40 (56 ROIs). In addition, AAL includes 26 finely parcellated cerebellar 

regions, whereas LPBA40 contains the cerebellum as only one large region. These 
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differences in parcellation between these atlases may be associated with the different effects 

on the classification performance. 

 

Previous studies have shown superior accuracies using other methods than atlas-based 

approaches. However, in view of clinical applications, for example, electrocardiogram with 

limited leads, methods for measurement and analysis would be better as simple as possible, 

as long as the performance is not too poor. Atlas-based analysis is not the best in performance 

compared to other methods, but it provides an accuracy of around 70%. In addition, atlas-

based methods may be good for clinical applications because clinical practitioners usually 

interpret the results in an anatomical framework. Results therefore should be given regions-

of-interest (ROIs) using anatomical notation whatever features are used. Even if data-driven 

parcellation methods are used, we need to present the results using a reference like the MNI 

coordinate system. We therefore believe that it is worth using the atlas-based analysis. 

 

Another purpose of this study was to assess the influence of SVM-RFE feature selection on 

the performance of MCI classification. The importance of feature selection in machine 

learning studies for AD prediction remains controversial (Chu et al., 2012; Cuingnet et al., 

2011; Kerr et al., 2014). In this study, we found a significant main effect of SVM-RFE on the 

performance of MCI classification. Depending on the atlases and modalities, the influence of 

SVM-RFE can also differ, although there were no significant interactions between SVM-RFE 

and the other factors. We think that this may be because of a kind of ceiling effect, which 

resulted from the difficulty in binary classification of MCI into converters and nonconverters. 

As compared with discrimination of MCI from or AD from normal age-related deficits 

(Cuingnet et al., 2011), the accuracy of MCI classification is at most approximately 80% 

(Cuingnet et al., 2011; Misra et al., 2009; Querbes et al., 2009). This may be partly because 
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of the intrinsic heterogeneity in MCI (Nettiksimmons et al., 2014) or possibly because of 

variations in the spatial and temporal progression of pathological changes. In addition, 

“nonconverters” include possible converters in principle because nonconverters may develop 

AD after 3 years of follow-up. 

 

The optimal prediction accuracy was achieved using multiple features. For MRI it was 

around 25 when using LPBA40. This suggests that removing less discriminating set of 

features by feature selection may improve predictive accuracy. However, for PET and multi-

modal approaches, the optimal was without selection. These results should be compared with 

a recent study, where only 5 features optimize the prediction (Eskildsen et al., 2015). There 

could be a potential problem of overfitting the model when the number of features is greater 

than that of subjects. Overfitting leads to poor generalization. 

 

We evaluated this atlas-based approach using the ADNI dataset as an independent cohort 

(Supplementary Material). Although atlas × modality interaction was also significant in the 

ADNI dataset, the results of ADNI were different from those of SEAD-J. One possible 

explanation is sample selection bias. The ADNI dataset and our dataset are different in 

including criteria (Kawashima et al., 2012), resulting in different baseline characteristics. In 

addition, individual genetic variations exert lasting influences on brain structures and 

functions associated with behavior and predisposition to disease (Hibar et al., 2015). This 

may also be associated with the different results. 

 

Such sample selection bias affects both learning and evaluation (Zadrozny, 2004). Learning 

methods can be classified into global and local learners. Global learners, such as naive Bayes, 

soft margin SVM, and decision tree learners, are affected by sample selection bias, while 
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local learners, such as logistic regression and hard margin SVM, are insensitive to sample 

selection bias. However, the evaluation step is always affected by sample selection bias. 

 

In ADNI datasets, multimodal datasets did not significantly outperform unimodal datasets. 

The sample size of the ADNI subjects was 158, almost double the number of subjects SEAD-

J, 80. Overfitting in the SEAD-J results for multimodal feature sets cannot be ruled out. If 

there is no overfitting in the ADNI results, increased-feature sizes including irrelevant 

features may be associated with no improvement in the performance for the ADNI 

multimodal feature sets. 

 

Another difference between ADNI and SEAD-J was the effect of feature selection. In the 

case of ADNI, the effect of SVM-RFE on prediction performance was remarkable compared 

to SEAD-J, particularly when using unimodal datasets. Difference in sample size between 

these datasets may also be associated with the difference in the difference in the effect of 

feature selection. Regarding feature selection in small sample size data, the lack of relation 

between the errors of the best and selected feature sets was observed more evidently in 

smaller sample sizes than for larger sample sizes (Sima and Dougherty, 2006). In addition, 

SVM-RFE is generally sensitive to noise and outliers (Niijima and Kuhara, 2006) when it is 

applied to small sample size data. However, increase in sample size may result in a more 

heterogeneous sample, and this heterogeneity may make it difficult to predict conversion. 

Stratification into more homogeneous subgroups may help us predict AD conversion and 

understand underlying pathophysiological mechanisms. 

 

We believe that SVM-RFE feature selection is useful not only for reducing the dimension of 

the feature space to avoid the issue of dimensionality and overfitting but also for finding 
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valuable regions in view of the consistency of the selected regions (the left hippocampus on 

MRI and the inferior temporal gyrus, the precuneus, and the angular gyrus on FDG-PET) 

observed by using our voxel-based analysis and observed in previous studies (Chételat et al., 

2005; Zhang et al., 2011). In this study, the inferior temporal gyrus and the precuneus were 

identified as important regions for MCI classification by using both SVM-RFE and voxel-

based analysis from FDG-PET data. Scheff et al. reported synaptic loss in the inferior 

temporal gyrus (Scheff et al., 2011) and the precuneus (Scheff et al., 2013) in aMCI patients. 

According to their studies, the inferior temporal gyrus is affected during the prodromal stage 

of the disease (Scheff et al., 2011), whereas the precuneus does not show early changes in 

synaptic decline during the progression of AD (Scheff et al., 2013). On the other hand, 

significant 18F-FDG uptake reductions in patients with very mild AD relative to that in 

normal controls have been found in the precuneus and other neocortical regions, including 

the posterior cingulate and left temporoparietal and frontal association cortex (Herholz et al., 

2002). This spatiotemporal difference in local cerebral glucose metabolism is similar to the 

characteristic progression patterns of NFTs (Braak and Braak, 1991) and synaptic loss 

(Scheff and Price, 2006), which originate from the entorhinal cortex and extend through the 

limbic regions to the neocortex during disease progression. The inferior temporal gyrus has 

neural interconnections with the structures in the medial temporal cortex, particularly the 

parahippocampal gyrus (Suzuki and Amaral, 1994) and has an important role in verbal 

fluency (Scheff et al., 2011). Regional cerebral glucose metabolism in the left inferior 

temporal region in the brains of patients with mild AD correlates consistently with verbal 

semantic memory measures (Hirono et al., 2001). A meta-analysis showed that verbal fluency, 

particularly semantic fluency rather than phonemic fluency, was significantly more impaired 

than measures of verbal intelligence and psychomotor speed, and episodic memory appeared 

to be most disrupted by AD (Henry et al., 2004). These findings are consistent with the 
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significant differences in WMS-R-LM in the present study. As mentioned previously (Ota et 

al., 2014), most of the participants in this study were subclassified as having late MCI, which 

is a high risk group for AD (Jessen et al., 2014) and defined by the education-adjusted ranges 

of the WMS-R-LM II score (Aisen et al., 2010). Decline in verbal functions may be 

associated with the left-dominant laterality in the significant regions in our voxel-based 

analysis. These findings raise the possibility that SVM-RFE feature selection could detect 

temporally different underlying pathological progressions. If so, these findings and our 

results suggest that glucose hypometabolism in the inferior temporal gyrus might be an early 

biomarker for discriminating converters from nonconverters. In addition, the left 

hippocampus (AAL 37) on MRI is a robust biomarker for MCI binary classification as a 

single feature (Ota et al., 2014). Stratification of MCI into subtypes with combined specific 

features could provide better diagnostic ability or more detailed information on AD/MCI 

pathophysiology. To achieve further evidence, evaluation by using other datasets is desired in 

the future. In addition, it would be useful to apply atlas-based analysis to other imaging 

biomarkers, such as white matter hyperintensities (Nettiksimmons et al., 2014; Provenzano et 

al., 2013). 

 

Our validation set up was rather complex. Validation such as 10-fold cross-validation would 

be easier to be implemented than LOOCV. However, several previous studies used LOOCV 

(Eskildsen et al., 2013, 2015). A previous study mentioned that 10-fold cross-validation and 

LOOCV is not significantly different when the number of features is 10 to 100 (Chu et al., 

2012, Supplementary data). We therefore consider that use of LOOCV in this study is not a 

major problem. 
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A possible limitation of our study is the MRI acquisition on multiple scanners including 1.5 T 

and 3 T. The numbers of images for 9 sites (A–I) were 3, 15, 15, 5, 7, 16, 7, 2, and 10, 

respectively (χ2 test, p = 0.001). There could be potential biases. Although the influence of 

multi-slice imaging on contrast-to-noise ratio between gray and white matter is significantly 

larger at 3 T than at 1.5 T (Fushimi et al., 2007), the influence may be limited because only 3 

participants (4%) were scanned on 3 T in this study. 

 

Atlas-based feature extraction is methodologically simple and has a much lower 

computational cost than voxel-based adaptive approaches. In addition, atlas-based analysis 

can provide regional information within each ROI in the brains of subjects that can readily be 

interpreted by clinicians. In view of possible clinical applications, our results suggest that the 

use of AAL may be recommended for feature extraction from PET or multimodal biomarkers. 

 

Conclusions 

 

Our study demonstrated that imaging modalities and brain atlases for feature extraction affect 

prediction and interact with each other. In addition, SVM-RFE feature selection can itself 

improve the performance of classification. Regions selected by SVM-RFE were generally 

consistent with those selected in previous studies and with our results from group 

comparisons. Besides atlas-based analysis, other techniques for feature extraction include 

data-driven parcellation methods (Fan et al., 2007) and dimension reduction by factor 

analysis (Desikan et al., 2010). Data-driven approaches can well reflect the underlying 

structure of the data, whereas they are usually computationally expensive and the resulting 

output tends to be complicated and have interpretational difficulties. Dimension reduction by 

factor analysis can also learn intrinsic data structure without the need for supervisory signals 
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resulting in good generalization, whereas it is not always possible to improve the predictive 

accuracy. Regarding features for classification, the Ugly Duckling theorem (Watanabe, 1969) 

indicates that an MCI nonconverter is as similar to an MCI converter as to another 

nonconverter. Selection of features for classification is arbitrary, and based on subjective 

criteria that depend on the purpose or the task. If feature selection for AD prediction is done 

based on an algorithm, no free lunch theorems (Wolpert, 1996) may also hold true. This 

implies that prior domain knowledge may be important for AD prediction. Although the 

sample size was limited, we consider atlas-based analysis to be a useful tool for finding 

promising biomarkers because of its simplicity and ease of interpreting the results. In the 

future, the combination of atlas-based analysis with unsupervised feature representation 

learning methods may be a useful tool for finding novel biomarkers. Longitudinal analysis 

using our method will be useful for further investigation of MCI classification. 
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Table 1 Baseline characteristics of 80 participants with mild cognitive impairment (MCI). 

Characteristic 
Converters 

(n = 40) 

Nonconverters 

(n = 40) 
p-value 

Effect 

size (r) 

Demographics     

 Mean age, y ± SD 71.4 ± 6.7 70.5 ± 6.7 0.55 0.068 

 Male, n (%) 20 (50) 18 (45) 0.82† 0.025‡ 

 Education, y ± SD 12.3 ± 3.3 11.8 ± 3.1 0.46 0.084 

Neuropsychological scores, 

mean ± SD 
    

 WMS-R LM I (immediate 

recall) 
6.6 ± 3.3 9.6 ± 3.1 < 10-4 *** 0.42 

 WMS-R LM II (delayed 

recall) 
1.7 ± 2.2 4.5 ± 2.9 < 10-5 *** 0.48 

 MMSE 25.6 ± 1.7 27.1 ± 2.0 0.0009 *** 0.36 

 ADAS-J cog 10.0 ± 4.7 7.7 ± 4.5 0.025 * 0.25 

 GDS 4.8 ± 2.3 3.5 ± 1.8 0.006 ** 0.30 

 

Converters developed Alzheimer’s disease within 3 years after inclusion. SD, standard 

deviation; WMS-R LM, Wechsler Memory Scale-Revised Logical memory; MMSE, Mini-

Mental State Examination; ADAS-J cog, Alzheimer’s Disease Assessment Scale-Cognitive 

Subscale, Japanese version; GDS, Geriatric Depression Scale. 
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Student’s t-test unless otherwise indicated, * p < 0.05, ** p < 0.01, *** p < 0.001. 

† χ2 test. 

‡ w. 

 

Table 2 Regions of significant brain gray matter loss on magnetic resonance imaging and 

significant brain glucose hypometabolism on fluorodeoxyglucose positron emission 

tomography in converters relative to those in nonconverters. 

 MNI coordinate   

Region x y z Peak-level T Cluster size 

MRI      

 Left parahippocampal gyrus –27    –44    –3    4.65  1146 * 

 Left hippocampus –24    –34    –6    4.04  

FDG-PET       

 Left precuneus –6    –63    27    4.87 
 4310 

*** 

 Right precuneus 8    –63    33    4.37  

 Left inferior temporal gyrus –56    –31    –23    4.62  1310 * 

 Left middle temporal gyrus –57    –40    –11    4.08  

 Left angular gyrus –46    –57    30    4.40  1163 * 

 

MNI, Montreal Neurological Institute; MRI, magnetic resonance imaging; FDG-PET, 

fluorodeoxyglucose positron emission tomography 

* Uncorrected p < 0.001, cluster-level p < 0.05 (corrected for multiple comparisons); *** 

uncorrected p < 0.001, cluster-level p < 0.001 (corrected for multiple comparisons). 
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Table 3 The mean area under the curve and number of features for each feature set for a 

three-way ANOVA design. 

 R: RFE 

  R1: RFE− R2: RFE+ 

A: Atlas (combination) 
Number of 

features 

Mean AUCRFE− (95% 

CI) 

Number of 

features 

Mean AUCRFE+ (95% 

CI) 

A1: MRI-AAL + PET-AAL 

 M: Modality     

 M1: MRI 116 0.655 (0.649–0.660) 112 0.655 (0.650–0.660) 

 M2: PET 116 0.709 (0.705–0.711) 111 0.712 (0.707–0.717) 

 M3: MRI + PET 232 0.747 (0.743–0.750) 229 0.748 (0.744–0.751) 

A2: MRI-AAL + PET-LPBA40 

 MRI 116 0.655 (0.649–0.660) 112 0.655 (0.650–0.660) 

 PET 56 0.661 (0.656–0.665) 12 0.671 (0.657–0.686) 

 MRI + PET 172 0.680 (0.678–0.683) 7 0.688 (0.676–0.699) 

A3: MRI-LPBA40 + PET-AAL 

 MRI 56 0.705 (0.702–0.709) 25 0.719 (0.711–0.727) 

 PET 116 0.709 (0.705–0.712) 111 0.712 (0.707–0.717) 

 MRI + PET 172 0.748 (0.744–0.753) 168 0.750 (0.746–0.754) 

A4: MRI-LPBA40 + PET-LPBA40 

 MRI 56 0.705 (0.702–0.709) 25 0.719 (0.711–0.727) 
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 PET 56 0.661 (0.656–0.665) 12 0.671 (0.657–0.686) 

 MRI + PET 112 0.725 (0.722–0.728) 110 0.727 (0.722–0.732) 

AUC, area under the curve; ANOVA, analysis of variance; RFE, recursive feature 

elimination; CI, confidence interval; SD, standard deviation; MRI, magnetic resonance 

imaging; PET, positron emission tomography; AAL, Automated Anatomical Labeling; 

LPBA40, LONI Probabilistic Brain Atlas. 

 

Table 4 Three-way ANOVA summary table. 

Source (df) F p  η2 

RFE (1,456) = 20.1 < 10-5 *** 0.0065 

Atlas (3,456) = 333.0 < 10-15 *** 0.32 

Modality (2,456) = 466.3 < 10-15 *** 0.30 

RFE × Atlas (3,456) = 1.3 0.26  0.0013 

RFE × modality (2,456) = 1.1 0.33  0.0007 

Atlas × modality (6,456) = 111.7 < 10-15 *** 0.22 

RFE × atlas × modality (6,456) = 1.5 0.19  0.0028 

Atlas at modality     

  Atlas at MRI (3,456) = 227.7 < 10-15 *** 0.22 

  Atlas at PET (3,456) = 137.4 < 10-15 *** 0.13 

  Atlas at MRI+PET (3,456) = 191.2 < 10-15 *** 0.19 

Modality at atlas     

  Modality at MRI-AAL + PET-AAL (2,456) = 449.3 < 10-15 *** 0.29 
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  Modality at MRI-AAL + PET-LPBA40 (2,456) = 44.9 < 10-15 *** 0.029 

  Modality at MRI-LPBA40 + PET-AAL (2,456) = 100.5 < 10-15 *** 0.065 

  Modality at MRI-LPBA40 + PET-

LPBA40 
(2,456) = 206.6 < 10-15 *** 0.13 

ANOVA, analysis of variance; RFE, recursive feature elimination; MRI, magnetic resonance 

imaging; PET, positron emission tomography; AAL, Automated Anatomical Labeling; 

LPBA40, LONI Probabilistic Brain Atlas; df, degrees of freedom. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Table 5 Brain regions that ranked in the top 10% of features for eight feature sets according 

to the multiple support vector machine feature elimination. 

  MRI  PET  MRI + PET 

  MRI  MRI  PET  PET  MRI PET  MRI PET  MRI PET  MRI PET 

  AAL  LPBA40  AAL  LPBA40  AAL AAL  LPBA40 LPBA40  AAL LPBA40  LPBA40 AAL 

Rank  Region  Region  Region  Region  Region Region  Region Region  Region Region  Region Region 

1  L HIP  L PHIP  L T3  L T2  — R F1  — R F3  — L T2  L PHIP — 

2  R F2  L PRE  R HIP  L O1  L HIP —  L PHIP —  — R F3  R IN — 

3  R P2   R F2  R PRE  R F3  — L Q  — L O1  L HIP —  — R PRE 

4  R F3O  R MOFG  L T1P  L PUT  — R CBLC1  L O3 —  — R PQ  — R F1 

5  L PRE  L O3  R CBL9  L O2  R IN —  R O2 —  — L O1  — L Q 

6  L Q  R O2  VER6  L T1  R HIP —  — L T2  — R POST  — R CBL9 

7  R RO  —  L Q  —  — L T3  — L PUT  R PCL —  L HIP — 

8  R POST  —  R AMYG  —  L P2 —  R MOFG —  — L SMG  — L T3 

9  R PCIN  —  L T2P  —  — R PRE  R IN —  L RO —  L O3 — 
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10  L O1  —  R P2   —  — R PAL  L F2 —  — R LOFG  — L PUT 

11  L SMA  —  L T1  —  — L AMYG  R CIN —  L O1 —  — L O1 

12  L F2  —  L CBLC1  —  L RO —  — R PQ  L F2 —  — R CBLC1 

13  —  —  —  —  R PCL —  — —  R O2 —  — R PAL 

14  —  —  —  —  R O3 —  — —  R HIP —  R FUSI — 

15  —  —  —  —  — R POST  — —  L Q —  — L CBLC1 

16  —  —  —  —  — L CBLC1  — —  L P2  —  R O2 — 

17  —  —  —  —  — VER7  — —  R SMA —  — R CBL8 

18  —  —  —  —  L PHIP —  — —  R O1 —  L O1 — 

19  —  —  —  —  — L T2P  — —  — —  — — 

20  —  —  —  —  R SMA —  — —  — —  — — 

21  —  —  —  —  — R CBL9  — —  — —  — — 

22  —  —  —  —  — L F1MO  — —  — —  — — 

23  —  —  —  —  — L T1P  — —  — —  — — 

24  —  —  —  —  — R OC  — —  — —  — — 

 

SVM-RFE, support vector machine-based recursive feature elimination; AAL, Automated 

Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas. The labels for brain regions 

are defined in Table 6. 

 

Table 6 Labels for brain regions defined in the two brain atlases (AAL, Automated 

Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas). The labels for AAL were 

adapted from Tzourio–Mazoyer et al. (2002) and modified for those for LPBA40. 

AAL  LPBA40 

Brain region Label  Brain region Label 
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Central region     

  Precentral gyrus PRE  Precentral gyrus PRE 

  Postcentral gyrus POST  Postcentral gyrus POST 

  Rolandic operculum RO    

Frontal lobe     

 Lateral surface     

  Superior frontal gyrus, dorsolateral F1  Superior frontal gyrus F1 

  Middle frontal gyrus F2  Middle frontal gyrus F2 

  Inferior frontal gyrus, opercular part F3OP  Inferior frontal gyrus F3 

  Inferior frontal gyrus, triangular part F3T    

 Medial surface     

  Superior frontal gyrus, medial F1M    

  Supplementary motor area SMA    

  Paracentral lobule PCL    

 Orbital surface     

  Superior frontal gyrus, orbital part 

F1O  Medial orbitofrontal 

gyrus 

MOFG 

  Superior frontal gyrus, medial orbital 

F1MO  Lateral orbitofrontal 

gyrus 

LOFG 

  Middle frontal gyrus, orbital part F2O    

  Inferior frontal gyrus, orbital part F3O    

  Gyrus rectus GR  Gyrus rectus GR 

  Olfactory cortex OC    

Temporal lobe     

 Lateral surface     

  Superior temporal gyrus 

T1  Superior temporal 

gyrus 

T1 

  Heschl’s gyrus HES    

  Middle temporal gyrus 

T2  Middle temporal 

gyrus 

T2 
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  Inferior temporal gyrus 

T3  Inferior temporal 

gyrus 

T3 

Parietal lobe     

 Lateral surface     

  Superior parietal gyrus 

P1  Superior parietal 

gyrus 

P1 

  Inferior parietal, but supramarginal and 

angular gyri 

P2    

  Angular gyrus AG  Angular gyrus AG 

  Supramarginal gyrus SMG  Supramarginal gyrus SMG 

 Medial surface     

  Precuneus PQ  Precuneus PQ 

Occipital lobe     

 Lateral surface     

  Superior occipital gyrus 

O1  Superior occipital 

gyrus 

O1 

  Middle occipital gyrus 

O2  Middle occipital 

gyrus 

O2 

  Inferior occipital gyrus 

O3  Inferior occipital 

gyrus 

O3 

 Medial and inferior surfaces     

  Cuneus Q  Cuneus Q 

  Calcarine fissure and surrounding cortex V1    

  Lingual gyrus LING  Lingual gyrus LING 

  Fusiform gyrus FUSI  Fusiform gyrus FUSI 

Limbic lobe     

  Temporal pole: superior temporal gyrus T1P    

  Temporal pole: middle temporal gyrus T2P    

  Anterior cingulate and paracingulate gyri ACIN  Cingulate gyrus CIN 

  Median cingulate and paracingulate gyri MCIN    
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  Posterior cingulate gyrus PCIN    

  Hippocampus HIP  Hippocampus HIP 

  Parahippocampal gyrus PHIP 

 Parahippocampal 

gyrus PHIP 

Insula IN  Insular cortex IN 

Subcortical gray nuclei     

  Amygdala AMYG    

  Caudate nucleus CAU  Caudate CAU 

  Lenticular nucleus, putamen PUT  Putamen PUT 

  Lenticular nucleus, pallidum PAL    

  Thalamus THA    

Cerebellum   Cerebellum CBL 

  Cerebellum Crus 1 CBLC1    

  Cerebellum Crus 2 CBLC2    

  Cerebellum 3 CBL3    

  Cerebellum 4 5 CBL45    

  Cerebellum 6 CBL6    

  Cerebellum 7b CBL7B    

  Cerebellum 8 CBL8    

  Cerebellum 9 CBL9    

  Cerebellum 10 CBL10    

  Vermis 1 2 VER12    

  Vermis 3 VER3    

  Vermis 4 5 VER45    

  Vermis 6 VER6    

  Vermis 7 VER7    

  Vermis 8 VER8    

  Vermis 9 VER9    

  Vermis 10 VER10    

   Brainstem BS 
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Fig. 1 Flow diagram representing steps for feature extraction, classification, and feature 

selection processes. MRI T1WI, magnetic resonance imaging T1-weighted image; FDG-PET, 

fluorodeoxyglucose positron emission tomography; AAL, Automated Anatomical Labeling; 

LPBA40, LONI Probabilistic Brain Atlas; GM, Gray matter; CMRglc, cerebral metabolic 

rate of glucose; LOOCV, leave-one-out cross-validation; SVM, Support vector machine; 

SVM-RFE, Support vector machine recursive feature elimination; ROC, Receiver operating 

characteristic; MRI, magnetic resonance imaging; PET, positron emission tomography; AUC, 

Area under the ROC curve. 
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Fig. 2 Clusters of significant brain gray matter loss on magnetic resonance imaging (MRI) 

and significant brain glucose hypometabolism on fluorodeoxyglucose positron emission 

tomography (FDG-PET) in converters relative to those in nonconverters. 
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Fig. 3 Classification of performance of patients with mild cognitive impairment (MCI) by 

using support vector machine feature elimination (SVM-RFE) feature selection. Plotted are 

the mean areas under the receiver operating characteristic (ROC) curves (AUC) resulting 

from leave-one-out cross-validation tests for MCI classification using magnetic resonance 

imaging (MRI)-based, positron emission tomography (PET)-based, and multimodal feature 

sets with respect to the number of features. The shaded region of each plot indicates 95% 

confidence intervals. The arrows on the top of each plot represent the number of features that 

provided the highest AUC for each plot in the same color. 
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Fig. 4 Receiver operating characteristic (ROC) curves of eight original feature sets with no 

feature selection for classification of patients with mild cognitive impairment (MCI). Each 

curve was formed by vertically averaging 20 ROC curves that resulted from leave-one-out 

cross-validation tests. The shaded region of each curve indicates 95% confidence intervals. 
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Fig. 5 Statistical analyses. The error bars are 95% confidence intervals. (A) Classification 

performance. Mean AUCRFE− and AUCRFE+ values. (B) Comparisons for modality in our 
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three-way ANOVA. Post-hoc multiple comparisons revealed significant differences in the 

means of RFE− and RFE+ between MRI and PET (p = 0.009), between MRI and MRI + PET 

(p < 10−7), and between PET and MRI + PET (p < 10−7). (C) Comparison of atlas type in our 

two-way (atlas × modality) ANOVA for unimodal feature sets. The main effect of atlas was 

not significant [F (1,76) = 0.43, p = 0.51, η2 = 0.0006]. (D) Interaction plots of the two-way 

ANOVA for unimodal feature sets. Mean AUCRFE− values for different modalities and for 

different atlases in unimodal feature sets tested by the additional two-way (atlas × modality) 

ANOVA. The interaction between atlas and modality was significant [F (1,76) = 593.4, p < 

10−15, η2 = 0.88]. All of the simple main effects of modality for AAL [F (1,76) = 355.1, p < 

10−15, η2 = 0.53] and for LPBA40 [F (1,76) = 243.5, p < 10−15, η2 = 0.36] and of atlas for 

MRI [F (1,76) = 312.9, p < 10−15, η2 = 0.46] and for PET [F (1,76) = 280.9, p < 10−15, η2 = 

0.42] were significant. (E) Interaction plots of the two-way ANOVA for multimodal feature 

sets. The mean AUCRFE− values for different atlases for MRI or PET in multimodal feature 

sets were tested by another two-way (atlas for MRI × atlas for PET) ANOVA. The 

interaction between atlases for MRI and PET was significant [F (1,76) = 162.3, p < 10−15, η2 

= 0.14]. The simple main effect of atlas for MRI at AAL for PET was not significant [F 

(1,76) = 0.60, p = 0.44, η2 = 0.0005], whereas we found the significant simple main effects of 

atlas for MRI at LPBA40 for PET [F (1,76) = 353.3, p < 10−15, η2 = 0.31], of atlas for PET at 

AAL for MRI [F (1,76) = 780.1, p < 10−15, η2 = 0.68], and of atlas for PET at LPBA40 for 

MRI [F (1,76) = 98.2, p < 10−14, η2 = 0.09]. ** p < 0.01, *** p < 0.001. AUC, area under the 

receiver operating characteristic (ROC) curve; MRI, magnetic resonance imaging; PET, 

positron emission tomography; ANOVA, analysis of variance; AAL, Automated Anatomical 

Labeling; LPBA40, LONI Probabilistic Brain Atlas; RFE, recursive feature elimination; NS, 

not significant. 
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Fig. 6 Top 10% ranked cortical regions for eight feature sets according to support vector 

machine-based recursive feature elimination feature selection. The cerebellar regions are not 

shown for simplicity. MRI, magnetic resonance imaging; PET, positron emission 

tomography; AAL, Automated Anatomical Labeling; LPBA40, LONI Probabilistic Brain 

Atlas. 

 



 

1 

Supplementary Material 

 

Supplementary Materials and methods 

 

Prediction of conversion using the SEAD-J subjects’ cognitive scores 

 

We evaluated the prediction accuracy using the neuropsychological test scores 

(MMSE, WMS-R LM I, II, ADAS-Jcog, GDS, and a combined set of these scores) of SEAD-

J subjects in the same manner as imaging biomarkers. In addition, We used combined feature 

sets of cognitive scores and imaging biomarkers to examine whether combing cognitive 

scores and imaging biomarkers enhances prediction performance. 

 

Evaluation using ADNI dataset: Participants 

 

To evaluate our atlas-based method on a different dataset, we applied the same 

method to the ADNI dataset. We identified 158 individuals with amnestic mild cognitive 

impairment (aMCI) from participants in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). All the subjects (Supplementary Table 6) underwent screening (baseline) T1-

weighted MRI scans and FDG-PET scans. “Conversion” was defined as a change in 

diagnosis from aMCI to AD during a 36-month follow-up period, and 77 participants (%) 

converted to AD within 36 months. Supplementary Table 7 shows more details on the ADNI 

participants’ characteristics at baseline. The converter group (MCI-C) and nonconverter 

group (MCI-NC) significantly differed in baseline neuropsychological scores, including the 

Mini-Mental State Examination (p = 0.0096, r = 0.21) and Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale (p < 0.001, r = 0.47). No significant differences were observed in 



 

2 

age (p = 0.85, r = 0.02), gender (χ2 test, p = 0.16, w = 0.11), and education (p = 0.57, r = 

0.05). Student’s t-test was used to compare baseline differences between the two groups 

unless otherwise stated. We computed r for the t-test and w for the χ2 test as measures of 

effect size. 

 

Magnetic resonance image acquisition and preprocessing 

 

Three-dimensional structural MRI scans were downloaded from the Laboratory of 

Neuro Imaging (LONI) Image Data Archive (https://ida.loni.usc.edu/). These structural MRI 

scans were acquired from 1.5-T MRI scanners. We performed the same voxel-based 

morphometry (VBM) preprocessing procedures using the SPM8 software package 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8) and VBM8 Toolbox (http://dbm.neuro.uni-

jena.de/vbm) in MATLAB 7.12 as described previously (Ota et el., 2014). 

 

Fluorodeoxyglucose positron emission tomography image acquisition and preprocessing 

 

Fluorodeoxyglucose positron emission tomography (FDG-PET) scans were 

downloaded from the LONI Image Data Archive. The whole brain was used as the reference 

region for intensity normalization. The images were normalized by using an in-house FDG-

PET template and smoothed in the same manner as the SEAD-J images. 

 

Feature extraction 

 

Using the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 

2002) and the LONI Probabilistic Brain Atlas (LPBA40) (Shattuck et al., 2008), we extracted 

https://ida.loni.usc.edu/
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feature vectors from the preprocessed baseline MRI and from the FDG-PET data in the same 

manner as the SEAD-J data to obtain eight different feature sets, including two MR-based 

features (MRI-AAL and MRI-LPBA40) representing GM density in each ROI, two PET-

based features (PET-AAL and PET-LPBA40) representing relative cerebral metabolic rate for 

glucose in each ROI, and four multimodal features (MRI-AAL + PET-AAL, MRI-AAL + 

PET-LPBA40, MRI-LPBA40 + PET-AAL, and MRI-LPBA40 + PET-LPBA40). 

 

Classification 

 

We used linear SVMs with the regularization parameter C of 1 in the same manner as 

in the SEAD-J analysis. To enable statistical analysis of the results, we used a bootstrap 

aggregating (bagging) method (Breiman, 1996) within each round of LOOCV (Dosenbach et 

al., 2010). In each LOOCV loop, the original data set having 158 participants was divided 

into a test set of one participant and a training set comprising 157 participants. Then a 

bootstrap sample of 90% of the total number of participants was obtained by bootstrap 

resampling of the original training set. For the eight different feature sets, we repeated the 

above LOOCV procedure 20 times and computed mean AUC values for AD prediction across 

20 LOOCV tests in the same manner as in the SEAD-J analysis. To compare the ability of 

prediction across different feature sets, we formed averaged ROC curves with 95% 

confidence intervals for each feature set on the basis of the results of 20 LOOCV tests by 

using Fawcett’s vertical averaging algorithm (Fawcett, 2004). 

 

Feature selection 
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We applied the multiple SVM-RFE (MSVM-RFE) feature selection method (Duan et 

al., 2005) to compute the feature ranking score for a given feature from weight vectors of 

multiple linear SVMs trained on bootstrap subsamples of the original training data in the 

same manner as in the SEAD-J analysis. 

 

Statistical analysis 

 

To test the differences between the means of ADNI AUC values for eight feature sets, 

we used AUCRFE− and AUCRFE+ for each feature set in the same manner as in the SEAD-J 

study. AUCRFE− for a feature set was an AUC value that was obtained with the original 

features (with no feature selection), and AUCRFE+ was determined as the highest AUC during 

the SVM-RFE procedure for the feature set. We performed an overall three-way factorial 

analysis of variance (ANOVA) that included all the factors in the same manner as in the 

SEAD-J study. The R Statistical Computing Environment, version 3.0.2 (R Development 

Core Team, 2013) was used for classification, feature selection, and all statistical analyses. 

 

Supplementary Results 

 

Prediction using the SEAD-J subjects’ cognitive scores 

 

Supplementary Fig. 1 shows the ROC curves for MCI classification for cognitive 

feature sets of the SEAD-J subjects (bottom right). WMS-R LM II provided the highest AUC 

value (0.767) among the cognitive feature sets, followed by the combination of all the test 

scores (0.761), WMS-R LM I (0.729), MMSE (0.699), GDS (0.652), and ADAS-Jcog (0.650). 
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We conducted three-way (modality × atlas × cognitive test) ANOVA, resulting in the 

significant three-way interaction [F (30, 1368) = 36.4, p < 0.001, η2 = 0.041]. Our post hoc 

multiple comparisons revealed significant differences between any of the different groups (p 

< 0.001) except between WMS-R LM II and All test scores and between GDS and ADAS-

Jcog. 

Some of the combined feature sets of cognitive scores and imaging biomarkers 

outperformed cognitive scores alone or imaging biomarkers alone, and the performance 

varied depending on how to combine these measures (Supplementary Figs. 2 and 3). 

 

Effects of imaging modality, brain atlas, and support vector machine recursive feature 

elimination on prediction using the ADNI dataset 

 

As shown in Supplementary Figs. 4 to 6, the results of ADNI were different from 

those of SEAD-J. For MRI-based features, AAL was found to be better than LPBA40, and 

vice versa for PET-based features. No apparent effect of combining multimodal features in 

improving prediction performance was shown in the ADNI dataset. 

Our three-way ANOVA demonstrated a significant three-way interaction [F (6, 479) 

= 42.5, p < 0.001, η2 = 0.049] (Supplementary Table 8). Two-way interactions at various 

levels of each factor were also all significant (Supplementary Tables 9 to 11). Simple main 

effects were all significant except for atlas at PET at RFE+ (Supplementary Tables 12 to 14). 

 

Important regions determined by support vector machine recursive feature elimination 

feature selection using the ADNI dataset 

 



 

6 

Supplementary Tables 15 and 16 lists the regions determined by the SVM-RFE 

feature selection method using the SEAD-J and ADNI datasets, respectively. The label 

abbreviations are listed in Table 6. Top selected regions were different from these datasets. 
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Supplementary Figure Captions 

Supplementary Fig. 1 Receiver operating characteristic (ROC) curves for cognitive scores 

and eight original feature sets with no feature selection for classification of the Studies on 

Diagnosis of Early Alzheimer’s Disease-Japan (SEAD-J) subjects with mild cognitive 

impairment (MCI) (Fig. 4). Each curve was formed by vertically averaging 20 ROC curves 

that resulted from leave-one-out cross-validation tests. The shaded region of each curve 

indicates 95% confidence intervals. 

Supplementary Fig. 2 Receiver operating characteristic (ROC) curves for combined feature 

sets of unimodal imaging biomarkers and cognitive scores with no feature selection for 

classification of the Studies on Diagnosis of Early Alzheimer’s Disease-Japan (SEAD-J) 

subjects with mild cognitive impairment (MCI). Each curve was formed by vertically 

averaging 20 ROC curves that resulted from leave-one-out cross-validation tests. The shaded 

region of each curve indicates 95% confidence intervals. 

Supplementary Fig. 3 Receiver operating characteristic (ROC) curves for combined feature 

sets of multimodal imaging biomarkers and cognitive scores with no feature selection for 

classification of the Studies on Diagnosis of Early Alzheimer’s Disease-Japan (SEAD-J) 

subjects with mild cognitive impairment (MCI). Each curve was formed by vertically 

averaging 20 ROC curves that resulted from leave-one-out cross-validation tests. The shaded 

region of each curve indicates 95% confidence intervals. 

Supplementary Fig. 4 Comparison of classification performance of patients with mild 

cognitive impairment (MCI) by using support vector machine feature elimination (SVM-



9 

RFE) feature selection between the Studies on Diagnosis of Early Alzheimer’s Disease-Japan  

(SEAD-J) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets. Plotted are 

the mean areas under the receiver operating characteristic (ROC) curves (AUC) resulting 

from leave-one-out cross-validation tests for MCI classification using magnetic resonance 

imaging (MRI)-based, positron emission tomography (PET)-based, and multimodal feature 

sets with respect to the number of features. The shaded region of each plot indicates 95% 

confidence intervals. 

Supplementary Fig. 5 Comparison between the Studies on Diagnosis of Early Alzheimer’s 

Disease-Japan (SEAD-J) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

datasets: Receiver operating characteristic (ROC) curves of eight original feature sets with no 

feature selection for classification of patients with mild cognitive impairment (MCI). Each 

curve was formed by vertically averaging 20 ROC curves that resulted from leave-one-out 

cross-validation tests. The shaded region of each curve indicates 95% confidence intervals. 

Supplementary Fig. 6 Comparison between the Studies on Diagnosis of Early Alzheimer’s 

Disease-Japan (SEAD-J) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

datasets: Receiver operating characteristic (ROC) curves of eight original feature sets with 

support vector machine-based feature elimination (SVM-RFE) for classification of patients 

with mild cognitive impairment (MCI). Each curve was formed by vertically averaging 20 

ROC curves that resulted from leave-one-out cross-validation tests. The shaded region of 

each curve indicates 95% confidence intervals. 
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Supplementary Table 1 
Researchers and institutions participating in the SEAD-J Study. 

Researcher Institution Department 

1 Hidenao Fukuyama Kyoto University Graduate School of Medicine Human Brain Research Center 

2 Hirosi Yamauchi Kyoto University Graduate School of Medicine Human Brain Research Center 

3 Nobukatsu Sawamoto Kyoto University Graduate School of Medicine Human Brain Research Center 

4 Tosihiko Asou Kyoto University Graduate School of Medicine Human Brain Research Center 

5 Chihiro Namiki Kyoto University Graduate School of Medicine Human Brain Research Center 

6 Michio Senda Institute of Biomedical Research and 

Innovation 

Division of Molecular Imaging 

7 Takashi Kawachi Institute of Biomedical Research and 

Innovation 

Division of Molecular Imaging 

8 Tomohiko Yamane Institute of Biomedical Research and 

Innovation 

Division of Molecular Imaging 

9 Hidehito Nagai Institute of Biomedical Research and 

Innovation 

Division of Molecular Imaging 

10 Kiyoshi Maeda Kobe Gakuin University Department of Medical Rehabilitation 

11 Yasushi Yamamoto Kobe University Graduate School of Medicine Department of Psychiatry 

12 Yoshihiro Tahara Kobe University Graduate School of Medicine Department of Psychiatry 

13 Yasuomi Ouchi Medical Photonics Research Center, 

Hamamatsu University School of Medicine 

Department of Biofunctional Imaging 

14 Masanobu Sakamoto Hamamatsu Medical Center Department of neurology 

15 Toshihiko Kanno Hamamatsu Medical Center Positron Medical Center 

16 Kenichi Shimada Hyogo Brain and Heart Center Institute for Aging Brain and Cognitive 

Disorders 

17 Shingo Ohkawa Hyogo Brain and Heart Center Institute for Aging Brain and Cognitive 

Disorders 

18 Akira Terashima Hyogo Brain and Heart Center Institute for Aging Brain and Cognitive 

Disorders 

19 Yasuhito Higashi Himeji central Hospital Department of Neurology 

20 Kazunari Ishii Kinki University School of Medicine Department of Radiology 

21 Kenji Ishii Positron Medical Center, Tokyo Metropolitan 

Institute of Gerontology 

Positron Medical Center 

22 Masahiro Mishina Positron Medical Center, Tokyo Metropolitan 

Institute of Gerontology 

Positron Medical Center 



 

 

23 Masaya Hashimoto Positron Medical Center, Tokyo Metropolitan 

Institute of Gerontology 

Positron Medical Center 

24 Ayumu Okumura Chubu Medical Center for Prolonged 

Traumatic Brain Dysfunction, Kizawa 

Memorial Hospital 

Department of Neurosurgery 

25 Yuka Okumura Chubu Medical Center for Prolonged 

Traumatic Brain Dysfunction, Kizawa 

Memorial Hospital 

Department of Medical Technology 

26 Seisuke Fukuyama Chubu Medical Center for Prolonged 

Traumatic Brain Dysfunction, Kizawa 

Memorial Hospital 

Department of Medical Technology 

27 Kengo Ito National Institute for Longevity Sciences, 

National Center for Geriatrics and Gerontology 

Department of Clinical and Experimental 

Neuroimaging 

28 Takashi Kato National Institute for Longevity Sciences, 

National Center for Geriatrics and Gerontology 

Department of Clinical and Experimental 

Neuroimaging 

29 Akinori Nakamura National Institute for Longevity Sciences, 

National Center for Geriatrics and Gerontology 

Department of Clinical and Experimental 

Neuroimaging 

30 Yukihiko Washimi National Hospital for Geriatric Medicine, 

National Center for Geriatrics and Gerontology 

Department of Neurology 

31 Yutaka Arahata National Hospital for Geriatric Medicine, 

National Center for Geriatrics and Gerontology 

Department of Neurology 

32 Yukihisa Miura National Hospital for Geriatric Medicine, 

National Center for Geriatrics and Gerontology 

Department of Outpatient Services 

33 Hideyuki Hattori National Hospital for Geriatric Medicine, 

National Center for Geriatrics and Gerontology 

Department of Psychiatry 

34 Yoshio Mitsuyama Daigo Hospital Psychogeriatric Center 

35 Teruhiko Inoue Daigo Hospital Psychogeriatric Center 

36 Ryuichi Ohkubo Kagoshima University Third Department of Internal Medicine 
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Supplementary Table 2 
MRI scan acquisition parameters at the nine sites participating in the SEAD-J study. 

Site Scanner Field  
strength [T] 

Sequence TR 
[ms] 

TE 
[ms] 

TI 
[ms] 

FOV 
[mm] 

Matrix 
size 

Voxel size 
[mm3] 

A MAGNETOM 
Trio 3.0 MPRAGE 2000 4.38 990 240 240×256 0.94×0.94×1.0 

B Signa Excite 1.5 SPGR 23 5  220 256×192 0.78×0.78×1.5 

C MAGNETOM 
Symphony 1.5 VIBE 11 4.75  230 256×256 1.0×1.0×1.0 

D Gyroscan 
INTERA 1.5 T1-FFE 20 4.6  256 256×256 1.0×1.0×1.0 

E SIGNA 
EXCITE HD 1.5 SPGR 21 6  220 256×256 1.8×0.86×0.86 

F SIGNA Echo 
Speed 1.5 GR 7.2 1.68  220 256×224 1.0×0.86×0.86 

G MAGNETOM 
Avanto 1.5 GR 20 7  250 256×256 1.4×0.51×0.51 

H MAGNETOM 
Symphony 1.5 VIBE 11 4.75  230 256×256 1.5×0.49×0.49 

I MAGNETOM 
Symphony 1.5 MPRAGE 1700 4.18 800 230 256×256 1.5×0.90×0.90 

TR, Repetition time; TE, Echo time; TI, Inversion time; FOV, Field of view; MPRAGE, Magnetization Prepared 
Rapid Gradient Echo; SPGR, Spoiled Gradient Recalled; VIBE, Volumetric Interpolated Breath hold 
Examination; T1-FFE, T1-weighted Fast Field Echo; GR, Gradient Rephasing. 

 



 

 

Supplementary Table 3 

Three-way (RFE × atlas × modality) ANOVA summary table. 

Source df Type II SS MS F p  η2 
RFE 1 0.0039 0.0039 20.12 < 10-5 *** 0.0065 
Atlas 3 0.19 0.064 333.0 < 10-15 *** 0.32 
Modality 2 0.18 0.089 466.3 < 10-15 *** 0.30 
RFE × Atlas 3 0.00078 0.0003 1.347 0.26  0.0013 
RFE × modality 2 0.00043 0.0002 1.118 0.33  0.00072 
Atlas × modality 6 0.13 0.021 111.7 < 10-15 *** 0.22 
RFE × atlas × modality 6 0.0017 0.0003 1.467 0.19  0.0028 
Atlas at modality        
 Atlas at MRI 3 0.13 0.044 227.7 < 10-15 *** 0.22 
 Atlas at PET 3 0.079 0.026 137.4 < 10-15 *** 0.13 
 Atlas at MRI+PET 3 0.11 0.037 191.2 < 10-15 *** 0.19 
Modality at atlas        
 Modality at  
 MRI-AAL + PET-AAL 2 0.17 0.086 449.3 < 10-15 *** 0.29 

 Modality at 
 MRI-AAL + PET-LPBA40 2 0.017 0.0086 44.92 < 10-15 *** 0.029 

 Modality at 
 MRI-LPBA40 + PET-AAL 2 0.039 0.019 100.5 < 10-15 *** 0.065 

 Modality at 
 MRI-LPBA40 + PET-LPBA40 2 0.079 0.040 206.6 < 10-15 *** 0.13 

Residual 456 0.088 0.0002     
Total 479 0.59      
RFE, recursive feature elimination; ANOVA, analysis of variance; df, degrees of freedom; SS, sum of squares; 

MS, mean square; MRI, magnetic resonance imaging; PET, positron emission tomography; AAL, Automated 

Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 



 

 

Supplementary Table 4 

Two-way (atlas × modality) ANOVA summary table. 

Source df Type II SS MS F p  η2 
Atlas 1 0.000035 0.000035 0.430 0.51  0.0006 
Modality 1 0.00043 0.00043 5.25 0.025 * 0.0078 
Atlas × modality 1 0.049 0.049 593 < 10-15 *** 0.88 
Atlas at modality        
 Atlas at MRI 1 0.026 0.026 313 < 10-15 *** 0.46 
 Atlas at PET 1 0.023 0.023 281 < 10-15 *** 0.42 
Modality at atlas        
 Modality at AAL 1 0.029 0.029 355 < 10-15 *** 0.53 
 Modality at LPBA40 1 0.020 0.020 244 < 10-15 *** 0.36 
Residual 76 0.0062 0.0001     
Total 79 0.055      
ANOVA, analysis of variance; df, degrees of freedom; SS, sum of squares; MS, mean square; MRI, magnetic 

resonance imaging; PET, positron emission tomography; AAL, Automated Anatomical Labeling; LPBA40, 

LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 

 



 

 

Supplementary Table 5 

Two-way (MRI atlas × PET atlas) ANOVA summary table. 

Source df Type II SS MS F p  η2 
MRI atlas 1 0.011 0.011 191.6 < 10-15 *** 0.17 
PET atlas 1 0.040 0.040 716.0 < 10-15 *** 0.62 
MRI atlas × PET atlas 1 0.0091 0.0091 162.3 < 10-15 *** 0.14 
MRI atlas at PET atlas        
 MRI atlas at AAL 1 0.000034 0.000034 0.6048 0.44  0.005 
 MRI atlas at LPBA40 1 0.020 0.020 353.3 < 10-15 *** 0.31 
Modality at atlas        
 PET atlas at AAL 1 0.044 0.044 780.1 < 10-15 *** 0.68 
 PET atlas at LPBA40 1 0.0055 0.0055 98.24 < 10-15 *** 0.086 
Residual 76 0.0043 0.0001     
Total 79 0.064      
ANOVA, analysis of variance; df, degrees of freedom; SS, sum of squares; MS, mean square; MRI, magnetic 

resonance imaging; PET, positron emission tomography; AAL, Automated Anatomical Labeling; LPBA40, 

LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 6 ADNI participant ID (PTID) list for 158 MCI subjects. 

No. PTID Conversion No. PTID Conversion 

1 003_S_1057 Converter 78 003_S_1074 Nonconverter 

2 005_S_0222 Converter 79 003_S_1122 Nonconverter 

3 005_S_1224 Converter 80 005_S_0546 Nonconverter 

4 006_S_0675 Converter 81 007_S_0698 Nonconverter 

5 006_S_1130 Converter 82 010_S_0422 Nonconverter 

6 007_S_0101 Converter 83 012_S_0634 Nonconverter 

7 007_S_0128 Converter 84 013_S_1186 Nonconverter 

8 007_S_0293 Converter 85 016_S_1092 Nonconverter 

9 007_S_0344 Converter 86 018_S_0080 Nonconverter 

10 009_S_1030 Converter 87 018_S_0142 Nonconverter 

11 010_S_0161 Converter 88 021_S_0178 Nonconverter 

12 010_S_0904 Converter 89 021_S_0424 Nonconverter 

13 011_S_0326 Converter 90 021_S_0626 Nonconverter 

14 011_S_0362 Converter 91 022_S_0961 Nonconverter 

15 011_S_0861 Converter 92 027_S_0408 Nonconverter 

16 011_S_1282 Converter 93 029_S_0914 Nonconverter 

17 012_S_1033 Converter 94 029_S_1218 Nonconverter 

18 013_S_0240 Converter 95 029_S_1318 Nonconverter 

19 013_S_0325 Converter 96 029_S_1384 Nonconverter 

20 013_S_0860 Converter 97 032_S_0718 Nonconverter 

21 018_S_0057 Converter 98 035_S_0033 Nonconverter 

22 018_S_0155 Converter 99 035_S_0292 Nonconverter 

23 021_S_0141 Converter 100 036_S_0656 Nonconverter 

24 021_S_0231 Converter 101 036_S_0673 Nonconverter 

25 022_S_1351 Converter 102 036_S_0945 Nonconverter 

26 022_S_1394 Converter 103 037_S_0150 Nonconverter 
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27 024_S_1393 Converter 104 037_S_0377 Nonconverter 

28 027_S_0256 Converter 105 037_S_1078 Nonconverter 

29 027_S_0461 Converter 106 037_S_1421 Nonconverter 

30 029_S_1073 Converter 107 041_S_0679 Nonconverter 

31 031_S_0294 Converter 108 041_S_1260 Nonconverter 

32 032_S_0214 Converter 109 041_S_1418 Nonconverter 

33 032_S_0978 Converter 110 052_S_1346 Nonconverter 

34 033_S_0511 Converter 111 053_S_0389 Nonconverter 

35 033_S_0567 Converter 112 053_S_0621 Nonconverter 

36 033_S_0723 Converter 113 053_S_0919 Nonconverter 

37 033_S_0906 Converter 114 057_S_0464 Nonconverter 

38 035_S_0204 Converter 115 072_S_1211 Nonconverter 

39 035_S_0997 Converter 116 072_S_1380 Nonconverter 

40 036_S_0976 Converter 117 073_S_0746 Nonconverter 

41 036_S_1135 Converter 118 094_S_1188 Nonconverter 

42 036_S_1240 Converter 119 094_S_1314 Nonconverter 

43 037_S_0552 Converter 120 094_S_1417 Nonconverter 

44 037_S_0566 Converter 121 098_S_0160 Nonconverter 

45 041_S_0314 Converter 122 099_S_0051 Nonconverter 

46 041_S_1010 Converter 123 099_S_0291 Nonconverter 

47 041_S_1412 Converter 124 099_S_0551 Nonconverter 

48 041_S_1423 Converter 125 099_S_1034 Nonconverter 

49 041_S_1425 Converter 126 109_S_0950 Nonconverter 

50 057_S_0941 Converter 127 109_S_1114 Nonconverter 

51 057_S_1007 Converter 128 114_S_0378 Nonconverter 

52 057_S_1217 Converter 129 114_S_1106 Nonconverter 

53 057_S_1265 Converter 130 114_S_1118 Nonconverter 

54 062_S_1299 Converter 131 116_S_0361 Nonconverter 
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55 073_S_0909 Converter 132 126_S_0709 Nonconverter 

56 094_S_1398 Converter 133 127_S_0112 Nonconverter 

57 099_S_0054 Converter 134 127_S_0925 Nonconverter 

58 100_S_0892 Converter 135 127_S_1032 Nonconverter 

59 100_S_0930 Converter 136 127_S_1419 Nonconverter 

60 116_S_1243 Converter 137 128_S_0135 Nonconverter 

61 116_S_1315 Converter 138 128_S_0138 Nonconverter 

62 126_S_0708 Converter 139 128_S_0188 Nonconverter 

63 126_S_0865 Converter 140 128_S_0200 Nonconverter 

64 126_S_1077 Converter 141 128_S_0205 Nonconverter 

65 127_S_0394 Converter 142 128_S_0225 Nonconverter 

66 127_S_1427 Converter 143 128_S_0608 Nonconverter 

67 128_S_0227 Converter 144 128_S_0715 Nonconverter 

68 128_S_0258 Converter 145 128_S_0770 Nonconverter 

69 128_S_0947 Converter 146 128_S_1406 Nonconverter 

70 128_S_1043 Converter 147 128_S_1408 Nonconverter 

71 128_S_1407 Converter 148 129_S_1246 Nonconverter 

72 130_S_0289 Converter 149 130_S_0285 Nonconverter 

73 132_S_0987 Converter 150 137_S_0158 Nonconverter 

74 136_S_0695 Converter 151 137_S_0443 Nonconverter 

75 137_S_0973 Converter 152 137_S_0481 Nonconverter 

76 941_S_1295 Converter 153 137_S_0669 Nonconverter 

77 941_S_1311 Converter 154 137_S_0722 Nonconverter 

— — — 155 137_S_0800 Nonconverter 

— — — 156 137_S_0994 Nonconverter 

— — — 157 137_S_1414 Nonconverter 

— — — 158 141_S_1378 Nonconverter 
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Supplementary Table 7 Baseline characteristics of ADNI subjects. 

Measure MCI-C (n = 77) MCI-NC (n = 81) p-value Effect size 

Male (n, %) 46 (59.7) 58 (71.6) 0.16 † 0.11 ‡ 

Age (years) 74.8 ± 7.0 75.0 ± 7.7 0.85 0.02 

Education (years) 16.0 ± 2.8 15.7 ± 2.6 0.57 0.05 

MMSE 26.8 ± 1.7 27.5 ± 1.6 0.0096 ** 0.21 

ADAS-cog 12.8 ± 3.9 8.8 ± 3.7 < 0.001 *** 0.47 

Converters developed Alzheimer’s disease within 36 months after inclusion. MCI, mild 

cognitive impairment; MCI-C, MCI converter; MCI-NC, MCI nonconverter; ADNI, 

Alzheimer’s Disease Neuroimaging Initiative; MMSE, MMSE, Mini-Mental State 

Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale. 

Student’s t-test unless otherwise indicated, ** p < 0.01, *** p < 0.001. 
† χ2 test. 
‡ w. 
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Supplementary Table 8 Three-way (RFE × atlas × modality) ANOVA summary table for the 

ADNI dataset. 

Source df Type II SS MS F p  η2 
RFE 1 0.4028 0.4028 2529.7 < 0.001 *** 0.488 
Atlas 3 0.0604 0.0201 126.5 < 0.001 *** 0.073 
Modality 2 0.0787 0.0394 247.2 < 0.001 *** 0.095 
RFE × Atlas 3 0.0670 0.0223 140.3 < 0.001 *** 0.081 
RFE × modality 2 0.0632 0.0316 198.6 < 0.001 *** 0.077 
Atlas × modality 6 0.0396 0.0066 41.4 < 0.001 *** 0.048 
RFE × atlas × modality 6 0.0406 0.0068 42.5 < 0.001 *** 0.049 
Residual 456 0.0726 0.0002     
Total 479 0.8251      
RFE, recursive feature elimination; ANOVA, analysis of variance; ADNI, Alzheimer’s 

Disease Neuroimaging Initiative; df, degrees of freedom; SS, sum of squares; MS, mean 

square. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 9 ADNI Two-way ANOVA summary table: RFE × atlas interaction at 

each level of factor modality. 

Source df Type II SS MS F p  η2 
RFE × atlas at MRI        
 RFE 1 0.1635 0.1635 1515 < 0.001 *** 0.84 
 Atlas 1 0.0034 0.0034 31.6 < 0.001 *** 0.018 
 RFE × atlas 1 0.0195 0.0195 180.8 < 0.001 *** 0.10 
 Residual 76 0.0082 0.0001     
 Total 79 0.1946      
RFE × atlas at PET        
 RFE 1 0.0352 0.0352 338.9 < 0.001 *** 0.61 
 Atlas 1 0.0108 0.0108 104.4 < 0.001 *** 0.19 
 RFE × atlas 1 0.0040 0.0040 38.8 < 0.001 *** 0.070 
 Residual 76 0.0079 0.0001     
 Total 79 0.0579      
RFE × atlas at MRI+PET        
 RFE 1 0.0688 0.0688 258.7 < 0.001 *** 0.29 
 Atlas 3 0.0715 0.0238 89.6 < 0.001 *** 0.30 
 RFE × atlas 3 0.0606 0.0202 75.9 < 0.001 *** 0.25 
 Residual 152 0.0404 0.0003     
 Total 159 0.2413      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; RFE, 

recursive feature elimination; df, degrees of freedom; SS, sum of squares; MS, mean square; 

MRI, magnetic resonance imaging; PET, positron emission tomography. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 10 ADNI Two-way ANOVA summary table: RFE × modality 

interaction at each level of factor atlas. 

Source df Type II SS MS F p  η2 
RFE × modality at AAL        
 RFE 1 0.0572 0.0572 242.0 < 0.001 *** 0.43 
 Modality 2 0.0371 0.0185 78.5 < 0.001 *** 0.28 
 RFE × modality 2 0.0118 0.0059 25.0 < 0.001 *** 0.089 
 Residual 114 0.0269 0.0002     
 Total 119 0.1330      
RFE × modality at 
AAL+LPBA40        

 RFE 1 0.0318 0.0318 348.2 < 0.001 *** 0.50 
 Modality 2 0.0087 0.0044 47.9 < 0.001 *** 0.14 
 RFE × modality 2 0.0121 0.0060 66.1 < 0.001 *** 0.19 
 Residual 114 0.0104 0.0001     
 Total 119 0.0630      
RFE × modality at 
LPBA40+AAL        

 RFE 1 0.2713 0.2713 1395.1 < 0.001 *** 0.78 
 Modality 2 0.0283 0.0141 72.6 < 0.001 *** 0.082 
 RFE × modality 2 0.0238 0.0119 61.1 < 0.001 *** 0.069 
 Residual 114 0.0222 0.0002     
 Total 119 0.3455      
RFE × modality at LPBA40        
 RFE 1 0.1097 0.1097 953.4 < 0.001 *** 0.49 
 Modality 2 0.0442 0.0221 192.2 < 0.001 *** 0.20 
 RFE × modality 2 0.0562 0.0281 244.5 < 0.001 *** 0.25 
 Residual 114 0.0131 0.0001     
 Total 119 0.2232      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; df, 

degrees of freedom; RFE, recursive feature elimination; SS, sum of squares; MS, mean 

square; AAL, Automated Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 11 ADNI Two-way ANOVA summary table: atlas × modality 

interaction at each level of factor RFE. 

Source df Type II SS MS F p  η2 
Atlas × modality at RFE–        
 Atlas 3 0.1106 0.0369 688.1 < 0.001 *** 0.44 
 Modality 2 0.0702 0.0351 655.2 < 0.001 *** 0.28 
 Atlas × modality 6 0.0578 0.0096 179.9 < 0.001 *** 0.23 
 Residual 228 0.0122 0.0001     
 Total 239 0.2507      
Atlas × modality at RFE+        
 Atlas 3 0.0169 0.0056 21.3 < 0.001 *** 0.10 
 Modality 2 0.0718 0.0359 135.5 < 0.001 *** 0.42 
 Atlas × modality 6 0.0224 0.0037 14.1 < 0.001 *** 0.13 
 Residual 228 0.0604 0.0003     
 Total 239 0.1715      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; df, 

degrees of freedom; RFE, recursive feature elimination; SS, sum of squares; MS, mean 

square. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 12 ADNI Two-way ANOVA summary table: simple main effects for 

RFE × atlas interaction at each level of factor modality. 

Source df Type II SS MS F p  η2 
RFE × atlas at MRI        
 RFE at AAL 1 0.0350 0.0350 324.4 < 0.001 *** 0.18 
 RFE at LPBA40 1 0.1480 0.1480 1370.9 < 0.001 *** 0.76 
 Atlas at RFE– 1 0.0196 0.0196 181.8 < 0.001 *** 0.10 
 Atlas at RFE+ 1 0.0033 0.0033 30.6 < 0.001 *** 0.017 
 Residual 76 0.0082 0.0001     
 Total 79 0.1946      
RFE × atlas at PET        
 RFE at AAL 1 0.0315 0.0315 303.5 < 0.001 *** 0.54 
 RFE at LPBA40 1 0.0077 0.0077 74.2 < 0.001 *** 0.13 
 Atlas at RFE– 1 0.0140 0.0140 135.3 < 0.001 *** 0.24 
 Atlas at RFE+ 1 0.0008 0.0008 8.0 0.0061 ** 0.014 
 Residual 76 0.0079 0.0001     
 Total 79 0.0579      
RFE × atlas at MRI+PET        
 RFE at AAL 1 0.0024 0.0024 9.2 0.0028 ** 0.010 
 RFE at AAL+LPBA40 1 0.0012 0.0012 4.4 0.039 * 0.0048 
 RFE at LPBA40+AAL 1 0.1156 0.1156 434.5 < 0.001 *** 0.48 
 RFE at LPBA40 1 0.0102 0.0102 38.5 < 0.001 *** 0.042 
 Atlas at RFE– 3 0.1010 0.0337 126.6 < 0.001 *** 0.42 
 Atlas at RFE+ 3 0.0311 0.0104 38.9 < 0.001 *** 0.13 
 Residual 152 0.0404 0.0003     
 Total 159 0.2413      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; RFE, 

recursive feature elimination; df, degrees of freedom; SS, sum of squares; MS, mean square; 

MRI, magnetic resonance imaging; PET, positron emission tomography. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 13 ADNI Two-way ANOVA summary table: simple main effects for 

RFE × modality interaction at each level of factor atlas. 

Source df Type II SS MS F p  η2 
RFE × modality at AAL        
 RFE at MRI 1 0.0350 0.0350 148.2 < 0.001 *** 0.26 
 RFE at PET 1 0.0315 0.0315 133.4 < 0.001 *** 0.24 
 RFE at MRI+PET 1 0.0024 0.0024 10.4 0.0017 ** 0.018 
 Modality at RFE– 2 0.0035 0.0018 7.4 < 0.001 *** 0.027 
 Modality at RFE+ 2 0.0454 0.0227 96.0 < 0.001 *** 0.34 
 Residual 114 0.0269 0.0002     
 Total 119 0.1330      
RFE × modality at 
AAL+LPBA40        

 RFE at MRI 1 0.0350 0.0350 383.4 < 0.001 *** 0.56 
 RFE at PET 1 0.0077 0.0077 84.3 < 0.001 *** 0.12 
 RFE at MRI+PET 1 0.0012 0.0012 12.7 < 0.001 *** 0.018 
 Modality at RFE– 2 0.0180 0.0090 98.6 < 0.001 *** 0.29 
 Modality at RFE+ 2 0.0028 0.0014 15.3 < 0.001 *** 0.044 
 Residual 114 0.0104 0.0001     
 Total 119 0.0630      
RFE × modality at 
LPBA40+AAL        

 RFE at MRI 1 0.1480 0.1480 760.9 < 0.001 *** 0.43 
 RFE at PET 1 0.0315 0.0315 162.0 < 0.001 *** 0.091 
 RFE at MRI+PET 1 0.1156 0.1156 594.3 < 0.001 *** 0.33 
 Modality at RFE– 2 0.0406 0.0203 104.5 < 0.001 *** 0.12 
 Modality at RFE+ 2 0.0114 0.0057 29.3 < 0.001 *** 0.033 
 Residual 114 0.0222 0.0002     
 Total 119 0.3455      
RFE × modality at LPBA40        
 RFE at MRI 1 0.1480 0.1480 1286.4 < 0.001 *** 0.66 
 RFE at PET 1 0.0077 0.0077 66.9 < 0.001 *** 0.035 
 RFE at MRI+PET 1 0.0102 0.0102 89.0 < 0.001 *** 0.046 
 Modality at RFE– 2 0.0658 0.0329 286.1 < 0.001 *** 0.29 
 Modality at RFE+ 2 0.0346 0.0173 150.6 < 0.001 *** 0.16 
 Residual 114 0.0131 0.0001     
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 Total 119 0.2232      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; RFE, 

recursive feature elimination; df, degrees of freedom; SS, sum of squares; MS, mean square; 

MRI, magnetic resonance imaging; PET, positron emission tomography; AAL, Automated 

Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Table 14 ADNI Two-way ANOVA summary table: simple main effects for 

atlas × modality interaction at each level of factor RFE. 

Source df Type II SS MS F p  η2 
Atlas × modality at RFE–        
 Atlas at MRI 3 0.0393 0.0131 244.3 < 0.001 *** 0.16 
 Atlas at PET 3 0.0281 0.0094 174.8 < 0.001 *** 0.11 
 Atlas at MRI+PET 3 0.1010 0.0337 628.7 < 0.001 *** 0.40 
 Modality at AAL 2 0.0035 0.0018 32.8 < 0.001 *** 0.014 
 Modality at AAL+LPBA40 2 0.0180 0.0090 168.2 < 0.001 *** 0.072 
 Modality at LPBA40+AAL 2 0.0406 0.0203 379.4 < 0.001 *** 0.16 
 Modality at LPBA40 2 0.0658 0.0329 614.4 < 0.001 *** 0.26 
 Residual 228 0.0122 0.0001     
 Total 239 0.2507      
Atlas × modality at RFE+        
 Atlas at MRI 3 0.0066 0.0022 8.3 < 0.001 *** 0.039 
 Atlas at PET 3 0.0017 0.0006 2.1 0.10 NS 0.0096 
 Atlas at MRI+PET 3 0.0311 0.0104 39.1 < 0.001 *** 0.18 
 Modality at AAL 2 0.0454 0.0227 85.6 < 0.001 *** 0.26 
 Modality at AAL+LPBA40 2 0.0280 0.0014 5.3 0.0057 ** 0.016 
 Modality at LPBA40+AAL 2 0.0114 0.0057 21.5 < 0.001 *** 0.066 
 Modality at LPBA40 2 0.0346 0.0173 65.4 < 0.001 *** 0.20 
 Residual 228 0.0604 0.0003     
 Total 239 0.1715      
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ANOVA, analysis of variance; RFE, 

recursive feature elimination; df, degrees of freedom; SS, sum of squares; MS, mean square; 

MRI, magnetic resonance imaging; PET, positron emission tomography; AAL, Automated 

Anatomical Labeling; LPBA40, LONI Probabilistic Brain Atlas. 

* p < 0.05, ** p < 0.01, *** p < 0.001. 
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