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ABSTRACT: Effects of chain stiffness on the translational diffusion coefficient D or (effec-

tive) hydrodynamic radius RH (∝ D−1) are examined theoretically for the regular three-arm

star polymers on the basis of the Kratky–Porod (KP) wormlike chain model. The ratio gH

of RH of the regular KP three-arm star touched-bead model to that of the KP linear one,

both having the same (reduced) total contour length L and (reduced) bead diameter db, is

numerically evaluated on the basis of the Kirkwood formula and/or the Kirkwood–Riseman

(KR) hydrodynamic equation. From an examination of the behavior of the Kirkwood value

g
(K)
H and the KR one g

(KR)
H of gH as a function of L and db, it is found that both of g

(K)
H and

g
(KR)
H are insensitive to change in L irrespective of the value of db and that g

(KR)
H is slightly

larger than g
(K)
H in the ranges of L and db investigated. An empirical interpolation formula is

constructed for g
(K)
H , which reproduces the asymptotic values

√
3/(2

√
2− 1) (= 0.947) in the

random-coil limit and 1 in the thin rod limit.
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INTRODUCTION

We have made theoretical and/or computational studies of the intrinsic viscosity [η]1,2 and

second virial coefficient A2
3 of the semiflexible regular three-arm stars. The quantities [η] and

A2 are measures of the average chain dimension as well as the mean-square radius of gyration

⟨S2⟩, although A2 is related to the chain dimension only in good solvents or perturbed state.

The ratio gη of [η] of an unperturbed regular three-arm star chain to that of the corresponding

unperturbed linear one, both having the same molecular weight and chain stiffness, has been

shown to become remarkably smaller than the random-coil limiting value as the chains become

stiffer, as in the case of the ratio gS of ⟨S2⟩ of the former chain to that of the latter.4 Further,

for practical purposes, an empirical interpolation formula for gη has been constructed. On

the other hand, the ratio gA2 of A2 of a perturbed regular three-arm star chain to that of the

corresponding perturbed linear one has been shown to be rather insensitive to change in chain

stiffness.

The (effective) hydrodynamic radius RH is another measure of the chain dimension and is

defined from the translational diffusion coefficient D as follows,

RH = kBT/6πη0D , (1)

where kB is the Boltzmann constant, T is the absolute temperature, and η0 is the viscosity

coefficient of the solvent. It is then interesting and necessary to examine the effects of chain

stiffness on the ratio gH of RH of the regular three-arm star chain to that of the corresponding

linear one. In this paper, we evaluate gH of the semiflexible regular three-arm star polymer

on the basis of the KP chain without excluded volume as in the cases of the previous study

of gη,
2 and then, we construct an interpolation formula for gH for practical purposes.

For an evaluation of D for both of the KP regular three-arm star and linear chains, we

adopt the touched-bead hydrodynamic model as in the case of the previous study of [η].2 And

also, we use the Kirkwood formula5–7 as in the case of the linear helical wormlike touched-bead

model8,9 including the KP chain as a special case. On the basis of the Kirkwood formula, for
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unperturbed linear chains in the random-coil limit, there holds the asymptotic relation,

D = 0.196kBT/η0⟨R2⟩1/2 (linear, Kirkwood) , (2)

where ⟨R2⟩ is the mean-square end-to-end distance of the chains. On the other hand, if

D is evaluated from the Kirkwood–Riseman (KR) hydrodynamic equation in the scheme of

preaveraged hydrodynamic interaction (HI),7,10 we have another asymptotic relation given by

D = 0.192kBT/η0⟨R2⟩1/2 (linear, KR) . (3)

Note that the correct numerical factor 0.192 of Eq. (3) was obtained by Kurata and Ya-

makawa11 instead of the original approximate one 0.196 obtained in the so-called KR approx-

imation for D.7,10 We also note that the Zimm theory12 on the basis of the unperturbed

(dynamic) Gaussian spring-bead model in the scheme of preaveraged HI gives the latter re-

lation. The difference between the prefactor of the right-hand side of Eq. (2) and that of

Eq. (3) is arising from the fact that the Kirkwood and KR (or Zimm) values of D correspond

to the translational diffusion of the center of mass of the polymer chain and that of the “Zimm

center of resistance”7,12 as defined as the point where the translational motion of the entire

chain becomes independent of the internal (segmental) motions in the scheme of preaveraged

HI, respectively.8,13,14 This may be expected to be the case with the star polymers. We then

also evaluate D (or RH) and gH for the KP regular three-arm star chain following the KR

procedure and examine difference between the Kirkwood and KR values of RH and gH. This

is another purpose of this paper.

MODEL AND METHOD

The model used in this study is the same as that used in the previous one,2 i.e., a regular three-

arm star touched-bead model composed of 3m+1 identical spherical beads of (hydrodynamic)

diameter db whose centers are located on the KP regular three-arm star chain contour (see

Figure 1 of Ref. 2). For convenience, the three arms are designated the first, second, and third

ones and the m beads on the ith (i = 1, 2, 3) arm are numbered (i−1)m+1, (i−1)m+2, · · · ,

im from the branch point (center) to the terminal end, with the center bead numbered 0. The
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angle between each pair of the unit vectors tangent to the KP contours at the branch point

is fixed to be 120◦, so that the three vectors are on the same plane. The linear touched-bead

model, the counterpart of the above star one, is the KP touched-bead model composed of

n+1 identical beads of diameter db whose centers are located on the KP linear chain contour.

We set n + 1 equal to 3m + 1, so that n = 3m. The n + 1 beads are numbered 0, 1, 2, · · · ,

n from one end to the other. For both the star and linear touched-bead models, the contour

distance between the two adjacent beads is set equal to db. In what follows, all lengths are

measured in units of the stiffness parameter λ−1 of the KP chain unless otherwise specified.

Kirkwood formula

The Kirkwood formula for D of the chain composed of n+ 1 beads may be given by5–7

D =
kBT

(n+ 1)ζ

[
1 +

ζ

6πη0(n+ 1)

n∑
i=0

n∑
j=0

i̸=j

⟨R −1
ij ⟩

]
. (4)

where ζ = 3πη0db is the translational friction coefficient of bead and ⟨R −1
ij ⟩ is the mean

reciprocal of the distance between the centers of the ith and jth beads.

For the [(i− 1)m+ k]th and [(j − 1)m+ l]th beads (i, j = 1, 2, 3; k, l = 1, 2, · · · , m) of

the KP regular three-arm star chain, i.e., the kth bead on the ith arm and the lth bead on

the jth arm, respectively, ⟨R[(i−1)m+k][(j−1)m+l]
−1⟩ may be given by

⟨R[(i−1)m+k][(j−1)m+l]
−1⟩ = ⟨R−1(t

(i)
k , t

(j)
l )⟩ , (5)

with t
(i)
k denoting the contour distance from the branch point to the contour point on the ith

arm where the center of the [(i− 1)m+ k]th bead locates on, so that

t
(i)
k = kdb . (6)

The theoretical expression for ⟨R−1(t
(i)
k , t

(j)
l )⟩ has been obtained in the previous paper.2

Here we give only the results with a brief description. For the KP regular three-arm star chain

under the consideration, ⟨R−1(t
(i)
k , t

(j)
l )⟩ may be given by

⟨R−1(t
(i)
k , t

(j)
l )⟩ = ⟨R−1(t

(i)
k , t

(j)
l , 120◦)⟩ for i ̸= j

= ⟨R−1(|t(i)k − t
(i)
l |, 0, 120◦)⟩ for i = j , (7)
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where ⟨R−1(t1, t2, 120
◦)⟩ is the mean reciprocal of the end-to-end distance of the (unperturbed)

once-broken KP chain of total contour length t1 + t2 such that two KP subchains 1 and 2

of contour lengths t1 and t2, respectively, are connected with a bending angle θ = 120◦ (see

Figure 2 in Ref. 2). We note that ⟨R−1(t, 0, 120◦)⟩ and/or ⟨R−1(0, t, 120◦)⟩ represent the

mean reciprocal of the end-to-end distance of the KP linear chain of contour length t. The

interpolation formula for ⟨R−1(t1, t2, 120
◦)⟩ may be given by

⟨R−1(t1, t2, 120
◦)⟩ = ⟨R2⟩−1/2

[
1 + 5⟨R2⟩11/2

]−1[
fϵϵ(t1, t2, 120

◦) + 0.045⟨R2⟩3/2

+0.40t1t2(t1 + t2)e
−t1t2 + 5⟨R2⟩11/2 fDDϵ(t1, t2, 120

◦)
]
, (8)

where

fϵϵ(t1, t2, θ) = 1 +
3

8

(
⟨R4⟩
⟨R2⟩2

− 1

)
, (9)

fDDϵ(t1, t2, 120
◦) =

(
6

π

)1/2[
1− 11

40⟨R2⟩
+

431

4480⟨R2⟩2
+
C(t1, t2)

⟨R2⟩2

]
, (10)

and C(t1, t2) is given by

C(t1, t2) =
108t̄2 + 77t̄4

640(1 + t̄4)
(11)

with

t̄2 = (t −2
1 + t −2

2 )−1 . (12)

In Eqs. (8)–(10), ⟨R2⟩ = ⟨R2(t1, t2, θ)⟩ and ⟨R4⟩ = ⟨R4(t1, t2, θ)⟩ are the second and fourth

moments, respectively, of the end-to-end distance of the once-broken KP chain are given by

⟨R2(t1, t2, θ)⟩ = t1 + t2 −
1

2

[
1− e−2(t1+t2)

]
− 1

2

(
1− e−2t1

)(
1− e−2t2

)
(1 + cos θ) , (13)

⟨R4(t1, t2, θ)⟩

=
5

3
(t1 + t2)

2 − (t1 + t2)

[
26

9
+ e−2(t1+t2)

]
+ 2[1− e−2(t1+t2)]− 1

54
[1− e−6(t1+t2)]

−
{
(1− e−2t1)

[
5

3
t2 + t2e

−2t2 − 3

2
(1− e−2t2) +

1

18
(1− e−6t2)

]
+(1− e−2t2)

[
5

3
t1 + t1e

−2t1 − 3

2
(1− e−2t1) +

1

18
(1− e−6t1)

]}
(1 + cos θ)

−1

4

[
(1− e−2t1)− 1

3
(1− e−6t1)

][
(1− e−2t2)− 1

3
(1− e−6t2)

]
(1− cos2 θ) . (14)
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We note that the expression for ⟨R2(t1, t2, θ)⟩ given by Eq. (13) was first derived by Mansfield–

Stockmayer.4 In the rod limit, Eq. (8) reduces to

⟨R−1(t1, t2, 120
◦)⟩ = (t 2

1 + t 2
2 + t1t2)

−1/2 (rod limit) . (15)

For later convenience, D obtained from Eq. (2) is designated D(K) hereafter.

Kirkwood–Riseman equation

On the basis of the KR hydrodynamic equation in the scheme of preaveraged HI,7,10 D of the

chain composed of n+ 1 beads may be written as follows,

D = kBT

/
ζ

n∑
i=0

ψi , (16)

where ψi is the solution of the following linear simultaneous equations,

ψi = 1− ζ

6πη0

n∑
j=0
̸=i

⟨R −1
ij ⟩ψj . (17)

The expression for ⟨R −1
ij ⟩ has already been given by Eq. (5) with Eqs. (7)–(14). We note

that if we assume ψi = (n + 1)−1ψ, i.e., the average force exerted on the solvent of the ith

bead equal to the average total force of the entire chain divided by n + 1, for all i, Eqs. (16)

and (17) may reduce to Eq. (4). We also note that this assumption is equivalent to the KR

approximation for D mentioned in INTRODUCTION. For later convenience, D obtained from

Eqs. (16) and (17) is designated D(KR) hereafter.

RESULTS AND DISCUSSION

We have calculated the Kirkwood value D(K) and the KR one D(KR) of the translational

diffusion coefficient D from Eq. (4) and from Eq. (16) with the numerical solution ψi of the

linear simultaneous equations 17, respectively, for both the KP regular three-arm star and

linear touched-bead models, in the ranges of the total number n+ 1 of bonds from 4 to 9001

and of the bead diameter db from 0.001 to 0.4. Note that the total contour length L of the

chain is equal to (n + 1)db, as already mentioned in MODEL AND METHOD. In Eqs. (4)

and (17), ⟨R −1
ij ⟩ is given by Eq. (5) with Eqs.(7)–(14). On the basis of the values of D(K) and
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D(KR) for the star and linear chains having the same L and db so obtained along with Eq. (1),

we evaluate the Kirkwood value g
(K)
H and the KR one g

(KR)
H of the ratio gH as functions of L

and db defined by

g
(K)
H (L, db) =

R
(K)
H (star)

R
(K)
H (linear)

=
D(K)(linear)

D(K)(star)
(18)

and

g
(KR)
H (L, db) =

R
(KR)
H (star)

R
(KR)
H (linear)

=
D(KR)(linear)

D(KR)(star)
, (19)

respectively.

In the following subsections, we first examine the behavior of g
(K)
H and g

(KR)
H as functions

of L and db and compare the theoretical values of the two ratios. Then we construct an

interpolation formula for g
(K)
H .

Figure 1

Comparison between g
(K)
H and g

(KR)
H

Figure 1 shows plots of gH against the logarithm of L. The open and closed circles represent

the theoretical values of g
(K)
H and g

(KR)
H , respectively, for db = 0.001 (pip up), 0.003 (pip right-

up), 0.01 (pip right), 0.03 (pip right-down), 0.1 (pip down), 0.2 (pip left-down), 0.3 (pip left),

and 0.4 (pip left-up), the dashed curves connecting smoothly the respective theoretical values

at constant db. The solid curves represent the values calculated from an interpolation formula

for g
(K)
H , as discussed later.

In the case of g
(K)
H , the asymptotic value in the random-coil limit, i.e., the limit L → ∞

(in units of λ−1) may be given by

lim
L→∞

g
(K)
H (L, db) =

√
3/(2

√
2− 1) = 0.947 (random coil) , (20)

which may be calculated from the relation g
(K)
H = [(

√
2−1)f 1/2+(2−

√
2)f−1/2]−1 obtained for

the Gaussian regular f -arm stars by Kurata and Fukatsu15 and by Stockmayer and Fixman16

(, the latter authors using the KR approximation for D). The asymptotic value is represented

by the lower horizontal line. As L is decreased, g
(K)
H first increases from the random-coil

limiting value and then decreases and exhibits a minimum after passing through a maximum,
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in the range of db investigated except for db = 0.4. The behavior of g
(K)
H depends also on db.

It should be noted that the difference between the maximum and minimum of g
(K)
H is rather

small (4 % at most).

Figure 2

As for g
(KR)
H , its values are slightly (3 % at most) larger than those of g

(K)
H and exhibit no

appreciable maximum in contrast to the case of g
(K)
H , in the ranges of L and db investigated. We

have evaluated the random-coil limiting value of g
(KR)
H (L, db) from the numerical theoretical

values with large db. Figure 2 shows plots of g
(KR)
H against L−1/2 for db = 0.1, 0.2, 0.3, and

0.4. All the symbols have the same meaning as those in Fig. 1. The dashed curves connect

smoothly the theoretical values at constant db and solid lines indicate the respective initial

tangents. It is seen that as L−1/2 is decreased to 0 (L→ ∞), g
(KR)
H approaches a constant value

irrespective of the value of db. On the basis of such numerical results, it may be concluded

that

lim
L→∞

g
(KR)
H (L, db) = 0.964 (random coil) . (21)

Note that the values of g
(KR)
H for smaller db have been omitted in Fig. 2, since we cannot make

L−1/2 (= [(n+ 1)db]
−1/2) small enough to evaluate g

(KR)
H at L−1/2 = 0. We also note that the

asymptotic value so obtained is consistent with an available theoretical value of 0.96 obtained

by Irurzun17 for the Gaussian regular three-arm star chain without excluded volume on the

basis of the KR equation. In Fig. 1, the upper horizontal line represents the asymptotic value

0.964. This asymptotic value is 1.8 % larger than that of g
(K)
H given by Eq. (20).

For an examination the difference between g
(K)
H and g

(KR)
H , it is useful to derive the asymp-

totic relations between RH and ⟨S2⟩1/2 in the random-coil limit for both of the regular three-

arm star and linear chains. From Eqs. (2) and (3) using the asymptotic relation ⟨R2⟩ = 6⟨S2⟩

for the linear chain7 in this limit along with Eq. (1), we may obtain

R
(K)
H = 0.663⟨S2⟩1/2 (random coil, linear) , (22)

R
(KR)
H = 0.677⟨S2⟩1/2 (random coil, linear) . (23)
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As for the regular three-arm star chain in the random-coil limit, from Eqs. (18)–(23) using

with the asymptotic value 7/9 of gS,
18 we then obtain the relations

R
(K)
H = 0.712⟨S2⟩1/2 (random coil, star) , (24)

R
(KR)
H = 0.740⟨S2⟩1/2 (random coil, star) . (25)

It is seen that for the regular three-arm star chain R
(KR)
H is 3.8 % larger than R

(K)
H , while for

the linear chain the former value is 2.1 % larger than the latter.

Further we give the asymptotic forms of g
(K)
H and g

(KR)
H in the thin rod limit, i.e., the limit

of L → 0 (in units of λ−1) and L/db → ∞. In this limit, D(K) for the regular three-ram star

chain may be written in the form (see Appendix),

lim
L→0

L/db→∞

D(K) =
kBT ln(L/db)

3πη0L
(thin rod limit, star) . (26)

As for the linear chain, we have7

lim
L→0

L/db→∞

D(K) =
kBT ln(L/db)

3πη0L
(thin rod limit, linear) . (27)

We note that Eq. (27) may be obtained straightforwardly from Eq. (4) with Eqs. (5), (7), and

(15) along with the relation L = (n+1)db. In the rod limit, g
(K)
H should be a function only of

L/db, i.e.,

lim
L→0

g
(K)
H (L, db) = g

(K)
H,0(L/db) (rod limit) . (28)

From Eq. (18) with Eqs. (26), (27), and (28), we have

lim
L/db→∞

g
(K)
H,0(L/db) = 1 (thin rod limit) . (29)

On the other hand, D(KR) for the regular three-arm star chain (see Appendix) and that

for the linear one19 in the thin rod limit may be written in the forms,

lim
L→0

L/db→∞

D(KR) =
kBT ln(L/db)

3πη0L
(thin rod limit, star) (30)

and

lim
L→0

L/db→∞

D(KR) =
kBT ln(L/db)

3πη0L
(thin rod limit, linear) , (31)
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respectively. In the rod limit, g
(KR)
H should also be a function only of L/db, i.e.,

lim
L→0

g
(KR)
H (L, db) = g

(KR)
H,0 (L/db) (rod limit) . (32)

From Eq. (19) with Eqs. (30), (31), and (32), we have

lim
L/db→∞

g
(KR)
H,0 (L/db) = 1 (thin rod limit) . (33)

All of these equations for D(KR) and g
(KR)
H have the same forms as the corresponding ones for

D(K) and g
(K)
H given by Eqs. (26), (27), and (29).

Such salient results for given by Eqs. (29) or (33) that the translational diffusion coefficient

of the regular three-arm star chain becomes identical with that of the corresponding linear

chain in the thin rod limit may be regarded as indicating the defect of the Kirkwood formula

or that of the scheme of preaveraged HI as in the case of rigid rings.7,8, 20–24

Interpolation formula for g
(K)
H

Now we are in a position to construct an interpolation formula for g
(K)
H on the basis of the

numerical theoretical values of g
(K)
H (L, db) as already shown in Fig. 1 along with the asymptotic

relations given by Eqs. (20) and (29) in the random coil and thin rod limits, respectively.

Figure 3

We have evaluated g
(K)
H,0(L/db) numerically in the same manner as in the evaluation of

g
(K)
H (L, db) mentioned above using the expression ⟨R −1

ij ⟩ given by Eqs. (5), (7), and (15) in

place of that for the KP chain. Figure 3 shows plots of g
(K)
H,0 against [ln(L/db)]

−1. The open

circles represent the values so obtained. As [ln(L/db)]
−1 is decreased (L/db is increased), g

(K)
H,0

first decreases and then increases to the asymptotic value 1 after passing through a minimum.

For later convenience,we have constructed an interpolation formula for g
(K)
H,0(L/db) in the range

of L/db ≳ 10, which is given by

g
(K)
H,0(x) =

1− 1.84723(lnx)−1 + 9.01492(lnx)−2

1− 1.46180(lnx)−1 + 8.88140(lnx)−2
for x ≳ 10 . (34)

In Fig. 3, the curve represents the values calculated from Eq. (34) with x = L/db. The error

in the value of g
(K)
H,0(L/db) in the range of L/db ≳ 10 (solid part) does not exceed 0.1 %.
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Figure 4

Next, we consider the ratio g
(K)
H /g

(K)
H,0 . Figure 4 shows plots of g

(K)
H (L, db)/g

(K)
H,0(L/db)

against the logarithm of L, where g
(K)
H /g

(K)
H,0 has been evaluated by dividing the g

(K)
H values

shown in Fig. 1 by the g
(K)
H,0 values calculated from Eq. (34) with x = L/db. All the symbols in

Fig. 4 have the same meaning as those in Fig. 1. It is seen that as L is increased, g
(K)
H /g

(K)
H,0 as a

function of L and db, which is represented by f(L, db) hereafter, first increases from unity and

then decreases after passing through a maximum in the range of db investigated. Considering

the asymptotic conditions limL→0 f(L, db) = 1 and limL→∞ f(L, db) =
√
3/(2

√
2 − 1), which

hold in the limit of L/db → ∞, we have constructed an interpolation formula for f(L, db),

which may be written in the form,

f(L, db) = 1 + a1L+ a2L
2 for L < 6

= [b0 − 1 + b1(lnL)
−1] exp[−b2(lnL)−1 − b3(lnL)

−2] + 1 for L ≥ 6 . (35)

In Eq. (35), the coefficients ai (i = 1, 2) and bi (i = 0, 1, 2, 3) may be given by

a1 = [f(6, db)− 3f ′(6, db)− 1]/3

a2 = [−f(6, db) + 6f ′(6, db) + 1]/36 (36)

and

b0 =
√
3/(2

√
2− 1)

b1 = 0.276181 + 0.473221db − 0.240008db
2 + (0.018263 + 0.572154db

2) ln db

b2 = 2.66405− 7.02277db + 2.26380db
2 − (0.11568 + 7.14996db

2) ln db

b3 = 4.50327 + 0.06635db + 4.03912db
2 + (0.33442− 9.70377db

2) ln db (37)

respectively, where f ′(L, db) = ∂f(L, db)/∂L. Note that in Eq. (36) the values of f(6, db) and

f ′(6, db) may be calculated from Eq. (35) with Eq. (37). In Fig. 4, the solid curves represent

the values calculated from Eqs. (35)—(37) with the corresponding values of db. It is seen that

the interpolation formula may well reproduce the numerical theoretical values in the range



–13–

of L and db so examined, although for 0 ≲ L ≲ 1 the numerical theoretical values seem to

deviate downward slightly (up to 0.5 %) from the corresponding values of the interpolation

formula. Such a slight deviation is within experimental error (1 % at least) in D determined

by conventional methods and then causes no significant error in a practical use of the present

interpolation formula for analysis of experimental data.

The factor g
(K)
H (L, db) may therefore be approximately expressed as

g
(K)
H (L, db) = g

(K)
H,0(L/db)f(L, db) , (38)

where g
(K)
H,0(L/db) and f(L, db) are given by Eq. (34) and Eq. (35) with Eqs. (36) and (37),

respectively. In Fig. 1, the solid curves represent the approximate values calculated from

Eq. (38) with Eqs. (34)–(37) with the corresponding values of db. It is seen that the interpo-

lation formula for g
(K)
H (L, db) so proposed may well reproduce the numerical theoretical values

in the ranges of db investigated and of L/db ≳ 10. The error in the value of g
(K)
H in those

ranges of db and L/db does not exceed 0.4 %.

Figure 5

Comparison with experiment

Finally, a comparison of the present theoretical result with experimental data in a literature.

Figure 5 shows plots of gH against the logarithm of the weight-average molecular weightMw for

the regular three-arm star polystyrene in cyclohexane at 34.5 ◦C (Θ) obtained by Huber et.al.25

The open circles represent the experimental values. The curve represents the KP theory values

of g
(K)
H (λL̂, λd̂b), where L̂ and d̂b is the total contour length and bead diameter, respectively,

of the KP regular three-arm star touched-bead model in real length units, calculated from

Eq. (38) with Eqs. (34)–(37) along with the relation logMw = log λL̂ + log(λ−1ML) with

ML the molecular weight per unit contour length. The solid part of the curve indicates the

range of L/db ≳ 10. The necessary KP parameter values used in the calculation of the KP

theory values are λ−1 = 20.0 Å and ML = 39.0 Å−1 determined by Norisuye and Fujita26 for

(linear) atactic-polystyrene in cyclohexane at 34.5 ◦C (Θ) and d̂b = 9.9 Å estimated from the
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relation28 d = 0.891d̂b with d the hydrodynamic diameter of the KP cylinder model8 using

with d = 8.8 Å determined for the same system by Huber et.al.27 It is seen that the present

theory may explain qualitatively the behavior of the experimental values, which increase with

decreasing Mw, although including the range of L/db ≲ 10.

CONCLUSION

We have evaluated the Kirkwood value g
(K)
H and the KR one g

(KR)
H of the ratio gH of RH of the

unperturbed KP regular three-arm star touched-bead model to that of the KP linear one, both

having the same (reduced) total contour length L and (reduced) bead diameter db. From an

examination of the behavior of g
(K)
H and that of g

(KR)
H as functions of L and db, it is found that

both of g
(K)
H and g

(KR)
H are insensitive to change in L irrespective of the value of db and that

g
(KR)
H is 3 % at most larger than g

(KR)
H in the ranges of L and db. The empirical interpolation

formula for g
(K)
H has been constructed, which reproduces the asymptotic values

√
3/(2

√
2− 1)

(= 0.947) in the random-coil limit and 1 in the thin rod limit.
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ASYMPTOTIC FORM FOR D OF THE REGULAR THREE-ARM STAR IN THE ROD

LIMIT

In this appendix, we derive the asymptotic solutions in the limit of L/db → ∞ (thin or

long rod limit) for D(K) and D(KR) of the KP regular three-arm star in the rod limit.

Kirkwood value

The asymptotic form of D(K) for the regular three-arm star in the thin rod limit may be

straightforwardly derived from Eq. (4) with Eqs. (5), (6), (7), and (15).

In the case of the regular three-arm star, the summation in Eq. (4) may be rewritten in

the form,

n∑
i=0

n∑
j=0

i̸=j

⟨R −1
ij ⟩ = 2

[ 2∑
i=0

m∑
j=1

⟨R0(im+j)
−1⟩+

2∑
i=0

m−1∑
j=1

m∑
k=j+1

⟨R(im+j)(im+k)
−1⟩

+
1∑

i=0

2∑
j=i+1

m∑
k=1

m∑
l=1

⟨R(im+k)(jm+l)
−1⟩

]
. (39)

Recall that L = (n + 1)db and m = n/3. In the limit of L/db → ∞, i.e., m → ∞, we may

perform the first and second summations on the right-had side of Eq. (39) as follows:

2∑
i=0

m∑
j=1

⟨R0(im+j)
−1⟩ = 3

db
[lnm+ γE +O(m−1)] ,

2∑
i=0

m−1∑
j=1

m∑
k=j+1

⟨R(im+j)(im+k)
−1⟩ = 3m

db
[lnm+ γE − 1 +O(m−1)] , (40)

where γE (= 0.5772 · · · ) is the Euler constant. In this limit, the third summation on the

right-had side of Eq. (39) may be converted to an integral and it may be calculated to be

1∑
i=0

2∑
j=i+1

m∑
k=1

m∑
l=1

⟨R(im+k)(jm+l)
−1⟩ = 3m

db
[ln(3 + 2

√
3)− 3(ln 3)/2− ln(2−

√
3)] . (41)

Then we have

lim
L→0

L/db→∞

n∑
i=0

n∑
j=0

i ̸=j

⟨R −1
ij ⟩ = 2L

d 2
b

[ln(L/db) +O([ln(L/db)]
0)] . (42)

From Eq. (4) with Eq. (42), we obtain Eq. (26).
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KR value

In the thin rod limit, we may convert the summations in Eqs. (16) and (17) to integrals. In

the case of the regular three-arm star, Eq. (16) with Eq. (17) may then be rewritten in the

form,

D(KR) = kBT

[
3πη0L

∫ 1

0

ψ(x)dx

]−1

, (43)

where ψ(x) is the solution of the integral equation,

ψ(x) = 1− 1

2

[∫ 1

0

K0(x, t)ψ(t)dt+ 2

∫ 1

0

K1(x, t)ψ(t)dt

]
. (44)

In Eq. (44), K0(x, t) and K1(x, t) are the continuous versions of the mean reciprocal of the dis-

tance between the centers of two beads on the same arm and on the different arm, respectively,

and they are explicitly given by

K0(x, t) = |x− t|−1 for |x− t| ≥ 3db/L

= 0 for |x− t| < 3db/L , (45)

K1(x, t) = (x2 + t2 + xt)−1/2 . (46)

From Eq. (44), the function F (x) may be defined by

F (x) = 1− 2ϕ(x)

=

∫ 1

0

K0(x, t)ϕ(t)dt+ 2

∫ 1

0

K1(x, t)ϕ(t)dt , (47)

where ϕ(x) = ψ(x)/2. We then expand ϕ(x) and Kk(x, t) (k = 1, 2) in terms of the shifted

Legendre polynomial P̃l(x) as follows,

ϕ(x) =
∞∑
i=0

ϕiP̃i(x) , (48)

Kk(x, t) =
∞∑
i=0

∞∑
j=0

Kk,ijP̃i(x)P̃j(t) , (k = 0, 1) (49)

where P̃l(x) is defined by

P̃l(x) = (−1)lPl(2x− 1) (50)
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with Pl(x) the Legendre polynomial. We note that P̃l(x) satisfies the following orthogonality

relation, ∫ 1

0

P̃l(x)P̃l′(x)dx = (2l + 1)−1δll′ , (51)

where δll′ is the Kronecker delta. In Eqs. (48) and (49), the expansion coefficients ϕi and Kk,ij

may be given by

ϕi = (2i+ 1)

∫ 1

0

ϕ(x)P̃i(x)dx (52)

and

Kk,ij = (2i+ 1)(2j + 1)

∫ 1

0

∫ 1

0

Kk(x, t)P̃i(x)P̃j(t)dxdt (k = 0, 1) , (53)

respectively. Substituting Eqs. (52) and (53) into the second line of Eq. (47) and carrying out

the integrations, F (x) may be rewritten in the form,

F (x) =
∞∑
i=0

∞∑
j=0

(2j + 1)−1(K0,ij + 2K1,ij)ϕjP̃i(x) . (54)

It can be shown in the limit of L/db → ∞ that

K0,ij = (−1)i+j(4j + 2)δij ln(L/db) +O([ln(L/db)]
0) (55)

and K1,ij = O([ln(L/db)]
0). Then we have

F (x) = [2 ln(L/db) +O([ln(L/db)]
0)]ϕ(x) . (56)

From the first line of Eq. (47) and Eq. (56) along with the relation ϕ(x) = ψ(x)/2, ψ(x) may

be written in the from,

ψ(x) = [ln(L/db) +O([ln(L/db)]
0)]−1 . (57)

Substituting of Eq. (57) into Eq. (43) and carrying out the integration over x, we obtain

Eq. (30).
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Figure Legends

Figure 1 Plots of g
(K)
H (L, db) and g

(KR)
H (L, db) against logL. The open and closed circles

represent g
(K)
H and g

(KR)
H , respectively, for db = 0.001 (pip up), 0.003 (pip right-

up), 0.01 (pip right), 0.03 (pip right-down), 0.1 (pip down), 0.2 (pip left-down),

0.3 (pip left), and 0.4 (pip left-up). The dashed curves connect smoothly the

theoretical values at constant db. The lower and upper horizontal lines represent

the random-coil limiting values
√
3/(2

√
2 − 1) (= 0.947) of g

(K)
H and 0.964 of

g
(KR)
H , respectively. The solid curves represent the values calculated from the

interpolation formula for g
(K)
H (see the text).

Figure 2 Plots of g
(KR)
H against L−1/2. All the symbols have the same meaning as those in

Fig. 1. The dashed curves connect smoothly the theoretical values at constant

db and the solid lines indicate the respective initial tangents.

Figure 3 Plots of g
(K)
H,0(L/db) against [ln(L/db)]

−1. The open circles represent the theoret-

ical values. The horizontal line segment represent the asymptotic value 1 in the

limit of [ln(L/db)]
−1 → 0 (L/db → ∞). The curve represents the values of the

interpolation formula, the solid part indicating the range of L/db ≳ 10 (see the

text).

Figure 4 Plots of g
(K)
H (L, db)/g

(K)
H,0(L/db) against logL. All the symbols have the same

meaning as those in Fig. 1. The solid curves represent the values of the interpo-

lation formula with the corresponding values of db (see the text).

Figure 5 Plots of gH against the logarithm of Mw for regular three-arm star polystyrenes

in cyclohexane at 34.5 ◦C (Θ). The open circles represent the experimental data

obtained by Huber et.al.25 The curve represents the corresponding KP theory

values, the solid part indicating the range of L/db ≳ 10 (see text).
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Graphical Abstract:

The translational diffusion coefficient D or (effective) hydrodynamic radius RH of the

regular three-arm star Kratky–Porod (KP) wormlike chain is evaluated. The behavior of the

ratio gH of RH of the star and that of the corresponding linear chain is examined as a function

of the (reduced) contour length L and (reduced) hydrodynamic diameter db.
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