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Abstract

Among quadrupedal gaits, the galloping gait has specific characteristics in terms

of locomotor behavior. In particular, it shows a left–right asymmetry in gait

parameters such as touchdown angle and the relative phase of limb movements.

In addition, asymmetric gait parameters show a characteristic dependence on

locomotion speed. There are two types of galloping gaits in quadruped ani-

mals: the transverse gallop, often observed in horses; and the rotary gallop,

often observed in dogs and cheetahs. These two gaits have different footfall se-

quences. Although these specific characteristics in quadrupedal galloping gaits

have been observed and described in detail, the underlying mechanisms remain

unclear. In this paper, we use a simple physical model with a rigid body and

four massless springs and incorporate the left–right asymmetry of touchdown

angles. Our simulation results show that our model produces stable galloping

gaits for certain combinations of model parameters and explains these specific

characteristics observed in the quadrupedal galloping gait. The results are then

evaluated in comparison with the measured data of quadruped animals and the

gait mechanisms are clarified from the viewpoint of dynamics, such as the roles

of the left–right touchdown angle difference in the generation of galloping gaits

and energy transfer during one gait cycle to produce two different galloping
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gaits.

Keywords: Galloping gait, Quadruped, Model, Touchdown angle, Left–right

asymmetry, Center of mass movement, Energy transfer

1. Introduction1

Quadruped animals use various gaits depending on the locomotion speed.2

They use a walking gait in the lowest range of locomotion speed, and this3

changes to a trotting gait as the locomotion speed increases. In the highest range4

of locomotion speed, they use a galloping gait. These gaits are characterized by5

footfall sequence [32]. During gaits used at slow speeds, such as a walking gait,6

at least one limb is in contact with the ground, that is, in the stance phase. In7

contrast, gaits used at higher speeds, such as a galloping gait, have a flight phase8

during which all four limbs are in the air, that is, in the swing phase. These9

gaits have been investigated from mechanical, energetic, kinematic, and kinetic10

viewpoints to clarify the underlying mechanism for the use of such different gaits11

depending on the locomotion speed [1, 13, 22, 23, 24, 31].12

Among these quadrupedal gaits, the galloping gait has characteristic prop-13

erties. Differing from the walking and trotting gaits, the galloping gait is asym-14

metric [1, 22, 23]. More specifically, the relative phase of the movements between15

the left and right limbs is away from the antiphase, unlike the walking and trot-16

ting gaits, as shown in Fig. 1A. In addition, as the locomotion speed increases,17

the relative phase decreases and approaches the in-phase as in a bounding gait,18

which is not generally used by large, cursorial quadrupeds [26]. There are two19

types of galloping gaits in quadruped animals, the transverse gallop and the20

rotary gallop, and the two gaits have different footfall sequences (Fig. 1B) [22].21

The transverse gallop is the preferred gait of horses, and the foot contacts take22

place in the order of a hindlimb, the contralateral hindlimb, the ipsilateral fore-23

limb, and the contralateral forelimb. The rotary gallop is the preferred gait of24

dogs and cheetahs, and the foot contacts occur in the sequence of a hindlimb, the25
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Figure 1: Characteristics of the quadrupedal galloping gait. A: relative phase between left

and right forelimbs of quadrupeds depending on locomotion speed (Froude number), modified

from [1]. Although it remains almost antiphase in the walking and trotting gaits, it is away

from the antiphase and approaches the in-phase in the galloping gait as the locomotion speed

increases. B: footfall diagrams of the transverse gallop of horses and the rotary gallop of dogs

and cheetahs, modified from [22]. The transverse gallop has a single flight phase after the

liftoff of the forelimbs, while the rotary gallop has two flight phases after the liftoff of the

hindlimbs and forelimbs. TH: trailing hindlimb, TF: trailing forelimb, LH: leading hindlimb,

and LF: leading forelimb.

contralateral hindlimb, the contralateral forelimb, and the ipsilateral forelimb.26

Both gallops have a flight phase after the liftoff of the forelimbs. In contrast, the27

fast rotary gallop of dogs and cheetahs has another flight phase after the liftoff28

of the hindlimbs, unlike the transverse gallop of horses [5, 23] (some species29

show a rotary gallop with just one flight phase at low speeds [25]). Although30

these specific characteristics in quadrupedal galloping gaits and the dependence31

on the locomotion speed and species have been observed and described in de-32

tail [1, 5, 22, 23], the underlying dynamic mechanisms remain unclear.33

Locomotion in humans and animals involves moving the center of mass34

(COM) of the whole body using the limbs. The essential contribution of a35
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limb in locomotion dynamics can be represented by a spring. To explain the36

locomotion mechanisms from a dynamic viewpoint, spring-loaded inverted pen-37

dulum models have been used [6, 7, 8, 9, 11, 16, 29, 30, 36]. In particular,38

for human running, the dependence of stability on touchdown angles has been39

clarified [17, 19, 38]. A simple model having mass and two springs has been40

used to explain the characteristic difference between human walking and run-41

ning, which appears in the vertical ground reaction forces: a double-peaked42

shape in human walking, and a single-peaked shape in human running [18]. For43

quadrupedal locomotion, a rigid body with two springy legs has shown the sta-44

bility characteristics of a bounding gait [10, 35]. The difference in the energy45

levels between the trotting, bounding, and galloping gaits also has been exam-46

ined [33]. Although simple physical models with leg springs have been used47

for the quadrupedal galloping gait [21, 26, 28, 33, 40], they do not explain the48

above-mentioned specific characteristics. In this paper, we use a simple physi-49

cal model with a rigid body and four massless springs. The simulation results50

show that our model produces stable galloping gaits for certain combinations of51

model parameters, and explains these specific characteristics in the quadrupedal52

galloping gait. The results are then evaluated in comparison with quadruped53

animals and the gait mechanisms are discussed from the viewpoint of dynamics.54

2. Materials and Methods55

2.1. Physical model56

In this paper we use a physical model, which consists of a rigid body and57

four massless springs in two dimensions (Fig. 2), as used in [33]. x and y are,58

respectively, the horizontal and vertical positions of the COM of the body, and59

θ is the pitch angle. m and I are, respectively, the mass and moment of inertia60

around the COM. l is the distance between the COM and the root of the spring.61

g is the gravitational acceleration. +x is the locomotion direction. The front62

two springs and the rear two springs represent the forelimbs and hindlimbs,63

respectively. The spring constant is k. In the forelimbs, the anterior limb during64
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Figure 2: Physical model of galloping consisting of a rigid body and four massless springs in

two dimensions.

the swing phase is the leading forelimb (LF) and the posterior limb is the trailing65

forelimb (TF). Similarly, the anterior and posterior hindlimbs during the swing66

phase are the leading hindlimb (LH) and trailing hindlimb (TH), respectively.67

During the swing phase, the spring length remains the neutral length l0 and68

the angle relative to the vertical line keeps the specific value γTD
i (i =LF, TF,69

LH, TH), which corresponds to the touchdown angle (γTD
LF ≥ γTD

TF , γTD
LH ≥ γTD

TH).70

We assumed γTD
LF + γTD

TF ≥ 0 and γTD
LH + γTD

TH ≥ 0 so that the trailing limbs71

contact the ground earlier than the leading limbs, as observed in quadruped72

animals. When a spring tip reaches the ground, it is constrained on the ground73

and behaves as a frictionless pin joint. When the spring length returns to the74

neutral length after the compression, the tip leaves the ground. Because the75

touchdown and liftoff occur at the neutral length, this physical system is energy76

conservative.77

2.2. Governing equations78

In our model, the four limbs have no influence on body dynamics during the79

swing phase. In contrast, during the stance phase, they work as springs and80
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influence body dynamics through their compression. The motion of our model81

is governed by the equations of motion of x, y, and θ, which are given by82

mẍ =
∑

i=LF,TF,LH,TH

−fi sin γi

mÿ =
∑

i=LF,TF,LH,TH

fi cos γi − mg

Iθ̈ =
∑

i=LF,TF

fil cos(γi − θ) −
∑

i=LH,TH

fil cos(γi − θ) (1)

where83

fi =

⎧⎨
⎩ −k(li − l0) stance phase

0 swing phase

li and γi (i =LF, TF, LH, TH) are the spring length and the angle relative84

to the vertical line, respectively, which are determined by x, y, θ, l, and the85

touchdown position (li = l0 and γi = γTD
i during the swing phase).86

By using m, l0, and
√

l0/g as the characteristic mass, length, and time87

scale of our model, the state variables and parameters become dimensionless as88

x∗ = x/l0, y∗ = y/l0, (̇)
∗

= (̇)
√

l0/g, I∗ = I/(ml20), k∗ = kl0/(mg), l∗ = l/l0,89

and l∗i = li/l0, which yields the dimensionless equations of (1) by90

ẍ∗ =
∑

i=LF,TF,LH,TH

−f∗
i sin γi

ÿ∗ =
∑

i=LF,TF,LH,TH

f∗
i cos γi − 1

I∗θ̈∗ =
∑

i=LF,TF

f∗
i l∗ cos(γi − θ) −

∑
i=LH,TH

f∗
i l∗ cos(γi − θ) (2)

where91

f∗
i =

⎧⎨
⎩ −k∗(l∗i − 1) stance phase

0 swing phase

2.3. Generation of galloping gait using the left–right asymmetry of touchdown92

angles93

An important function of limbs in locomotion dynamics is to produce trans-94

lational and rotational forces for the whole body through interaction with the95
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Figure 3: Different touchdown angles of (A) trailing and (B) leading hindlimbs in the horse

galloping gait.

ground. Such forces are generated through the movements of the limb tip rel-96

ative to the limb root (length and orientation). During a steady gait, the limb97

tip produces a periodic trajectory relative to the body. When the relative phase98

between the left and right limb movements is antiphase, as in walking and trot-99

ting gaits, the left and right limbs move alternately relative to the body and100

the periodic trajectories are almost identical between the left and right limbs.101

When the relative phase is in-phase, as in a bounding gait, the left and right102

limbs move simultaneously and the periodic trajectories are also almost identi-103

cal between the left and right limbs. In contrast, during a galloping gait, the104

relative phase is not in-phase or antiphase as shown in Fig. 1A and the periodic105

trajectories differ between the left and right limbs, which leads to the difference106

in touchdown positions relative to the body as shown in Fig. 3 [21]. That is,107

the touchdown angles are different between the left and right limbs.108

In our model, when we use identical touchdown angles between the left109

and right limbs (γTD
LF = γTD

TF , γTD
LH = γTD

TH), foot contact occurs simultaneously110

between the left and right limbs, which produces a bounding gait and a zero111

relative phase between the left and right limbs. In contrast, different touchdown112

angles (γTD
LF �= γTD

TF , γTD
LH �= γTD

TH) induce different foot contact timings and113

positions between the left and right limbs and yield a galloping gait. In addition,114

an increase in the touchdown angle difference indicates an increase in the relative115
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phase between the left and right limbs.116

2.4. Search of periodic solutions and stability analysis117

We define the Poincaré section when ẏ∗ = 0 and when all four limbs are in the118

swing phase (the model is in the flight phase). We find a periodic solution, which119

corresponds to a gait, by searching for a fixed point in the Poincaré section,120

where we neglect x∗ because the horizontal position monotonically increases121

during locomotion. In addition, we assume that all four limbs have to experience122

the stance phase at least once before the intersection with the Poincaré section so123

that the solution explains a gait. When we set z∗ = [ y∗ θ ẋ∗ θ̇∗ ]T, the Poincaré124

map P is written as125

z∗n+1 = P (z∗n, u∗) (3)

where z∗n is the value of z∗ at the nth intersection with the Poincaré section and126

u∗ is the parameter set. When we denote ẑ∗ for the fixed point on the Poincaré127

section, we obtain ẑ∗ = P (ẑ∗, u∗).128

In this paper, because the left–right touchdown angle differences are not129

so different between the forelimbs and hindlimbs during galloping gaits [21],130

we find gaits in which the differences in the left and right touchdown angles131

are identical between the forelimbs and hindlimbs (γTD
LF − γTD

TF = γTD
LH − γTD

TH).132

In this condition, we can write the touchdown angles using the difference δ133

(≥ 0) by γTD
LF = γ̄TD

F + δ/2, γTD
TF = γ̄TD

F − δ/2, γTD
LH = γ̄TD

H + δ/2, and γTD
TH =134

γ̄TD
H − δ/2 (γ̄TD

F , γ̄TD
H ≥ 0), and the parameter set of this model is given by135

u∗ = [ I∗ k∗ l∗ γ̄TD
F γ̄TD

H δ ]T. We used the following four constraints: ŷ∗ = y∗
0 ,136

θ̂ = θ0,
ˆ̇θ∗ = θ̇∗0 , and Fr = Fr0, where Fr is the Froude number defined by137

Fr =

{
1
τ∗

∫ τ∗

0

ẋ∗dt∗
}2

(4)

and τ∗ is a dimensionless one gait cycle [1]. We determined I∗ = 0.1 and138

l∗ = 0.6 based on the physical parameters of such quadruped animals as horses,139

dogs, cheetahs, and goats [15, 20, 25, 39], and used y∗
0 = 0.94 and θ0 = 0.018.140

To clarify the dynamic characteristics of galloping gait of our model, we used141
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various values for k∗, θ̇∗0 , and Fr0 and searched ˆ̇x
∗
, γ̄TD

F , γ̄TD
H , and δ that satisfy142

ẑ∗ = P (ẑ∗, u∗), where we used the fsolve function of MATLAB.143

When we found periodic gaits, we investigated the local stability from the144

eigenvalues of the linearized Poincaré map around the fixed points. Because145

our model is energy conservative, the gait is asymptotically stable when all146

the eigenvalues except for one eigenvalue of 1 are inside the unit circle (these147

magnitudes are less than 1).148

3. Results149

We obtained various periodic gaits depending on Fr0, k∗, and θ̇∗0 . Fig-150

ures 4A and B show the angle difference δ for Fr0 and k∗ for the obtained151

gaits with θ̇∗0 = 0.92 and 1.65, respectively. The gray regions show unstable152

gaits and the white regions show stable gaits. The obtained gaits have different153

sequences of the stance status (Sequences A–E), depending on the parameters,154

as shown in Fig. 5. The obtained gaits in Fig. 4A have Sequences A–E, whereas155

those in Fig. 4B have only Sequence E. Sequences B and E correspond to the156

transverse and rotary gallops, respectively, in Fig. 1B. In both Figs. 4A and157

B, as the locomotion speed increases, δ decreases and approaches 0 (but, did158

not reach 0). At slow speeds (small Froude number), the obtained gaits are159

unstable, and when the locomotion speed increases, the gaits become stable.160

The dimensionless spring stiffness was estimated as 7 [14] or 12 [27] for horses,161

11 [14] for dogs, and 16 [14] for goats. The left–right touchdown angle difference162

during galloping gaits was observed around 5 to 15◦ [21]. The Froude number163

of various quadruped animals is shown in Fig. 1A and about 3 during the trans-164

verse gallop of goats [14], and is seen to be greater than 50 during the rotary165

galloping of cheetahs [5]. Our simulation results are comparable with biological166

data.167

To evaluate the biological relevance of the obtained gaits, we compared the168

vertical COM movement of our simulation results with data measured during169

quadrupedal galloping gaits. In Fig. 6A, we used θ̇∗0 = 0.92, Fr0 = 14.4,170
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are the parameter sets used in Fig. 6 to compare vertical COM movement with the measured
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and k∗ = 5.1 (open dot in Fig. 4A) and compared the simulation result with171

data measured during a transverse gallop by a horse (the Froude number is172

around 18) [34]. The simulation result shows a single sinusoidal curve, and the173

magnitude is similar to that of the measured data. The dimensionless spring174

stiffness of a horse transverse gallop was estimated by 12 [27], and the simulation175

result is fairly consistent with the measured data. In Fig. 6B, we used θ̇∗0 = 0.92,176

Fr0 = 42.1, and k∗ = 5.5 (black dot in Fig. 4A) and θ̇∗0 = 1.65, Fr0 = 25.7, and177

k∗ = 7.0 (black dot in Fig. 4B) and compared these simulation results with data178

measured during a rotary gallop by a dog (the Froude number is about 20) [4].179

The dimensionless spring stiffness of dogs was estimated by 11 [14]. When180

θ̇∗0 = 0.92, the simulation result is very different in shape and magnitude from181

the measured data. In contrast, for θ̇∗0 = 1.65, although the magnitude is slightly182

lower than the measured data, the simulation result shows a double sinusoidal183

curve and has a similar shape to the measured data. This simulation result is184

consistent with the measured data. See supplementary movies in Appendix A185

for simulated locomotor behaviors.186

10



TF
LF

TF
LF

TF
LF

TF
LF

TF
LF

viii) Flight

i) TH: stance

ii) TH,LH: stanceiv) All stance iii) TH,LH,TF: stancev) LH,TF,LF: stancevi) TF,LF: stance

vii) LF: stance

ix) LH: stancex) LH,TF: stancexi) TF: stance

viii) Flight

0 40 60 80 10020

TH
LH

Sequence A

0 40 60 80 10020

TH
LH

Sequence B

0 40 60 80 10020

TH
LH

Sequence C

0 40 60 80 10020
Gait cycle [%]

TH
LH

Sequence D

0 40 60 80 10020
Gait cycle [%]

TH
LH

Sequence E

Seq. A

Seq. B

Seq. C

Seq. E

Seq. D

v

x ix

iv viiiviiviiiiiii vx viiiviiviiiiiii

xix viiiviiviiiiv viiiviiviiii

xiviii viiiviiviixiii

ix

Figure 5: Schematic sequences of stance condition of obtained gaits: Sequences (Seqs.) A–E.

TH: trailing hindlimb, TF: trailing forelimb, LH: leading hindlimb, and LF: leading forelimb.

To clarify the dynamical difference between the obtained transverse and187

rotary gallops, we investigated the energy transfer during one gait cycle. Fig-188

ures 7A and B show the ratio of four components of the conservative mechanical189

energy (the gravitational energy (zero at the bottom of the vertical COM move-190

ment), forelimb and hindlimb spring energies, and kinetic energy) for θ̇∗0 = 0.92,191

Fr0 = 14.4, and k∗ = 5.1 (transverse gallop), and θ̇∗0 = 1.65, Fr0 = 25.7, and192

k∗ = 7.0 (rotary gallop), respectively. In the transverse gallop, the gravitational193

and kinetic energies move to the hindlimb spring energy during the first half194
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of the hindlimb stance phase. The energy transitions into the kinetic energy195

during the last half of the stance phase, and then changes to the forelimb spring196

energy due to the touchdown of the forelimbs. Finally, it moves back to the197

gravitational and kinetic energies. In the rotary gallop, the gravitational and198

kinetic energies transition into the hindlimb spring energy during the first half199

of the hindlimb stance phase, similarly to the transverse gallop. However, the200

energy returns to the gravitational and kinetic energies during the last half of201

the stance phase unlike the transverse gallop. The similar energy transfer occurs202

in the forelimb stance phase. Although the rotary gallop has the energy transfer203

to the gravitational energy between the hindlimb and forelimb stance phases,204

the transverse gallop does not have such an energy transfer. This difference205

produces two types of galloping gaits; the transverse gallop with a single flight206

phase and the rotary gallop with two flight phases.207

4. Discussion208

In this paper, we produced galloping gaits using a simple model with a rigid209

body and four massless springs, and showed that the model can explain specific210

characteristics in a quadrupedal galloping gait, such as dependence of left–right211
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asymmetry in gait parameters on the locomotion speed, from the viewpoint of212

dynamics.213

4.1. Asymmetric gait parameters214

In quadrupedal galloping gaits, the relative phase between the left and right215

limbs is away from the antiphase, irrespective of species, as shown in Fig. 1A [1].216

In addition, the relative phase decreases and approaches in-phase as the loco-217

motion speed increases; however, it does not reach complete in-phase. These218

characteristics reflect the left–right asymmetry in touchdown angles, as shown219

in Fig. 3 [21]. We focused on this asymmetry to produce the galloping gait of220

our model. As the locomotion speed increased, the left–right touchdown an-221

gle difference decreased and approached 0 (but did not reach 0), as shown in222

Fig. 4. This means that the relative phase difference decreased and approached223

in-phase. This trend is consistent with the observations in quadrupedal gallop-224

ing gaits. Furthermore, the fact that there is no solution for the zero left–right225

touchdown angle difference means that this asymmetry in touchdown angles226

allows the model to produce periodic solutions for gaits, which may suggest an227

important role of left–right asymmetry in touchdown angles in the locomotion228

dynamics of galloping gaits.229
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4.2. Transverse and rotary gallops230

There are basically two types of galloping gaits (transverse and rotary gal-231

lops) in quadruped animals, and they have different footfall sequences as shown232

in Fig. 1B. The transverse gallop observed often in horses has a single flight233

phase after the liftoff of the forelimbs. In contrast, the fast rotary gallop ob-234

served often in dogs and cheetahs has another flight phase after the liftoff of235

the hindlimbs in addition to the flight phase after the liftoff of the forelimbs.236

Our simulation results showed that our model produced various galloping gaits237

depending on the parameters, which had different sequences of the stance condi-238

tion (Sequences A–E), as shown in Fig. 5. As locomotion speed and spring stiff-239

ness increased, the sequence of the stance condition changed from Sequence A240

to E. Sequences B and E corresponded to the transverse and rotary gallops,241

respectively (because we cannot determine left and right limbs due to the two-242

dimensional nature of our model, we decided these gaits from the number of243

flight phases). However, even when the sequences of the stance condition were244

identical, the locomotor behavior of the obtained gaits, such as the vertical COM245

movement, differed depending on the parameters, as shown in Fig. 6. Depending246

on the model parameters, both the sequences of stance condition and locomotor247

behavior of the obtained gaits were comparable to those in quadruped animals,248

which was evaluated by comparing our simulation results with measured data of249

quadruped animals. Although quadruped animals use these two different gaits250

depending on the locomotion speed and species, our simple model can explain251

these different gaits using only a few parameters.252

The transverse gallop has a small relative phase between the forelimbs and253

hindlimbs, while the rotary gallop has a large relative phase, as shown in Fig. 1B.254

In our simulation results, different parameters produced different relative phase255

between the forelimbs and hindlimbs, as shown in Fig. 5, which changed the256

number of flight phases and induced different galloping gaits. While the relative257

phase between the left and right limbs depends on the left–right touchdown angle258

difference δ, our modeling has no constraint on the relative phase between the259

forelimbs and hindlimbs, which were only determined through gait dynamics260
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with parameters. The dynamic mechanism that creates two different gaits was261

ascertained from the energy transfer during one gait cycle in Fig. 7. It has262

been suggested that horse transverse galloping and human skipping gaits have a263

similarity in the energy transfer between the leading and trailing limbs [30]. We264

also intend to investigate the mechanism by improving our model in the future.265

4.3. Gait stability266

Gait stability is an important factor in dynamic locomotion, as investigated267

in humans [17, 19, 38] and quadrupeds [2, 3, 10, 12, 35, 37]. Our simulation268

results showed that the galloping gait of our model was stable depending on the269

Froude number (Fig. 4). That is, our model had self-stability for a particular270

locomotion speed. More specifically, our model generated stable galloping gaits271

only at fast locomotion speeds (Fr0 > 5), which is consistent with the obser-272

vation in quadrupedal galloping gaits as shown in Fig. 1A [1]. At slow speeds,273

the obtained galloping gaits became unstable. This limitation of gait stability274

due to the decrease in locomotion speed suggests a change of the gait to an275

alternative gait, such as a trotting gait, to improve gait stability.276

4.4. Limitation of our model and future work277

In this study, we used a very simplified physical model for quadrupedal gal-278

loping gaits. For example, the galloping quadruped animal was modeled by279

a single rigid body and four massless springs, and symmetric assumptions be-280

tween the forelimbs and hindlimbs were used in the model parameters, such281

as the left–right touchdown angle difference δ and dimensionless spring stiff-282

ness k∗. Such simplifications resulted in quantitative differences in locomotion283

parameters from actual animals. However, it is clear that our model showed284

similar trends in the asymmetric gait parameters for the locomotion speed285

and in the generation of two different galloping gaits, which are characteris-286

tic for quadrupedal galloping gaits, as was confirmed by the comparisons with287

quadruped animals. This suggests that our simple model is capable of capturing288

the essential aspects needed to generate the galloping gait in quadruped animals289
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from the viewpoint of dynamics. To further clarify the underlying mechanisms290

in quadrupedal galloping gaits, we intend to develop a more sophisticated and291

plausible model by incorporating important dynamical factors, such as mus-292

cle actuators, frictional dissipation, and neuromechanical interactions, in future293

studies.294

Appendix A. Supplementary materials295

We prepared two supplementary movies on the transverse and rotary gallops296

obtained in our simulation:297

1. Transverse gallop using θ̇∗0 = 0.92, Fr0 = 14.4, and k∗ = 5.1.298

2. Rotary gallop using θ̇∗0 = 1.65, Fr0 = 25.7, and k∗ = 7.0.299
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