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Abstract. We consider the initial value problem for the semilinear Schrödinger
equation:

(NLS) i∂tu+∆u = λ|u|p, (t, x) ∈ [0, T )× Rn,

where p > 1, λ ∈ C\ {0} . In this paper, we will prove a small data blow-up
result of L2 and H1-solution for (NLS) in 1 < p < 1 + 4/n. Also, an upper

bound of the lifespan will be given (Theorem 2.2).

1. Introduction

We study the initial value problem for the nonlinear Schrödinger equation (NLS)
with a non-gauge invariant power nonlinearity:

(1.1)

{
i∂tu+∆u = λ |u|p , (t, x) ∈ [0, T )×Rn,

u (0, x) = εf (x) , x ∈ Rn,

where u is a complex-valued unknown function of (t, x) , p > 1, λ ∈ C\ {0} , T > 0,
f is a prescribed complex-valued function and ε > 0 is a small parameter.

Our aim in this paper is to improve the result obtained in [13] and determine
the critical exponent pc for (1.1). Here critical exponent means the number with
the following properties:

(1.2)

{
If p > pc, a small data global existence (SDGE) result holds.
If 1 < p < pc, SDGE does not hold.

This type problem has been studied extensively for the corresponding nonlinear heat
equation, the wave equation and the damped wave equation (see e.g. [4, 17, 26, 28]
and their references therein). It is well known that the critical exponent for the
heat equation and the damped wave equation is pF = 1+2/n and that for the wave
equation is the Strauss exponent pS (n− 1) (defined later). However, that of (1.1)
has not been well studied so far (see e.g. [7]).

On the other hand, there are many papers for NLS with a gauge invariant power
nonlinearity:

(1.3) i∂tφ+∆φ = µ |φ|p−1
φ, (t, x) ∈ R× Rn,

where µ ∈ R.
It is well known that large data local well-posedness holds for (1.3) in Hm-sense

(m = 0, 1) under 1 < p < pm, where pm = 1 + 4/ (n− 2m) is called Hm-critical
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exponent (if m = 1 and n = 1 or 2, then p1 stands ∞) (see e.g. [1, 8, 15, 27]).
Moreover, the L2-norm of those solutions for (1.3) conserves

(1.4) ∥φ (t)∥L2 = ∥φ (0)∥L2 , for any t ∈ R.

Thus L2-conservation law and the local well-posedness imply large data global well-
posedness of (1.3) in the L2-sense, in the L2-subcritical range, i.e. 1 < p < p0. In
the L2-critical case, i.e. p = p0, SDGE is well known.

Even if the nonlinearity do not satisfy the gauge invariant property such as (1.1),
large data local well-posedness also holds in the L2-sense under 1 < p ≤ p0. The
proof is the same as (1.3). And SDGE also can be obtained for (1.1) in L2-critical
case. However, unlike the gauge invariant nonlinearilty |u|p−1u, it is not trivial
whether the L2-conservation law (1.4) holds or not. Thus global well-posedness
results for (1.1) are not obvious in the L2-subcritical case. Especially, in [13], a
small data blow-up result was obtained in the case 1 < p ≤ pF . More precisely,
it was shown that local solution in the L2-sense can not be extended globally for
some f, no matter how small ε is. Then the following natural question arises: What
happens for the local L2-solution in the case pF ≤ p < p0 ? In this paper, we will
give an answer of a small data blow-up result in 1 < p < p0. This implies that pF
is not critical to L2-solution for (1.1).

In [10], an upper bound of the lifespan of L2-solutions was obtained in the case
1 < p < pF , though it has not been known in the case pF ≤ p < p0. In this
paper, we will extend the range of exponents to 1 < p < p0 and improve the upper
estimate. As the result, it can be seen that the upper estimate of the lifespan is
sharp (see below Remark 2.1). The proof of our theorem in this paper looks like
previous ones in [13] and [10]. However, there are some different points from their
papers. So we should compare the proofs of the results obtained in [13] and [10]
with ours. We explain the details in Section 4 (Concluding Remarks).

We are also interested in H1-solution. For H1-solution φ to (1.3), the energy
conservation law is well known, and so H1-solution is important from the physical
viewpoints. There are many results about global behavior of H1-solution to (1.3).
For example, some blow-up results for H1-solution to (1.3) were obtained (see
[6, 18, 19] etc.). However, the blow-up results obtained in [6, 18, 19] requires the
assumption that the data is large. So these results should be distinguished from
our small data blow-up results (Theorem 2.2).

Even if the nonlinearity do not satisfy the gauge invariant property such as (1.1),
SDGE of H1-solution is well known in the case p0 ≤ p ≤ p1, (see e.g. Theorem
6.2.1 in [1]). There are no results about global behavior of H1-solution to (1.1)
in the opposite case p < p0. Then we will prove a small data blow-up result of
H1-solution for (1.1) in the L2-subcritical case. This means that the exponent p0
is the threshold between SDGE and Blow-up of H1-solution.

Our main result (Theorem 2.2) can be extended to more general Hs-solution for
s ≥ 0, though we do not pursue this problem for simplicity.

We summarize SDGE and Blow-up results about (1.1) at the table:

f \ p 1 p0 p1

L2 Blow-up SDGE ?
H1 Blow-up SDGE ?

Our proof is based on a test-function method used in [16] to obtain an upper
bound of lifespan for some parabolic equation. This method was applied to other
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equations (see [24, 10, 12]). However, their argument does not work for L2-data.
Then we modify this method to fit (1.1) in L2-setting.

2. Main Result

Hereafter m stands for 0 or 1 for simplicity. In Subsection 2.2, we state our main
result, namely, a small data blow-up result for Hm-solution. In Subsection 2.3, we
recall lower bounds of the lifespan.

2.1. Local Well-Posedness in Hm. In this subsection, we state our main result
in this paper, which gives an upper bound of the lifespan Tε for Hm-solution in the
L2-subcritical case.

At first, we define the Hm-solution and the lifespan. We rewrite (1.1) into the
integral equation

(2.1) u (t) = εU (t) f − iλ

∫ t

0

U (t− s) |u|p ds,

where U(t) = exp(it∆). We consider the following function space:

Xm
T = C ([0, T ) ;Hm) ∩ Lγ

t (0, T ;W
m,ρ
x ) ,

where ρ = p + 1, γ = 4 (p+ 1) / {n (p− 1)} . The function u ∈ Xm
T which satisfies

(2.1) is called Hm-solution. We remember pm = 1 + 4/ (n− 2m) . The local well-
posedness of Hm-solution for large data is well known:

Proposition 2.1. Let 1 < p < pm, λ ∈ C, ε > 0 and f ∈ Hm. Then there exist a
positive time T = T (ε, ∥f∥Hm) > 0 and a unique solution u ∈ Xm

T of (2.1).

For the proof, see [14, 27]. Let Tε be the maximal existence time (lifespan):

Tε = T (m, ε, f) ≡ sup {T ∈ (0,∞] ; there exists a unique solution u ∈ Xm
T to (2.1)} .

2.2. Main Result (small data blow-up). Next, we state our small data blow-
up result for the Hm-solution. We denote λ1 = Reλ, λ2 = Imλ, f1 = Ref and
f2 = Imf. We choose the data as follows:

(2.2) λ2f1 (x) or − λ1f2 (x) ≥
{

|x|−k
, if |x| > 1,

0, if |x| ≤ 1,

where n/2 < k < 2/ (p− 1) . We note that such k exists if and only if 1 < p < p0.
The following is valid:

Theorem 2.2. Let 1 < p < p0, λ ∈ C \ {0} and f ∈ Hm. If f satisfies (2.2), then
there exist ε0 > 0 and C = C (k, p, λ) > 0 such that

Tε ≤ Cε1/κ

for any ε ∈ (0, ε0), where κ ≡ k/2−1/ (p− 1) . Moreover, the Hm-norm of solutions
blows up in finite time:

(2.3) lim
t→Tε−0

∥u (t)∥Hm = ∞.

This is an improvement of Theorem 2.2 of [13] and Theorem 2.4 of [10].
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Remark 2.1. Theorem 2.2 and the lower bound of the lifespan (obtained in Corol-
lary 2.3 and Corollary 2.4 below) imply

ε1/ω0 ≲ Tε ≲ ε1/κ

where ω0 = n/4 − 1/(p − 1) for small ε > 0. The optimality of estimates to the
lifespan is still open since it is not allowed to take k as n/2. Nevertheless, our
theorem implies that the optimal order is 1/ω0, since limk→n/2+0 κ = ω0.

Remark 2.2. (2.3) with m = 0 means that the L2-conservation law does not hold
for (1.1).

Remark 2.3. By the same argument of the main result, we can prove the same
small data blow-up result of L2-solution for L2∩Lr-data in the case 1 < p < 1+2r/n
for r ∈ [1, 2]. Indeed, if 1 < p < 1 + 2r/n, then we can choose k ∈ (n/r, 2/(p− 1))
and so we can take the initial function f belonging to L2 ∩ Lr and satisfying (2.2)
for n/r < k < 2/(p− 1).

In particular, if we choose r = 1+1/p ∈ [1, 2], then we get the small data blow-up
result for 1 < p < pS, where pS is the Strauss exponent which is the positive root of

(2.4) nx2 − (n+ 2)x− 2 = 0.

We note that SDGE result holds in the case pS < p < p0 for L2 ∩ L1+1/p-data.

Remark 2.4. For the critical case p = pm and the supercritical case p > pm, some
non-existence results to (1.1) were also obtained in the recent paper [11].

2.3. Lower Bounds of the lifespan. In this subsection, we recall some results
for lower bounds of the lifespan. These lower bounds follows from the Proposition
2.1 immediately:

Corollary 2.3. Under the same assumptions as in Proposition 2.1, the following
estimate is valid:

Tε ≥ Cε1/ωm ,

where

ωm =

{
n/4− 1/ (p− 1) , if m = 0,

n/2 (p+ 1)− 1/ (p− 1) , if m = 1,

and C = C (n, p, ∥f∥Hm) is a positive constant.

If p is restricted to 1 < p < p0 and ε≪ 1, then the lower estimate of H1-solution
can be improved as follows:

Corollary 2.4. Let 1 < p < p0, λ ∈ C, ε > 0 and f ∈ H1. Then the following
estimate is valid:

Tε ≥ Cε1/ω0 ,

where C = C (n, p, ∥f∥H1) is a positive constant.

Moreover, SDGE is well known in Hm-critical:

Corollary 2.5. Let p = pm, λ ∈ C and f ∈ Hm. Then there exists ε0 > 0 such
that Tε = ∞ for ε ∈ (0, ε0) .

For the proof, see e.g. [1, 2, 15].
Here we remark a SDGE result of H1-solution for (1.1) in p0 ≤ p < p1:
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Proposition 2.6. Let p0 ≤ p < p1, λ ∈ C and f ∈ H1. Then there exists ε0 > 0
such that Tε = ∞ for ε ∈ (0, ε0) .

For the proof, see Theorem 6.2.1 in [1].

3. Proof of Theorem 2.2

3.1. Test-function method. In this subsection, we prepare some integral inequal-
ities by using some test-functions. We introduce a non-negative smooth function ϕ
as follows, which was constructed in the papers [3, 5]:

ϕ (x) = ϕ (|x|) , ϕ (0) = 1, 0 < ϕ (x) ≤ 1 for |x| > 0,

where ϕ (|x|) is decreasing of |x| and ϕ (|x|) → 0 as |x| → ∞ sufficiently fast.
Moreover, there exists µ > 0 such that

(3.1) |∆ϕ| ≤ µϕ, x ∈ Rn,

and ∥ϕ∥L1 = 1. This can be done by letting ϕ (r) = e−rν for r ≫ 1 with ν ∈ (0, 1]
and extending ϕ to [0,∞) by a smooth approximation. Let θ be sufficiently large
and

η (t) = ηT (t) =

{
0,

(1− t/T )
θ
,

if t > T,
if 0 ≤ t ≤ T,

where T > 0. Furthermore, set ηR (t) = η
(
t/R2

)
, ϕR (x) = ϕ (x/R) and ψR (t, x) =

ηR (t)ϕR (x) for R > 0. We also denote LR =
[
0, TR2

)
.

First, we reduce the integral equation (2.1) into the weak form. Hereafter, solu-
tion stands for L2 or H1-solution.

Lemma 3.1. Let u be a solution of (1.1) on [0, Tε). Then u satisfies∫
LR×Rn

u(−i∂t (ψR) + ∆ (ψR))dxdt

= iε

∫
Rn

f (x)ϕR (x) dx+ λ

∫
LR×Rn

|u|p ψRdxdt,(3.2)

for any T,R > 0 with TR2 < Tε.

This lemma can be proved in the standard manner (see Proposition 3.1 in [13]).
Next, we will lead an integral inequality. Hereafter we only consider the case of

λ1 > 0 for simplicity. The other cases can be treated in the almost same way.
We introduce some notations:

IR (T ) =

∫
[0,TR2)×Rn

|u|p ψRdxdt,

JR = ε

∫
Rn

−f2 (x)ϕ (x/R) dx,

A (T ) =

(∫
[0,T )×Rn

|∂tη (t)|q η (t)−q/p
ϕ (x) dxdt

)1/q

and

B (T ) = µ

(∫
[0,T )×Rn

ηT (t)ϕ (x) dxdt

)1/q

,
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where q = p/ (p− 1) . By the direct computation, we have

(3.3) A (T ) = apT
−1/p, B (T ) = µbpT

1/q,

where ap = θ {θ − 1/ (p− 1)}−1/q
, bp = (θ + 1)

−1/q
.We also denote D (T ) =

A (T ) +B (T ) . Then we have the following:

Lemma 3.2. Let u be a solution of (1.1) on [0, Tε) . Then the following inequality
holds:

(3.4) λ1IR (T ) + JR ≤ RsIR (T )
1/p

D (T )

for any T,R > 0 with TR2 < Tε, where s = −2 + (2 + n) /q.

Proof. Since u is a solution on [0, Tε) and TR
2 < Tε, we get (3.2). Moreover, note

that λ1 > 0, by taking real part as (3.2), we obtain

λ1IR (T ) + JR =

∫
LR×Rn

Re {u (−i∂t (ψR) + ∆ (ψR))} dxdt

≤
∫
LR×Rn

|u| {|∂t (ψR)|+ |∆(ψR)|} dxdt

≡ K1
R +K2

R(3.5)

We note that (∂tη) (t) = 0 except on (0, T ) . By using the identity

∂tψR (t, x) = R−2ϕR (x) (∂tη)
(
t/R2

)
and the Hölder inequality, we can get

K1
R = R−2

∫
LR×Rn

|u|ψ1/p
R

∣∣(∂tη) (t/R2
)∣∣ η−1/p

R ϕ
1/q
R dxdt

≤ R−2IR (T )
1/p

(∫
LR×Rn

∣∣(∂tη) (t/R2
)∣∣q η−q/p

R ϕRdxdt

)1/q

= IR (T )
1/p

A (T )Rs,(3.6)

where we have used the changing variables with t/R2 = t′ and x/R = x′ to obtain
the last identity. Next, by the identity ∆ (ϕ (x/R)) = R−2 (∆ϕ) (x/R) , the Hölder
inequality and the estimate (3.1), we have

K2
R = R−2

∫
LR×Rn

|u| η
(
t/R2

)
|(∆ϕ) (x/R)| dxdt

≤ µR−2

∫
LR×Rn

|u|ψRdxdt

≤ µR−2IR (T )
1/p

(∫
LR×Rn

ψRdxdt

)1/q

= IR (T )
1/p

B (T )Rs,(3.7)

where we have used the changing variables again. By combining the estimates
(3.5)-(3.7), we have the conclusion. □
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3.2. Upper estimate of JR. Next, we give an upper bound of JR. Let σ > 0 and
0 < ω < 1. We introduce the function

(3.8) Ψ (σ, ω) ≡ max
x≥0

(σxω − x) = (1− ω)ω
ω

1−ω σ
1

1−ω .

The following estimate is valid:

Lemma 3.3. Let u be a solution of (1.1) on [0, Tε) . Then the estimate

(3.9) JR ≤ C1R
sqD (T )

q

holds for any T,R > 0 with TR2 < Tε, where C1 = λ1−q
1 (p− 1) (1/p)

q
.

The proof of this lemma is based on that of Theorem 3.3 in [16] and Theorem
2.2 in [24].

Proof. Since u is a solution on [0, Tε) , by using (3.4), we obtain

JR ≤ RsD (T ) IR (T )
1/p − λ1IR (T ) ≤ λ1Ψ(D (T )Rs/λ1, 1/p) .

By (3.8), we have (3.9), which completes the proof of the lemma. □

3.3. Proof of Theorem 2.2. In this subsection, we give a proof of Theorem 2.2.
When λ1 > 0, we may assume that f2 satisfies

(3.10) −f2 (x) ≥
{
λ−1
1 |x|−k

, if |x| > 1,
0, if |x| ≤ 1,

where n/2 < k < 2/ (p− 1) .

Proof. First, we note that by Corollary 2.3, there exists ε0 > 0 such that Tε > 1
for any ε ∈ (0, ε0) . Next, we consider the lower bound of JR. By changing variables
and (3.10), we have

JR = εRn

∫
Rn

−f2 (Rx)ϕ (x) dx

≥ λ−1
1 εRn−k

∫
|x|≥1/R

|x|−k
ϕ (x) dx

≥ λ−1
1 εRn−k

∫
|x|≥1/R0

|x|−k
ϕ (x) dx = CkεR

n−k.

for any R > R0, where 0 < R0 <
(
a−1
p bp

)1/2
is a constant.

Next, let τ ∈ (1, Tε) and R > R0. By using (3.9) with T = τR−2, we have

(3.11) ε ≤ C−1
k C1

{
RsD

(
τR−2

)}q
R−n+k ≡ C2H (τ,R) ,

where C2 = C−1
k C1. By (3.3), we can rewrite H as

(3.12) H (τ,R) ≡ R−n+k
{
D
(
τR−2

)
Rs
}q

=
(
apτ

−1/pRα1 + µbpτ
1/qR−α2

)q
,

where α1 = k/q, α2 = 2− k/q.

For any τ ∈ (1, Tε) , setting Rτ =
(
a−1
p bpτ

)1/2
> R0, we have

(3.13) H (τ,Rτ ) = C3τ
κ,
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where κ = k/2 − 1/ (p− 1) and C3 = (1 + µ)qa
(q/2)α2
p b

(q/2)α1
p . By combining

(3.11) and (3.13), we have ε ≤ C4τ
κ, with C4 = C2C3. From the assumption

k < 2/ (p− 1) , we obtain κ < 0. Therefore, we can get

τ ≤ Cε1/κ

for any τ ∈ (1, Tε) , with some C > 0. Finally, we obtain Tε ≤ Cε1/κ.
Blow-up of L2 or H1-norm can be proved in the standard way (see e.g. [1, 13]).

We will omit the detail, which completes the proof of the theorem. □

4. Concluding Remarks

• (The differences of the proofs.) We explain the differences of the proofs
among Theorem 2.2 in [13], Theorem 2.4 in [10] and Theorem 2.2 in the
present paper.

There are two major different points between Theorem 2.2 in [13] and
Theorem 2.2 in this paper. Firstly the proof of Theorem 2.2 in [13] is based
on a contradiction argument. More precisely, the first author and Wakasugi
[13] assume that Tε = ∞ and they derive u ≡ 0 on [0,∞)× Rn and lead a
contradiction to the sign condition on the data f . However, we do not use
the contradiction argument in the proof of Theorem 2.2 in this paper, and
so we can derive the upper estimate (2.2) of the lifespan. Secondly, in the
proof of Theorem 2.2 in [13], they used the Lebesgue convergence theorem
to obtain (4.5) in their paper. To do so, they needed the assumption that
the data f belongs to L1. For the proof of Theorem 2.2 in this paper, we
choose the data f more concretely, however in our argument, the data f
may not belong to L1.

There are also two remarkably different points between Theorem 2.4 in
[10] and Theorem 2.2 in this paper. Firstly the proof of Theorem 2.2 is
much simpler and shorter than that of Theorem 2.4 in [10]. Secondly, in
the proof of Theorem 2.4 in [10], the result of Theorem 2.2 in [13] was used,
and so it was assumed that the data f belongs to L1-space. We emphasize
that we do not need the result of Theorem 2.2 in [13] in order to get our
theorem.

• (Faster decay case.) We should consider the global behavior of the solu-
tion in the case where the function f decays faster near infinity than ones
in our main theorem (Theorem 2.2). If 1 < p ≤ 1 + 2/n and the function
f decays faster near infinity as f belongs to L1, then the corresponding
solution to (1.1) blows up in finite time (See [13]). When 1+2/n < p < p0,
ε ≪ 1, and the function f decays faster, we do not know how the solution
to (1.1) behaves.
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