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The purpose of this review is to present some of the latest developments using
random techniques, and in particular, random matrix techniques in quantum infor-
mation theory. Our review is a blend of a rather exhaustive review and of more
detailed examples—coming mainly from research projects in which the authors were
involved. We focus on two main topics, random quantum states and random quantum
channels. We present results related to entropic quantities, entanglement of typical
states, entanglement thresholds, the output set of quantum channels, and violations
of the minimum output entropy of random channels. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4936880]

I. INTRODUCTION

Quantum computing was initiated in 1981 by Feynman at a conference on physics and
computation at the MIT, where he asked whether one can simulate physics on a computer. As for
quantum information theory (QIT), it is somehow the backbone of quantum computing, although it
emerged independently in the 1960s and 1970s (with, among others, Bell inequalities). In the past
20-30 years, it has witnessed a very fast development, and it is now a major scientific field of its
own.

In classical information theory, probabilistic methods have been at the heart of the
theory from its inception.101 In contrast, probabilistic methods have arguably played a
less important role in the infancy of quantum information theory—although probability
theory itself was cast at the heart of the postulates of quantum mechanics. However, the situation
has dramatically changed in the past 10-15 years, and probabilistic techniques have
nowadays proven to be very useful in quantum information theory. Quite often, these
probabilistic techniques are very closely related to problems in random matrix theory.

Let us explain heuristically why random matrix theory (RMT) is a natural tool for quantum
information theory, by comparing with the use of elementary probability in the concept of classical
information. In classical information, the first—and arguably one of the greatest—success of the
theory was to compute the relative volume of a typical set with Shannon’s entropy function. Here,
the main probabilistic tool was the central limit theorem (more precisely, an exponential version
thereof). The central limit theorem is a tool that is very well adapted to the study of product mea-
sures on the product of (finite) sets. In quantum information, sets and probability measures on these
sets, as well as measurements, are all replaced by matrices, and their non-commutative structure is
central to quantum information theory. In addition, the use of “probabilistic techniques” in classical
information theory is not a goal per se. It is a convenient mathematical tool to prove existence
theorems, for which non-random proofs are much more difficult to achieve. Incidentally, it is rather
natural to wonder what a “typical” set looks like.
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The situation is quite similar in quantum information theory: although there was no a priori
need for random techniques, some problems—in particular the minimum output entropy additivity
problem, which we discuss at length in this review—did not have an obvious non-random answer;
therefore, it became not only natural, but also important, to consider how “typical” quantum objects
behave. This was arguably initiated by the paper in Ref. 57. The results obtained in the first papers
were of striking importance in quantum information theory, and they pointed at the fact that well
established mathematical tools could be expected to be very useful tools to solve problems in
quantum information theory. All these problems were naturally linked with probability measures
on matrix spaces. The first tool that was recognized to play an important role was concentration
of measure. But more generally, all techniques were connected to the theory of random matrices.
Random matrix theory relies on a wide range of technical tools, and concentration of measure is one
of them among others.

The first results using random techniques in quantum information theory attracted a few
mathematicians—including the authors of this review, see also the bibliography—who undertook
to apply systematically the state of the art in random matrix theory in order to study questions in
quantum information theory.

Random matrix theory itself has a long history. Although it is considered as a field of mathe-
matics (or mathematical physics), it was not born in mathematics, but rather in statistics and phys-
ics. Wishart introduced the distribution that bears his name in the 1920s,112 in order to explain the
discrepancy between the eigenvalues of a measured covariance matrix, and an expected covariance
matrix. Later, Wigner had motivations from quantum physics when he introduced111 the semi-circle
distribution. Since then, random matrix theory has played a role in many fields of mathematics and
science, which includes the following:

• theoretical physics,113,72,78

• combinatorics and algebraic geometry,53,88

• integrable systems and partial differential equations,105

• complex analysis and Riemann-Hilbert problems,73

• operator algebras,108

• telecommunication,106

• finance,18 and
• number theory.71

The above list does certainly not exhaust the list of fields of application of random matrix
theory, but quantum information theory is definitely one of the most recent of them (and a very
natural one, too!).

Our goal in this paper is to provide an overview of a few important uses that random matrix
theory had in quantum information theory. Instead of being exhaustive, we chose to pick a few
topics that look important to us, and hopefully emblematic of the roles that random matrices could
play in the future in QIT. Obviously, our choices are biased by our own experience.

We would like to point out that random techniques have also played very important roles in
other aspects of quantum information theory, namely, Bell inequalities, and we refer to the excellent
review in Ref. 92 for that.

This paper is organized as follows: Section II provides some mathematical notation for quan-
tum information. It is followed by Section III that supplies background for random matrix and free
probability theory. The remaining sections are a selection of applications of random matrix theory to
quantum information, namely, Sec. IV: entanglement of random quantum states, Sec. V: properties
of output of deterministic states (of interest) under quantum channels, Sec. VI: study of all outputs
under specific random quantum channels, Sec. VII: the solution to the minimal output entropy
(MOE) additivity problems, and finally Sec. VIII: other applications of RMT in quantum physics,
and Sec. IX: a selection of open questions.
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II. BACKGROUND ON QUANTUM INFORMATION: QUANTUM STATES AND CHANNELS

In this section we record the basic facts from quantum information theory needed in the sequel.
The books in Refs. 87, 56, and 60 or the lecture notes in Ref. 96 are excellent references on the
subject.

A. Quantum states

The adjoint A∗ of a matrix A is the conjugate of its transpose. A matrix is said to be selfadjoint
iff it is equal to its adjoint. We callMsa

d
the collection of selfadjoint d × d matrices. We denote the

set of d-dimensional mixed quantum states (or density matrices) byDd,

Dd B {ρ ∈ Msa
d (C) : ρ ≥ 0 and Tr(ρ) = 1}. (2.1)

The collection of density matrices Dd is naturally associated to the Hilbert space Cd. One
of the fundamental postulates of quantum mechanics is that two disjoint systems can be studied
together by taking their Hilbert tensor product. For example, a system with state space Cd1 and
another one with state space Cd2 are studied together with the state space Cd1 ⊗ Cd2. In particular,
the density matrices have the structure ofDd1d2. Of particular interest is the subset

SEPd1,d2 B conv(Dd1 ⊗ Dd2) ⊆ Dd1d2.

This convex compact subset is interpreted as the collection of all “classical” density matrices on the
bipartite state. Unless d1 = 1 or d2 = 1, it is a strict subset of Dd1d2. It is called the collection of
separable states. States which are not separable are called entangled. The study of entangled states
is one of the cornerstones of quantum information theory. As a first (and paramount) example of
entangled state, consider the qubit Hilbert space C2 endowed with an orthonormal basis {e1,e2}, and
the state

D4 ∋ Ω2 = ω2ω
∗
2,

where

ω2 =
1
√

2
(e1 ⊗ e1 + e2 ⊗ e2),

called the maximally entangled qubit state. Similarly, qudits generalize qubits when C2 is replaced
by Cd. In this more general context, the maximally entangled state of two qudits is

Dd2 ∋ Ωd = ωdω
∗
d,

where

ωd =
1
√

d

d
i=1

ei ⊗ ei. (2.2)

B. Entropies

As in classical information theory,101 entropic quantities play a very important role in quan-
tum information theory. We define next the quantities of interest for the current work. Let ∆k =
{x ∈ Rk+ | k

i=1 xi = 1} be the (k − 1)-dimensional probability simplex. For a positive real number
p ∈ (0,1) ∪ (1,∞), define the Rényi entropy of order p of a probability vector x ∈ ∆k to be

Hp(x) = 1
1 − p

log
k
i=1

xp
i .

Since limp→1 Hp(x) exists, we define the Shannon entropy of x to be this limit, namely,

H(x) = H1(x) = −
k
i=1

xi log xi.
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We also define the values for the parameters p = 0,∞,

H0(x)= log #{i : xi , 0},
H∞(x)= − log ∥x∥∞.

We extend these definitions to density matrices by functional calculus,

H0(ρ)= log rk(ρ),
Hp(ρ)= 1

1 − p
log Tr ρp, p ∈ (0,1) ∪ (1,∞),

H(ρ)= H1(ρ) = −Tr ρ log ρ,

H∞(ρ)= − log ∥ρ∥∞.

C. Quantum channels

In quantum information theory, a quantum channel is the most general transformation of a
quantum system. Quantum channels generalize the unitary evolution of isolated quantum systems
to open quantum systems. Mathematically, we recall that a quantum channel is a linear completely
positive trace preserving map Φ fromMn(C) to itself. The trace preservation condition is necessary
since quantum channels should map density matrices to density matrices. The complete positivity
condition can be stated as

∀d ≥ 1, Φ ⊗ Id :Mnd(C) → Mnd(C) is a positive map.

The following three characterizations of quantum channels turn out to be very useful.

Proposition 2.1. A linear map Φ :Mn(C) → Mn(C) is a quantum channel if and only if one of
the following three equivalent conditions holds.

(1) Stinespring dilation. There exists a finite dimensional Hilbert space K = Cd, a density matrix
Y ∈ Md(C), and an unitary operator U ∈ Und such that

Φ(X) = TrK [U(X ⊗ Y )U∗] , ∀X ∈ Mn(C). (2.3)

(2) Kraus decomposition. There exists an integer k and matrices L1, . . . ,Lk ∈ Mn(C) such that

Φ(X) =
k
i=1

LiX L∗i , ∀X ∈ Mn(C)

and
k
i=1

L∗iLi = In.

(3) Choi matrix. The following matrix, called the Choi matrix of Φ,

Mn2(C) ∋ CΦ = [id ⊗ Φ](Ωd) =
n

i, j=1

Ei j ⊗ Φ(Ei j), (2.4)

is positive-semidefinite and satisfies [id ⊗ Tr](CΦ) = I.

It can be shown that the dimension of the ancilla space K in the Stinespring dilation theorem
can be chosen as d = dimK = n2 and that the state Y can always be considered to be a rank
one projector. A similar result holds for the number of Kraus operators: one can always find a
decomposition with k = n2 operators.

Going back to the entropic quantities, of special interest for the computation of capacities of
quantum channels to transmit classical information are the following quantities, called the minimum
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output entropies of the channel. As the Rényi entropies, they are indexed by some positive real
parameter p,

Hmin
p (Φ) = min

ρ∈Dn

Hp(Φ(ρ)). (2.5)

D. Graphical notation for tensors

Quantum states, tensors, and operations between these objects (composition, tensor product,
applying a state through a quantum channel, etc.) can be efficiently represented graphically. The
leading idea is that a string in a diagram means a tensor contraction. Many graphical theories for
tensors and linear algebra computations have been developed in the literature.93,24 Although they are
all more or less equivalent, we will stick to the one introduced in Ref. 30, as it allows to compute
the expectation of random diagrams in a diagrammatic way subsequently. For more details on this
method, we refer the reader to the paper in Ref. 30 and to other work which make use of this
technique.31,29,34,35,47,27,75

In the graphical calculus, matrices (or, more generally, tensors) are represented by boxes.
Each box has differently shaped symbols, where the number of different types of them equals
that of different spaces (exceptions are mentioned below). Those symbols are empty (white) or
filled (black), corresponding to primal or dual spaces. Wires connect these symbols, corresponding
to tensor contractions. A diagram is a collection of such boxes and wires and corresponds to an
element of an abstract tensor product space. Rather than going through the whole theory, we focus
next on a few key examples.

Suppose that each diagram in Figure 1 comes equipped with two vector spaces V1 and V2
which we shall represent, respectively, by circle and square shaped symbols. In the first dia-
gram, M is a tensor (or a matrix, depending on which point of view we adopt) M ∈ V ∗1 ⊗ V1,
and the wire applies the contraction V ∗1 ⊗ V1 → C to M . The result of the diagram Da is thus
TDa = Tr(M) ∈ C. In the second diagram, again there are no free decorations; hence, the result is
the complex number TDb

= ⟨y,M x⟩. Finally, in the third example, N is a (2,2) tensor or a linear
map N ∈ End(V1 ⊗ V2,V1 ⊗ V2). When one applies to the tensor N the contraction of the couple
(V1,V ∗1 ), the result is the partial trace of N over the space V1: TDc = TrV1(N) ∈ End(V2,V2).

III. BACKGROUND ON RANDOM MATRIX THEORY AND FREE PROBABILITY

A. Gaussian random variables

The probability density of the normal distribution is

f (x | µ,σ) = 1

σ
√

2π
e−

(x−µ)2
2σ2 .

Here, µ is the mean. The parameter σ is its standard deviation with its variance, then, σ2. A random
variable with a Gaussian distribution is said to be normally distributed.

Suppose X and Y are random vectors in Rk such that (X,Y ) is a 2k-dimensional normal random
vector. Then, we say that the complex random vector Z = X + iY has the complex normal distri-
bution. The normal distribution (respectively, random vector) are also called Gaussian distribution
(respectively, random vectors).

Historically, the first ensemble of random matrices having been studied is the Wishart
ensemble,112 see Ref. 13 [Chap. 3] or Ref. 2 [Section 2.1] for a modern presentation.

FIG. 1. Some simple diagrams.
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Definition 3.1. Let X ∈ Md×s(C) be a random matrix with complex, standard, independent and
identically distributed (i.i.d.) Gaussian entries. The distribution of the positive-semidefinite matrix
W = X X ∗ ∈ Md(C) is called a Wishart distribution of parameters (d, s) and is denoted byWd,s.

The study of the asymptotic behavior of Wishart random matrices is due to Marčenko and
Pastur,77 while the strong convergence in the theorem below has been proved by analytic tools such
as determinantal point processes. Let us also recover it as a direct consequence of the much more
general results.76

Theorem 3.2. Consider a sequence sd of positive integers which behaves as sd ∼ cd as d →
∞, for some constant c ∈ (0,∞). Let Wd be a sequence of positive-semidefinite random matrices
such that Wd is distributed according to Wd,sd. Then, the sequence Wd converges strongly to the
Marčenko-Pastur distribution πc given by

πc = max(1 − c,0)δ0 +

(b − x)(x − a)
2πx

1(a,b)(x) dx, (3.1)

where a = (1 − √c)2 and b = (1 + √c)2.
The Marčenko-Pastur distribution πc is sometimes called the free Poisson distribution. We

plotted in Figure 2 its density in the cases c = 1 and c = 4. The following theorem is the link
between combinatorics and probability theory for Gaussian vectors: it allows to compute moments
of any Gaussian vector, thanks to its covariance matrix. A Gaussian space V is a real vector space
of random variables having moments of all orders, with the property that each of these random
variables has centered Gaussian distributions. In order to specify the covariance information, such
a Gaussian space comes with a positive symmetric bilinear form (x, y) → E[x y]. Gaussian spaces
are in one-to-one correspondence with Euclidean spaces. In particular, the Euclidean norm of
a random variable determines it fully (via its variance) and if two random variables are given,
their joint distribution is determined by their angle. The following is usually called the Wick
lemma.

Theorem 3.3. Let V be a Gaussian space and x1, . . . , xk be elements in V. If k = 2l + 1, then
E[x1 · · · xk] = 0 and if k = 2l, then

E[x1 · · · xk] =


p = {{i1, j1}, . . . ,{il, jl}}
pairing of {1, . . . , k}

l
m=1

E[ximx jm]. (3.2)

In particular, it follows that if x1, . . . , xp are independent standard Gaussian random variables,
then

E[xk1
1 . . . xkp

p ] =
p
i=1

(2ki)!!.

FIG. 2. The density of the Marčenko-Pastur distributions π1 (left) and π4 (right).
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B. Unitary integration: Weingarten calculus

In this section, we gather some basic material on unitary integration and Weingarten calculus.
For a more complete exposition, we refer to Refs. 25 and 36. Note that there exist similar theories
for other classical groups (orthogonal, symplectic, etc.) but here, we stick to the unitary case.

Definition 3.4. Let n be a dimension parameter and σ a permutation of Sp. The unitary Wein-
garten function Wg(n,σ) is the coefficient of the (pseudo) inverse of the function σ → n#σ under the
convolution for the symmetric group (#σ denotes the number of cycles of the permutation σ).

To justify the introduction of the word “pseudo,” we note that the function σ → n#σ is invert-
ible when n is large, as it behaves like npδe as n → ∞. If n < p, the function is not invertible any
more. The definition still makes sense if one takes the pseudo-inverse instead of the inverse.

The function Wg is related to integrals with respect to the Haar measure on the unitary group.

Theorem 3.5. Let n be a positive integer and (i1, . . . , ip), (i′1, . . . , i′p), ( j1, . . . , jp), ( j ′1, . . . , j ′p) be
p-tuples of positive integers from {1,2, . . . ,n}. Then,

Un

Ui1 j1 · · ·Uip jpUi′1 j
′
1
· · ·Ui′p j

′
p

dU =


σ,τ∈§p

δi1i′σ(1) . . . δipi
′
σ(p)δ j1 j

′
τ(1) . . . δ jp j

′
τ(p)Wg(n, τσ−1).

(3.3)

If p , p′, then 
Un

Ui1 j1 · · ·Uip jpUi′1 j
′
1
· · ·Ui′

p′j
′
p′

dU = 0. (3.4)

Since we perform integration over large unitary groups, we are interested in the values of the
Weingarten function in the limit n → ∞. The following theorem describes the asymptotic behavior
of the Wg function; see Ref. 25 for a proof.

Theorem 3.6. For a permutation σ ∈ Sp, let Cycles(σ) denote the set of cycles of σ. Then,

Wg(n,σ) = (−1)n−#σ


c∈Cycles(σ)
Wg(n,c)(1 +O(n−2)) (3.5)

and

Wg(n, (1, . . . ,d)) = (−1)d−1cd−1


−d+1≤ j≤d−1

(n − j)−1, (3.6)

where ci =
(2i)!

(i+1)! i! is the i th Catalan number.

As a shorthand for the quantities in Theorem 3.6, we introduce the function Mob on the
symmetric group. Mob is invariant under conjugation and multiplicative over the cycles. It is
characterized by the following property: for any permutation σ ∈ Sp,

Wg(n,σ) = n−(p+|σ |)(Mob(σ) +O(n−2)), (3.7)

where |σ | = p − #σ is the length of σ, i.e., the minimal number of transpositions that multiply
to σ. The terminology for Mob comes from Moebius functions. Under identifying geodesic with
non-crossing partitions, Mob can be seen as a Moebius function on the incidence algebra of
the poset of non-crossing partitions. The lemma below is well-known, and it contains important
combinatorial properties of the distance function on the symmetric group; this result is contained
in Ref. 86.

Lemma 3.7. The function d(σ,τ) = |σ−1τ | is an integer valued distance on Sp. Besides, it has
the following properties:

• the diameter of Sp is p − 1;
• d(·, ·) is left and right translation invariant;
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• for three permutations σ1,σ2, τ ∈ Sp, the quantity d(τ,σ1) + d(τ,σ2) has the same parity as
d(σ1,σ2); and
• the set of geodesic points between the identity permutation id and some permutation σ ∈ Sp

is in bijection with the set of non-crossing partitions smaller than π, where the partition
π encodes the cycle structure of σ. Moreover, the preceding bijection preserves the lattice
structure.

C. Graphical interpretation of Wick and Weingarten calculi

The main motivation for the graphical calculus introduced previously is to interpret nicely the
above integration Theorems 3.3 and 3.5. We consider first the case of the Weingarten calculus. The
key to an interpretation relies on the concept of removal of boxes U and U from a diagram.

A removal r is a way to pair decorations of the U and U boxes appearing in a diagram. It
consists in a pairing α of the white decorations of U boxes with the white decorations of U boxes,
together with a pairing β between the black decorations of U boxes and the black decorations of
U boxes. Assuming that D contains p boxes of type U and that the boxes U (respectively, U) are
labeled from 1 to p, then r = (α, β), where α, β are permutations of Sp. The set of all removals of U
and U boxes is denoted by RemU(D).

A removal r ∈ RemU(D) yields a new diagram Dr associated to r , which has the important
property that it no longer contains boxes of type U or U. One starts by erasing the boxes U and U
but keeps the decorations attached to them. Assuming that one has labeled the erased boxes U and
U with integers from {1, . . . ,p}, one connects all the (inner parts of the) white decorations of the
ith erased U box with the corresponding (inner parts of the) white decorations of the α(i)th erased
U box. In a similar manner, one uses the permutation β to connect black decorations. In Ref. 30, we
proved the following result.

Theorem 3.8. The following holds true:

EU(D) =


r=(α,β)∈RemU(D)
DrWg(n,α β−1).

In the case where diagrams also involve a box G corresponding to a Gaussian random matrix,
we are also able to compute the expected value conditional to the σ-algebra of G by graphical
methods, yielding a new interpretation of Wick formula.

Namely, the expectation value of a random diagram D can be computed by a removal proce-
dure as in the unitary case. Without loss of generality, we assume that we do not have in our diagram
adjoints of Gaussian matrices, but instead their complex conjugate box. This assumption allows for
a more straightforward use of Wick Lemma 3.3. As in the unitary case, we can assume that D
contains only one type of random Gaussian box G; the other independent random Gaussian matrices
are assumed constant at this stage as they shall be removed in the same manner afterwards.

A removal of the diagram D is a pairing between Gaussian boxes G and their conjugates G.
The set of removals is denoted by RemG(D) and it may be empty: if the number of G boxes is
different from the number of G boxes, then RemG(D) = ∅ (this is consistent with the first case of
Wick formula (3.2)). Otherwise, a removal r can identified with a permutation α ∈ Sp, where p is
the number of G and G boxes. The main difference between the notion of a removal in the Gaussian
and the Haar unitary cases is as follows: in the Haar unitary (Weingarten) case, a removal was
associated with a pair of permutations: one has to pair white decorations of U and U boxes and,
independently, black decorations of conjugate boxes. On the other hand, in the Gaussian/Wick case,
one pairs conjugate boxes: white and black decorations are paired in an identical manner; hence,
only one permutation is needed to encode the removal.

To each removal r associated to a permutation, α ∈ Sp corresponds to a removed diagram
Dr constructed as follows. One starts by erasing the boxes G and G but keeps the decorations
attached to these boxes. Then, the decorations (white and black) of the ith G box are paired with the
decorations of the α(i)th G box in a coherent manner, see Figure 3.
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FIG. 3. Pairing of boxes in the Gaussian case.

The graphical reformulation of Wick Lemma 3.3 becomes the following theorem from Ref. 31.

Theorem 3.9. The following holds true:

EG[D] =


r ∈RemG(D)
Dr .

D. Some elements of free probability theory

A non-commutative probability space is an algebraA with unit endowed with a tracial state φ.
An element of A is called a (non-commutative) random variable. In this paper, we shall be mostly
concerned with the non-commutative probability space of random matrices (Mn(L∞−(Ω,P)),E
[n−1Tr(·)]) (we use the standard notation L∞−(Ω,P) = ∩p≥1Lp(Ω,P)).

Let A1, . . . ,Ak be subalgebras of A having the same unit as A. They are said to be free if for
all ai ∈ A ji (i = 1, . . . , k) such that φ(ai) = 0, one has

φ(a1 · · · ak) = 0

as soon as j1 , j2, j2 , j3, . . . , jk−1 , jk. Collections S1,S2, . . . of random variables are said to be
free if the unital subalgebras they generate are free.

Let (a1, . . . ,ak) be a k-tuple of selfadjoint random variables and let C⟨X1, . . . ,Xk⟩ be the free
∗-algebra of non-commutative polynomials on C generated by the k indeterminates X1, . . . ,Xk. The
joint distribution of the family {ai}ki=1 is the linear form

µ(a1, ...,ak) : C⟨X1, . . . ,Xk⟩→ C
P → φ(P(a1, . . . ,ak)).

In the case of a single, self-adjoint random variable x, if the moments of x coincide with those of a
compactly supported probability measure µ, i.e.,

∀p ≥ 1, φ(xp) =


tpdµ(t),
we say that x has distribution µ. The most important distribution in free probability theory is the
semicircular distribution

µSC(0,1) =
√

4 − x2

2π
1[−2,2](x)dx,

which is, for reasons we will not get into, the free world equivalent of the Gaussian distribution in
classical probability (see Ref. 86 [Lecture 8] for the details, and Fig. 4 for a plot). A random variable
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FIG. 4. The density of the semicircular distributions µSC(0,1) (left) and µSC(1,1/4) (right).

x having distribution µSC(0,1) has the Catalan number for moments,

φ(xp) =



Catp B
1

p + 1

(
2p
p

)
, if p is even

0, if p is odd
.

More generally, if x has distribution µSC(0,1), we say that y = σx + m has distribution

µSC(m,σ2) =


4σ2 − (x − m)2
2πσ2 1[m=2σ,m+2σ](x)dx. (3.8)

Given a k-tuple (a1, . . . ,ak) of free random variables such that the distribution of ai is µai,
the joint distribution µ(a1, ...,ak) is uniquely determined by the µai’s. A family (an

1 , . . . ,a
n
k
)n of

k-tuples of random variables is said to converge in distribution towards (a1, . . . ,ak) iff for all
P ∈ C⟨X1, . . . ,Xk⟩, µ(an1 , ...,ank )(P) converges towards µ(a1, ...,ak)(P) as n → ∞. Sequences of random
variables (an

1 )n, . . . , (an
k
)n are called asymptotically free as n → ∞ iff the k-tuple (an

1 , . . . ,a
n
k
)n

converges in distribution towards a family of free random variables.
The following result is contained in Ref. 107 (see also Ref. 36).

Theorem 3.10. Let {U (n)
k

}k ∈N be a collection of independent Haar distributed random matrices
of Mn(C) and {W (n)

k
}k ∈N be a set of constant matrices of Mn(C) admitting a joint limit distribution

as n → ∞ with respect to the state n−1 Tr. Then, almost surely, the family {U (n)
k
,W (n)

k
}k ∈N admits a

limit ∗-distribution {uk, wk}k ∈N with respect to n−1 Tr, such that u1, u2, . . . ,{w1, w2, . . .} are free.

Given two free random variables a,b ∈ A, the distribution µa+b is uniquely determined by µa
and µb. The free additive convolution of µa and µb is defined by µa � µb = µa+b. When x = x∗ ∈
A, we identify µx with the spectral measure of x with respect to τ. The operation � induces a binary
operation on the set of probability measures on R. Similarly, we write µa � µb = µa−b.

IV. ENTANGLEMENT OF RANDOM QUANTUM STATES

A. Probability distributions on the set of quantum states

In this section, we review a few natural models of random quantum states, and we describe their
typical entanglement properties.

1. Random pure quantum states

The first model for random quantum states we look at is the uniform measure on pure quantum
states, i.e., extreme points of Dd (the rank one selfadjoint projections). Indeed, the set of pure
quantum states of a finite dimensional Hilbert space H = Cd can be identified, up to a phase, with
the set of points on the unit sphere of H , {x ∈ Cd : ∥x∥ = 1}. On this set, there is a canonical
probability measure, the uniform (or Lebesgue) measure.
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Definition 4.1. A random pure quantum state x ∈ Cd is said to follow the uniform distribution if
x is uniformly distributed on the unit sphere of Cd. We denote the uniform distribution of pure states
in Cd by χd.

The uniform distribution has the following important properties [Ref. 83, Section 2.1].

Proposition 4.2. Let x ∈ Cd be a uniformly distributed pure quantum state, x ∼ χd. Then, we
have the following.

(1) For any unitary operator U ∈ Ud (U can either be fixed or random, but independent from x),
the random pure state U x also has the uniform distribution, U x ∼ χd.

(2) If G ∈ Cd is random complex Gaussian vector, X ∼ NC(0, In), then X/∥X ∥ is a uniform
quantum pure state, X/∥X ∥ ∼ χd.

(3) Let U be a random unitary matrix distributed along the Haar measure onUn and let y be the
first column of U. Then, y ∈ Cd is a uniform quantum pure state, y ∼ χd.

In applications, whenever one needs to consider generic pure quantum states and that there
is no underlying structure in the Hilbert space where the states live, the uniform measure is used
indiscriminately. Later, in Section IV A 4, we shall encounter another probability distribution on
a Hilbert space H , which is to be used in the case where the space has a tensor product structure
H = H1 ⊗ · · ·Hk.

A different possibility was considered in Ref. 85, starting from the first point in 4.2, and replac-
ing the Haar unitary U with the value of the unitary Brownian motion at some fixed time t (recall
that the Haar measure is recovered at the limit t → ∞). The resulting measure depends on the time
t > 0 and on the initial vector x on which the unitary acts. We refer the interested reader to Ref. 85
for the details.

2. The induced ensemble

We introduce in this section a family of probability distributions on the set of (mixed) quantum
states Dd which has a nice physical interpretation and, at the same time, a simple mathematical
presentation.

The following family was introduced by Braunstein in Ref. 20 and studied by Hall,52 and later,
in great detail, by Życzkowski and Sommers.116,104

Definition 4.3. Given two positive integers d, s, consider a random pure quantum state x ∈
Cd ⊗ Cs. The distribution of the random variable

ρ = [idd ⊗ Trs](xx∗) ∈ Dd

is called the induced measure of parameters (d, s) and it is denoted by νd,s.

We gather in the following proposition some basic facts about the measures (for the proofs, see
Ref. 116).

Proposition 4.4. Let Dd ∋ ρ ∼ νd,s be a density matrix having an induced distribution of
parameters (d, s).
(1) With probability one, ρ has rank min(d, s).
(2) For any unitary operator U ∈ Ud (fixed or independent from ρ), the density matrix U ρU∗ has

the same distribution as ρ.
(3) There exist a unitary matrix U ∈ Ud and a diagonal matrix ∆ = diag(λ1, . . . , λd) such that U

is Haar distributed, U and ∆ are independent, and ρ = U∆U∗; we say that the radial and the
angular parts of ρ are independent.

(4) The eigenvalues (λ1, . . . , λd) have the following joint distribution:

Cd,s1λ1+· · ·+λd=1

d
i=1

1λi≥0


1≤i< j≤d

(λi − λ j)2
d
i=1

λs−d
i ,
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where Cd,s is the constant

Cd,s =
Γ(ds)d−1

i=0 Γ(s − i)Γ(d + 1 − i) .

Remark 4.5. Importantly, in the case s = d, the distribution νd,d is precisely the Lebesgue mea-
sure on the compact set Dd, seen as a subset of the affine subspace {A ∈ Msa

d
(C) : Tr(A) = 1}, see

Ref. 116 [Section 2.4]. The measure νd,d is sometimes called the Hilbert-Schmidt measure, since it
is induced by the Euclidian, or Hilbert-Schmidt, distance. Note that the volume of Dd is given by
Ref. 117 [Equation (4.5)],

vol(Dd) =
√

d(2π)d(d−1)/2 (d − 1)!
(d2 − 1)! .

In Ref. 83, the induced measures νd,s are shown to be closely related to the Wishart ensemble
Wd,s from Definition 3.1.

Proposition 4.6. Let W ∈ Md(C) be a Wishart matrix of parameters (d, s) and put ρ B W/Tr
(W ) ∈ Dd. Then, we have the following.

(1) The random variables ρ and Tr(W ) are independent.
(2) The distribution of Tr(W ) is chi-squared, with ds degrees of freedom.
(3) The random density matrix ρ follows the induced measure of parameters (d, s), i.e., ρ ∼ νd,s.
(4) The random variable W, conditioned on the (zero probability) event Tr(W ) = 1, has distribu-

tion νd,s.

Let us now discuss the asymptotic behavior of the probability measures νd,s. We first consider
the “trivial” regime, where d is fixed and s → ∞. The result here is as follows, see Ref. 83.

Proposition 4.7. For a fixed dimension d, consider a sequence of random density matrices (ρs)s
having distribution ρs ∼ νd,s. Then, almost surely as s → ∞, ρs → d−1Id.

The interesting scaling is the fixed ratio one, where both d and s = sd grow to infinity, in such
a way that sd/d → c, for a fixed constant c ∈ (0,∞). The next result is an easy consequence of
Theorem 3.2 and Proposition 4.6.

Proposition 4.8. For a fixed positive constant c, consider a sequence of random density matrices
(ρd)d having distribution ρd ∼ νd,sd; here, we assume that sd ∼ cd as d → ∞. Then, almost surely
as d → ∞, the empirical eigenvalue distribution of the random matrix sdρd converges weakly to the
Marčenko-Pastur distribution πc from (3.1),

lim
d→∞

1
d

d
i=1

δsdλi(ρd) = πc.

Informally, the result above can be stated as follows: consider a tensor product Hilbert space
H = Cd ⊗ C⌊cd⌋ and random, uniform pure state ψ ∈ H . Then, the eigenvalues of the partial trace
ρ = [id ⊗ Tr](ψψ∗) are, up to a scaling of cd, distributed along the Marčenko-Pastur distribution πc
(3.1).

Finally, as suggested by Proposition 4.6, in order to simulate on a computer quantum states
having distribution νd,s, one sets

ρ =
GG∗

Tr(GG∗) ,

where G ∈ Md×s(C) is an element from the Ginibre ensemble, i.e., G has i.i.d. standard complex
Gaussian entries; see Ref. 115 [Section III.D].
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3. The Bures measure

The Bures metric on the set of density matrices (see Ref. 17) is defined as

dB(ρ,σ) =


2 − 2Tr[(√ρσ√ρ)1/2].
From this metric, one can define a probability distribution νB on Dd, by asking that Bures balls of
equal radius have the same volume.

The properties of the measure νB have been extensively studied in Refs. 52, 103, and 89, and
we recall in the next proposition the main facts.

Proposition 4.9. Let ρ ∈ Dd be a random density matrix having distribution νB. Then, we have
the following.

(1) The eigenvalues λ1, . . . , λd of ρ have distribution,

CB1λ1+· · ·+λd=1

d
i=1

1λi>0λ
−1/2
i


1≤i< j≤d

(λi − λ j)2
λi + λ j

,

where the constant CB reads

CB = 2d2−d Γ(d2/2)
πd/2 d

i=1 Γ(i + 1) .

(2) If A ∈ Md(C) is a random Ginibre matrix and U ∈ Ud is a Haar random unitary indepen-
dent from A, then the random matrix

σ =
(I +U)AA∗(I +U)∗

Tr[(I +U)AA∗(I +U)∗]
has distribution νB.

4. Random states associated to graphs

The probability distributions on Dd we have considered so far do not make any assumptions
on the internal structure of the underlying Hilbert space Cd. When there is a relevant structure, it is
natural to introduce other probability measures that are adapted to the concept. This line of research
was carried out, among others, in Refs. 34 and 35, and we recall briefly below the notion of random
graph states defined there.

Let a graph G = (V,E) having k vertices V1, . . . ,Vk and m edges E1, . . . ,Em. Let N be a fixed
positive integer. We consider the (total) Hilbert space

H =
k
i=1

Hi,

whereHi = (CN)⊗di is the local Hilbert space at vertex i and di is the degree of Vi in G. Each copy
of CN inside Hi is associated to some edge E j incident to Vi. In turn, the total Hilbert space admits
two decompositions, relative to vertices and edges,

H =
k
i=1

Hi =

m
j=1

K j ≃ (CN)⊗2m,

whereK j = C
N ⊗ CN . Define now the following random pure state:

ϕG =



k
i=1

Ui





m
j=1

ω j


,

where {Ui}ki=1 are i.i.d. Haar distributed random unitary matrices acting on the local Hilbert spaces
at the vertices, and ω j are maximally entangled states (2.2). Note that in the above expression,
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the unitary operators “mix” the product of maximally entangled states at the vertices, yielding, in
general, a global entangled state.

The object of study in this section is a random mixed quantum state defined as follows: for a
subset S ⊆ {1,2, . . . ,2m} of copies of CN , define

ρG,S = [idS ⊗ TrSc](ϕGϕ∗G) ∈ DN |S |.

The statistical properties of the distribution of ρG,S are studied in Ref. 34 [Section 5]. Namely,
one proves that for some special types of marginals (called adapted), the area law holds exactly, and
a variant of it holds in a more general context.

Let us recall the definition of an adapted marginal and of the area law. To any graph state, we
associate two partitions of the set of n = 2m subspaces: a vertex partition Pvertex which encodes the
vertices of the graph, and a pair partition Pedge which encodes the edges (corresponding to maxi-
mally entangled states). In particular, two subsystemsHi andH j belong to the same block of Pvertex
if they are attached to the same vertex of the initial graph. Each edge (i, j) of the graph contributes
a block of size two {i, j} to the edge partition Pedge. Given a subset S of a set I of quantum systems
(i.e., Hilbert spaces), the marginal of a state ρ on the subsystem induced by indices of S is the partial
trace over the remaining subsystems T = I \ S: ρS = [idS ⊗ TrT](ρ). Similarly, the marginal of a
random graph state ϕGϕ∗G is specified by a 2-set partition Ptrace = {S,T}.

Definition 4.10. A marginal ρS is called adapted if

Ptrace ≥ Pvertex (4.1)

for the usual refinement order on partitions. In other words, a marginal is adapted if and only if the
number of traced out systems in each vertex is either zero or maximal. If this is the case, then the
partition boundary, which splits the graph into parts {S,T}, does not “cross” any vertices of the
graph.

Because of the above property, for adapted marginals, we can speak about traced out vertices,
because if one subsystem of a vertex is traced out, then all the other systems of that vertex are also
traced out. We now define precisely what we mean by area laws in the context of quantum states
associated to graphs. The partition {S,T} defines a boundary between the set of vertices that are
traced out and vertices that survive entirely.

Definition 4.11. The boundary of the adapted partition {S,T} is defined as the set of all (unori-
ented) edges e = {iS, jT} in the graph state with the property that iS ∈ S and jT ∈ T. Equivalently, it
is the set of edges of the type . The boundary of a partition shall be denoted by ∂S.

The area of this boundary is its cardinality |∂S|, i.e., the number of edges between S and T.

It was shown in Ref. 35 that the area law holds exactly for adapted marginals of graph states,
where arbitrary dimensions of subsystem are allowed. Note that, for a given (boundary) edge {i, j},
we have di = d j, the common dimension of the maximally entangled state corresponding to the
edge {i, j}. The following result follows from linear algebra considerations, and one does not need
random Haar unitary operators in this case.

Proposition 4.12. Let ρS be an adapted marginal of a graph state ϕG. Then, the entropy of ρS
has the following exact, deterministic value:

H(ρS) = |∂S| log N. (4.2)

For the system corresponding to the graph shown in Figure 5 with all subsystems of size N , the
von Neumann entropy reads

H(ρS) = 5 log N. (4.3)

This follows from the fact that ρS is in this case a unitary conjugation of a maximally mixed state
of size N5 with an arbitrary pure state of size N6. We refer the reader to Section VIII D for a more
general result in this direction (for non-adapted marginals).
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FIG. 5. An adapted marginal for a graph state. The dashed (green) line represents the boundary between the traced–out
subsystems T and the surviving subsystems S.

B. Moments: Average entropy

In this section, we present results concerning certain quantities of interest in quantum infor-
mation theory, and in particular, their average values over the different ensembles introduced
previously.

Let us start with the case of the uniform measure on the set of pure quantum states. The statis-
tics of the coordinates of a uniform random pure state can be obtained by the so-called spherical
integrals [Ref. 40, Section 2.7]. The following result could also be deduced from the Wick formula
in Section III A or from the Weingarten formula in Section III B.

Lemma 4.13. For any non-negative integers α1, . . . ,αd ≥ 0, we have

Ex∼χd

�|x1|2α1|x2|2α2 · · · |xd |2αd
�
= (d − 1)! α1!α2! · · · αd!

(d − 1 + α1 + α2 + · · · + αd)! .

We move now to the case of random density matrices having the induced distributions νd,s
discussed in Section IV A 2. Using the relation between this distribution and the Wishart ensemble,
the following result has been shown in Refs. 104 and 83.

Proposition 4.14. The moments of a random density matrix ρ ∈ Dd having distribution νd,s are
given by

ETr(ρq) = Γ(ds)
Γ(ds + q)

q
j=1

(−1) j−1 [s + q − j]q[d + q − j]q
(q − j)!( j − 1)! ,

where [a]q = a(a − 1) · · · (a − q + 1). In particular, the first few moments read

ETr(ρ2) = d + s
ds + 1

,

ETr(ρ3) = d2 + 3ds + s2 + 1
(ds + 1)(ds + 2) ,

ETr(ρ4) = d3 + 6d2s + 6ds2 + s3 + 5d + 5s
(ds + 1)(ds + 2)(ds + 3) .

A more detailed statistical study of these quantities (and thus, of the Rényi entropies) has
been performed in Refs. 39 and 82, where the existence of phase transitions has been showed. The
average von Neumann entropy of a random density matrix was conjectured by page in Ref. 91 and
later proved in Refs. 41, 98, and 100.
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Proposition 4.15. The average von Neumann entropy of a random density matrix having distri-
bution νd,s is

EH(ρ) =
ds

i=s+1

1
i
− d − 1

2s
.

C. Entanglement

The notion of quantum entanglement has been recognized to be at the center of quantum me-
chanics from the early days of the theory. The reader interested in entanglement theory is referred
to the excellent review paper in Ref. 66. In this review, we shall only be concerned with bipartite
entanglement. For entanglement properties of random quantum states in the multipartite setting, see
Ref. 1 and Section VIII C.

Recall that a quantum state ρ ∈ Dnk is separable iff it can be written as a convex combination
of tensor product states,

ρ =

r
i=1

piσi ⊗ τi,

where σi ∈ Dn, τi ∈ Dk, and (pi) is a probability vector: pi ≥ 0 and


i pi = 1. The set of separable
states is denoted by SEPn,k ⊆ Dnk and the states in its complement are called entangled.

In this section, we are going to review some results about the (Euclidean) volume of the set of
separable states. Equivalently, volumes can be expressed, up to a factor, from the probability that a
quantum state is separable, under the induced measure νnk,nk, see Remark 4.5.

The first result in this direction is quite remarkable.51 It has many interesting corollaries, one of
them being that the set SEP of separable states has non-empty interior.

Proposition 4.16. The largest Euclidean ball centered at the maximally mixed state I/(nk) and
contained inDnk is separable and has radius [nk(nk − 1)]−1/2.

In the case of the Euclidean measure νnk,nk, it has been shown in Ref. 8 [Theorem 1] that
the ratio between the volume of SEPn,n and Dn2 vanishes when n → ∞. In the case where the
parameter s of the induced measure νnk,s grows to infinity, while n and k are kept fixed, the measure
νnk,s concentrates around the maximally mixed state Ink (see Proposition 4.6), so

lim
s→∞
Pνnk,s[ρ ∈ SEPnk] = 1.

More precise estimates have been obtained in Ref. 12 in the case of the induced measures. In
order to present these results, we need first to introduce the concept of thresholds.

Consider a family of sets of density matrices Xd ⊆ Dd. The idea of a threshold captures the
behavior of the probability that a quantum state ρ ∈ Dd is an element of Xd, when the probability
is measured with the induced measure νd,s; we would like to know, when d → ∞, for which values
of the parameter s, the probability vanishes or becomes close to 1. More precisely, we say that a
threshold phenomenon with value c0 on the scale f occurs when the following holds: let sd ∼ c f (d)
for a constant c > 0. Then, we have the following.

(1) If c < c0, limd→∞Pνd,sd
[ρ ∈ Xd] = 0.

(2) If c > c0, limd→∞Pνd,sd
[ρ ∈ Xd] = 1.

This definition was first considered in the quantum information theory literature by Aubrun in Ref. 6
to study the positive partial transpose (PPT) criterion (see Sec. IV D).

We state now the main result in Ref. 12, regarding the threshold for the sets SEPn,n. The
following statement corresponds to Ref. 12, [Theorem 2.3], which deals with the so-called balanced
regime k = n. For the unbalanced regime k , n, see Ref. 12 [Section 7.2].

Theorem 4.17. There exist constants c,C and a function f (n) satisfying

cn3 < f (n) < Cn3log2(n)
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such that

(1) if sn < f (n), limn→∞Pν
n2,sn

[ρ ∈ SEPn,n] = 0,
(2) if sn > f (n), limn→∞Pν

n2,sn
[ρ ∈ SEPn,n] = 1.

Note that the above result does not enter precisely in the threshold framework, as it was defined
just above; one would need to eliminate the logarithm factors and to compute exactly the constants
in the statement above to achieve this, see Question 9.1. The result is nevertheless an important
achievement, given the fact that questions dealing directly with the set of separable states are
usually very difficult.

D. Entanglement criteria

The question whether a given mixed quantum state is separable or entangled has been proven
to be a NP-hard one.50 To circumvent this worse-case intractability, entanglement criteria are used.
These are efficiently computable conditions which are necessary for separability; in other words, an
entanglement criterion is a (usually convex) super-set Xd of the set of separable states, for which
the membership problem is efficiently solvable (see Ref. 9 for the number of such criteria needed
to obtain a good approximation of the set of separable states). As in Sec. IV C, from a probabilistic
point of view, estimating the probability that a random quantum state (sampled from the induced
ensemble) is an element of Xd is central. In what follows, we shall tackle this problem for different
entanglement criteria in the framework of thresholds.

Let us start with the most used example, the PPT criterion. The PPT criterion has been intro-
duced by Peres in Ref. 94: if a quantum state ρ ∈ Dnk is separable, then

ρΓ B [id ⊗ transp](ρ) ≥ 0.

Note that the positivity of ρΓ is equivalent to the positivity of ρΓ = [transp ⊗ id](ρ), so it does not
matter on which tensor factor the transpose application acts. We denote by PPT n,k the set of PPT
states

PPT n,k B {ρ ∈ Dnk : ρΓ ≥ 0} ⊇ SEPn,k .

This necessary condition for separability has been shown to be also sufficient for qubit-qubit and
qubit-qutrit systems (nk ≤ 6) in Ref. 64. The PPT criterion for random quantum states has first
been studied numerically in Ref. 114. The analytic results in the following proposition are from
Ref. 6 (in the balanced case) and from Ref. 14 (in the unbalanced case); see also Ref. 47 for some
improvements in the balanced case and the relation to meanders.

Proposition 4.18. Consider a sequence ρn ∈ Dnkn of random quantum states from the induced
ensemble νnkn,cnkn, where kn is a function of n and c is a positive constant.

In the balanced regime kn = n, the (properly rescaled) empirical eigenvalue distribution of the
states ρΓn converges to a semicircular measure µSC(1,1/c) of mean 1 and variance 1/c, see Eq. (3.8).
In particular, the threshold for the sets PPT n,n (n → ∞) is c0 = 4.

In the unbalanced regime kn = k fixed, the (properly rescaled) empirical eigenvalue distribu-
tion of the states ρΓn converges to a free difference of free Poisson distributions (see Section III D for
the definitions),

πck(k+1)/2 � πck(k−1)/2.

In particular, the threshold for the sets PPT n,k (k fixed, n → ∞) is

c0 = 2 + 2


1 − 1

k2 .

We consider next the reduction criterion (RED). Introduced in Refs. 63 and 21, the reduction
criterion states that if a bipartite quantum state ρ ∈ Dnk is separable, then

ρred B [id ⊗ R](ρ) ≥ 0,
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where R :Mk(C) → Mk(C) is the reduction map,

R(X) = Ik · Tr(X) − X.

We denote by REDn,k the set of quantum states having positive-semidefinite reductions (on the
second subsystem),

REDn,k B {ρ ∈ Dnk : ρred ≥ 0} ⊇ SEPn,k .

Several remarks are in order at this point. First, it is worth mentioning that in the literature, the
reduction criterion is sometimes defined to ask that both reductions, on the first and on the second
subsystems, are positive-semidefinite; since going from one reduction to the other one can be done
by simply swapping the roles of Cn and Ck, we focus in this work on the reduction on the second
subsystem. We gather in the next lemma some basic properties of the set REDn,k, see, e.g., Ref. 21
for the proof.

Lemma 4.19. The reduction criterion is, in general, weaker than the PPT criterion,

SEPn,k ⊆ PPT n,k ⊆ REDn,k ⊆ Dnk .

However, at k = 2 (i.e., when the system on which the reduction map acts is a qubit), the two criteria
are equivalent,

REDn,k = PPT n,k .

Although the reduction criterion is weaker than the PPT criterion for the purpose of detecting
entanglement, its interest stems from the connection with the distillability of quantum states, see
Ref. 65.

We gather in the next proposition the values of the thresholds for the sets REDn,k. Since, in
the case of the reduction criterion, the tensor factor on which the reduction map R acts does matter,
we need to consider two unbalanced regimes: one where n is fixed and k → ∞, and a second one
where n → ∞ and k is kept fixed. The results below have been obtained in Ref. 67 (for the second
unbalanced regime) and in Ref. 68 (for the balanced regime and the first unbalanced regime).

Proposition 4.20. The thresholds for the sets REDn,k are as follows:

(1) In the balanced regime, where both n, k → ∞, the threshold value for the parameter s of the
induced measure νnk,s is on the scale s ∼ cn at the value c0 = 1.

(2) In the first unbalanced regime, where n is fixed and k → ∞, the threshold value for the
parameter s of the induced measure νnk,s is on the scale s ∼ c at the value c0 = n.

(3) In the second unbalanced regime, where k is fixed and n → ∞, the threshold value for the
parameter s of the induced measure νnk,s is on the scale s ∼ cnk at the value

c0 =
(1 + √k + 1)2

k(k − 1) .

Let us mention now that both thresholds for the PPT and the RED criterion, in the unbalanced
case, have been treated, in a unified manner, in the recent preprint in Ref. 3. A general framework is
developed in Ref. 3 in which many examples of entanglement criteria fit.

Criteria of the type [id ⊗ f ](ρ) ≥ 0 have been studied from a random matrix theory perspective
in Ref. 28 in the case of random linear maps f . In Ref. 28, the authors introduce a family of entan-
glement criteria index by probability measures. The main idea is to consider maps f between matrix
algebras obtained from random Choi matrices. More precisely, consider a compactly supported
probability measure µ, and let Xd ∈ Mnd(C) a sequence of unitarily invariant random matrices
converging in distribution, as d → ∞, to µ (n being kept fixed). Let fd :Mn(C) → Md(C) be a
(random) linear map such that Choi matrix Eq. (2.4) of fd is Xd. Then, the positivity of the map
fd, asymptotically as d → ∞, depends only on µ and its free additive convolution powers [Ref. 28,
Theorem 4.2] (see Section III D for the definition of convolutions in free probability). One can even
make statements about the k-positivity of fd—for this purpose, we recall that a map is k-positive iff
it is positive when tensored by the identity mapMk(C) → Mk(C).
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Theorem 4.21. The sequence of random linear maps ( fd)d has the following properties:

(1) if supp(µ�n/k) ⊂ (0,∞), then, almost surely as d → ∞, fd is k-positive,
(2) if supp(µ�n/k) ∩ (−∞,0) , ∅, then, almost surely as d → ∞, fd is not k-positive.

From the above result, if follows that probability measures µ with the property that the maps
they yield are positive, but not completely positive, give interesting entanglement criteria. It was
shown in Ref. 28 [Theorem 5.4] that such maps can be obtained from shifted semicircular measures
(3.8), and that they can detect PPT entanglement. The global usefulness of such entanglement
criteria is left open (see Question 9.3).

We discuss next that the realignment criterion (RLN), introduced in Refs. 97 and 22, is of
different nature than the two other criteria we already discussed. For any matrix X ∈ Mn(C) ⊗
Mk(C), define

X r ln = L(X) ∈ Mn2×k2(C),
where L is the realignment map, defined on elementary tensors by

L(eie∗j ⊗ fa f ∗b) = ei f ∗a ⊗ e j f ∗b.

The realignment criterion states that a separable quantum state ρ ∈ Dnk satisfies

∥ρr ln∥1 ≤ 1,

where ∥ · ∥1 is the Schatten 1-norm (or the nuclear norm). As usual, we denote by RLN n,k the set
of quantum states satisfying the realignment criterion

RLN n,k B {ρ ∈ Dnk : ∥ρr ln∥1 ≤ 1} ⊇ SEPn,k .

The realignment criterion is not comparable to the PPT criterion; hence, there are PPT entan-
gled states detected by the RLN criterion and vice-versa. Since the inclusion partial relation cannot
be used to compare the two sets/criteria, the notion of threshold is particularly interesting in this
situation. The result below is from Ref. 7.

Proposition 4.22. The thresholds for the sets RLN n,k are as follows:

(1) In the balanced regime, where n = k → ∞, the threshold value for the parameter s of the
induced measure νn2,s is on the scale s ∼ cn2 at the value c0 = (8/3π)2 ≃ 0.72.

(2) In the unbalanced regime, where n → ∞ and k is fixed, the threshold value for the parameter
s of the induced measure νnk,s is on the scale s ∼ c at the value c0 = k2.

In particular, comparing the values above with the ones in Proposition 4.18, one can conclude
that, from a volume perspective, the realignment criterion is weaker than the PPT criterion (i.e., the
thresholds for RLN are smaller than the thresholds for PPT).

We gather in Table I the values of the thresholds for the different entanglement criteria dis-
cussed in this section, as well as for the set of separable states itself. The striking feature of these
values is the fact that the (bounds for the) thresholds for the set SEP, obtained in the important
work in Ref. 12, are one order of magnitude above the thresholds for the various entanglement
criteria. This means that, from a volume perspective, the set SEP is much smaller than the set of
states satisfying the different entanglement criteria.

Finally, in Ref. 75, Lancien studies the performance of r-extendibility criteria for random quan-
tum states. Recall that a bipartite quantum state ρAB ∈ Dnk is said to be r-extendible if there exists
a (r + 1)-partite state σABr ∈ Dnkr which is invariant under all permutations of the B-systems and
has ρAB as a marginal,

[idnk ⊗ Trkr−1](σABr) = ρAB.

Obviously, any separable state ρAB is r-extendible, for all r ≥ 1. Doherty, Parrilo, and Spedalieri
have shown in Ref. 38 that these conditions are also sufficient, see also Ref. 23.

Theorem 4.23. A bipartite quantum state ρAB ∈ Dnk is separable if and only if it is r-
extendible with respect to the system B for all r ∈ N.
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TABLE I. Thresholds for the sets of separable states SEP, PPT states
PPT , states satisfying the reduction criterion RED, and states satisfying
the realignment criterion RLN .

Balanced regime n, k → ∞ Unbalanced regime n→ ∞, k fixed

SEP n3 . s . n3log2n [n = k] nk2 . s . nk2log2(nk)

PPT
s ∼ cnk s ∼ cnk

c0= 4 [n = k] c0= 2+2


1− 1
k2

RED
s ∼ cn s ∼ cnk
c0= 1 c0=

(1+√k+1)2
k (k−1)

RLN
s ∼ cnk s fixed

c0= (8/3π)2 [n = k] c0= k
2

In Ref. 75, besides computing estimates on the average width of the set of r-extendible states,
Lancien computes a lower bound for the threshold value of these sets, for fixed r .

Proposition 4.24 (Ref. 75, Theorem 6.4). Fix r ≥ 1 and consider balanced random quantum
states ρn ∈ Dn2 having distribution νn2,sn. For any ε > 0, if the function sn is asymptotically
smaller than (1 − ε)(r − 1)2/(4r)n2 as n → ∞, then,

lim
n→∞
P[ρn is r-extendible] = 0.

In other words, the threshold c0 for the set of r-extendible states in the scaling s ∼ cn2 is larger
than (r − 1)2/(4r).

Notice that the analysis in Ref. 75 does not give any upper-bounds on the threshold c0, see
Question 9.2.

E. Absolute separability

Whether a quantum state ρ is separable or entangled does not only depend on the spectrum
of ρ: there are, for example, rank one (pure) states which are separable (ρ = ee∗ ⊗ f f ∗) and other
states which are entangled (ρ = Ω, see (2.2)). In other words, the separability/entanglement of a
quantum state depends also on its eigenvectors. In order to eliminate this dependence, in Ref. 74, the
authors introduced the set of absolutely separable states,

ASEPn,k =


U ∈Unk

U · SEPn,k ·U∗ = {ρ : U ρU∗ is separable ∀U ∈ Unk} ⊂ Dnk .

Obviously, the truth value of ρ ∈ ASEPn,k depends only on the spectrum λ of the density operator
ρ, so one could simply use

∆nk ∋ ASEPn,k = {λ : diag(λ) ∈ ASEPn,k}.
Similarly, one can define absolute versions (and the corresponding spectral variants) for the sets
PPT , RED, and RLN . The question whether not all, but a large fraction of quantum states
having a fixed spectrum are separable has been studied in Ref. 90.

An explicit description of the set APPT has been obtained in Ref. 61, as a finite set of
positive-semidefinite conditions. The analogue question for ARED has been settled in Ref. 69,
whereas the problem of finding an explicit description of the set ARLN remains open. Interest-
ingly, it has been shown in Ref. 70 that for qubit-qudit systems (min(n, k) = 2), absolute separability
is equivalent to the absolute PPT property. Later, in Ref. 4, evidence towards the general conjecture
ASEPn,k = APPT n,k (for all n, k) has been collected; in particular, the authors show that for all
n, k,APPT n,k ⊆ ARLN n,k.
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At the level of thresholds, the values (and even the scales) for ASEP and ARLN are
completely open. The following results for APPT and ARED are from Ref. 33 and Ref. 68,
respectively.

Proposition 4.25. The thresholds for the setsAPPT n,k are as follows:

(1) In the balanced regime, where n ≥ k → ∞, the threshold value for the parameter s of the
induced measure νnk,s is on the scale s ∼ cnk3 at the value c0 = 4.

(2) In the unbalanced regime, where n → ∞ and k is fixed, the threshold value for the parameter
s of the induced measure νnk,s is on the scale s ∼ cnk at the value c0 = (k + √k2 − 1)2.

The thresholds for the setsAREDn,k are as follows:

(1) In the balanced regime, where n, k → ∞, the threshold value for the parameter s of the
induced measure νnk,s is on the scale s ∼ cnk at the value c0 = 1.

(2) In the first unbalanced regime, where k → ∞ and n is fixed, the threshold value for the
parameter s of the induced measure νnk,s is on the scale s ∼ ck at the value c0 = n − 2.

(3) In the second unbalanced regime, where n → ∞ and k is fixed, the threshold value for the
parameter s of the induced measure νnk,s is on the scale s ∼ cnk at the value

c0 =

(
1 +

2
k
+

2
k

√
k + 1

)2

.

V. DETERMINISTIC INPUT THROUGH RANDOM QUANTUM CHANNELS

Although a global understanding of the typical properties of a random channel is desirable (and
this is the object of Section VI), obtaining results for interesting outputs of given random channels is
of intrinsic interest. For example, as we explain subsequently in Section VII B, the image of highly
entangled states under the tensor product of random channels is an important question, as it is one of
the keys to obtain violations for the additivity of the minimum output entropy.

Our first model is a one-channel model that consists in considering matrices Xn which have
a macroscopic scaling Tr(X p) ∼ n · φ(xp), where x is some non-commutative random variable. In
order to obtain states, we normalize

X̃ =
X

TrX
.

Therefore, the moments of the output matrix Z = Φ(X̃) are given by

E[Tr(Z p)] = E[Tr(Φ(X̃)p)] = E

Tr
Φ(X)p
(TrX)p


=
E[Tr(Φ(X)p)]

(TrX)p .

We consider different asymptotic regimes for the integer parameters n and k. It turns out that
the computations in the case of the regime k fixed, n → ∞ are more complicated and require the
formalism of free probability, see Ref. 31. To an integer k and a probability measure µ, we associate
the measure µ(k) defined by

µ(k) =
(
1 − 1

k

)
δ0 +

1
k
µ.

Proposition 5.1. The almost sure behavior of the output matrix Z = Φ(X̃) is given by the
following:

(I) When n is fixed and k → ∞, Z converges almost surely to the maximally mixed state

ρ∗ =
1
n

In.

(II) When k is fixed and n → ∞, the empirical spectral distribution of µ̄knZ converges to the
probability measure ν = [µ(k)]�k2

, where � denotes the free additive convolution operation,

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.54.110.31

On: Fri, 05 Feb 2016 01:09:02



015215-22 B. Collins and I. Nechita J. Math. Phys. 57, 015215 (2016)

µ is the probability distribution of x with respect to φ: φ(xp) = 
tp dµ(t), and µ̄ is the mean

of µ, µ̄ = φ(x).
(III) When n, k → ∞ and k/n → c, the empirical spectral distribution of the matrix nZ converges

to the Dirac mass δ1.

VI. RANDOM QUANTUM CHANNELS AND THEIR OUTPUT SETS

This section is the continuation of the previous one. However, we are interested here in a global
approach, i.e., we want to understand how the set of all outputs behaves. This section reviews the
salient known results in the chronological order.

A. Early results on random unitary channels

1. Levy’s lemma

Let us first recall briefly the statement of Levy’s lemma, as this is one of the historical starting
points of concentration of measure. Given µn the uniform probability measure on the unit sphere
Sn, we call Sn

ε the subset of Sn whose first coordinate has absolute value less than ε. In some sense,
Sn
ε is an ε-neighbourhood of the equator. Levy’s lemma states that there exists an universal constant

c > 0 such that µn(Sn
ε ) > 1 − exp(−cnε). In other words, for any ε > 0 (positive, but as small as

we want), an ε-neighbourhood of the equator concentrates all the mass of the sphere at exponential
speed as n grows.

Some results are already available in order to quantify the entanglement of generic spaces in
Grpn(Cn ⊗ Ck). The best result known so far is arguably the following theorem of Hayden, Leung,
and Winter in Ref. 58.

Theorem 6.1 (Ref. 58, Theorem IV.1). Let A and B be quantum systems of dimension dA and
dB with dB ≥ dA ≥ 3. Let 0 < α < log dA. Then, there exists a subspace S ⊂ A ⊗ B of dimension

d ∼ dAdB
Γα2.5

(log dA)2.5
such that all states x ∈ S have entanglement satisfying

H(λ(x)) ≥ log dA − α − β,

where β = dA/(dB log 2) and Γ = 1/1753.

For large dimensions, Aubrun5 studies quantum channels and obtains the following result.

Theorem 6.2. Consider a random unitary channel MN → MN obtained with k i.i.d. Haar
unitaries, as defined in Equation (6.3). For N ≫ k/ε2, such a channel is ε-randomizing with high
probability, i.e., it maps every state within distance ε/k of the maximally mixed state.

This slightly improves on the above result by Hayden, Leung, and Winter by optimizing their
discretization argument.

B. Results with a fixed output space

In this section, we fix two parameters, k ∈ N, t ∈ [0,1]. We are interested in a random sequence
Φn :Mn(C) → Mk(C) of quantum channels obtained by tracing out a random embedding Vn of Cn

in Ck ⊗ CN , where N = N(n) ∼ tnk. We denote Kn,k, t the output set Φn(Dn).
We introduce a norm on Rk which will have a very important role to play in the description of

the set Kn,k, t in the asymptotic limit n → ∞, see Ref. 15 for the details.

Definition 6.3. Recall that a II1 factor is a von Neumann algebra with a unique finite trace.
We can assume it to be one on the identity, and we will call it φ. For a positive integer k,
embed Rk as a self-adjoint real subalgebra R of a II1 factor A endowed with trace φ, so that
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φ((x1, . . . , xk)) = (x1 + · · · + xk)/k. Let pt be a projection of rank t ∈ (0,1] in A, free from R. On
the real vector space Rk, we are interested in the following norm, called the (t)-norm:

∥x∥(t) B ∥ptxpt∥∞, (6.1)

where the vector x ∈ Rk is identified with its image in R.

We now introduce the convex body Kk, t ⊂ ∆k as follows:

Kk, t B {λ ∈ ∆k | ∀a ∈ ∆k,⟨λ,a⟩ ≤ ∥a∥(t)}, (6.2)

where ⟨·, ·⟩ denotes the canonical scalar product in Rk. Kk, t is the intersection of the dual ball of the
(t)-norm with the probability simplex ∆k. Since it is defined by duality, Kk, t is the intersection of the
probability simplex with the half-spaces

H+(a, t) = {x ∈ Rk | ⟨x,a⟩ ≤ ∥a∥(t)}
for all directions a ∈ ∆k.

Let (Ω,F ,P) be a probability space in which the sequence or random vector subspaces (Vn)n≥1
are defined. Since we assume that the elements of this sequence are independent, we may assume
that Ω =


n≥1 GrN(Ck ⊗ Cn) and P = ⊗n≥1µn, where µn is the invariant measure on the Grass-

mann manifold GrN(Ck ⊗ Cn). Let Pn ∈ Mnk(C) be the random orthogonal projection whose image
is Vn. For two positive sequences (an)n and (bn)n, we write an ≪ bn iff an/bn → 0 as n → ∞.

Proposition 6.4. Let νn be a sequence of integers satisfying νn ≪ n. Almost surely, the follow-
ing holds true: for any self-adjoint matrix A ∈ Mk(C), the νnth largest eigenvalues of Pn(A ⊗ In)Pn

converge to ∥a∥(t), where a is the eigenvalue vector of A. This convergence is uniform on any
compact set of Msa

k
(C).

For the proof of this result, we refer to Ref. 15, where it was also shown that this set converges,
in a very strong sense, to the convex body Kk, t.

Theorem 6.5. Almost surely, the following holds true:

• Let O be an open set in ∆k containing Kk, t. Then, for n large enough, Kn,k, t ⊂ O.
• LetK be a compact set in the interior of Kk, t. Then, for n large enough,K ⊂ Kn,k, t.

C. More results about the output of random channels

More results are known about the output of random quantum channels. Instead of giving a full
list, let us state the following result from Ref. 26 that supersedes many results already known.

Theorem 6.6. Let k be a fixed integer, and Φn :Mn(C) → Mk(C) be a sequence of quantum
channels constructed with constant matrices and unitary matrices that are independent from each
other. Then, there exists a compact convex set K such that its random collection output sets converge
almost surely to K in the topology induced by the Hausdorff distance between compact sets.

This theorem includes in particular the following two important examples. First, the random
unitary channels

Φ̃n(X) = k−1


UiXU∗i , (6.3)

but also, more importantly, a product χn = Φn ⊗ Ξ, where Ξ is any quantum channel fixed in
advance, and Φn is any of the sequences considered previously.

Actually, there is even more, namely, in the previous theorem, the output set K can actually be
exactly realized via the collection of outputs of pure states (no need for all input states). In addition,
the boundary of the collection of output sets converges to the boundary of K in the Hausdorff dis-
tance (which means that any point in the interior of K is attained within finite time with probability
one), and for any finite collection of l elements in the interior of K , it is possible to find with
probability one in finite time a family of pre-images by pure states which are close to orthogonal to
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each other (the tolerance is arbitrary and can be fixed ahead of time). Somehow, this is the strongest
convergence one can hope for, and it is actually rather counterintuitive that the image of the extreme
points of a convex body (the input states) ends up filling exactly the image of the convex body.

As a corollary, however, we obtain the following.

Corollary 6.7. For the random family of quantum channels Φn, the Holevo capacity converges
with probability one. In particular, if the image set K contains the identity, with probability one,

χ(Φn) + Hmin(Φn) → log k .

Note that this result extends to many other sequences of random channels, cf. Refs. 46 and 26.

VII. THE ADDITIVITY PROBLEM FOR TENSOR PRODUCTS OF RANDOM QUANTUM
CHANNELS

This section is an important application of Sec. VI: the understanding of the collection of all
outputs through a typical quantum random channel enables us to obtain large violations of the
MOE. We start this section by reviewing the relevant concepts and definitions.

A. The classical capacity of quantum channels and the additivity question

The following theorem summarizes some of the most important breakthroughs in quantum
information theory in the last decade. It is based, in particular, on the papers of Refs. 55 and 59 and
concerns the minimum output entropies of quantum channels, defined in Eq. (2.5).

Theorem 7.1. For every p ∈ [1,∞], there exist quantum channels Φ and Ψ such that

Hmin
p (Φ ⊗ Ψ) < Hmin

p (Φ) + Hmin
p (Ψ). (7.1)

Except for some particular cases (p > 4.79109 and p > 249), the proof of this theorem uses the
random method, i.e., the channels Φ,Ψ are random channels, and the above inequality occurs with
non-zero probability. At this moment, we are not aware of any explicit, non-random choices for
Φ,Ψ in the case 1 ≤ p ≤ 2, see Question 9.6.

The additivity property for the minimum output entropy Hmin(·) was related in Ref. 102 to the
additivity of another important entropic quantity, the Holevo quantity

χ(Φ) = max
{pi,Xi}


H *
,


i

piΦ(Xi)+
-
−


i

piH(Φ(Xi))

.

The regularized Holevo quantity provides62,99 the classical capacity of a quantum channel Φ,
i.e., the maximum rate at which classical information can be reliably sent through the noisy channel.

B. Conjugate quantum channels and the MOE of their tensor product

In this subsection, we gather some known results about the MOE of tensor products of conju-
gate channels Ψ = Φ ⊗ Φ̄. These results will be used in Subsection VII C on counterexamples. Let
us stress from the beginning that there is much less known about the output eigenvalues of Ψ than
about those of a single random channel Φ. In particular, we do not have an explicit description of the
output set of Ψ, such as the one from Theorem 6.5. Actually, we have mostly upper bounds in this
case, coming from the trivial inequality

Hmin
p (Ψ) ≤ Hp([Φ ⊗ Φ̄](Ω)), (7.2)

whereΩ is maximally entangled state Eq. (2.2).
The first result in this direction is a non-random one, giving a lower bound on the largest

eigenvalue of the output of the maximally entangled state. To fix notation, let Φ : Md(C) → Mk(C)
be a quantum channel coming from an isometry V : Cd → Ck ⊗ Cn; here, note that the channel
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has different input and output spaces and the dimension which is traced out is n. In Ref. 59, the
authors observed that in the context of two random channels given by two dilations V1,V2 as above,
it is relevant to introduce the further symmetry V2 = V̄1, as it ensures that at least one eigenvalue is
always big.

Lemma 7.2. The largest eigenvalue of the output state Z = [Φ ⊗ Φ̄](Ωd) satisfies the following
inequality:

∥Z∥ ≥ d
nk
.

This result appeared several times in the literature (and it is sometimes referred to as the
“Hayden-Winter trick”), see Ref. 59 [Lemma 2.1] or Ref. 30 [Lemma 6.6] for a proof using the
graphical (non-random) calculus from Section II D.

In the context of random quantum channels, one can improve on the result above, by computing
the asymptotic spectrum of the output state Zn. This has been done in Ref. 30 in different asymptotic
regimes. Since in this review we focus on the regime where k is fixed and d ∼ tnk → ∞, we state
next Theorem 6.3 from Ref. 30.

Theorem 7.3. Consider a sequence of random quantum channels coming from random isome-
tries Φn : Mdn(C) → Mk(C), where dn is a sequence of integers satisfying dn ∼ tnk as n → ∞ for
fixed parameters k ∈ N and t ∈ (0,1). The eigenvalues of the output state

Mk2(C) ∋ Zn = [Φn ⊗ Φ̄n](Ωdn)
converge, almost surely as n → ∞, to

• t + 1−t
k2 , with multiplicity 1;

• 1−t
k2 , with multiplicity k2 − 1.

In order to prove such results, one uses the method of moments: using Weingarten formula
Eq. (3.3) from Section III B, it is shown in Ref. 30 [Section 6.1] that, for all p ≥ 1,

1
k2ETr(Z p

n ) =


α,β∈S2p

n#(α−1γ)k−2+#αd#(β−1δ)
n Wgnk(α, β),

where γ, δ are some fixed permutations in S2p; in Figure 6, the diagram for the output matrix Zn

is represented. The next step is to compute the dominating terms in the above sums, by finding
the pairs (α, β) corresponding to the terms having the largest n powers; this is done by replacing
dn = tkn + o(n) and using the asymptotic expression for the Weingarten factor from Theorem 3.6.
It turns out that the set of dominating pairs (α, β) is small, and one can compute, up to o(1) terms,
the sum, proving the result. Since the matrices Zn live in a space of fixed dimension (k2), a simple
variance computation allows to go from the convergence in moments to the almost sure convergence
of the individual eigenvalues.

Note that Theorem 7.3 improves on Lemma 7.2 in two ways: the norm of the output is larger,
and we obtain information on the other eigenvalues too. This turns out to be useful in obtaining
better numerical constants for the counterexamples to additivity, see the discussion in Section VII C.

Finally, the last result we would like to discuss in relation to products of conjugate channels
is Ref. 45 [Theorem 5.2]. The setting here is more general: the authors consider not only one copy
of a channel and its conjugate, but also 2r channels (in what follows, r is an arbitrary fixed positive
integer),

Ψn = Φ
⊗r
n ⊗ Φ̄⊗rn .

Informally, Ref. 45 [Theorem 5.2] states that, among a fairly large class of input states, the tensor
products of Bell states (π ∈ Sr is an arbitrary permutation)

Ω
π
dn
=

r
i=1

Ω
i,π(i)
dn
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FIG. 6. Diagram for the output matrix Zn obtained by putting a maximally entangled state through a product of two conjugate
quantum channels.

are the ones producing outputs with least entropy. In the equation above, the maximally entangled
state acts on the ith copy of Cdn corresponding to non-conjugate channels Φn and on the π(i)th
copy of Cdn corresponding to conjugate channels Φ̄n. The class of inputs among which the products
of maximally entangled states are optimal are called “well-behaved,” in the sense that they obey a
random-matrix eigenvalue statistics; see Ref. 45 [eq. (43)] for more details.

The result above shows that inequality Eq. (7.2) is tight, when restricting the minimum on the
left hand side to the class of well-behaved input states; the general question is open for random
quantum channels, see Question 9.7. Moreover, an important point raised in Ref. 45 is that the
optimality of maximally entangled inputs extends to tensor products of channels. This result might
be useful for analyzing regularized versions of the minimum output entropies, in relation to the
classical capacity problem.

C. Early results in relation to the violation of MOE, history, and the state of the art

We present next a short history of the various counterexamples to the additivity question,
discussing different values of the parameter p in Eq. (7.1).

In the range p > 1, the first counterexample was obtained by Werner and Holevo:109 they have
shown that the channel (1 − x) · id + x · transp, acting on M3(C), for x = −1/(d − 1), violates the
additivity of the p-Rényi entropy for all p > 4.79. Then, Hayden and Winter proved, in their seminal
work in Ref. 59 that random quantum channels violate additivity with large probability, for all
p > 1. The same result, using this time free probability, was obtained in Ref. 32, with smaller sys-
tem dimensions. Also in the range p > 1, Aubrun, Szarek and Werner proved violations of random
channels, using this time Dvoretzky’s theorem.10 For p close to 0, violations of additivity were
proved in Ref. 37.

The most important case, p = 1, turned out to be much more difficult. The difficulty comes
from the fact that one needs a precise control of the entire output spectrum, while for p > 1, control-
ling the largest eigenvalue turned out to be sufficient. The breakthrough was achieved by Hastings
in Ref. 55, where he showed that random mixed unitary channels (see Eq. (6.3)) violate additivity
of the von Neumann entropy. Several authors, using similar techniques as Hastings, improved,
generalized, and extended his result.44,19,43 An improved version of Dvoretzky’s theorem was used
in Ref. 11 to show violations at p = 1. Later, Fukuda provided a simpler proof of violation,42

using this time ε-net arguments and Levy’s lemma, the techniques used also in the pioneering
work of Ref. 58. In Refs. 15 and 16, the authors use free probability theory to compute exactly
the minimum output entropy of a random quantum channel [Ref. 16, Theorem 5.2]. These results
lead to the largest value of the violation known to date (1 bit), and the smallest output dimension
(k = 183), see Theorem 7.4.

Finally, let us mention that the majority of the violation results above use random constructions.
The exceptions are the results in Ref. 109 (p > 4.79) and Ref. 49 (p > 2, using the antisymmetric
subspace); the question of finding other explicit counterexamples is open to this day, see Question
9.6.
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We state next the best result to date concerning violations of additivity for the minimum output
entropy [Ref. 16, Theorem 6.3].

Theorem 7.4. Consider a sequence Φn :M⌊tkn⌋(C) → Mk(C) of random quantum channels,
obtained from random isometries

Vn : C⌊tkn⌋ → Ck ⊗ Cn.

For any output dimension k ≥ 183, in the limit n → ∞, there exist values of the parameter t ∈ (0,1)
such that almost all random quantum channels violate the additivity of the von Neumann minimum
output entropy. For any ε, there are large enough values of k such that the violation can be made
larger than 1 − ε bits.

Moreover, in the same asymptotic regime, for all k < 183, the von Neumann entropy of the
output state [Φn ⊗ Φ̄n](Ω⌊tkn⌋) is almost surely larger than 2Hmin(Φn). Hence, in this case, one
cannot exhibit violations of the additivity using Bell state (2.2) as an input for the product of
conjugate random quantum channels.

The above theorem leaves open the maximal possible value of the violation for conjugate
random quantum channels, due to the fact that the maximally entangled state is not known to be
optimal in this scenario, see Question 9.7.

VIII. OTHER APPLICATIONS OF RMT TO PROBLEMS IN QIT

A. Maximum entropy principle for random matrix product states

Random matrix techniques play other roles in quantum spin chain theory. In this section we
follow Ref. 27.

In the theory of quantum spin chains, it is nowadays widely well justified, both numerically110

and analytically,54 that ground states can be represented by the set of matrix product states with
polynomial bond dimension. In the situation of a chain with boundary effects in exponentially small
regions of size b at both ends, tracing out the boundary terms leads to a bulk state given by

ρ =

d
ib+1, ...iN−b, jb+1, ... jN−b=1

Tr(L Aib+1 · · · AiN−bRA∗jN−b · · · A
∗
jb+1

)eib+1...iN−be∗jb+1... jN−b
, (8.1)

where all Ai, L ≥ 0, and R ≥ 0 are D × D matrices with D = poly(N).
It is known95 that this set has a natural (over)parametrization by the groupU (dD), via the map

U → Ai = ⟨e1,Uei⟩. In U (dD), one can use the symmetry-based assignment of prior distributions
to sample from the Haar measure.

It is natural to look for the generic reduced density matrix ρl of l ≪ N sites. It corresponds to
asking about generic observations of 1D quantum systems. This idea has been already exploited for
the non-translational invariant case in Ref. 48. The main result of Ref. 27 is that ρl has generically
maximum entropy.

Theorem 8.1. Let ρl be taken at random from the ensemble introduced with D ≥ N1/5. Then,
∥ρl/Trρl − 1/dl∥∞ ≤ (dl − 1)√dlO(D−1/10) except with probability exponentially small in D.

To prove the theorem, one needs the graphical Weingarten calculus provided in Ref. 30 (see
Sections II D and III C) and a uniform estimate of the Weingarten function, more subtle than
the one stated in Theorem 3.6. Finally, in the same context of condensed matter physics, let us
mention the work of Movassagh and Edelman, containing applications of random matrix theory and
free probability to the study of the eigenvalue distribution of quantum many body systems having
generic interactions.81
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B. Multiplicative bounds for random quantum channels

Once the additivity questions for the minimum p-Rényi entropy of random quantum channels
had been settled in Refs. 59 and 55, the attention shifted towards the amount of the possible viola-
tions of the minimum output entropy. In Ref. 80, Montanaro shows that random quantum channels
are not very far from being additive by bounding the minimum output ∞-Rényi entropy of a tensor
power of a channel by the same quantity for one copy of the channel. His idea is to bound the
desired entropy by an additive quantity, the norm of the partial transposition of the projection
on the image subspace of the random isometry defining the channel. The following theorem is a
restatement of Ref. 80 [Theorem 3].

Theorem 8.2. Let Φ :Md(C) → Mk(C) be a random quantum channel having ancilla dimen-
sion n. Suppose k ≤ n, min{d, k} ≥ 2(log2n)3/2 and d = o(kn). Then, for any p > 1, with high
probability as n → ∞, the following inequality holds 1

r
H p

min(Φ⊗r) ≥ β(1 − 1/p)H p
min(Φ), where

β ≃



1/2 if d ≥ n/k
1 if d ≤ n/k

.

Soon after, Montanaro’s ideas were pursued in Ref. 46. There, different additive quantities
(e.g., the operator norm of the partial transpose of the Choi matrix of the quantum channel) were
used to bound the minimum output 2-Rényi entropy. The results provide slight improvements, in the
case of interest p = 1 over the bounds from Ref. 80. The following statement follows from Ref. 46
[Theorem 8.4].

Theorem 8.3. Consider a sequence of random quantum channels Φn :Md(C) → Mk(C) with
ancilla dimension n, where k is a fixed parameter and d ∼ tnk for a fixed t ∈ (0,1). Then, almost
surely as n → ∞, for all p ∈ [0,2], there exist constants αp ∈ [0,1] such that, for all r ≥ 1,

1
r

Hmin
p (Φ⊗rn ) ≥ αpHmin

p (Φn). (8.2)

The constants αp satisfy the following relations.

(1) When 0 < t < 1/2 is a constant,

αp = o(1) + p − 1
2p


1 +

2 log 2 + log(1 − t)
log t


· 1(1,2](p).

(2) When k is large and t ≍ k−τ with τ > 0,

αΓp,k, t = o(1) +



p − 1
2p

if 0 < τ ≤ 1 − 1/p

τ/2 if 1 − 1/p ≤ τ ≤ 2
1 if τ ≥ 2

.

Incidentally, since the limiting spectrum of the partial transposition of the Choi matrix is
computed in Ref. 46, the authors show the existence of PPT quantum channels violating generically
the additivity of the minimum p-Rényi entropy, for all p ≥ 30.95, see Ref. 46 [Theorem 10.5].

C. Sum of random projections on tensor products

Ambainis, Harrow, and Hastings1 consider a problem in random matrix theory that is inspired
by quantum information theory: determining the largest eigenvalue of a sum of p random product
states in (Cd)⊗k, where k and p/dk are fixed while d → ∞. When k = 1, the Marčenko-Pastur law
determines asymptotically the largest eigenvalue (1 + 

p/dk)2, the smallest eigenvalue, and the
spectral density.

More precisely, their setup is as follows: for each dimension d, let (p(i)
d
)i∈{1, ...,k} be independent

uniformly distributed rank one random projections on Cd.
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Theorem 8.4. As d → ∞, the operator norm of
i

p(1)
d
⊗ · · · ⊗ p(k)

d

still behaves almost surely like (1 + 
p/dk)2 and the spectral density approaches that of Marčenko-

Pastur law (3.1).

Their proof is essentially based on moment methods. Direct computation of moments of high
order allows to conclude. Various methods are proposed by the authors, including methods of
Schwinger-Dyson type. It would be interesting to see whether these methods that are well estab-
lished in theoretical physics and random matrix theory could be of further use in quantum informa-
tion theory. This result generalizes the random matrix theory result to the random tensor case, and
for the records, this is arguably one of the first precise results about the convergence of norms of
sums of tensor products when the dimensions of each leg are the same. The original motivation of
the authors emanates in part from problems related to quantum data-hiding. We refer to Ref. 1 for
the proofs and motivations.

D. Area laws for random quantum states associated to graphs

In this section, a generalization of Proposition 4.12 to the general case of non-adapted mar-
ginals is presented, a result which was obtained in Ref. 35. The theorem in this section makes use
of random matrix theory techniques, more precisely it is build on the moment computation done in
Ref. 34 [Theorem 5.4].

Before we state the area law, we need to properly define the boundary of a marginal induced
by a partition {S,T} of the total Hilbert space. In the adapted marginal case discussed in Sec-
tion IV A 4, this definition was natural; the general situation described here requires a preliminary
optimization procedure.

To keep things simple, assume that all local Hilbert spaces have the same dimension N . A
partition {S,T} defines, at each vertex of the graph, a pair of non-negative integers (s(v), t(v)) such
that s(v) + t(v) = deg(v) and


v s(v) = |S|, 

v t(v) = |T |. The randomness in the unitary operators
Uv acting on the vertices of G introduces an “incertitude” on the choice of the copies of CN which
should be traced out at each vertex v ∈ G. The following definition of the boundary volume (see
Ref. 35 for the details) removes this incertitude by performing an optimization over all possible
choices for the partial trace. Note that the case of adapted marginals (see Definition 4.11) does not
require this optimization step, since there is no incertitude (at each vertex, either all or none of the
subsystems are traced out).

Definition 8.5. For a graph G and a marginal ρS of the graphs state ϕG defined by a partition
{S,T}, define the boundary volume of the partition as

|∂S| = max
α

cr(α),
where α is a function α : [2m] → {S,T} defining which copies of Cn are traced out, and cr(α) is
the number of crossings in the assignment α, that is, the number of edges in G having one vertex in
α−1(S) and the other one in α−1(T).

The following theorem is the main result of Ref. 35, showing that the area law holds for random
graph states, with the appropriate definition of the boundary volume. Moreover, one can compute
the correction term to the area law, a quantity which depends on the topology of the graph G. We
refer the interested reader to Ref. 35 [Sections 5 and 6] for the definition of the correction term hG,S

and the proofs.

Theorem 8.6. Let ρS be the marginal {S,T} of a graph state ϕG. Then, as the local dimension
N → ∞, the area law holds in the following sense:

EH(ρS) = |∂S| log N − hG,S + o(1), (8.3)
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where |∂S| is the area of the boundary of the partition {S,T} from Definition 8.5 and hG,S is
a positive constant, depending on the topology of the graph G and on the partition {S,T} (and
independent of N).

IX. CONCLUSIONS AND OPEN QUESTIONS

We finish this review article with a series of questions that seem to be of interest at the
intersection of random matrix related techniques and quantum information / quantum mechanics.

In relation to the various threshold results from Section IV D, we list next several important
open questions.

Question 9.1. Is it possible to remove the log factors from Theorem 4.17 and to obtain a
sharper threshold result for the set SEP of separable states?

Regarding the hierarchy of r-extendibility criteria, the upper bound corresponding to the
threshold result in 4.24 is open, see Ref. 75 [Section 9.2].

Question 9.2. Find a constant c1 ≥ (r − 1)2/(4r) such that random quantum states having
distribution νn2,c1n2 are, with high probability as n → ∞, r-extendible.

Regarding the random entanglement criteria introduced in Theorem 4.21, one can define

Kµ,m = {ρ ∈ Dnm : [ fd ⊗ idm](ρ) > 0 almost surely, for d large enough}.
The following question, addressing the global power of such random criteria, was left open in Ref. 28.

Question 9.3. Define the set of quantum states satisfying all random criteria from Theorem
4.21,

K f ree

n,k,m
B


µ : supp(µ�n/k)⊂[0,∞)

Kµ,m.

Can one give an analytical description of K f ree

n,k,m
? It was shown in Ref. 28 [Proposition 3.7] that

the only pure states contained in K f ree

n,k,m
are the separable (product) ones. Are there values of the

parameters n, k,m for which the set K f ree

n,k,m
is precisely the set of k-separable states fromDnm?

In Section VIII A, we have discussed a random model for matrix product states, and we have
shown that it obeys the maximum entropy principle of Jaynes. There are also natural questions
related to quantum spin chains.

Question 9.4. In Section VIII D, we stated an area law for random quantum states. Given a
random Hamiltonian HN acting on CN , let H (i) be the operator obtained from HN acting on (CN)⊗k
by the action of HN on the i th leg, and identity elsewhere. We assume that we come up with a model
with a gap, i.e., the difference between its smallest eigenvalue and its second smallest eigenvalue is
uniform. It follows from the results by Hastings54 that the ground state of the Hamiltonian


H (i)

N

satisfies an area law. If HN has some randomness in addition, can we obtain more precise results,
e.g., regarding the distribution of the ground state? In the same vein, can random techniques allow
us to obtain results for other topologies, e.g., in the 2D context?

Let us now consider some open questions in quantum information theory, related to random
matrices.

As discussed in Section IV A, there are several ways in which one can define random quantum
states. All classes of probability measures discussed in Section IV A are very well motivated,
both from the mathematical and the physical standpoints. In Ref. 84, the authors introduce a new
ensemble of random quantum states, by considering iterations of random quantum channels. The
following question was asked in Ref. 84 [Section 4].
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Question 9.5. Compute the statistics of the probability measure νb on the set of quantum states
Dn defined as follows. For a probability vector b ∈ ∆k, consider the quantum channel

Φ(X) = [idn ⊗ Trk](U(X ⊗ diag(b))U∗),
where U ∈ Unk is a random Haar unitary. Then, νb is the probability distribution of the unique
invariant state of Φ (uniqueness is shown in Ref. 84 [Theorem 4.4]).

Regarding the various counterexamples in the literature for the minimum output entropy and
other capacity-related questions, we list next several open problems.

Question 9.6. Construct explicit, non-random counterexamples to the additivity of the p-Rényi
entropy, in the range p ∈ [1,2].

Question 9.7. Is maximally entangled state Ω the actual minimizer of the minimum output
entropy for a pair of conjugate random quantum channels Φ ⊗ Φ̄?

Question 9.8. Does a pair Φ ⊗ Ψ of independent random quantum channels violate additivity
of the quantities Hmin

p (·)?
Regarding the known violations of the additivity of the MOE entropy for pairs of conjugate

channels, it is important to note that Theorem 7.4 only allows to obtain bounds on the output
dimension of the random channels. Previous results (see, e.g., Ref. 44) allow to bound also the
input dimension. The approach used in Refs. 15 and 16, using free probability, uses estimates of
objects existing at the limit where the input dimension is infinity. It would thus be desirable, in this
framework, to be able to work at finite input dimension and thus bound all the relevant parameters
which allow for additivity violations.

Question 9.9. A random contraction is known to be determinantal79 and the determinant in-
volves contour integrals. So far, many random matrix techniques used for QIT rely either on concen-
tration of measure or on moment methods. Is it possible to use complex analysis methods (steepest
descent, Riemann-Hilbert problem analysis) in order to refine existing estimates. For example, can
such estimates give bounds for dimensions of input spaces for violation of MOE?

Finally, we would like to end the current review with a very important open question, regarding
different regularized quantities for random quantum channels.

Question 9.10. Compute the almost sure limit of the regularized Hmin
p (·) quantities, the Holevo

capacity, and the classical capacity for random quantum channels.
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