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Abstract

Parity violation in a chiral, four-atom molecule is discussed. Given the geometrical positions

of the four atoms, we calculate the anapole moment of it. This problem was first discussed

by Khriplovich and Pospelov [1]. We give a detailed derivation for it so that it can be more

accessible to wider range of scientists. We correct errors in their results and generalize their

initial state to |s1/2〉 and |p1/2〉 states. We also discuss realistic candidates of the chiral molecules

to which this approach can be applied.

PACS numbers: 31.30.-i, 31.30.J-

1 Introduction

Charge-conjugation (C), parity (P), and time-reversal (T) violations in atoms and molecules are

very attractive targets in searching for new physics beyond the standard model (BSM physics) as

well as for their own developments of atomic and molecular physics and chemistry. For molecules,

we can utilize selectively the precise spectroscopies and special environments of molecules suitable

to determine fundamental properties of particles. A typical example is the recent improvement of
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the upper bound on the electron electric dipole moment (EDM) by using a ThO molecule [2]. Also

the measurements of energy difference between left- and right-handed molecules are on-going [3].

Such situations conventionally enforce on us complicated numerical calculations based on ab-initio

molecular orbital (MO) calculation methods. Since there are so many papers on ab-initio MO

methods, we cite only a textbook [4] and a recent paper [5]. Though they are crucially important,

it is rather difficult to elucidate the physical origin of symmetry violations in a given molecular

system from molecular orbital calculations. In order to remedy this deficit, analytical treatments

of the same objects as those studied by numerical calculations have been awaited even with a cost

of less rigor. From this point of view, the work [1] by Khriplovich and Pospelov is methodologically

very interesting. Given the geometrical positions of four atoms, they calculated the anapole moment

of the chiral molecule which consists of the four atoms. There the P-violating (PV) anapole moment

is directly and quantitatively related with geometrical structure of molecules.

In this note we give a more detailed derivation of it than in the original work [1], so that it

can be more accessible to many physicists and chemists. Their final result is also corrected.

We note here that in general, there are two possibilities concerning the origin of parity violation

in molecules. One of the possibilities is the weak interactions which intrinsically violate parity. This

effect is known to work in nuclei in atomic systems, which is discussed, for example, in Refs. [6, 7].

The other possibility is parity violation due to the geometric configuration of atoms in a molecule.

When a molecule consists of more than four atoms, the molecule is not necessarily superimposable

on its mirror image. Such a non-trivial transformation property under parity is called the chirality,

and the chiral molecule and its mirror image are called enantiomers. When we take one of the

enantiomers, parity is not a good symmetry to describe the quantum state of the chiral molecule

since parity is violated by the configuration of the atoms. It is this latter case of parity violation

which is discussed in Ref. [1] and which we consider in this paper.

This paper is organized as follows. In Section 2, we describe our set-up of a four-atom molecule.

In Section 3, we discuss the perturbation due to the Coulomb interactions between the valence

electron and the light two atoms in the molecule. In Section 4, we calculate the anapole moment

by using the results obtained in Section 3. We summarize our results and give discussions in Section

5. In Appendix we discuss realistic candidates of the chiral molecules to which this approach can

be applied. We work in the notation of the Landau-Lifshitz textbooks [8, 9] unless noted otherwise.

We use the natural units in which ~ = c = 1 throughout this paper.

2 Model Set-up

Chirality in molecules first appears in four-atom molecules. Khriplovich and Pospelov considered

a chiral molecule composed of four atoms, A1, A2, A3, A4, whose geometrical configuration is

given in Fig. 1 without specifying its origin [1]. An assumption in this set-up is that A1 and A2

(whose electric charges are Z1 and Z2 in units of the positron charge e, respectively) are light in

comparison with A4 and A3. Throughout this paper, we take the position of A4 as the origin of

our coordinate system, and the direction of ~r3 as the z-axis.

We first consider a valence electron which is captured by the diatomic molecule A3A4. To

specify the position of the valence electron, we define the vector ~r whose initial and final points are
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A4 and the electron, respectively. We assume that the electron is first in one of the p3/2 states with

µ = ±3/2, where µ is the z component of the total angular momentum. We also assume that the

degeneracy in the energy levels of the atom A4 is completely resolved by the presence of the atom

A3, as assumed in Ref. [1]. We treat the effect from the atoms A1 and A2 on the valence electron

as a perturbation due to the Coulomb potential,

V (~r) = − Z1α

|~r − ~r1|
− Z2α

|~r − ~r2|
. (1)

Then, the Coulomb interactions between the valence electron depicted as e in Fig. 1 and the atoms

A1 and A2 can be treated as a perturbation to the electron terms of the diatomic molecule A3A4,

which induces a PV anapole moment. The unpaired electron is localized in the vicinity of A4, and

hence its orbital can be well described in terms of the atomic orbitals of the atom A4. To lowest

order of the approximation, the angular momentum about the A3A4 axis is conserved.

.
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Figure 1: The configuration of the atoms in the four-atom molecule we consider in this paper. The

numbers j (j = 1, . . . , 4) in the figure are the labels for the corresponding atoms Aj. e is a valence

electron. The two planes are spanned by the atoms A1A3A4 and the atoms A2A3A4, respectively.

Also shown is the dihedral angle χ of the molecule.

The final result we obtain in this paper is

〈~a〉 = πe

me

4

45
[r1(s, p)− 4r(s, p)]

(Ry)2

EsEp
Z1Z2

× ( ~J · ~n3)(~n1 · [~n2 × ~n3])[C1(r1)C2(r2)~n2 −C1(r2)C2(r1)~n1] , (2)

where ~a is the anapole moment operator and 〈~a〉 its expectation value. Ry ≡ α2me/2 is the

Rydberg energy (≃ 13.6eV) with the electron mass me and ~J is the total angular momentum, and

the definitions of ~n1,2,3, C1,2, r1(s, p), r(s, p), Es,p will be given in the next sections. The result is

different from that of Ref. [1] in the factor 4 in front of r(s, p) and also in the overall factor by a

factor of 2a0, where a0 is the Bohr radius, a0 ≡ 1/(meα). Thus Eq. (2) explicitly shows the relation

between a PV observable and the geometrical structure of the molecule. In the subsequent sections

we derive Eq. (2).
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3 Perturbation due to Coulomb Interactions

By the perturbation due to V (~r), the states |p3/2, µ = ±3/2〉 are slightly mixed with the states

|s1/2,±1/2〉 and |p1/2,±1/2〉. First we write the potential V (~r) as

V (~r) = −Z1α

{

θ(r − r1)

(

r1m
∂

∂rm

1

r
+

1

2
r1mr1n

∂

∂rm

∂

∂rn

1

r
+O(r31/r

3)

)

+ θ(r1 − r)

(

rm
∂

∂r1m

1

r1
+

1

2
rmrn

∂

∂r1m

∂

∂r1n

1

r1
+O(r3/r31)

)}

−
(

(r1, Z1) → (r2, Z2)

)

, (3)

where ri ≡ |~ri| (i = 1, 2) and the indices n and m (n,m = 1, . . . , 3) run over the three components

of the Cartesian coordinates, (x, y, z). For later convenience, we integrate out the dependence of

the potential on r (≡ |~r|), and rewrite the potential Eq. (3) as

V (~n) = Ry

(

2Dmnm − 3Qmnnmnn

)

, (4)

where ~n ≡ ~r/r. The quantities Dm and Qmn are defined as

Dm ≡ Z1C1(r1)n1m + Z2C1(r2)n2m , (5)

Qmn ≡ Z1C2(r1)n1mn1n + Z2C2(r2)n2mn2n , (6)

Ck(ri) ≡ a0

∫ ∞

0
dr r2R1/2(r)R3/2(r)

[

rki
rk+1

θ(r − ri) +
rk

rk+1
i

θ(ri − r)

]

, (7)

where ~ni ≡ ~ri/ri (i = 1, 2). The factors R3/2(r) and R1/2(r) are the radial parts of the J = 3/2 and

J = 1/2 state wave functions for the electron, respectively. With these definitions, the quantity

Ck(ri) becomes dimensionless.

As mentioned above, by the perturbation due to V (~r), the states |p3/2, µ = ±3/2〉 are slightly

mixed with other states ψs and ψp as:

|p3/2, µ = ±3/2〉 → |p3/2, µ = ±3/2〉+ |ψs〉+ |ψp〉 . (8)

Here

|ψs〉 = − 2√
3

Ry

Es
DiRs(r)|s1/2, µ′〉 , (9)

where (i, µ′) = (+, 1/2) and (−,−1/2) for µ = 3/2 and −3/2, respectively, and

|ψp〉 =
2
√
3i

5

Ry

Ep
Qmi

∑

µ′=±1/2

(σm)α′β′Rp(r)|p1/2, µ′〉 , (10)
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where (i, β′) = (+, 1), (−, 2) for µ = 3/2 and −3/2, respectively, and α′ = 1, 2 for µ′ = 1/2 and

−1/2, respectively. The definitions of the “±” symbols which appear in the subscripts in Eqs. (9)

and (10) like D± will be given later in this paper at Eq. (16). The factors Es and Ep are the

energy levels of the |s1/2, µ′〉 and |p1/2, µ′〉 states (µ′ = ±1/2), measured from the state |p3/2, µ〉
(µ = ±3/2), respectively, namely,

Es ≡ E(s1/2, µ
′)− E(p3/2, µ) , Ep ≡ E(p1/2, µ

′)− E(p3/2, µ) . (11)

In Eq. (10), we have neglected the difference between E(p1/2, 1/2) and E(p1/2,−1/2). The func-

tions Rs(r) and Rp(r) are the radial part of the s- and p-wave-state wave functions, respectively.

The factor σm (m = 1, . . . , 3) denotes the Pauli matrices, and (σm)α′β′ (α′, β′ = 1, 2) its (α′, β′)

component. Note that our overall phase convention of |p1/2, µ′〉 differs from that of Ref. [1] by a

factor of i. Since ψs in Eq. (8) depends on the value of µ, we denote the ψs which mixes with

|p3/2, µ = +3/2〉, and |p3/2, µ = −3/2〉 as ψs+ and ψs−, respectively. We also define ψp+ and ψp−

similarly, and use the notation ψs± and ψp± instead of ψs and ψp where the distinction is necessary.

In the subsections just below, we prove Eqs. (9) and (10).

3.1 Verification of Eq. (9)

In this subsection we verify Eq. (9). To do so, we need the solutions of the Dirac equation for

an electron in the Coulomb potential, V (r) = −Zα/r. Since we are interested only in the non-

relativistic limit, in this paper we consider only the upper two components of the four-component

Dirac spinor.

As a preparation, we first introduce some notations. We define the two-component spinors χα

(α = ±1/2) as,

χ1/2 =
1

2
√
π

(

1

0

)

, χ−1/2 =
1

2
√
π

(

0

1

)

. (12)

Namely, the angular parts of the states |s1/2, α〉 (α = ±1/2) are related to χα by

|s1/2, α〉 = χα , (13)

where we have suppressed the radial part of the wave function. Below we suppress the radial part

when there may arise no confusion. We also define the vectors ~ei (i = ±, 0) as

~e+ ≡ −i(1, i, 0)/
√
2 , ~e− ≡ i(1,−i, 0)/

√
2 , ~e0 ≡ i(0, 0, 1) . (14)

They satisfy the relations,

~e+ · ~e+ = ~e− · ~e− = 0 , ~e+ · ~e− = 1 , ~e± · ~e0 = 0 , ~e0 · ~e0 = −1 . (15)

We denote the inner product of a general vector ~k and ~e±,0 as k±,0:

ki ≡ ~k · ~ei , (i = ±, 0). (16)
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With these definitions, the quantities ki (i = ±, 0) form a spherical tensor of rank 1. Since the

vectors ~ei (i = ±, 0) are linearly independent of each other, any three dimensional vector ~k can be

decomposed in terms of ~ei as

~k = (~k · ~e−)~e+ + (~k · ~e+)~e− − (~k · ~e0)~e0
= k−~e+ + k+~e− − k0~e0 . (17)

Now, by using these notations, the angular part of the |p3/2, µ〉 (µ = ±3/2) states can be

written as

|p3/2, µ〉 =
√
3niχα , (18)

where ni = ~n · ~ei = (~r · ~ei)/r with i = ±. The indices i and α in the above equation should be

understood as (i, α) = (+, 1/2) for µ = 3/2, and (i, α) = (−,−1/2) for µ = −3/2.

We are now ready to evaluate the angular integral in the factor 〈s1/2, 1/2|2Dmnm|p3/2, 3/2〉,
where the integral is to be performed only over the angular variables. The integral reads:

〈s1/2, 1/2|2Dmnm|p3/2, 3/2〉 = 2Z1C1(r1)

∫

dΩ
1

2
√
π

r1m
r1

rm
r
(−i)

√

3

8π
sin θeiφ

+

(

(r1, Z1) → (r2, Z2)

)

, (19)

where dΩ ≡ sin θdθdφ. The integral is straightforward, and the result is

〈s1/2, 1/2|2Dmnm|p3/2, 3/2〉 = 2Z1C1(r1)
(−i)(n1x + in1y)√

6
+

(

(r1, Z1) → (r2, Z2)

)

=
2√
3
~D · ~e+ =

2√
3
D+ . (20)

Once the above matrix element is determined, the other matrix elements 〈s1/2, µ′|2Dmnm|p3/2, µ〉
for (µ, µ′) = (−3/2,±1/2), (3/2,−1/2) can also be determined by using the Wigner-Eckart theorem.

To do so, first by using Eq. (17), we write the quantity Dmnm as

Dmnm = D−(~e+ · ~n) +D+(~e− · ~n)−D0(~e0 · ~n)
= D−n+ +D+n− −D0n0 . (21)

Then we write the matrix elements as

〈s1/2, µ′|2Dmnm|p3/2, µ〉
= 2D−〈s1/2, µ′|n+|p3/2, µ〉+ 2D+〈s1/2, µ′|n−|p3/2, µ〉 − 2D0〈s1/2, µ′|n0|p3/2, µ〉

= 2i(−1)3/2−µ′ 〈s1/2||n||p3/2〉
{

D−

(

1/2 1 3/2

−µ′ 1 µ

)

+D+

(

1/2 1 3/2

−µ′ −1 µ

)

−D0

(

1/2 1 3/2

−µ′ 0 µ

)}

(22)
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where

(

j1 j2 j3

m1 m2 m3

)

are the Wigner 3j symbols. In the second equality we have used the

Wigner-Eckart theorem,

〈j′m′|fkq|jm〉 = ik(−1)jmax−m′

(

j′ k j

−m′ q m

)

〈j′||fk||j〉 , (23)

where jmax = max(j, j′) and fkq (q = −k,−k+1, · · · , k) are a spherical tensor of rank k. Since we

already know the value of 〈s1/2, 1/2|2Dmnm|p3/2, 3/2〉 from Eq. (20), we can determine the value of

the double-line matrix element 〈s1/2||n||p3/2〉 by applying Eq. (22) to the case (µ, µ′) = (3/2, 1/2).

This can be done with the help of the numerical values of the Wigner 3j symbols as

〈s1/2||n||p3/2〉 = i
2√
3
. (24)

Then, by using the value of 〈s1/2||n||p3/2〉, the other relevant matrix elements can be determined

from Eq. (22) as

〈s1/2,−1/2|2Dmnm|p3/2,−3/2〉 = 2√
3
D− , (25)

〈s1/2,−1/2|2Dmnm|p3/2,+3/2〉 = 〈s1/2,+1/2|2Dmnm|p3/2,−3/2〉 = 0 . (26)

By combining all the above results, we arrive at

∑

µ′=±1/2

|s1/2, µ′〉〈s1/2, µ′|2Dmnm|p3/2, µ〉 =
2√
3
Diχα , (27)

where i and α should be understood as (i, α) = (+, 1/2) for µ = 3/2, and (i, α) = (−,−1/2) for

µ = −3/2. From this equation, Eq. (9) immediately follows.

3.2 Verification of Eq. (10)

In this subsection we verify Eq. (10). The matrix element we would like to evaluate is,

〈p1/2, µ′|(−3)Qmnnmnn|p3/2,±3/2〉 = −3Z1C2(r1)〈p1/2, µ′|(~n1 · ~n)2|p3/2,±3/2〉

+

(

(r1, Z1) → (r2, Z2)

)

. (28)

Note that in our notation, which is actually the notation of Landau-Lifshitz, the states |p1/2, µ〉
(µ = ±1/2) are related to χα (α = ±1/2) by

|p1/2, µ〉 = −i(~σ · ~n)χα , (29)
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where α = 1/2 and −1/2 for µ = 1/2 and −1/2, respectively. The overall phase convention of

|p1/2, µ〉 differs from that of Ref. [1] by a factor of i.

We first evaluate the factor 〈p1/2, µ′|(~n1 ·~n)2|p3/2,±3/2〉, where the integral is to be performed

only over the angular variables.

To do so, we write the inner product ~n1 · ~n as

~n1 · ~n = n1x
x

r
+ n1y

y

r
+ n1z

z

r

= n1x sin θ cosφ+ n1y sin θ sinφ+ n1z cos θ

=
1

2
sin θ

(

(n1x + in1y)e
−iφ + (n1x − in1y)e

iφ

)

+ n1z cos θ . (30)

We now substitute the above expression into the matrix element 〈p1/2, 1/2|(~n1 · ~n)2|p3/2, 3/2〉

〈p1/2, 1/2|(~n1 · ~n)2|p3/2, 3/2〉 =
∫

dΩ
i

2
√
π
cos θ (~n1 · ~n)2 (−i)

√

3

8π
sin θeiφ

=

∫

dΩ
1

2
√
π
cos θ

{

1

2
sin θ

(

(n1x + in1y)e
−iφ + (n1x − in1y)e

iφ

)

+ n1z cos θ

}2

×
√

3

8π
sin θeiφ . (31)

The angular integral is straightforward, and we are left with:

〈p1/2, 1/2|(~n1 · ~n)2|p3/2, 3/2〉 =
√
2

5
√
3

(

n1x + in1y
)

n1z

=
2

5
√
3
n1+n10 . (32)

We now determine the other relevant matrix elements 〈p1/2,±1/2|(~n1 ·~n)2|p3/2,±3/2〉 by using

the Wigner-Eckart theorem. To do so, we have to rewrite (~n1 · ~n)2 in terms of spherical tensors.

We construct a rank-2 spherical tensor N2,q (q = −2,−1, · · · , 2) by combining two rank-1 spherical

tensors ni (i = ±, 0). This can be done by using the Clebsch-Gordan coefficients, or equivalently

the 3j symbols (see Eq. (107.3) of Ref. [9]). The results are:

N2,±2 = n2± , N2,±1 =
√
2n±n0 , N2,0 =

2√
6
n+n− +

2√
6
n20 . (33)

We also use a spherical tensor of rank 0, N0,0, which we construct according to Eq. (107.4) of

Ref. [9],

N0,0 = 2n+n− − n20 . (34)
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We now write (~n1 · ~n)2 in terms of N2,q and N0,0:

(~n1 · ~n)2 = (n1+n− + n1−n+ − n10n0)
2

= (n1+)
2N2,−2 −

√
2n1+n10N2,−1 + c2,0N2,0 −

√
2n1−n10N2,1 + (n1−)

2N2,2 + c0,0N0,0 ,

(35)

where c2,0 and c0,0 are linear combinations of n1+n1− and n10n10, whose explicit forms we do not

need for our purposes here.

We now apply the Wigner-Eckart theorem. First we expand (~n1 · ~n)2 in terms of the tensors

N ,

〈p1/2, µ′|(~n1 · ~n)2|p3/2, µ〉 = (n1+)
2〈p1/2, µ′|N2,−2|p3/2, µ〉 −

√
2n1+n10〈p1/2, µ′|N2,−1|p3/2, µ〉

+ c2,0〈p1/2, µ′|N2,0|p3/2, µ〉 −
√
2n1−n10〈p1/2, µ′|N2,1|p3/2, µ〉

+ (n1−)
2〈p1/2, µ′|N2,2|p3/2, µ〉+ c0,0〈p1/2, µ′|N0,0|p3/2, µ〉 . (36)

We use the Wigner-Eckart theorem to rewrite this as

〈p1/2, µ′|(~n1 · ~n)2|p3/2, µ〉 = i2(−1)3/2−µ′

{

(n1+)
2

(

1/2 2 3/2

−µ′ −2 µ

)

−
√
2n1+n10

(

1/2 2 3/2

−µ′ −1 µ

)

+ c2,0

(

1/2 2 3/2

−µ′ 0 µ

)

−
√
2n1−n10

(

1/2 2 3/2

−µ′ 1 µ

)

+ (n1−)
2

(

1/2 2 3/2

−µ′ 2 µ

)

}

〈p1/2||N2||p3/2〉

+ (−1)3/2−µ′

c0,0

(

1/2 0 3/2

−µ′ 0 µ

)

〈p1/2||N0||p3/2〉 . (37)

We can fix the value of 〈p1/2||N2||p3/2〉 from Eq. (32) as

〈p1/2||N2||p3/2〉 = −2
√
10

5
√
3
. (38)
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By using this value, we can determine the following matrix elements:

〈p1/2,−1/2|(~n1 · ~n)2|p3/2, 3/2〉 = i2(−1)3/2+1/2(n1+)
2

(

1/2 2 3/2

1/2 −2 3/2

)

〈p1/2||N2||p3/2〉

= −2
√
2

5
√
3
(n1+)

2 , (39)

〈p1/2, 1/2|(~n1 · ~n)2|p3/2,−3/2〉 = i2(−1)3/2−1/2(n1−)
2

(

1/2 2 3/2

−1/2 2 −3/2

)

〈p1/2||N2||p3/2〉

=
2
√
2

5
√
3
(n1−)

2 , (40)

〈p1/2,−1/2|(~n1 · ~n)2|p3/2,−3/2〉 = i2(−1)3/2+1/2(−
√
2n1−n10)

(

1/2 2 3/2

1/2 1 −3/2

)

〈p1/2||N2||p3/2〉

= − 2

5
√
3
n1−n10 . (41)

The results Eqs. (32), (39), (40), (41) can be compactly summarized as

〈p1/2, µ′|(~n1 · ~n)2|p3/2, µ〉 =
2i

5
√
3
n1i(~σ · ~n1)α′β′ , (42)

where (i, β′) = (+, 1), (−, 2) for µ = 3/2 and −3/2, respectively, and α′ = 1, 2 for µ′ = 1/2 and

−1/2, respectively. By substituting the above equation into Eq. (28), we obtain

〈p1/2, µ′|(−3)Qmnnmnn|p3/2,±3/2〉 = −2
√
3i

5
Qim(σm)α′β′ , (43)

where (i, β′) = (+, 1), (−, 2) for µ = 3/2 and −3/2, respectively, and α′ = 1, 2 for µ′ = 1/2 and

−1/2, respectively. It follows that,

∑

µ′=±1/2

|p1/2, µ′〉〈p1/2, µ′|(−3)Qmnnmnn|p3/2,±3/2〉 = −2
√
3

5
Qim

∑

µ′=±1/2

(σm)α′β′(~σ · ~n)χµ′ , (44)

where (i, β′) = (+, 1), (−, 2) for µ = 3/2 and −3/2, respectively, and α′ = 1, 2 for µ′ = 1/2 and

−1/2, respectively.

4 Evaluation of Anapole Moment

We are now ready to calculate the anapole moment of the four-atom molecule of Fig. 1.
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What we are interested in is the expectation value of ~a sandwiched by the state represented

by the right-hand side of Eq. (8). The non-trivial lowest-order contribution comes from the terms,

〈~a〉 = 〈ψs+|~a|ψp+〉+ (c. c.) (45)

for µ = 3/2, and

〈~a〉 = 〈ψs−|~a|ψp−〉+ (c. c.) , (46)

for µ = −3/2, where (c. c.) stands for the complex conjugate. We need a proof for the above

statement (i.e. the statement that the first-order perturbation and the rest of the second-order

perturbation both vanish), but at this moment, we admit Eqs. (45) and (46), and calculate the

right-hand sides of these equations.

The contribution 〈~aspin〉 from the “spin current” to 〈~a〉 is,

〈~aspin〉 = − eπ

2me

∫

d3~r r2
(

~∇× (ψ†
s~σψp)

)

+ (c. c.) . (47)

We represent the integrand in terms of the spherical coordinates, (r, θ, φ):

〈~aspin〉 = − eπ

2me

∫

r4drdΩ

{

er

(

1

r
∂θ(ψ

†
sσφψp) +

cos θ

r sin θ
(ψ†

sσφψp)−
1

r sin θ
∂φ(ψ

†
sσθψp)

)

+ eθ

(

−∂r(ψ†
sσφψp)−

1

r
(ψ†

sσφψp) +
1

r sin θ
∂φ(ψ

†
sσrψp)

)

+ eφ

(

∂r(ψ
†
sσθψp) +

1

r
(ψ†

sσθψp)−
1

r
∂θ(ψ

†
sσrψp)

)}

+ (c. c.) , (48)

where the vectors er, eθ, eφ are defined as







er

eθ

eφ






≡











∂~r
∂r

/

∣

∣

∣

∂~r
∂r

∣

∣

∣

∂~r
∂θ

/

∣

∣

∣

∂~r
∂θ

∣

∣

∣

∂~r
∂φ

/

∣

∣

∣

∂~r
∂φ

∣

∣

∣











=







sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0













ex

ey

ez






, (49)

where ex, ey, ez are the unit vectors in the x, y, z directions in the Cartesian coordinates, respec-

tively. The matrices σr, σθ, σφ are the 2× 2 matrices defined in such a way that the identity below

holds:

~σ ≡ σxex + σyey + σzez = σrer + σθeθ + σφeφ , (50)

where σx,y,z are the Pauli matrices. The explicit forms of σr,θ,φ are,

σr =

(

cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

, σθ =

(

− sin θ e−iφ cos θ

eiφ cos θ sin θ

)

, σφ =

(

0 −ie−iφ

ieiφ 0

)

.

(51)
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We can greatly simplify Eq. (48) by integrating-by-parts those terms which have ∂r, ∂θ, or

∂φ. First, integrating-by-parts those terms with ∂r is equivalent to replacing the operator ∂r with

a factor of (−4/r):

〈~aspin〉 = − eπ

2me

∫

r4drdΩ

{

er

(

1

r
∂θ(ψ

†
sσφψp) +

cos θ

r sin θ
(ψ†

sσφψp)−
1

r sin θ
∂φ(ψ

†
sσθψp)

)

+ eθ

(

3

r
(ψ†

sσφψp) +
1

r sin θ
∂φ(ψ

†
sσrψp)

)

+ eφ

(

−3

r
(ψ†

sσθψp)−
1

r
∂θ(ψ

†
sσrψp)

)}

+ (c. c.) .

(52)

We now integrate-by-parts the terms with ∂θ. By noting that ∂θer = eθ and ∂θeφ = 0, we obtain:

〈~aspin〉 = − eπ

2me

∫

r4drdΩ

{

er

(

− 1

r sin θ
∂φ(ψ

†
sσθψp)

)

+ eθ

(

2

r
(ψ†

sσφψp) +
1

r sin θ
∂φ(ψ

†
sσrψp)

)

+ eφ

(

−3

r
(ψ†

sσθψp) +
cos θ

r sin θ
(ψ†

sσrψp)

)}

+ (c. c.) . (53)

Finally, by integration-by-parts the terms with ∂φ, by noting that ∂φer = sin θeφ and ∂φeθ =

cos θeφ, we are left with:

〈~aspin〉 = − eπ

2me

∫

r4drdΩ

{

eθ

(

2

r
(ψ†

sσφψp)

)

+ eφ

(

−2

r
(ψ†

sσθψp)

)}

+ (c. c.) . (54)

The integral with respect to r is now easy:

〈~aspin〉 = − eπ

me
r(s, p)

∫

dΩ

{

eθ(ψ
†
sσφψp)angular − eφ(ψ

†
sσθψp)angular

}

+ (c. c.) , (55)

where the subscripts “angular” means that only the angular part should be considered, forgetting

about the radial part. The factor r(s, p) is defined in the unnumbered equation just above Eq. (15)

of Ref. [1],

r(s, p) ≡
∫ ∞

0
dr r3Rs(r)Rp(r) , (56)

where Rs(r) and Rp(r) are the radial parts of ψs and ψp, respectively.

The contribution 〈~aorb〉 from the usual “orbital current” to 〈~a〉 is,

〈~aorb〉 = − eπ

2me

∫

d3~r r2
{

ψ†
s(−i)~∇ψp + i(~∇ψ†

s)ψp

}

+ (c. c.) . (57)

12



The integral can be written in the spherical coordinates as:

〈~aorb〉 = − eπ

2me

∫

r4drdΩ

{

ψ†
s(−i)

(

er∂rψp + eθ
1

r
∂θψp + eφ

1

r sin θ
∂φψp

)

+ i

(

er∂rψ
†
s + eθ

1

r
∂θψ

†
s + eφ

1

r sin θ
∂φψ

†
s

)

ψp

}

+ (c. c.) . (58)

We can use ∂φψs = ∂θψs = 0 to drop two terms in the second line. Upon integrating-by-parts those

terms with ∂θ or ∂φ, we find that such terms cancel with each other. We are then left with:

〈~aorb〉 = i
eπ

2me

∫

r4drdΩ er

{

ψ†
s(∂rψp)− (∂rψ

†
s)ψp

}

+ (c. c.) . (59)

The r-integral is now easy:

〈~aorb〉 = i
eπ

2me
r1(s, p)

∫

dΩ er
(

ψ†
sψp

)

angular
+ (c. c.) , (60)

where r1(s, p) is defined as

r1(s, p) ≡
∫ ∞

0
dr r4

(

Rs(r)
dRp(r)

dr
−Rp(r)

dRs(r)

dr

)

. (61)

Before going further, it is convenient to calculate the inner products 〈s1/2, µ = ±1/2|er|p1/2, µ′ =
±1/2〉, and 〈s1/2, µ = ±1/2|(eθσφ − eφσθ)|p1/2, µ′ = ±1/2〉, where the integral is to be performed

only over the angular variables, for all the possible combinations of µ and µ′.

〈s1/2, µ = ±1/2|er|p1/2, µ′ = ±1/2〉 are evaluated to be, by using the explicit solutions for the

Dirac equation for a particle in the Coulomb potential,

〈s1/2,+1/2|er|p1/2,+1/2〉 = −i
∫

dΩ
1

4π

(

1 0
)

er

(

cos θ

sin θeiφ

)

= −i
∫

dΩ
1

4π
cos θ(sin θ cosφex + sin θ sinφey + cos θez)

= − i

3
ez . (62)
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Similarly,

〈s1/2,+1/2|er|p1/2,−1/2〉 =
∫

dΩ
−i
4π

sin θe−iφ(sin θ cosφex + sin θ sinφey + cos θez) = − i

3
(ex − iey) ,

(63)

〈s1/2,−1/2|er|p1/2,+1/2〉 =
∫

dΩ
−i
4π

sin θeiφ(sin θ cosφex + sin θ sinφey + cos θez) = − i

3
(ex + iey) ,

(64)

〈s1/2,−1/2|er|p1/2,−1/2〉 =
∫

dΩ
i

4π
cos θ(sin θ cosφex + sin θ sinφey + cos θez) = +

i

3
ez .

(65)

Similarly, the other elements 〈s1/2, µ = ±1/2|(eθσφ − eφσθ)|p1/2, µ′ = ±1/2〉 can be computed

to be:

〈s1/2,+1/2|(eθσφ − eφσθ)|p1/2,+1/2〉 = +
2

3
ez , (66)

〈s1/2,+1/2|(eθσφ − eφσθ)|p1/2,−1/2〉 = +
2

3
(ex − iey) , (67)

〈s1/2,−1/2|(eθσφ − eφσθ)|p1/2,+1/2〉 = +
2

3
(ex + iey) , (68)

〈s1/2,−1/2|(eθσφ − eφσθ)|p1/2,−1/2〉 = −2

3
ez . (69)

From Eqs. (62–69), the sum of the two contributions 〈~aspin〉 (Eq. (55)) and 〈~aorb〉 (Eq. (60))

can be expressed in a compact form:

〈~a〉 = 〈~aspin〉+ 〈~aorb〉

= i
eπ

2me

(

r1(s, p)− 4r(s, p)

)∫

dΩ er
(

ψ†
sψp

)

angular
+ (c. c.) . (70)

We now evaluate the matrix element. First, the contribution from |s1/2, 1/2〉 and |p1/2, 1/2〉
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to 〈ψs+|~a|ψp+〉+ (c. c.) is,

{

i

∫

dΩ(ψ†
s+ψp+)angularer + (c. c.)

} ∣

∣

∣

∣

|s,1/2〉,|p,1/2〉

= i
−i
3
ez

{(

− 2√
3

Ry

Es
Z1C1(r1)

i(n1x − in1y)√
2

)

+

(

(r1, Z1) → (r2, Z2)

)}

×
{

(

2
√
3i

5

Ry

Ep
Z1C2(r1)n1z

−i(n1x + in1y)√
2

)

+

(

(r1, Z1) → (r2, Z2)

)

}

+ (c. c.)

= ez
4

15

(Ry)2

EsEp
Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C1(r1)C2(r2)n2z − C2(r1)C1(r2)n1z

}

, (71)

where we have used ~n3 = ez. If we further use ~J · ~n3 = 3/2 which holds for the case µ = 3/2, we

get

{

i

∫

dΩ(ψ†
s+ψp+)angularer + (c. c.)

} ∣

∣

∣

∣

|s,1/2〉,|p,1/2〉

= ez( ~J · ~n3)
8

45

(Ry)2

EsEp
Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]

×
{

C1(r1)C2(r2)n2z − C2(r1)C1(r2)n1z

}

.

(72)

15



The contribution from |s1/2, 1/2〉 and |p1/2,−1/2〉 to 〈ψs+|~a|ψp+〉+ (c. c.) is,

{

i

∫

dΩ(ψ†
s+ψp+)angularer + (c. c.)

} ∣

∣

∣

∣

|s,1/2〉,|p,−1/2〉

= i
−i
3
(ex − iey)

{(

− 2√
3

Ry

Es
Z1C1(r1)

i(n1x − in1y)√
2

)

+

(

(r1, Z1) → (r2, Z2)

)}

×
{

(

2
√
3i

5

Ry

Ep
Z1C2(r1)(n1x + in1y)

−i(n1x + in1y)√
2

)

+

(

(r1, Z1) → (r2, Z2)

)

}

+ (c. c.)

=
4(Ry)2

15EsEp
Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C1(r1)C2(r2)(n2xex + n2yey)− C2(r1)C1(r2)(n1xex + n1yey)

}

+
4(Ry)2

15EsEp

[

Z2
1C1(r1)C2(r1)

(

~n1 × ~n3
)∣

∣~n1 × ~n3
∣

∣

2

+ Z1Z2C1(r1)C2(r2)
(

~n2 × ~n3
)

(

(~n1 × ~n3) · (~n2 × ~n3)

)

+ Z1Z2C1(r2)C2(r1)
(

~n1 × ~n3
)

(

(~n1 × ~n3) · (~n2 × ~n3)

)

+ Z2
2C1(r2)C2(r2)

(

~n2 × ~n3
)∣

∣~n2 × ~n3
∣

∣

2
]

. (73)

By substituting the sum of Eqs. (71) and (73) into Eq. (70), we obtain, for µ = 3/2,

〈~a〉 = eπ

me

(

r1(s, p)− 4r(s, p)

)

4(Ry)2

45EsEp
Z1Z2( ~J · ~n3)

[

~n3 ·
(

~n1 × ~n2

)]{

C1(r1)C2(r2)~n2 − C2(r1)C1(r2)~n1

}

+
eπ

me

(

r1(s, p)− 4r(s, p)

)

4(Ry)2

45EsEp
( ~J · ~n3)

[

Z2
1C1(r1)C2(r1)

(

~n1 × ~n3
)∣

∣~n1 × ~n3
∣

∣

2

+ Z1Z2C1(r1)C2(r2)
(

~n2 × ~n3
)

(

(~n1 × ~n3) · (~n2 × ~n3)

)

+ Z1Z2C1(r2)C2(r1)
(

~n1 × ~n3
)

(

(~n1 × ~n3) · (~n2 × ~n3)

)

+ Z2
2C1(r2)C2(r2)

(

~n2 × ~n3
)∣

∣~n2 × ~n3
∣

∣

2
]

, (74)

where we have used ~J · ~n3 = 3/2 which holds for the case µ = 3/2. The terms in the second

and the subsequent lines are all perpendicular to the axis of the diatomic molecule A3A4 and

vanish by averaging the orientation of the molecule with this axis fixed. As long as the rotational

16



symmetry around the z-axis is a good symmetry, this averaging is legitimate since there is a

quantum-mechanical uncertainty relation between Jz and the azimuthal angle φ which describes

the orientation of the molecule with the A3A4 axis fixed at the z-axis. Thus we obtain Eq. (2).

The same conclusion can also be obtained for µ = −3/2.

In the above discussion, we have neglected the possible contribution from the terms at first

order of perturbation. Below we show that this can be justified. At first order of perturbation, the

possible contribution to 〈~a〉 comes from

〈~a〉 = 〈ψs±|~a|p3/2, µ = ±3/2〉 + (c. c.) (75)

(The matrix element of ~a between |ψp±〉 and |p3/2〉 vanishes because of parity). To evaluate Eq. (75),
we can use

〈~a〉 = 〈~aspin〉+ 〈~aorb〉 (76)

〈~aspin〉 = − eπ

me
r(s, p)

∫

dΩ

{

eθ(ψ
†
sσφψp)angular − eφ(ψ

†
sσθψp)angular

}

+ (c. c.) , (77)

〈~aorb〉 = i
eπ

2me
r1(s, p)

∫

dΩ er
(

ψ†
sψp

)

angular
+ (c. c.) , (78)

where ψp should be understood as |p3/2, µ = ±3/2〉. The integrals which can appear in Eqs. (77)

and (78) are:

〈s1/2,+1/2|er|p3/2,+3/2〉 = −i√
6
(ex + iey) , (79)

〈s1/2,−1/2|er|p3/2,−3/2〉 = i√
6
(ex − iey) , (80)

〈s1/2,+1/2|er|p3/2,−3/2〉 = 〈s1/2,−1/2|er|p3/2,+3/2〉 = 0 , (81)

and

〈s1/2,+1/2|(eθσφ − eφσθ)|p3/2,+3/2〉 = −1√
6
(ex + iey) , (82)

〈s1/2,−1/2|(eθσφ − eφσθ)|p3/2,−3/2〉 = 1√
6
(ex − iey) , (83)

〈s1/2,+1/2|(eθσφ − eφσθ)|p3/2,−3/2〉 = 〈s1/2,−1/2|(eθσφ − eφσθ)|p3/2,+3/2〉 = 0 . (84)

From Eqs. (79)–(84), we find that the vector 〈ψs±|~a|p3/2, µ = ±3/2〉 + (c. c.) is zero or per-

pendicular to ~n3, namely, the axis of the diatomic molecule A3A4. In this case, this vector vanishes

when averaged over the orientation of the molecule with ~n3 being fixed. Therefore, to first order

of perturbation, there is no contribution to the anapole. The same comment also applies to the

contribution which comes from second order of perturbation like the term

〈~a〉 = 〈ψ′
s±|~a|p3/2, µ = ±3/2〉 + (c. c.) , (85)
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where |ψ′
s〉 is the s-wave state which appears as a second-order correction to the initial wave function

|p3/2〉. (Another second-order contribution 〈ψ′
p|~a|p3/2, µ = ±3/2〉 + (c. c.), where ψ′

p is the p-wave

state which appears as a second-order correction to the initial wave function |p3/2〉, vanishes from
parity conservation.) In this case, the angular integrals involved are Eqs. (79), (80), (81), (82),

(83), and (84), which all vanish when averaged over the orientation of the molecule with ~n3 being

fixed. Therefore there is no other second-order contribution to Eq. (2) which does not vanish after

the average over the orientations of the molecule with fixed ~n3 as mentioned above.

5 Discussion

We have analytically derived the direct relation between the anapole moment and the geometrical

structure of chiral molecules. A four-atom molecule has been studied as an example since it is the

simplest molecule having chirality. We have focused on a valence electron which is captured by

the diatomic molecule A3A4, and treated effects from the other atoms A1 and A2 on the electron

as perturbation. We have computed the corrections to the wave function of the electron in the

|p3/2, µ = ±3/2〉 state by the Coulomb interactions from the atoms A1 and A2, and calculated

the anapole moment. Though this method was first developed in Ref. [1], this method has been

discussed in much more detail in this paper to be accessible to many scientists over wider regions

and their final result has been corrected. The electron terms for n-atom molecules (n ≤ 3) reserve

the symmetry of molecules. This is not the case for n ≥ 4 and needs complicated processes [4, 5].

On the other hand, the procedures developed in this paper have given the direct relation between

the PV interactions and the geometrical structure without wandering into complicated ab-initio

MO calculations. Of course, these two approaches are complementary and we need some bridge

between the two approaches. One point which may need improvement in our approach is that our

approach might seem to depend on the peculiar initial state |p3/2〉. We may generalize it to the

cases where the initial state is |p1/2〉 or |s1/2〉 state. Starting from |s1/2〉 state in place of |p3/2〉, we
obtain

〈~a〉 = 2eπ

15me

(

r1(s, p)− 4r(s, p)

)(

1

E(s1/2)− E(p3/2, 3/2)
− 1

E(s1/2)− E(p3/2,−1/2)

)

(Ry)2

E(s1/2)− E(p1/2)

× Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C1(r1)C2(r2)~n2 − C2(r1)C1(r2)~n1

}

− 4eπ

15me

(

r̃1(s, p) + 2r̃(s, p)

)

1

E(s1/2, 1/2) − E(p1/2,−1/2)

(Ry)2

E(s1/2, 1/2) − E(p3/2, 1/2)

× Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C̃1(r1)C2(r2)~n2 − C2(r1)C̃1(r2)~n1

}

, (86)

where C̃1(ri) ≡ a0
∫∞
0 dr r2Rs1/2(r)Rp1/2(r)[(ri/r

2)θ(r − ri) + (r/r2i )θ(ri − r)], where Rs1/2(r) and

Rp1/2(r) are the radial wave functions of the initial s1/2 state and the intermediate p1/2 state,

respectively. r̃(s, p) and r̃1(s, p) are defined as r̃(s, p) ≡
∫∞
0 drr3Rs1/2(r)Rp3/2(r) and r̃1(s, p) ≡
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∫∞
0 drr4(Rs1/2(r)R

′
p3/2

(r)−R′
s1/2

(r)Rp3/2(r)), where Rp3/2(r) is the radial wave function of the p3/2

state. Instead, if we start from |p1/2〉 state, we obtain

〈~a〉 = +
2eπ

15me

(

r1(s, p)− 4r(s, p)

)(

1

E(p1/2)− E(p3/2, 3/2)
− 1

E(p1/2)− E(p3/2,−1/2)

)

(Ry)2

E(p1/2)− E(s1/2)

× Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C1(r1)C2(r2)~n2 − C2(r1)C1(r2)~n1

}

+
4eπ

15me

(

r̃1(s, p) + 2r̃(s, p)

)

1

E(p1/2, 1/2) − E(s1/2,−1/2)

(Ry)2

E(p1/2, 1/2) − E(p3/2,−1/2)

× Z1Z2

[

~n3 ·
(

~n1 × ~n2

)]{

C̃1(r1)C2(r2)~n2 − C2(r1)C̃1(r2)~n1

}

. (87)

This is of a similar form to Eq. (86).

The second point which needs discussions is to apply this approach to realistic molecules. This

is discussed in Appendix.

This approach has many applications. One of them is the evaluation of the energy differences

between optical isomers. The PV potential due to the weak neutral boson exchange is given by

[10, 11, 12]

V PV =
GF

4
√
2me

∑

α,i

Qα
W {σi · pi, δ

(3)(riα)}+ , (88)

where Qα
W is the weak charge of the α-th atom in a molecule:

Qα
W = (1− 4 sin2 θW )Zα −Nα , (89)

with the atomic number Zα and the neutron number Nα of the α-th atom, where α runs over

the atoms composing of the molecule and i labels the electrons. The precedent analytical methods

have not discussed the direct relation between the energy differences and geometrical structures.

The model set-up is the same as in the present paper and we may replace the anapole moment by

Eq. (88). The detail will be discussed in a separate form [13].
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A Candidate molecules

The present paper discusses that chiral molecules having an unpaired electron would be good sys-

tems for the measurement of the anapole moment, and the analytical derivation of the expectation

value of the anapole moment Hamiltonian (Eqs. (47) and (57)) for four-atom molecules, which

are the smallest molecules that have chirality, is given. In order to further simplify the analytical

derivation, we assumed that the nature of the unpaired electron is mainly described by atomic

orbitals attached to A4 (Fig.1), and the projection of the angular momentum along the A4 − A3

axis is a good quantum number. Molecules that satisfy these conditions may be those whose A4 is

a heavy atom, in which most of the unpaired electron distributes on A4, and whose A1 and A2 are

lighter atoms than A3 and A4.

An example of a four-atom molecule with an unpaired electron is the HNOH radical, in which

one hydrogen of an amine group is removed from hydroxylamine (NH2OH). However, it is not a

chiral molecule because this radical has a planer equilibrium structure [14]. We have searched for

various four-atom molecules similar to the HNOH radical by the use of ab-initio molecular orbital

calculations, and found several molecules that have a chiral structure. They include the FAsSH

radical, whose dihedral angle, χ, at the equilibrium structure is 61.3 degrees. The potential surface

of this molecule along the dihedral angle, χ, based on MP2/6-31G(d) [15] is shown in Fig.2. The

potential barrier along χ is 354.6 cm−1, while the vibrational frequency along χ under the harmonic

approximation is 136.4 cm−1. The gross orbital population analysis of a simple ROHF molecular

orbital calculation indicates that about 82 % of the electron spin locates on the 4p orbital of the As

atom. Since the ground state of AsS is 2Π1/2, the anapole moment of this radical may be roughly

approximated by Eq. (87).

Another example is the FPOH radical, which has the dihedral angle, χ, of 53.0 degrees. The

electron spin of this molecule, however, distributes widely over the radical, and therefore it will

be necessary to include higher order terms that we ignored in this paper to estimate the anapole

moment of this radical.

So far a spectroscopic study of the HNOH radical has been reported by matrix isolation

spectroscopy in solid hydrogen [14]. No spectroscopic information were reported for other molecules.
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