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Abstract  The clustering of fracture orientations is important for tectonic studies and 

for geotechnical engineering. In this study, real-coded genetic algorithm was adapted to 

fitting a mixed Bingham distribution to orientation data by maximizing the 

log-likelihood function of the distribution. The maximization is a difficult problem, 

because the function has multimodality and singularity. It was found that the algorithm 

was effective for this problem. Given the orientations of dilational fractures, the present 

method determines not only the stress axes and stress ratio of each of fracture groups 

but also the maximum non-dimensionalized fluid pressure at the time of their formation. 

In addition, the software calculates the 95% error ellipses of the concentration axes. The 

present method found that the orientations of ore veins of the Akenobe Mine, SW Japan, 

should be partitioned into three clusters. It is shown that two of the groups had 

distinctive Zn and Sn contents, and that the ore fluids had overpressures only slightly 

greater than the minimum principal stress at the time of the deposition of Zn and Sn rich 

veins.  
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INTRODUCTION 

Fracture orientations are important to predict the leakage of geofluid from reservoirs 

(e.g., Bigi et al. 2013) and to estimate the stability of open pit and tunnel walls (Priest 

1993; Peel et al. 2001). The orientations of dilational fractures such as dikes and 

mineral veins are clues to paleostresses (Stevens 1911; Anderson 1942; McHone 1978; 

Delaney et al. 1986; Baer et al. 1994; Jolly & Sanderson 1997; Yamaji & Sato 2010; 
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Sato et al. 2013; Kanai et al. 2014). Since the poles to natural fractures often show 

multimodal distribution, the clustering of the fracture orientations are essential for the 

description and paleostress analysis of the fractures. Yamaji & Sato (2011) used mixed 

Bingham distribution for this purpose, and succeeded in detecting two paleostresses 

from the orientations of Miocene igneous dikes in SW Japan, the classification of which 

had not been recognized. The Bingham distribution is so flexible that it can describe 

circular, elliptical and girdle distributions (Fig. 1), and has been used for delineating the 

confidence regions of paleomagnetic directions (e.g. Onstott 1980; Evans et al. 2000; 

Love 2007) and structural orientations (e.g. Kelker & Langenberg 1982; Siemes et al. 

2000; Johansen et al. 2004; Kunze & Schaeben, 2004; Ueda et al. 2012; Sáez et al. 

2013; Riffert et al. 2014).  

 To fit a mixed Bingham distribution to a set of orientation data, a few researchers 

(Yamaji & Sato 2011; Niezgoda & Glover 2013) searched for the maximum point of a 

multimodal function, L(X), by means of the expectation-maximization (EM) algorithm 

(e.g. Bishop 2006). That is, the maximum point of the function represents the best 

partition of the data. However, it is a difficult problem to discover the global maximum 

of such a multimodal function (Fig. 2) especially for the EM algorithm, which starts 

from a randomly chosen point and simply climbs the slope of the function from the 

starting point. The algorithm often arrives and stops not at the global but at a local 

maximum. Consequently, the algorithm should be started hundreds of times with 

random initial conditions to find the global maximum. The animation in the 

supplementary files, EM1.mov and EM2.mov, of this paper show the cases where the 

EM algorithm succeeded and failed, respectively, in detecting a good partition of the 

natural fracture data of Shanley & Mahtab (1976) into three clusters. In the latter case, 

the singularity of the function (Bishop 2006, p. 434) made red and blue clusters to 

shrink and most of the data to be classified into a green cluster. In addition, if a data set 

is partitioned into K clusters, the number of local maxima of the function increases with 

the increase of K. To make matters worse, the parameter space in which the global 

maximum is searched for is a 5K-dimensional space, because a Bingham distribution 

has five degrees of freedom (Bingham 1974; Borradaile 2003). For example, if a data 

set is partitioned into three groups, the global maximum must be discovered in 
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15-dimensional space. The high dimensionality makes it difficult to solve the search 

problem.  

 In this study, the genetic algorithm (GA) was found to be effective to search for the 

best partition of orientation data. The algorithm is one of the numerical optimization 

techniques that can escape from local maxima and detect the global maximum (e.g. 

Goldberg 1989). In the following sections, we introduce, first, the mathematical 

formulations of mixed Bingham distributions. Second, we document the algorithm. The 

method was applied to two natural data sets: one from the San Manual copper mine, 

Arizona, and the other from the vein-type ores of the Akenobe mine, SW Japan.  

 The program was written in MATLAB version 7, and is available freely from the 

author.  

 

METHOD 

 

MIXED BINGHAM DISTRIBUTION 

A mixed Bingham distribution is a linear combination of Bingham distributions with 

different concentration axes and concentration parameters. In this section, we briefly 

explain Bingham and mixed Bingham distributions, the parameter space of which is 

detailed in Appendix 1.  

 The Bingham distribution is so flexible a probability distribution that it can 

represent the uniform, circular, elliptical and girdle distributions of 3D orientations (Fig. 

1). The distribution has the probability density function, 

୆ܲሺ࢜|ࣄ, ሻࡱ ൌ
1
ܣ
expሺ࢜୘ࡱ୘࢜ࡱࣄሻ , 

where ࢜ is the three-dimensional unit column vector indicating an orientation, A the 

normalizing factor, which is a function of the concentration parameters, ߢଵ and ߢଶ, E 

the 3 × 3 orthogonal matrix denoting the orientations of maximum, intermediate and 

minimum concentration axes of the distribution, and ࣄ the diagonal matrix, diag(ߢଵ,ߢଶ, 

0). When we deal with fractures, v is the unit vector normal to a fracture plane. By 

definition the concentration parameters satisfy  

ଵߢ ൑ ଶߢ ൑ 0.                     (1) 

Uniform and circular distributions are denoted by ߢଵ ൌ ଶߢ ൌ 0 and ߢଵ ൌ ଶߢ ൏ 0 , 
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respectively; and smaller parameter values indicate a concentrated distribution. 

Elliptical and girdle distributions are denoted by ߢଵ ൎ ଶߢ  and ߢଵ ≪ ଶߢ ൎ 0 , 

respectively (Fig. 1). The parameters characterizing a Bingham distribution are 

represented by a five-dimensional position vector, x, the length of which is defined as 

ߩ ≡ |࢞| ൌ ටߢଵ
ଶ ൅ ଶߢଵߢ ൅ ଶߢ

ଶ.																					ሺ2ሻ 

For the paleostress analysis, the ratio, ߢଶ/ߢଵ, is interpreted to be equal with the stress 

ratio, Φ ൌ ሺߪଶ െ ଵߪଷሻ/ሺߪ െ  ௜ is the ith principalߪ ሻ (Yamaji et al. 2010), where	ଷߪ

stress of the stress condition that corresponds to the Bingham distribution.  

 A mixed Bingham distribution with K Bingham components has the probability 

density function (Yamaji & Sato 2011), 

୫ܲ୆ሺ࢜|ࢄሻ ൌ ෍߸௞
୆ܲሺ࢜|࢞௞ሻ

௄

௞ୀଵ

, 

where ࢞௞  is the five-dimensional position vector representing the kth Bingham 

distribution, ߸௞  the mixing coefficient (Bishop 2006) of the distribution, and the 

5K-dimensional vector, 

ࢄ ൌ ሺ࢞ଵ, ࢞ଶ, … , ࢞௄ሻ,																										ሺ3ሻ 

characterizes the mixed Bingham distribution. Each of the Bingham components 

represents a girdle, elliptical or circular cluster. The mixing coefficients, ߸ଵ,… ,߸௄, 

satisfy 0 ൑ ߸௞ ൑ 1 and ߸ଵ ൅⋯൅߸௄ ൌ 1.	That is, ߸௞ stands for the significance 

of the kth Bingham distribution in the mixture. Figure 3 shows an example of mixed 

Bingham distribution and its Bingham components.  

 If a data set is composed of the N orientations, ࢜ଵ,…, ࢜ே, the quantity, 

݉௡
௞ ൌ ୆ܲሺ࢜௡|࢞௞ሻ

∑ ୆ܲሺ࢜௡|࢞௞ሻ௄
௞ୀଵ

,																							ሺ4ሻ 

has a value between 0 and 1 denoting the membership of the nth datum to the kth group 

(k = 1,…, K). For example, the nth datum belongs to the kth cluster with a probability of 

20% in case of ݉௡
௞ ൌ 0.2.  

 

FITTING 

A mixed Bingham distribution is fitted to the orientations, ࢜ଵ, …, ࢜ே, by maximizing 
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the logarithmic likelihood function,  

ሻࢄሺܮ ൌ ෍ logୣ	 ୫ܲ୆ሺ࢜௡|ࢄሻ
ே

௡ୀଵ

.																									ሺ5ሻ	

Given a set of fracture orientations, the unit vector, ࢜௡, denotes the pole to the nth 

fracture surface. The distribution that best fits the N data is obtained by searching for the 

point, Xopt, where this function has the maximum value. This function has numerous 

local maxima (Fig. 2), making the optimization of X very difficult. In this work, the 

genetic algorithm, which is detailed in the next section, is used for this purpose.  

 Taking into account the measurement errors of orientations at outcrops, the optimal 

X was searched for the global maximum of L(X) in the region,  

|࢞௞| ൑ 200					ሺ݇ ൌ 1,… , 	ሺ6ሻ																													ሻ,ܭ

where xk is the kth component of X (Eq. 3). That is, the measurement error is a few 

degrees, so a circular cluster with the radius of 4° is denoted by a Bingham distribution 

with κ1 = κ2 ≈ −115 (Fig. 1); and we ignore smaller clusters. It follows from Eq. (2) and 

κ1 = κ2 = −115 that ρ  200. Therefore, we deal with ࢞௞ that satisfies the inequality (6).  

 Once ܮሺࢄሻ is maximized, the number of clusters, K, is evaluated using Bayesian 

information criterion, BIC (e.g., Bishop 2006). That is, the optimal K value is given by 

minimizing  

BIC ൌ െ2ܮሺࢄ୭୮୲ሻ ൅ ሺ6ܭ െ 1ሻlogୣܰ,												ሺ7ሻ	

where ࢄ୭୮୲ is a function of K, and represents the mixed Bingham distribution that best 

fits the data. To determine the appropriate K value for a given data set, the 

log-likelihood function, ܮሺࢄ୭୮୲ሻ, must be calculated for the cases, K = 1, 2, 3,…  

 

ERROR ANALYSIS 

Once the optimal partition is determined, we calculate the confidence ellipses of the 

concentration axes from the orientation matrix of the kth Bingham component,  

௞ࢀ ൌ ෍݉௡
௞࢜௡୘࢜௡

ே

௡ୀଵ

.																																											ሺ8ሻ 

Since this is a symmetric matrix, ࢀ௞ has real eigenvalues, for which we assume the 

magnitude relation, ߬ଵ
௞ ൑ ߬ଶ

௞ ൑ ߬ଷ
௞. Let ߢ௜

௞ be the ith concentration parameter of the 
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kth cluster, and let the third one be zero, i.e., ߢଵ
௞ ൑ ଶߢ

௞ ൑ ଷߢ
௞ ൌ 0. Then, the 95% 

confidence ellipse of the kth Bingham component are given by  

௜௝ߙ
௞ ൌ

2.45

2ห൫ߢ௜
௞ െ ௝ߢ

௞൯൫߬௜
௞ െ ௝߬

௞൯ห
, 

where ߙ௜௝
௞  is the semi-axis of the ith error ellipse towards the jth concentration axis of 

the kth cluster (Tanaka 1999).   

 

REAL CODED GENETIC ALGORITHM 

 

A real-coded genetic algorithm (e.g. Davis 1991), GA, was employed for the 

optimization of Eq. (5). The genetic algorithm is a search method based on the 

mechanics of biological evolution (Goldberg 1989) as follows. Each individual of a 

population has a fitness value: The individuals with low fitness die out, and others with 

high fitness have high probability to be mated with to have offspring(s) that may have 

better fitness. However, these processes have exceptions, because the survival of the 

fittest without other principles leads to the blind alley of the evolution. Those with low 

fitness can survive at low probabilities, and others with high fitness occasionally die out. 

In addition, mutation introduces random modification in the population that allows the 

population to escape from blind alleys. As a result of these processes, the best 

individuals of the population gradually improve their fitness values.  

 Now, an individual and its fitness are compared to a mixed Bingham distribution, X, 

and its logarithmic likelihood, L(X), for a given set of 3D orientations (Fig. 2). The flow 

chart of the program is shown in Fig. 4. The important procedures of the algorithm are 

as follows. We regard 5K-dimensional vector, X, as an individual and its gene 

simultaneously; and the set of Np individuals, {X1,…, ࢄே౦}, as the population that 

evolves to determine the global maximum of L(X). L(X i) is termed the fitness of the i th 

individual, and determines the chance for the individual to survive and to have children. 

The population is improved iteratively with keeping the size of the population, Np. A 

small population is favorable to speed-up the evolution, but GA with a small Np value is 

liable to lead to a local maximum of L(X), which is compared to a blind alley of the 

evolution. A few Np values are used to determine the global maximum of L(X) in our 

program. The GA with Np = 20 in our software usually worked well.  
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INITIALIZATION 

The population is initialized as follows. An individual represents K Bingham 

components, each of which is denoted by a point in the five-dimensional parameter 

space (Appendix 1). Each Bingham component is initialized by drawing a point, x, 

randomly from a five-dimensional Gaussian distribution with the mean at the origin and 

the covariance matrix, diag(1,1,1,1,1). Then, |x| which is identical with ρ (Fig. 1) obeys 

five-dimensional Rayleigh distribution (Ali & Woo 2005) with the mean at ~2.1. That is, 

clusters with the radii as large as a few tens of degrees are chosen as the initial 

configuration of the GA.  

 The initial population is created by gathering the Bingham components generated in 

this way. We regard them as the 0th generation (g = 0). A negative value with a very 

large absolute value is assigned to Lmax as a tentative value.  

 In case of K = 1, the concentration axes and the concentration parameters were 

inferred through the method of Mardia & Zemroch (1977), and were used to form an 

individual. That is, the eigenvectors of the orientation matrix (Eq. 8) were identified 

with the concentration orientations and the concentration parameters were determined 

from its eigenvalues, where the value 1 was assigned to the memberships, ݉ଵ
ଵ, … ,݉ே

ଵ .  

 

EVALUATION 

The fitness of an individual X is evaluated as follows. First, X is decomposed into K 

Bingham components, x1,…, xK (Eq. 3). Second, the memberships of all the data are 

calculated by Eq. (4). Third, the mixing coefficients are obtained as ߸௞ ൌ ݉ଵ
௞ ൅ ⋯൅

݉ே
௞  (k = 1,…, K). Finally, the log-likelihood function in Eq. (5), i.e., ܮሺࢄ௞ሻ, is 

assigned to the fitness of the individual.  

 

CROSSOVER 

An important step of the genetic algorithm is that individuals with high fitness values 

give birth to a child that resembles its parents. To choose a pair, we employ the rank 

selection (Baker 1985), meaning that the parents are randomly chosen from individuals. 

Those with high fitness values are chosen more often than those with low fitness values. 
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Then, two children are obtained by exchanging the ‘genes’ of the pairs through the 

unimodal normal distribution crossover technique (Kita et al. 1998; Ono et al. 2003). 

Figure 2 illustrates the basic idea of the technique, whereby individuals that have high 

fitness values tend to have children. Since a local or the global maximum can be 

expected to exist near the point with the high fitness values, this process tends to 

increase the best fitness of the population.  

 

SELECTION 

Rank selection (Baker 1985) is used to remove individuals from the population. That is, 

individuals with low fitness values survive at low probabilities. However, those with 

high fitness values are removed with non-zero but small probabilities. The denial of the 

survival of the fittest is very important to allow the population to get out of local 

maxima (Fig. 5a). When the highest fitness individual is removed, the population shows 

a sudden decline in the best fitness of the population.  

 

MUTATION 

An individual is replaced with randomly generated one. That is, the point representing 

the new individual, X, is drawn from the multivariate normal distribution with the 

covariance matrix, 302diag(1,1,1,1,1) or 702diag(1,1,1,1,1), either of which is randomly 

chosen. The replaced individual is chosen by the rank selection. In case the length of x, 

the component of X, is larger than 200 (Eq. 7), x is replaced with 200࢞/|࢞|.  

 

RANDOM WORK 

In order to escape local maxima and for individuals to visit various points in the 

parameter space, a perturbation is applied every generation. That is, X is replaced with 

ࢄ ൅  ,is a random vector obeying the 5K-dimensional Gaussian distribution ࢄ∆ where ,ࢄ∆0.05	

the covariance of which is the identity matrix.  

 

RECORDING 

At the end of the main loop, the maximum fitness of the individual in the population is 

recorded along with the identification number and the point, Xopt, of the best individual. 
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In this article, we refer to the maximum fitness at the generation g as gLmax. This 

quantity has a tendency to increase mainly by the crossover, but sometimes shows a 

sudden decline by the selection.  

 

TERMINATION CONDITION OF GA 

Let Lmax be the maximum among 1Lmax,…, gLmax. The main loop is terminated by 

reaching the convergence of Lmax or by reaching a limit in g. Let g′ be the generation 

when Lmax was last updated. The genetic algorithm is terminated when the condition, 

g = g′ + K∆g,           (9) 

is met (Fig. 5b), where ∆g is 100 or 1000 depending on the difficulty of the data set to 

be partitioned into K clusters. Time of computation required for the convergence 

generally increases with increasing K. The second term of the right-hand side of Eq. (9) 

deals with this effect. On the other hand, the computation is programmed to stop 

eventually at the 100,000th generation. 

 

FINAL OPTIMIZATION BY THE EM ALGORITHM 

The optimization by the genetic algorithm slowed down as X approached the global 

maximum of 	ܮሺࢄሻ . Accordingly, the EM algorithm was employed to refine the 

partition (Fig. 4b). The EM algorithm is detailed by Yamaji & Sato (2011). The 

algorithm was terminated when the L values of succeeding iterations, gL and g+1L, 

satisfied the condition, |( g+1L − gL) / gL | < 10−6.  

 

ITERATION OF THE ENTIRE ROUTINE 

The optimal K value for a data set is evaluated from the BIC versus K plot. For this 

purpose, values of the log-likelihood function must be accurately determined for K = 1, 

2, 3,… (Eq. 7). This is a challenging task owing to the multimodality of the function. 

Fuzzy clustering, including the present case, is not easy due to the multimodality of its 

object function (e.g., Bishop 2006, p. 434–35). In order to escape local maxima and to 

search for the global maximum of the function, such clustering techniques run a 

computer program many times from different initial conditions. Elaborate clustering 

schemes such as Bayesian inference do so as well (Bishop 2006, p. 484). Our program 

is run for a data set several times with each K value starting from different initial 
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populations (Eq. 5).  

 How many times do we have to run the program? A heuristic approaches solves this 

problem, the key to which is the monotonous increase of ܮሺࢄ୭୮୲ሻ as a function of K. 

That is, the graph, Lmax versus K, should have a convex-upward, smooth curve (Fig. 6a). 

If the graph drawn with calculated values has a depression at a K value from such a 

smooth curve, Lmax at the depression is inaccurate. Empirically, the present method 

requires the computation several times for each K value.  

 

NUMERICAL EXAMPLES 

 

FRACTURES 

The present technique was tested with fracture orientations in the San Manual Copper 

Mine, Arizona (Shanley & Mahtab 1976). The data set has been used for the benchmark 

tests of the clustering techniques of orientation data. An optimization process of L(X) 

for the case of K = 3 is shown in Fig. 5. The supplementary file, GA.mov, shows the 

animation of this process, the snapshots of which are shown in Fig. 5c. The optimization 

of L(X) was accomplished by repeating the entire routine in Fig. 4 several times for 

each of the K values, 1, 2, 3, etc.  

 The present technique was much more effective than the EM algorithm (Yamaji & 

Sato 2011) for the optimization, as the EM algorithm so often reached local maxima of 

L(X) that the algorithm should have been run hundreds of times to detect the global 

maximum. The supplementary files, EM1.mov and EM2.mov, show the animation of 

the successful and unsuccessful optimization processes of the EM algorithm for 

partitioning 3D orientations into three clusters. The animation of the latter file 

demonstrates how the singularity of the function, L(X), spoils the optimization: The 

singularity leads a cluster to collapse to a single data point (Bishop 2006, p. 434). Such 

failure was not rare for the EM algorithm, but was suppressed in the present genetic 

algorithm by the condition in Eq. (6).  

 

ORE VEINS 

The present technique was applied, next, to the orientation data from ore veins in the 
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Akenobe Mine, SW Japan (Sato et al. 1977; Sato & Akiyama 1980). The veins were 

formed in the Cretaceous–Paleocene (Ishihara & Shibata 1972; Watanabe et al. 1984). It 

is beyond the scope of this paper to discuss the tectonic and metallogenic implications 

of the orientations. Figures 5a and 5b show the final L values and the corresponding 

BIC values. BIC showed the minimum at K = 3, meaning that the data should be 

partitioned into three groups. The lower-hemisphere, equal-area projection in Fig. 6c 

and Table 1 show the data and their best partition. The minimum, intermediate and 

maximum concentration axes of each Bingham component correspond to the ߪଵ-, ߪଶ- 

and ߪଷ-axes, respectively (Baer et al. 1994; Yamaji et al. 2010). These correspondences 

are based on the assumption that pre-existing planes of weakness to be dilated by 

overpressured fluid were randomly oriented. As a result, the three clusters, A, B and C, 

were identified from the data set. There was no data point with a neutral tint except for 

the orange one in the SW quadrant in Fig. 6c, meaning that the data were clearly 

separated into the three clusters.  

 The Bingham distribution of the poles to dilational fractures corresponds to the 

state of stress at the time of their formation, provided that the rock mass including the 

fractures were subjected to homogeneous stress field and to irrotational deformation by 

the formation. In case of conjugate vein arrays, the rocks between the veins are rotated 

(Beach 1975) to disturb the stress field around the veins. The spatial distribution of the 

NW-SE ore veins of the clusters B and C (Sato et al. 1977; Sato & Akiyama 1980) 

evidences that they were not formed as conjugate arrays. That is, the ore veins in the 

Akenobe area were deposited probably under three different stress conditions. Since a 

Paleozoic–Mesozoic accretion complex hosts the ore veins, it is difficult to correct the 

tilting that the host rock has experiences after the ore mineralization.  

 The cluster A made a girdle, so the error ellipses of its maximum and intermediate 

concentration axes were elongated along the girdle and were larger than that of the 

minimum concentration axis (Fig. 6c). Fifty-five percent of the data belonged to this 

cluster, i.e., ϖA = 0.55. The clusters B and C were composed of the green and blue data 

points, respectively. The veins belonging to the clusters had NW–SE trends, but those of 

the clusters B and C had northeastward and southwestward dips, respectively. The error 

ellipses of their maximum concentration axes were small compared to the intermediate 
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and minimum concentration axes. NW-SE trending ore veins in the Akenobe mine were 

recognized to form a group, but the present method separated them into two groups.  

 Since the concentration axes corresponds to the principal stress axes (Baer et al. 

1994) and the stress ratio can be obtained from the estimated concentration parameters 

as Φ ൌ  ଵ (Yamaji et al. 2010). The reduced stress tensors, SA, SB and SC, wereߢ/ଶߢ

calculated from the obtained Bingham components through the equation,  

௞ࡿ   ൌ ሺࡱ௞ሻ୘diagሺ1,Φ௞, 0ሻࡱ௞, 

where k is the label to distinguish the three stresses, Ek is the orthogonal matrix 

representing the principal axes of the kth cluster, and Фk is the stress ratio of the kth 

stress. Let ࢜௡ be the unit vector normal to the nth vein wall, and let k stand for A, B or 

C. Figures 5d–f show the Mohr diagrams of the stresses. Let ߪ௡௞ and ߬௡௞ be the normal 

and shear stresses on the nth vein due to the k th stress. They are calculated as 

௡௞ߪ ൌ ௞࢜௡ and ߬௡௞ࡿ୘࢔࢜ ൌ ௞࢜௡ࡿ| െ ௡௞࢜௡|, and are plotted with the membership, ݉௡ߪ
௞, 

on the Mohr diagrams. The distribution of the normal stresses, ߪଵ
௞, … , ேߪ

௞, indicates the 

lower bound of the fluid pressures that dilated the fractures when the ore veins were 

formed under the k th stress. That is, the diagrams just under the Mohr diagrams show 

the driving pressure ݌ ൌ ሺ݌୤ 	െ	ߪଷሻ/ሺߪଵ 	െ	ߪଷሻ, at the time of the vein formation, 

where ݌୤ is the pressure of ore fluid (Baer et al. 1994). For example, the memberships 

of the cluster A, zA, are high only for the veins with driving pressures as low as ~0.2 

(Fig. 5d), so the veins consisting of the cluster A were formed by the fluid with p at or 

smaller than ~0.2. In contrast, the veins belonging to the clusters B and C exhibited very 

low driving pressures (݌ ൏ 0.1) (Figs. 5e, f). The Zn- and Sn-rich veins were formed 

under low fluid pressure relative to the ߪଵ and ߪଷ values at the time of their formation.  

 Mining geologists thought that Zn-rich veins were deposited before Sn-rich ones in 

the area (Sato et al. 1977; Sato & Akiyama 1980). Figure 7 shows the Zn, Sn and Cu 

contents of the veins versus the memberships of the veins to the clusters A, B and C. 

Though there were a few exceptions, the veins belonging to the clusters B and C had 

low and high Zn contents, respectively. The veins of cluster C had relatively low Sn 

contents. Therefore, the stress indicated by the cluster C is probably older than the stress 

corresponding to the cluster B. Since the veins belonging to the cluster A had low Zn 

and Sn contents (though there are a few exceptions), it is difficult to infer the timing of 
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their formation based on this study. The Cu contents showed no correlation with the 

clusters.  

 

DISCUSSION AND SUMMARY 

 

The clustering of fracture orientations is important in geotechnical engineering and 

mining for safety and economic reasons (e.g., Priest 1993), where the discrimination of 

two clusters has little importance if they have common maximum concentration axes 

but different minimum concentration axes. However, it is essential for understanding 

paleostresses, as they indicate different ߪଵ- and ߪଷ-orientations. The data set in Fig. 6c 

is an example: The clusters B and C are more or less included in the girdle cluster A. 

Even if they have the maximum concentration axes in common, they are identified by 

the technique, provided that the minimum concentration axes make a large enough 

angle (Yamaji et al. 2010).  

 Peel et al. (2001) fitted mixed Kent distribution for the clustering the orientations 

of rock joints, and used BIC to estimate the number of clusters. The distribution was 

applied to remote sensing data by Lunga & Ersoy, (2011). The Kent distribution 

represents a circular cluster, but the paleostress analysis of dilational fractures requires 

not only circular but also elliptical and girdle clusters to determine the principal axes 

and Φ values. A Bingham or more complicated statistical distribution is necessary.  

 The maximization of the log-likelihood function has generally such singularity that 

a cluster tends to collapse onto a data point. That is, the probability density of the 

Bingham component goes to infinity at the data point, whereas the ߢଵ and ߢଶ values 

of the component go to െ∞. Bishop (2006, p. 434) details such singularity for the case 

of a mixed normal distribution. The singularity can spoil the result of the EM algorithm 

(see the animation in the supplementary file, EM2.mov), because there is no way for the 

algorithm to escape from the local maximum caused by the singularity. In contrast, the 

genetic algorithm is robust to the singularity, because it can escape from such a local 

maximum. The ore fluids had overpressures only slightly greater than the minimum 

principal stress (Figs. 6d–f) at the time of the deposition of Zn and Sn rich veins. The 

present method may be useful for the characterization of crystallographic preferred 
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orientations (Niezgoda & Glover 2013) and of multi-component paleomagnetic data.  
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APPENDIX 1 

FIVE-DIMENSIONAL PARAMETER SPACE 

 

The five-dimensional parameter space for the Bingham distribution was detailed by 

Yamaji et al. (2010), so it is briefly introduced here. A set of the parameters of a 

Bingham distribution, κ and E, can be identified with a point in a five-dimensional 

parameter space as follows. First, we introduce a ray denoted by the unit vector, ࣈ, to 

indicate the position vector, x, in the space such that 

࢞ ൌ  ሺA1ሻ																																									,ࣈߩ

where ߩ  is the length of the position vector. The length is a function of the 

concentration parameters,  

ߩ ൌ ටߢଵ
ଶ ൅ ଶߢଵߢ ൅ ଶߢ

ଶ.													ሺA2ሻ 

We have ߩ ൌ 0 only for the case of uniform distribution, ߢଵ ൌ ଶߢ ൌ 0. Non-uniform 

orientation distributions have positive ߩ values. Small and large ߩ values indicate 

broad and concentrated distributions, respectively.  

 It follows from the inequality (1) with Eqs. (A1) and (A2) that x = 0 in case of 

ଵߢ ൌ 0. Given ߢଵ, ߢଶ and E, we use the ratio, ݎ ൌ  ଵ, which satisfies 0 ≤ r ≤ 1, toߢ/ଶߢ

determine the corresponding position vector. To this end, we define the deviatoric 

tensor, 

࣍ ൌ ࡱ ൤
diagሺ2 െ ,ݎ ݎ2 െ 1,െݎ െ 1ሻ

ଶݎ3√ െ ݎ3 ൅ 3
൨ࡱ୘.																					ሺA3ሻ 

Let ߫௜௝ be the ijth component of this tensor, and ߦ௜ be the ith component of ࣈ. Then, 

we have  

߫ଵଵ ൅ ߫ଶଶ ൅ ߫ଷଷ ൌ 0,																																																												ሺA4ሻ 

and  
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ଷߦ ൌ ߫ଶଷ, ସߦ		 ൌ ߫ଷଵ, ହߦ		 ൌ ߫ଵଶ.																																				

						ሺA5ሻ 

These linear equations were originally introduced by Sato & Yamaji (2006) for the 

stress inversion of faults. The Bingham distribution with ߢଵ, ߢଶ and E is accordingly 

identified with the point, x, in the five-dimensional space through Eqs. (A1)–(A3) and 

(A5).  

 On the other hand, if x is given, the corresponding parameters, ߢଵ, ߢଶ and E, are 

obtained as follows. In case of x = 0, we have ߢଵ ൌ ଶߢ ൌ 0, and E is an arbitrary 

orthogonal matrix. Otherwise, we have ρ = |x| and ࣈ ൌ  It follows from Eqs. (A4) .ߩ/࢞

and (A5) that  
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1

√2
൅

1

√6
൰ 																								ଶߦ

߫ଷଷ ൌ 	ඥ2/3ሺߦଵ ൅ 																																																			ଶሻߦ
߫ଶଷ ൌ ߫ଷଶ ൌ 	 ,ଷߦ ߫ଷଵ ൌ ߫ଵଷ ൌ 	 ,ସߦ ߫ଵଶ ൌ ߫ଶଵ ൌ 	 		.ହߦ

						ሺA6ሻ 

Then, E and r are obtained by solving the eigenproblem of ࣍ (Eq. A3). The three 

eigenvalues satisfying ߫ଵ ൑ ߫ଶ ൑ ߫ଷ give ݎ ൌ ሺ߫ଶ െ ߫ଷሻ/ሺ߫ଵ െ ߫ଷሻ. Substituting 

ଶߢ ൌ ଶߩ ଵ into Eq. (A2), we haveߢݎ ൌ ሺݎଶ ൅ ݎ ൅ 1ሻߢଵ
ଶ. Since ߢଵ is negative in sign, 

we obtain ߢଵ ൌ െݎ√/ߩଶ ൅ ݎ ൅ 1 and ߢଶ ൌ   .ଵߢݎ
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FIGURE AND TABLE CAPTIONS 

 

 
Fig. 1  Equal-area projections showing the probability densities of Bingham distributions  

with various κ1, κ2 and ߩ ൌ ሺߢଵ
ଶ ൅ ଶߢଵߢ ൅ ଶߢ

ଶሻଵ/ଶ. The values of logଵ଴ߩ are indicated by 

contours in the background. The maximum, intermediate and minimum concentration axes of a 

Bingham distribution make right angles with each other. The concentration parameters, κ1 and κ2, 

are defined to be negative in sign or equal to zero: Uniform distribution is denoted by κ1 = κ2 = 

0. Concentration along the great circle defined by the maximum and minimum concentration 

axes is denoted by |κ1|, and that by the maximum and intermediate concentration axes is denoted 

by |κ2|. A circular cluster is denoted by the condition, κ1 = κ2, and a girdle or elongated cluster by 

κ1 < κ2.  

 

 

Fig. 2  Schematic illustration for the multimodal function, L(X), the global maximum of which 
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represents the best partition of 3D orientation data. The local maxima of L(X) are depicted by 

the peaks of the graph. The EM algorithm starts from a randomly chosen point (open circle), 

and climbs the slope of the function (arrow). The global maximum is detected by the algorithm 

only when the starting point is chosen by chance on the slope leading to the maximum. The 

genetic algorithm scatters dozens of ‘individuals’ (closed circles) at a time, and improves their 

position, X. For example, if the two individuals A and B are chosen, the Gaussian distribution 

with the maximum at their midpoint (blue curve) is used to produce their ‘child,’ and an 

individual in the population is discarded instead. The global maximum is expected to be reached 

by an individual with the largest L value by chance, but the chance is increased by giving higher 

probabilities to the individuals with high L values to have children, and assigning lower 

probabilities to them to be excluded from the population.  

 

 

Fig. 3  Equal-area projections showing the density contours of a mixed Bingham 

distribution and its Bingham components. In this case, the mixing coefficients are 

߸ଵ ൌ 0.6 and ߸ଶ ൌ 0.4; and K = 2. 
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Fig. 4  Flow chart of the real-coded genetic algorithm to search for the vector, X, that 

maximizes L(X) for a given K value. The population created in the initialization stage is 

assumed to be of the 0th generation, and g denotes the number of generation. 
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Fig. 5  Diagrams illustrating the partitioning process of the fracture orientations from 

the San Manual Copper Mine, Arizona (Shanley & Mahtab 1976), into three groups (K 

= 3) by the present method (∆g = 1000). See the animation in the supplementary file, 

GA.mov, which shows this process. (a) The entire process. L indicates L(X). (b) The 

close-up of the final part of the process. Data points are aligned in right-stepping 

echelon manner, because the crossover resulted in increasing L and the selection 

resulted in the sudden drops. The genetic algorithm (GA) was terminated at g = 17,020, 

and was switched to the EM algorithm, which was iterated 9 times, to improve the 

partition. (c) The partitions at several generations. The poles of fractures are shown by 

lower-hemisphere, equal-area projections; and their memberships, ݉௡
௞, are indicated by 

colors. The ternary plot shows the correspondence of the memberships and colors.  
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Fig. 6  The fitting of mixed Bingham distribution to the orientations of ore veins in the 

Akenobe Mine, SW Japan by the present technique. The fitting was done with ∆g = 

1000. (a) L values versus K. (b) BIC versus K indicating the minimum at K = 3. It 

means that the orientations should be partitioned into three groups. (c) 

Lower-hemisphere, equal-area projection for the orientations listed by Sato et al. (1977). 

Crosses and gray lines indicate the concentration axes and their 95% confidence ellipse 

of the three clusters, A, B and C. The memberships of the data are indicated by the 

colors in the ternary diagram. (d–f) Mohr diagrams and driving pressures of the veins 

belonging to the clusters, A, B and C. The memberships of the data points to the clusters 

are depicted by gray levels in the Mohr diagrams. The diagrams under the Mohr 

diagrams show the memberships versus normal stress of veins. The normal stress at 

which the membership declines indicates the driving pressure, p (Yamaji et al. 2010).  
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Fig. 7  The Zn, Sn and Cu contents (Sato et al. 1977; Sato & Akiyama 1980) versus the 

memberships of the Akenobe veins in Fig. 6c . The veins with high memberships to the 

cluster C, zC, had high Zn and low Sn contents, though there were a few exceptions. The 

veins with high zB values had low Zn contents. Their Sn contents showed a wide variety, 

but were high compared to the veins of the cluster C (there were exceptions).  
 

 

TABLE 1 Clustering result for the orientations of ore veins in the Akenobe Mine (Fig. 6).  

  concentration axes 
κ1 κ2 Φ ϖ 

  maximum intermediate minimum

Cluster A 192°/32° 078°/33° 313°/41° −25.1 −2.00 0.08 0.55 

Cluster B 230°/22° 087°/64° 327°/14° −160 −32.2 0.20  0.24 

Cluster C 039°/40° 302°/08° 203°/49° −96.2 −20.1 0.21 0.21 
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