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We study a classical many-particle system with an external control represented by a time-dependent
extensive parameter in a Lagrangian. We show that thermodynamic entropy of the system is uniquely
characterized as the Noether invariant associated with a symmetry for an infinitesimal nonuniform time
translation t → tþ ηℏβ, where η is a small parameter, ℏ is the Planck constant, β is the inverse temperature
that depends on the energy and control parameter, and trajectories in the phase space are restricted to those
consistent with quasistatic processes in thermodynamics.
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Introduction.—Entropy is a fundamental concept in
physics. It appears in thermodynamics [1,2], statistical
mechanics [3], information theory [4], computation theory
[5], quantum information theory [6], and thermodynamics
of black holes [7]. Recently, the interrelation between
different types of entropy has been discovered. The second
law of thermodynamics has been extended so as to apply
systems with a feedback control through the exchange of
information, not of energy, between the system and the
controller [8]. This opens up studies in the intersection of
thermodynamics and information theory [9]. As another
development, there have been attempts to connect black
hole entropy to entanglement entropy [10,11], and in the
anti–de Sitter/conformal field theory context a novel notion
of holographic entanglement entropy has appeared, which
provides a dual description between boundary entangle-
ment entropy and dynamics of bulk spacetime [12]. By
synthesizing various aspects of entropy, we thus obtain a
deeper understanding of fundamental laws in physics. Now,
there is a paper [13] which claims that black hole entropy is
obtained as the Noether charge associated with the horizon
Killing field. We are then naturally led to ask whether
thermodynamic entropy of standard materials is also
characterized by a Noether invariant.
Suppose that we have a many-particle isolated system in

a box, and that an external controller moves a piston, which
may be described by a time-dependent single-body poten-
tial. Then, in response to the fact that thermodynamic
entropy keeps a constant value in quasistatic adiabatic
processes [1], it was proved that along almost all the
solution trajectories to the equation of motion with quasi-
static change in the volume, the phase-space volume
enclosed by the energy surface including the phase-space
point at time t is invariant [14–19]. Thus, the logarithm of
the phase-space volume provides a definition of time-
dependent entropy in mechanics. The main result of this

Letter is that there exists a symmetry by which the entropy
is uniquely characterized as a Noether invariant.
The key step in our theory is to formulate a special class

of trajectories that are consistent with quasistatic processes
in thermodynamics. By restricting the domain of the action
to this class of trajectories, we find a symmetry for an
infinitesimal nonuniform time translation t → tþ ηℏβ,
where η is a small parameter, ℏ is the Planck constant,
and β is the inverse temperature determined by applying the
thermodynamic relation to the time-dependent entropy. It
should be noted that our theory stands on classical
mechanics, classical statistical mechanics, and thermody-
namics, and thus the Planck constant does not appear.
Nevertheless, our theory leads to the existence of a
universal constant with the same dimension as the action.
Below, we first describe a setting up of classical

mechanics of the particle system, and discuss a generalized
Noether theorem associated with a symmetry. We then
define trajectories consistent with quasistatic processes
based on statistical mechanics. By combining these two
concepts, we derive our main result.
Mechanics.—Let qðtÞ ∈ R3N be a collection of coordi-

nates of N particles with short-range interaction in a box of
volume V. We particularly focus on macroscopic systems
where the extensive behavior is observed for large N. We
denote the trajectory (qðtÞ)tft¼ti by q̂. We also introduce an
extensive control parameter α, whose typical example is the
volume V. (Formally, α is a complete set of extensive work
variables.) For a fixed protocol of the parameter
α̂ ¼ (αðtÞ)tft¼ti , the action Iðq̂; α̂Þ is given by

Iðq̂; α̂Þ ¼
Z

tf

ti

dtL(qðtÞ; _qðtÞ; αðtÞ); ð1Þ

where the dot denotes the time derivative. All the mechani-
cal properties are represented by the Lagrangian [20]. We
also assume that there is no conserved quantity other than
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the total energy for the system with α fixed, Eðq; _q; αÞ ¼
_q∂L=∂ _q − Lðq; _q; αÞ.
We consider a nonuniform time translation: t → t0 ¼

tþ ηξðq; _q; αÞ. Here, η is a small parameter, and the
functional form of ξ is not specified yet. Then, the trans-
formation q̂ → q̂0 is given by q0ðt0Þ ¼ qðtÞ, because the
position of particles is independent of relabeling time
coordinate. The transformation α̂ → α̂0 corresponds to
α0ðt0Þ ¼ αðt0Þ, because the protocol α̂ is fixed. We represent
this transformation by indexG, and neglect the contribution
of Oðη2Þ. Then, the change in action δGI ≡ Iðq̂0; α̂0Þ −
Iðq̂; α̂Þ is expressed as

δGI ¼
Z

tf

ti

dt

�
δ̄GLþ η

dðξLÞ
dt

�
; ð2Þ

where we have defined δ̄GL≡ L(q0ðtÞ; _q0ðtÞ; α0ðtÞ)−
L(qðtÞ; _qðtÞ; αðtÞ). Noting that δ̄GqðtÞ≡ q0ðtÞ − qðtÞ ¼
−ηξ _q and introducing the Euler-Lagrange derivative

E ≡ ∂L
∂q −

d
dt

∂L
∂ _q ; ð3Þ

we express δ̄GL in terms of δ̄Gq. Thus, we obtain

δGI ¼ η

Z
tf

ti

dt

�
−E _qξþ d

dt

�
ξ

�
L − _q

∂L
∂ _q

���
: ð4Þ

Now suppose that, for some α̂, there exist ξðq; _q; αÞ and
ψðq; _q; αÞ such that [21,22]

δGI ¼ η

Z
tf

ti

dt
dψ
dt

ð5Þ

for a class of trajectories q̂, which is identified later. Then,
(4) is written as

Z
tf

ti

dtE _qξ ¼ −ðψ þ EξÞjtfti : ð6Þ

This leads to two important properties. First, because E ¼ 0
at any solution q̂�, we obtain a conservation law

ðψ� þ E�ξ�Þjtfti ¼ 0: ð7Þ
Here, the subscript of B� represents the evaluation of a
quantity B at a solution trajectory q�ðtÞ. Second, by
substituting qðtÞ ¼ q�ðtþ ηξ�Þ into (6), we have

Z
tf

ti

dtE _qξ

����
q¼q�ðtþηξ�Þ

¼ −ðEξþ ψÞjtf 0ti 0
j�; ð8Þ

where we have used q�(ti þ ηξ�ðtiÞ) ¼ q�ðti0Þ. Because the
conservation law (7) holds for any ti and tf, the right-hand
side of (8) is equal to zero. Expanding the left-hand side
with respect to η, we obtain

Z
tf

ti

dt
δE
δq

ðδ̄GqÞ _qξ
����
�
¼ 0; ð9Þ

where we have used the equation of motion Ej� ¼ 0. The
relation (9) implies that q� þ δ̄Gqj� is a solution of the same
equation of motion [21]. That is, the transformationGmaps
each solution trajectory to another one in the system
Iðq̂; α̂Þ. This property was referred to as a dynamical
symmetry [25,26]. If ψ in (5) is independent of _q, which
includes the case ψ ¼ 0, Iðq̂0; α̂0Þ provides the same
equation of motion as that for Iðq̂; α̂Þ. In a more general
case where ψ depends on _q, the action Iðq̂0; α̂0Þ defines a
different dynamical system. Even for this case, however, (5)
represents a symmetry, leading to the dynamical symmetry
and the conservation law (7), as we have seen above. This
was called a generalized Noether theorem [27]. In this
context, ψ þ Eξ is the Noether invariant associated with the
transformation G.
Thermodynamics.—Let us briefly review statistical

mechanics. We introduce a phase-space coordinate Γ ¼
ðq; pÞwith the momentum p≡ ∂L=∂ _q ∈ R3N , and assume
that _q can be uniquely determined for ðq; pÞ. Then,
HðΓ; αÞ ¼ E(q; _qðq; pÞ; α) is the Hamiltonian. The expect-
ation of any quantity AðΓÞ with respect to the micro-
canonical ensemble of ðE; αÞ is defined as

hAimc
E;α ≡ 1

ΣðE; αÞ
Z

dΓδ(E −HðΓ; αÞ)AðΓÞ; ð10Þ

where ΣðE; αÞ≡ R
dΓδ(E −HðΓ; αÞ) is the normalization

constant. Throughout this Letter, the Boltzmann constant is
set to unity. According to the formula in statistical
mechanics, the entropy S is defined as

SðE; αÞ≡ log
ΩðE; αÞ

N!
; ð11Þ

with ΩðE; αÞ≡ R
dΓθ(E −HðΓ; αÞ), where θðxÞ ¼ 1 for

x ≥ 0 and θðxÞ ¼ 0 for x < 0 [29]. We can then confirm the
fundamental relation in thermodynamics [30]:

dS ¼ βdE − β

	∂H
∂α



mc

E;α
dα ð12Þ

with the definition of the inverse temperature

β≡ ΣðE; αÞ
ΩðE; αÞ : ð13Þ

When α represents the volume V, the second term of the
right-hand side of (12) becomes βPdV with the pressure
P ¼ −h∂H=∂Vimc

E;α. In general, the relation (12) guarantees
the consistency with thermodynamics.
In the following argument, we consider the quasistatic

change in α. This is realized by choosing αðtÞ ¼ ᾱðϵtÞ,
where the functional form of ᾱ is independent of ϵ,
introducing τ ¼ ϵt and taking the quasistatic limit ϵ → 0
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with τi ¼ ϵti and τf ¼ ϵtf fixed. Indeed, dα=dt ¼
ϵdᾱ=dτ ¼ OðϵÞ. Now, we take a solution trajectory
Γ�ðtÞ, which is realized in the ideally isolated mechanical
system. Then, it determines the time evolution of the energy
as E�ðtÞ ¼ H(Γ�ðtÞ; αðtÞ). As the result, the time evolution
of the entropy and inverse temperature is also obtained by
S(E�ðtÞ; αðtÞ) and β(E�ðtÞ; αðtÞ), respectively. The adia-
batic theorem tells us that S(E�ðtÞ; αðtÞ) keeps a constant
value along almost all solution trajectories in the quasistatic
limit [14–19,31]. This means that in the quasistatic limit,
almost all solution trajectories with the same initial energy
give the same adiabatic curve in the thermodynamic state
space ðE; αÞ. On the basis of the ideally isolated mechanical
system, thus, we have a mechanical description consistent
with thermodynamics.
Let us now consider a more realistic situation in which

our N-particle system enclosed by adiabatic walls is not
completely isolated. Then, trajectories of the particles are
not solutions to the equation of motion for the Lagrangian
(1), because the constituents of the walls may influence the
motion of the particles. Even for this case, however, it can
be assumed ideally that the N-particle system is thermally
isolated (which means adiabatic in thermodynamics) and
that the entropy keeps a constant value in quasistatic
processes. Motivated by this fact, we try to characterize
such phase-space trajectories.
We first identify the condition of phase-space trajectories

consistent with quasistatic processes in thermodynamics,
which are not necessarily solution trajectories for our
Lagrangian (1). We refer to such trajectories as thermo-
dynamically consistent trajectories. Suppose a curve
(ĒðτÞ; ᾱðτÞ), τi ≤ τ ≤ τf, in the thermodynamic state
space, which corresponds to a quasistatic process in
thermodynamics. Here, ĒðτÞ is obtained by EðtÞ ¼
ĒðϵtÞ, which follows the change of ᾱðτÞ. Then, for
thermodynamically consistent trajectories, the mechanical
work

R
dtðdα=dtÞð∂H=∂αÞ is expected to be equal to the

thermodynamic work
R
dtðdα=dtÞhð∂H=∂αÞimc

EðtÞ;αðtÞ. We

thus define thermodynamically consistent trajectories
as those satisfying

lim
ϵ→0

Z
τf

0

τi
0
dτ

dᾱ
dτ

�∂H
∂α −

	∂H
∂α



mc

ĒðτÞ;ᾱðτÞ

�
¼ 0 ð14Þ

for any time interval ½τi0; τf 0� such that τi ≤ τi
0 < τf

0 ≤ τf.
Here, it should be noted that ∂H=∂α is a rapidly varying
function of τ because it depends on Γðτ=ϵÞ [32].
Next, we determine the adiabatic condition. Let us fix an

adiabatic curve and consider phase-space trajectories that
yield the adiabatic curve. From the expression EðtÞ ¼
H(ΓðtÞ; αðtÞ) for any ΓðtÞ, we have

dE
dt

¼ ∂H
∂Γ _Γþ ∂H

∂α _α: ð15Þ

If the trajectory describes the behavior of a thermally
isolated system, the energy changes only through the
external control. This property can be represented by

∂H
∂Γ _Γ ¼ 0: ð16Þ

This is the condition of the idealized adiabatic wall, which
solution trajectories satisfy, of course.
Finally, we check that SðtfÞ ¼ SðtiÞ holds for thermo-

dynamically consistent trajectories satisfying (16). Here,
SðtÞ≡ S(H(ΓðtÞ; αðtÞ); αðtÞ) for (11). By using (12) and
noting that dĒ=dτ ¼ ð∂H=∂αÞðdᾱ=dτÞ under (16), we
express SðtfÞ − SðtiÞ ¼

R τf
τi dτ(dS(ĒðτÞ; ᾱðτÞ)=dτ) as

Z
τf

τi

dτβ
dᾱ
dτ

�∂H
∂α −

	∂H
∂α



mc

ĒðτÞ;ᾱðτÞ

�
: ð17Þ

Because βðτÞ ¼ β(ĒðτÞ; ᾱðτÞ) is a slowly varying function
of τ, using τk ¼ ðτf − τiÞk=K þ τi with large K, (17) may
be estimated as

XK
k¼1

βðτkÞ
Z

τk

τk−1

dτ
dᾱ
dτ

�∂H
∂α −

	∂H
∂α



mc

ĒðτÞ;ᾱðτÞ

�
ð18Þ

with an accuracy of Oð1=KÞ. Then, (18) tends to zero as
ϵ → 0 due to (14), and (17) is estimated as zero for
infinitely large K. In the following, this invariance is
expressed by the generalized Noether theorem.
Main result.—We now derive the thermodynamic

entropy (11) as the Noether invariant ψ þ Eξ associated
with a transformation G. First, we recall that the symmetry
exists only if there are ξ and ψ satisfying (6). For the
general Lagrangian we study, there are no such ξ and ψ for
arbitrary q̂ and α̂, which is consistent with a fact that the
entropy is invariant only in quasistatic adiabatic processes.
When we attempt to understand thermodynamic properties,
we have to study thermodynamically consistent trajecto-
ries. Hence, we can expect that for them there exist ξ and ψ
satisfying (6). We shall show this from now. By using the
identity

dE
dt

¼ −E _qþ ∂E
∂α _α; ð19Þ

we rewrite (6) as

Z
tf

ti

dtξ

�
dE
dt

−
∂E
∂α _α

�
¼

Z
tf

ti

dt
dðψ þ ξEÞ

dt
: ð20Þ

Suppose that ξ ¼ Ξ(Eðq; _q; αÞ; α) and ψ ¼Ψ(Eðq; _q;αÞ;α)
satisfy (20). Then, in the quasistatic limit, (20) becomes
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Z
τf

τi

dτΞ

�
dĒ
dτ

−
	∂H
∂α



mc

ĒðτÞ;ᾱðτÞ

dᾱ
dτ

�
¼

Z
τf

τi

dτ
dðΨþ ΞĒÞ

dτ

ð21Þ
for thermodynamically consistent trajectories [33]. When
there exist Ξ and Ψ satisfying this equation, it should hold
for any τf. This means that the integrand in (21) itself
vanishes for each τ, and hence we have

Ξ

�
dĒ −

	∂H
∂α



mc

Ē;ᾱ
dᾱ

�
¼ dðΨþ ΞĒÞ: ð22Þ

Let us solve (22). Because the right-hand side is a total
derivative of a function of ðE; αÞ [34], the necessary and
sufficient condition for the existence of ΨðE; αÞ in (22) is
given by the integrability condition

�∂Ξ
∂α

�
E
þ ∂
∂E

�
Ξ

	∂H
∂α



mc

E;α

�
α

¼ 0: ð23Þ

By using (12), we express the left-hand side as

∂
∂α

�
Ξβ−1

�∂S
∂E

�
α

�
E
−

∂
∂E

�
Ξβ−1

�∂S
∂α

�
E

�
α

: ð24Þ

Then, we find that the functional determinant j∂ðΞβ−1; SÞ=
∂ðα; EÞj vanishes. This means that Ξ ¼ βF ðSÞ, where F is
an arbitrary function of S [36]. By substituting this into
(22), employing (12), and integrating it, we obtain the
Noether invariant

Ψþ EΞ ¼
Z

S
dS0F ðS0Þ: ð25Þ

Note that this is conserved even for thermodynamically
consistent adiabatic nonsolution trajectories because the
left-hand side of (6) vanishes due to (16).
In particular, we study the Noether invariant Ψþ EΞ

described by an extensive variable for a macroscopic
equilibrium system. In this case, the transformation of
Ψþ EΞ for size scaling leads to the result that Ψ is
extensive and Ξ is intensive. Because β is intensive,
Ξβ−1 ¼ F ðSÞ becomes a special intensive variable that
does not depend explicitly on the extensive work variable α
such as the volume V.
Let us determine the functional form of F ðS;M;NÞ,

where we explicitly write the dependence on the type of
material M and the particle number N. The most important
property of macroscopic systems is the additivity. As an
example, we consider a composite system that consists of
two macroscopic subsystems A and B in thermal contact. In
the following, we denote physical quantitiesQ and the type
of material M in the subsystem X by QX and MX,
respectively, where X ¼ A or B.

Now, the time translation t → tþ ηΞ is applied to the
composite system. Because the time coordinate is common
to the both subsystems, we have ΞA ¼ ΞB, which is
consistent to the intensive nature of Ξ. We also have
βA ¼ βB in equilibrium states. These qualities lead to

F ðSA;MA;NAÞ ¼ F ðSB;MB;NBÞ: ð26Þ
From the special property that F ðSX;MX;NXÞ is intensive
and independent of VX, we can write F ðSX;MX;NXÞ ¼
F̄ ðsX;MXÞ with sX ≡ SX=NX. Here, if MA ¼ MB ¼ M,
(26) becomes F̄ ðsA;MÞ ¼ F̄ ðsB;MÞ. Because this holds
any sA and sB, we conclude that F̄ ðs;MÞ ¼ cðMÞ, where
the constant cðMÞ depends not on s but on the type of
material M. Thus, F ðS;M;NÞ ¼ cðMÞ holds generally.
Further, considering a general case MA ≠ MB for (26),

we have cðMAÞ ¼ cðMBÞ for any MA and MB. That is,
F ¼ c� is a universal constant independent of the type of
material. From c� ¼ β−1Ξ, the universal constant c� has the
same dimension as the action, which is known as the Planck
constant ℏ. Thus, our framework based on classical theory
has led to the existence of the Planck constant. Then, we
can write ξ ¼ ℏβ and F ¼ ℏ, where a dimensionless
proportionality constant has been chosen to be unity
without loss of generality.
Finally, (25) leads to Ψþ EΞ ¼ ℏSþ bℏN, where b is a

dimensionless constant. We thus conclude that the thermo-
dynamic entropy S is uniquely characterized as the Noether
invariant associated with the transformation t → tþ ηℏβ
for thermodynamically consistent trajectories [37]. This is
the main result of the present Letter.
Concluding remarks.—First of all, we do not have a

physical explanation of the symmetry for the real time
transformation t → tþ ηℏβ yet. It is interesting to find
some relation with the fact that the complex time tþ iℏβ
naturally appears in quantum dynamics with finite temper-
ature. An important point here is that the symmetry is an
emergent property in thermodynamic behavior of macro-
scopic systems, which can build a new bridge between
microscopic and macroscopic physics as follows.
One fascinating approach is to generalize this formu-

lation to perfect fluids for interacting particles or relativistic
fields, which could provide a more clear view to the
symmetry. By restricting the spacetime configurations to
those consistent with a local Gibbs distribution at any time,
we can find a symmetry leading to the local conservation of
the entropy as the Noether charge. It seems reasonable to
conjecture that this symmetry is explicitly observed in
action functionals for perfect fluids, although the action
functionals are not uniquely determined so far [38]. With
regard to this point, we also mention a symmetry property
announced in Refs. [39,40], which may have some rel-
evance with our theory.
Although our study was motivated by the black hole

entropy as the Noether charge [13], it is not clear yet how
the present analysis is related to that. Nevertheless, the
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symmetry for t → tþ ηℏβ may correspond to that for the
Killing parameter translation v → vþ ηℏβH, where βH is
the inverse Hawking temperature [13]. It would be inter-
esting to investigate the connection of our theory with a
real-time and microcanonical approach to thermodynamics
of gravitational systems [41].
Finally, we have studied the invariant property of the

entropy in quasistatic processes. More important is the
nondecreasing property of entropy for general time-
dependent operations. If an initial phase-space point is
sampled according to the equilibrium ensemble, this
property can be proved [42–44]. It is a challenging problem
to combine the symmetry property with the second law of
thermodynamics, where the notion of thermodynamically
consistent trajectories could be useful.
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