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   Introduction.
   Let G be a complex simple algebraic group and let g be its Lie algebra.
A nilpotent orbit O in g is an orbit of a nilpotent element of g by the adjoint

action of G on g. Then O admits a natural symplectic 2-form cv and the
nilpotent orbit closure O has symplec,tic singularit,ies in the sense of [Be] and

[Na3] (cf. [Pa], [Hi]). In [Ri], Richardson introduced the notion of so-called

the Richardson orbit. A nilpotent orbit O is called Richardson if there is
a parabolic subgroup (2 of G such that, Onn(q) is an open dense subset
of n(q), where n(q) is the nil-radical of q. Later, Luszt,ig and Spaltenstein
[L-S] generalized this notion to the induced orbit. A nilpotent orbit O is an

induced orbit if there are a parabolic subgroup (? of G and a nilpotent orbit
O' in the Levi subalgebra t(q) of q :== Lie(Q) such that O meets n(q) + O' in

an open dense subset. If O is an induced orbit, one has a natural map (cf.
(1.2))

                    u : G xQ (n(q) + O') - O.

The map y is a generically finite, projective, surjective map. [l]his map is

called the generalized Springer map. In this paper, we shall study the in-
duced orbitJs from the view point of birational geometrgt. For a Richardson
orbit O, the Springer map v is a map from the cotangent bundle T'(G/Q)
of the flag variety G/(? to O. In [Fu], Fu proved that, if O has a crepant
(projective) resolution, it is a Springer map. Note that Q is not unique (even

up to the conjugate) for a Richardson orbit O. This means that O has many
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di旺erentcrepant resolutions. In [Na], the author h削 givena description of 
all crepant resolutions of 0 and proved that any two di町erentcrepant resolu-
tions are connected by Mukai flops. The purp田 eof this paper is to generalize 
these to all nilpotent orbits 0. If 0 is not Richardson, 0 has no crepant 
resolution. The substitute of a crepant resolution, is a Q-factorial temii-
nalization. Let X be a complex algebraic variety with rational Gorensもein
singularities. A partial resolution f : Y→ X of Xis said to be a Q-factorial 
temiinαLizαtion of X if Y has only Q-factorial terminal singularities and f 

is a birational projective morphism such that Ky出 f*Kx・AQ-factorial 
terminalization i日acrep札口tresolution exactly when Y is smooth. Recently, 
Birkar-Cascini-H乱con削 McKernan[B帽 C-H-M]have established the existence 
of minimal models of complex algebraic varieties of general type. As a corol-
lary of this, we know that X always has a Q-factorial terminalization. In 
particular, 0 should have a Q-factorial terminalization. 'I、heauthor would 
like to p部 ethe following conjecture. 

Conjec主主ire.Let 0 be a nilpotεnt orるitof a complex simple Lie algebm 

g. Let 0 be the normalization of 0. Then one of the following holds: 

(1) 0 has Q-fiαctorial temiinal singularities. 

(2) There a問 αpambolicsubαlgebm q of g with Levi decomposition q = 
[EB nαndαnilpotent orbit O' of [ such thαt fα.）： o = Indr(o＇）αηd {b):-the 
no miαlization of G xQ (n(q) + 61) isαQ-fiαctoriαl temiinalizαtion of 6 viα 
the genemlized Springer mαp. 

Moreover.，ザ0 does not hαve Q-fiαctorial temiinal singularities, then ev-
e叩 Q如 toriαiterm inαLizαtion of 0 is of the form {2). Two Q-factorial 

temiinalizations are connected勾 Mukaiflops (cf. {Na], p.91}. 

The main result of this report is that Conjecture is true when g is classical. 
Recently, Fu checked Conjecture for g exceptional lザ acase-by-case method 
using the computer program GAP 4 (arxiv: 0809.5109, version 2). Combi凶n
this with our result, Conjecture holds true in full generality. However, a 
conceptual proof without the classification of nilpotent orbits, is still missing. 
This is a summary of [Na -1]. For details on proofi日， 日開 theoriginal pa.per 
[Na-1]. 

§ 1. Preliminaries 

(1.1) Nilpotent orbits and resolutions: Let G be a complex simple alge-
braic group and let g be its Lie algebra. G has the adjoint action on g. The 
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orbit Ox of a nilpotent element zεg for this action is called a nilpotent 

orbit. By the Jacobson-Morozov theorem, one can find a semi-simple ele-

ment hεg, and a nilpotent element uεg in such a way that [h, x] = 2x, 

[h, y] = -2y and [x, y] = h. For tεZ, let 

g; := {zεg [h,z]=iz}. 

Then one can write 

g = EBiEZ9i・

Let fJ be a Cartan subalgebra of g with hεfj. Let ⑤ be the corresponding 

root system and let ~ be a base of simple roots such that h isム・dominant,

i.e.α（h）さOfor all αε ム Inthis situation, 

α（h）ε｛O, 1, 2}. 

The weighted Dynkin diagram of Ox is the Dynkin diagram of g where each 

vertex αis labeled with α（h). A nilpotent orbit Ox is completely determined 
by its weighted Dynkin diagram. A Jacobson-Morozov parabolic subalgebra 
for x is the parabolic subalgebra p defined by 

P := E9;>o9i-

Let P be the parabolic subgroup of G determined by p. We put 

n2 := E9;;:::29i・ 

Then n2 is an ideal of p; hence, P has the adjoint action on n2・ Letus 

consider the刊 ctorbundle G×p n2 over G / P and the map 

μ:G×p n2→ g 

defined by /t([g, z]) := Adg(z). Then the image ofμ coincides with the closure 

Ox of Ox andμ gives a resolution of Ox( cf. [K・P],Proposition 7.4). We call 

μthe Jαcobson-Morozov resolution of Ox・Theorbit Ox h邸 anatural closed 

non-degenerate 2・formw (cf. [C-G], Prop. 1.1.5., [C-M], 1.3). By μ, w is 
regarded回 a2・formon a Zariski open subset of G×p n2・By[Pa], [Hi], it 
extends to a 2-form on G×Pn2・Inother words，。zhas symplectic singularity. 

Let 0 x be the normalization of 0 x・Inmany c回 es,one C姐 checkthe Q-
factoriality of Ox by applying the following lemma to the Jacobson-Morozov 

resolution: 
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Lemma (1.1.1). Let π：Y→ X Kα projective resolution of肌 α:ffine
vα門etyX with rationαl singularities. Let p be the relαtive Picard number for 
π. If Exe（π） contαinsρdifferent prime divisors, then X is Q-!1αctorial. 

(1.2) Induced orbits 
(1.2.1). Let G and g be the same部 in( 1.1). Let Q be a parabolic 

subgroup of G and let q be its Lie algebra with Levi decomposition q = IEBn. 
Here n is the nil-radical of q and I is a Levi-part of q. Fix a nilpotent orbit 

c’in L Then there is a unique nilpotent orbit 0 in g meeting n + 0’in 
an open dense subset ([L-S]). Such an orbit 0 is called the nilpotent orbit 
induced from O' and we write 

。＝Indf(O’） 

Note that when O' = 0, 0 is the Richardson orbit for Q. Since the adjoint 
action of Q on q stabilizes n + 61, one can consider the variety G×Q（η＋6'). 
There is a map 

ν：G×Q (n＋δ’）→。

defined by lノ（［g,z]) := Ad9(z). Since Codimt(O’） = Codim9(0) (cf. [C-
M], Prop. 7.1.4), v is a generically finite dominating map. Moreover, v is 
factorized as 

G×Q （η ＋6’）→ G/Q×O→。

where the first map is a closed embedding and the second map is the 2-nd 
projection; this implies that v is a projective map. In the remainder, we call 

v the generalized Springer map for ( Q, 0’） 
(1.2.2). Assume that Q is contained in another parabolic s山 groupQ 

of G. Let L be the Levi part of Q which contains the Levi part L of Q. 
Let両＝ I EB ii be the Levi decomposition. Note that L n Q is a parabolic 
subgroup of L and !(L n Q) = !. Let 01仁［ be the nilpotent orbit induced 

from (L n Q, 0’） • Then there is a natural map 

π：G×Q （η＋6＇）→ G×Q （而＋ 61) 

which factorizesνas Do 7r = v. Here D is the generalized Springer map for 
(Q，。i).

(1.2.3). Assume that thereぽ ea parabolic subgroup Q L of L and a 

nilpotent orbit 02 in the Levi s由algebra!( Q L) such that C’is the nilpoten 
orbit induced from (QL’02). Then there is a parabolic subgroup Q’of G 
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such that Q＇亡 Q,!(Q’） = !(QL) and CJ is the nilpotent orbit induced from 
(Q', 02). The generalized Springer map v' for (Qヘ02)is factorized剖

G×Q’（n’＋ 62）→ G×Q (n + 61）→6. 

Lemma (1.2.4). Let 

ν：G×Q （η十6＇）→。
beαgeneralized Springer m叩 definedin (1.2.1). Then the normαlization of 
G×Q(n+6’） isαsymplectic variety. 

(1.3) Nilpote叫 orbitsin clαssicαl Lieαlgebras: When g is a classical Lie 

algebra, g is naturally a Lie subalgebra of End(V) for a complex vector space 

V. Then we can attach a partition d of n :=dim V to each orbit as the Jordan 

type of an element contained in the orbit. Here a partition d := [d1, d2，…，dk] 

of n is a set of positive integers with Edi ＝ηand d1 ::'.'.'. d2三…：：＇.＇.＇. dk. Another 

way of writing d is [dF ，…， d~k] with d1 > d2…＞ dk > 0. Here df; is an s, 
times d;'s: di, di，…，di・Thepartition d corresponds to a Young diagram. For 

example, [5, 42, 1 J corresponds to 

When an integer e appears in the partition d, we say that e is a member 

of d. We call d very even when d consists with only even members, each 

having even multiplicity. 

Let us denote by E the number 1 or -1. Then a partition d is E-admissible 

if all even (resp. odd) members of d have even multiplicities when E = 1 (resp. 

E = -1). The following result can be found, for example, in [C-M, §5]. 
Proposition (1.3.1) Let N o(g) be the set of nilpotent orbits of g. 

(I)(An一山 When g = .s！（η） , there isαbijection between N o(g）αnd the 
set of pαrtitions d of n. 

(2)(Bn): When g = .so(2n + 1), there isαbijection between N o(g）αnd 

the set of E－αdmissible pαrtitions d of 2n + 1 with E = 1. 
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(3)(C,.): When g出 .sp(2n),there isαbijection bet悦 enN o(g) and the 
set of£－αdmissible pαrtitions d of 2η withε＝ -1. 

(4)(D,.): When g出店o(2η）, there isαSU伊ctionf介・omNo（。） to the set 
of E－αdmissible pαrtitions d of 2n with E = 1. For a partition d which is not 
開 ryeven, r l ( d) consists 。fααctlyone orbit, but, for惚 ryeven d, 1-1(d) 
consists of ex，αctly two difjerent orbits. 

Take anかadmissiblepartition d of a positive integer m. If E = 1, we put 
g口 so(m)and ifξ ＝ -1, we put g = s試作品）.We denote by Od ＆沿lpo結成

orbit in g with Jordan typed. Note that, except when E = 1 and d is very 
even, Od is uniquely determined. When正＝ 1 and d is very even, there 
are two possibilities for Od. If necessary, we distinguish the two orbits by 
the labelling: o~ and 0~1. Let us fix a classical Lie algebra g and study 
the relation日hipamong nilpotent orbits in g. When g is of type B orρ 
(r問 p. C), we only consider the正－admissiblepartitions with E = 1 (resp. 
正出－1).We introduce a partial order in the set of the partitions of (the 

same number): for two partitions d and f, d三fifむだkdi三日g壬difor all 
kと1.On the other hand, for two nilpotent orbits 0 and C’in g, we write 
0 :2: O' if 0’C 0. Then, Od ?'.: Or if and only if d :2: f. When d and f 
areξ－admissible partitions with f三g,we call this pair anξ－degenεration or 
simply a degenenαtion. 

Now let us consider the case g is of type B, C or D. 
Assume that an十 degenerationd三fis minimal in the sense that there 

is no £-admissible partition d' (except d and f) such that d三d’三 f.Kraft 
and Procesi [K-P] have studied the normαl slice Nd,c of Or c Od in日u
cases. If, for two integers r and s, the first r rows and the first s columns of 
d組 df coincide and the partition (di,.・.，dr)is ξ－admissible, then one c組
問制ethese rows and columns from d and f respectively to get new partitions 
d' and f' with d’三 f'. If we put E1 := (-1）叱 thend' and f' a町 both
f’側admissible‘Thepair (d', f') is also minimal. Repeating such process, one 
C総 reacha degeneration d併記 firrwhich is 討す-educiblein the sense that 
ti附 e訂 eno rows and columns to be er酬 d By[K附 P],Theorem 2, Nd,f is 
analytically isomorphic to Ndirr,f;,, around the origin. According to [K-P］，乱
minimal and irreducible degeneration d :2: f is one of the following: 

a: g = sp(2), d = (2), and f口（12).
b: g ＝叩（2n)（η＞ 1), d = (2n), and f口 （2n-2, 2). 
c: g = so(2n + 1) (n > 0), d口（2n+ 1），叩df = (2n -1, 12). 
d: g = sp(4n十 2)(n > 0), d口 （2n÷1,2η÷1),and f = (2n, 2n, 2). 
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e: g = so(4η）（η ＞ 0), d = (2n, 2吋， andf = (2n，… 1, 2n -1, 12). 
f: g = so(2n + 1) (n > I), d = (22, 12n-3），制idf口（1211+1).
g: g = sp(2n) （η ＞ 1), d = (2, 12n-2), and f = (12n). 
h: g = so(2n) （η ＞ 2), d = (22, 12η－4), and f = (12n). 

In the詰rst4 cases (aム
3 cas部（f,g,h),Or have codimension 2: 4 in Od. 
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Proposition (1.3.2) Let 0 beαnilpotent orbit inαclαssical Lie algebra 
g of type B, C or D with Joぽαntyped:= [(d1)81，…，（dk)8k] (dl > d2 ＞…＞ 
dk}・ Let I; be the singular locus of 0. Then Codimo(記）三 4ザαndonlyザ
the pα付itiond hαs f11,ll rnernbers, thαt is，αny integer j with 1 ::; j三d1isα 
rnernber of d. Otl附 wise,Codim0(I:) = 2. 

(1.4.1) Jαcobs orレMorozovresolutions in the cαse of clαssicαl Lie αlge-
bras(cf. [CM}, 5.3): Let V be a complex vector space of dimension m with 
a non-degenerate symmetric (or skew-symmetric) form < , >. In the sym-
metric case, we take a basis { e；｝巴i~m of V in such a way that ＜εj,ek>=l 

if j÷ た＝ m÷1and otherwise ＜匂ラ匂＞＝ 0. In the skew-symmetric caseヲ

we take a basis { ei｝山
組 dj+k＝ηZ十 1’and<ei’ek >= 0 if j + kラ／：； 1η 十 1.When (V, <, >) 
is a symmetric vector日pace,g := so(V) is the Lie algebra of type Bcm-1)/2 
(r開 p.Dm;2) if mis odd (resp. even). When (V.，く， >) is a skew-symmetric 
vector space, g := sp(V) is the Lie algebra of type Cm;z. In the remainder of 
this paragraph, g is one of these Lie algebra contained in End(V). Let ~ cg 
be the Cartan subalgebra consisting of all diagonal matrices, and letムbe
the standard base of simple roots. Let zεg be a nilpotent element. As in 
( 1.1), one can choose h, yモgin such a way that { x, y, h} is a sl(2)-triple. 
If necessary, by replacing x by its conjugate element, one may器 SU訟 ethat 

hε ちandhisふdomina抗 Assumethat x has Jord紛 typed=[d1，・…ヲdk]-

The diagonal matrix h is described as follows. Let us consider the sequence 
of integers of length rn: 

d1-'l,d1-3，…，…di－ト3,-di+ 1, d2 -1, d2 -3，…，－d2十3,-dz+1，…，dk-
l,dk -3，…＇ dk十 3，…dk十 1.

Rearrange this sequence in the non-increasing order and get a new SEト

quence pi1, ..・，pf1with P1 > P2… ＞Pt and I:ti = m. Then 

h = diag(pi1，…，pf'). 

Here P!i means the ti ti漁esof Pi's: pれあい・.，Pi・ It is then e部 yto describe 
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explicitly the Jacobson-Morozov parabolic subalgebra p of x and its ideal n2 
(cf. (1.1)). The Jacobson-Morozov parabolic subgroup P is the stabilizer 
group of certain isotropic flag {F;}i::;;::;r of V. Here, an isotropic flag of V 
(of length r) is a increasing filtration 0 C F1 C 九 C …C Fr C V such 
that F叶 1; = F/-for all i. The flag type of P is (t1, ... ,ti). The nilradical 

n ：＝仇＞og;of p consists of the elements z of g such that z(Fi）仁 Fi-1for all 
i. On the other hand, it depends on the weighted Dynkin diagram for x how 

n2 takes its place in n. 

Lemma (1.4.2) Assume that d hαs full members. For each minimal 

f.-degeneration d三f,the βber μ-1(0c) hαs codimension 1 in G×p n2・

Corollary (1.4.3) Assume thαt disαn f.－αdmissible pα付jtionαndit hαs 
full members. Let Od be the normαlizαtion of Od. Then, Od hαs only Q-
fαctorial termainal singulα門itiesexcept when g = so( 4n + 2), nど 1αnd
d = [22n, 12]. 

Proof Let k be the maximal member of d. Then there are k -1 minimal 
degenerations d三f. By Lemma (1.4.2), Exc(μ) contains at least k -1 
irreducible divisors. When f. = 1 (i.e, g = so(V)) and there is a minimal 
degeneration d三fwith f very even, there are two nilpotent orbits with 
Jordan type f. Thus, in this C邸 e,Exc(μ) contains at least k irreducible 
divisors. On the other hand, for the Jacobson-Morozov parabolic subgroup 

P, b2(G/P) = k-l when g = sp(V), or g = so(V) with dim V odd. When 
g = so(V) and dim V is even, we must be careful; if the flag type of P is 

of the form (p1, ... ,Pk-1;2;Pk-1, ... ,p仏 b2(G/P)= k. This happens when 
dim V = 4n + 2 and d = [22", 12] or when dim V = 8m + 4n + 4 and 
d = [42m, 3, 22n, l]. In the latter C錨 e,d h部 aminimal degeneration d三f
with f = [42m, 22n+2], which i日開ryeven. Note that b2( G / P) coincides with 

the relative Picard number ρof the Jacobson-Morozov resolution. By these 
observations, we know that μhas at least p exceptional divisors except when 
g = so(4n + 2）， η 主land d = [22n, 12]. Therefore, Od are Q-factorial in 
these c部 es.By (1.3.2) they have terminal singularities. When g = so(4n+2), 
n三1and d = [22η， 12], Od is a Richardson orbit and the Springer map 

gives a small resolution of ad. Therefore, ad has non-Q-factorial terminal 
singularities. 

(1.5) Induced orbits in clαssioαl Lieαlgebras: Let d = [df1, ... , d~k] be叩正－

admissible partition of m. According出 f.= 1 or f. = -1, we put G = SO(m) 
or G = Sp( m) respectively. Assume that d does not have full members. In 
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other words, for some p, dp三dp+I+ 2 or・4三2. We put r = ~I:Sj:O;pSj ・
Then Od is an induced orbit (cf. [C-M], 7.3). More explicitly, tl悶冒eare 
a parabolic subgroup Q of G with (isotropic) flag type (r, m 2r, r’） with 
Levi decomposition q = [ E9 n, and a nilpotent orbit O' of [ such that Od = 
Indr ( O'). Here, r h剖 adirect sum decomposition [ = gl(r) E9g', where ダis a 

simple Lie algebra of type B(m 2r 1)/2 (resp. D(m-2r)/2，陀sp.Ccm-2r}/2) when 
E = 1 and mis odd (resp. E = 1 and mis even, resp. E = -1). Moreover, O' is 

a nilpotent orbit of g' with Jordan type [(d1 -2）旬、…，（dp-2)8P,d；訂，..., d~k]. 
Let us consider the generalized Springer map 

νG×Q (n(q) + 6’）→ad 

(cf. ( 1.2) ). 

Lemma (1ふ 1).The mαp v is bz川 ionαl.In other words, deg（ν） = 1. 

§2. Main Results 

(2.1) Let X be a complex algebraic variety with rational Gorenstein sin-

gularities. A partial resolution f : Y→X of X is said to be a Q-fiαctoriαl 
terminalization of X if Y has only Q-factorial terminal singularities and f is 
a birational projective morphism such that Ky= J* Kx. In particular, when 
Y is smooth, f is called a crepant resolution. In general, X has no crepant 
resolution; however, by [B-C-H-M], X always has a Q-factorial terminaliza-
tion. But, in our case, the Q-factorial terminalization can be constructed 
刊 ryexplicitly without using the general theory in [B-C-H-M]. 

Proposition (2.1.1). Let 0 be αnilpotent orbit ofαclαssical simple Lie 

αlgebriα9・Let0 be the normαlizαtion of 0. Then one of the following holds: 
(1) 0 hαs Q-fiαctorial terminal singulαrities. 

(2) Thereα陀 αpαrabolicsubαlgebra q of g with Levi decomposition q = 
[ E9 nαndαnilpotent orbit O' of [ such thαt fα）： o = 1nar(o’） αnd {b): the 
normαlization of G×Q（η（q) + 6’） isαQ-f1αctoriαl terminalizαlion of 6 via 
the generalized Springer mαp. 

Proof When g is of type A, every 0 h剖 aSpringer resolution; hence 
(2) always holds. Let us consider the C剖 eg is of B, C or D. Assume that 

(1) does not hold. Then, by (1.4.3), the Jordan typed of 0 does not have 
full members except when g = so(4n + 2）， η 三 1and d = [22n, 12]. In 

the exceptional case, 0 is a Richardson orbit and the Springer map gives a 
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crepant resolution of O; hence (2) holds. Now制 sumethat d does not have 
full members. Then, by (1.5），。 isan induced nilpotent orbit and there is a 
generalized Springer map 

ジ； G×Q（η（q）÷6＇）→6.

This map is birational by (1.5.1). Let us consider the orbit O' instead of 0. 
If ( 1) holds for・0’， thenv induces a Q-factorial terminalization of 0. If (1) 
does not hold for OヘthenO' is an induced orbit. By (1.2.3), one can replace 
Q with a smaller parabolic subgroup Q' in such a way that 0 is induced from 
(Q', 02) for some nilpotent orbit 02 C C(Q'). The generalized Springer map 
v' for ( Q', 02) is factori日吋拙

。×Q’（n'+ 62）→G×Q (n十。’）…→6.

The second map is birational as explained above. The fi路 tmap is locally 
obtained by a base change of the generalized Springer map 

L(Q）×L(Q）のQ’（n(L(Q）円Q’） + 62）→0’． 

This map is birational by (1.5.1). Therefore, the first m叩 isalso birational, 
and 〆isbirational. T句‘hi日inductionstep termi 

(2.2）羽1eshall next show that every Q-factorial termin札.lizationof 0 is of 
the form in Proposition (2.1.1) except when 0 it開 lfh削 Q品 ctorialterminal 
singularities. In order to do that, we need the following Proposition. 

Proposition (2.2.1). Let 0 be a nilpotent orbit of a classical simple 

Lie algebra g. Assume that a Q事factorialterminαlization of 0 is gi斑 π匂
the normalization of G×引n(q）÷δ’）) for some ( Q, O＇）αs in {2.1.1}. As-
S包methat Q俗 αmαximalpαrabolic subgroup of G {i.e. ~（G/Q) =I｝， αn 
this Q-fiαctoriαl te附附伽αlionis mαll. 1守＇henQ isαpαrabolic s包bgro匂p 

cor胃respondingto Oηt of th巴followiηgmαrkedDνη，kin diαgnαmsαnd O' = 0: 

An-1 (k < n/2) 

。一一－--I! 『ー『 O

O一一一一咽働備 －－－－：：－即時ー， 0 

D持（n:odd三5）ルK

)o- 。
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The following is the main theorem: 

Theorem (2.2.2). Let 0 be αnilpotent orbit ofαclαssioαl simple Lie 
αlgebriαg. Then 0αlwαys hαsα Q-fiαctoriαi term inαlization. If 0 itself does 
not hαve Q-fiαctorial terminal singulα倒的p then ev町 Q-fiαctoriαIterm inαl-
ization is given by the normalization of G×Q (n(q) + 61)) in (2.1.1}. More-
over，αny two such Q-fiαctorial terrninalizαtionsα問 connectedbyαsequence 

ofM叫αiflops of type A or D defined in [N，α：｝， pp. 91, 92. 

Proof The first statement is nothing but (2.1.1). The proof of the second 
statement is quite similar to that of [Na], Theorem 6.1. Assume that 0 does 
not have Q-factorial terminal si珂 ularities.Tl悶 i,by (2.1.1), one can find a 
generalized Springer (birational) map 

ν：G×Q (n(q) ＋δ’）→ δ． 

Let XQ  be the normalization of G x_Q （η（q) + 61). Then v i盟主esa Q-
factorial terminalization f : X Q→ 0. The relative nef cone Amp(!) is a 
rational, simplicial, polyhedral cone of dimension b2(G/Q) (cf. (1.2.2) and 
[Na], Lemma 6.3). Each codimension one face F of Amp(!) corresponds 
to a birational contraction map ¢F : XQ→ YQ. The construction of φF 
is as follows. The parabolic subgroup Q corresponds to a marked Dynkin 
diagram D. In this diagram, there are exactly b2(G/Q) marked vertexes. 
Choose a marked vertex v from D. The choice of v determines a codimension 
one face F of Amp(!). Let Dv be the maximal, connected, single marked 
D戸ikinsubdiagram of D which contains v. Let D be the marked Dynkin 
diagram obtained from D by erasing the marking of t人 LetQ be the parabolic 
subgroup of G corresponding to D. Then, as in (1.2.2), we have a map 

π：G×Q (n＋δ’）→ G×Q （両＋6i).

Let YQ be the normalization of G x Q （員十 61).Thenπinduces a birational 
map XQ→均.This is the map仰 Notethatπis locally obtained by a 
base change of the generalized Springer map 

L(Q）×L(Q)nQ (n(L(Q) n Q) + 61）→ 61・

Let Z(C(q)) (resp. Z(C（両））） be the center of C(q) (resp. C（司））.By the definition 
of Q, the simple factors of C（両）／Z(C（両）） are common to those of C(q)/Z(C(q)) 
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except one factor, say m. Put O＇’：＝0’nm. By (2.2.1），背（or。F)is a small 
birational map if and only if O" = 0 and Dv is one of the single Dynkin 
diagrams listed in (2.2.1). In this case, one can make a new marked Dynkin 
diagramD＇合omD by replacing Dv by its dual D~ (cf. [Na], Defi単位。n1). 
Let Q' be the parabolic subgroup of G corresponding to D仁Wemay部 sume
that Q and Q' are both contained in Q. The Levi part of Q’is conjugate 
旬 thatof Q; hence there is a nilpotent orbit加 l（ギ） corr出 pondingto C’． 
We denote this orbit by the same O'. Then 0 is induced from ( Q', 0’）. As 
above, let XQ' be the normalization of G×Q (n（イ）十O’）. Then we have a 
birational map件： XQ’ω→均.The diagram 

XQ→均← XQ’

is a flop. Assume that g : X→C is a Q-factorial terminalization. Then, the 
na土uralbirational map X一一→ Xqis an isomorphism in codimension one. 
Let L be a g-ample line bundle on X and let L0 E Pic(XQ) be its proper 
transform of L by this bir試ionalmap. If Lo is f-nef, then X = XQ and f = g. 
Assume that Lo is not f-nef. Then one can find a codimension one face F 

of Amp(!) which is negative with詑 spectto Lo・SinceLo is /-movable, the 
birational mapゆF:XQ→均 issmall. Then，加 seena:.bove, there is a new 
(small) birational m叩件： Jら’→均.Let f’： XQ’叶 0be the composition 
o！件 withthe m叩均一→ C Then f' is a Q輔 factorialterminanization of 
0. Replace f by this f’and repeat the same procedure; but this procedure 
ends in finite times (cf. [Na], Proof of Theorem 6.1 on pp. 104, 105). More 
explicitly, there is乱finitesequence of Q-factorial terminalizations of 0: 

Xo(:= XQ) 吋 X1(:=XQ＇）一一→…

such that LkεPic(Xk) is fk-nef. This恐慌nsthat X 

叶 Xk(=Xqk) 

XQk・

Example (2.3). We put G = SP(12). Let 0 be the nilpotent orbit in 
sp(12) with Jordan type [6, 32]. Let Q1 C G be a parabolic subgroup with 
flag type (3, 6, 3). The Levi part [1 of q1 h回 adirect叩 mdecor叩 osition

l1 = gl(3) EB sp(6). 

Let O' be the nilpotent orbit in sp(6) with Jordan type [4, 12]. Then 0 = 
Ind~；＜ロ）（0’）. Next consider the parabolic subgroup Q2 C SP(6) with flag 
type (1,4, 1). The Levi part 12 of q2 has a direct sum decomposition 

l2 = gl(l) EB sp(4). 
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REFERENCES 13 

Let O" be the nilpotent orbit in sp(4) with Jordan type [2, 12]. Then O' = 
lnd~：（6)(0”）. One c組 takea parabolic subgro叩 Qof SP(12) with flag type 
(3, 1, 4, 1, 3) in such a way that the Levi p町 t[ of q contains the nilpotent 
orbit O". Then 0 is the nilpotent orbit induced from O". We shall illustrate 
the induction step above by 

([2, 12], sp( 4））→（［4, 12], sp(6））→（［6, 32], sp(12)). 

Since O" has only Q-factorial terminal singularities, the Q-factorial termi-
nalization of 0 is given by the generalized Springer map 

ν：G×Q (n(q) ＋δ勺→ 6.

The induction step is not unique; we have another induction step 

([2, 12], sp(4））→（［4, 32], sp(lO））→（［6, 32], sp(12)). 

By these inductions, we get another generalized Springer map 

〆： G×Q’（n(q’）＋δ勺→ 6,

where Q’is a parabolic subgroup of G with flag type (1, 3, 4, 3, 1). This gives 
another Q-factorial terminalization of 0. The two Q-factorial terminaliza-
tions of 0 are connected by a Mukai flop of type A3・
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