Induced nilpotent orbits and birational geometry

Yoshinori Namikawa
Department of Mathematics，Kyoto University

This exposition is based on two lectures in the conferences at Kinosaki （Oct．2008），and at Tokyo（Dec．2008）．

Introduction．

Let G be a complex simple algebraic group and let \mathfrak{g} be its Lie algebra． A nilpotent orbit \mathcal{O} in \mathfrak{g} is an orbit of a nilpotent element of \mathfrak{g} by the adjoint action of G on \mathfrak{g} ．Then \mathcal{O} admits a natural symplectic 2 －form ω and the nilpotent orbit closure $\overline{\mathcal{O}}$ has symplectic singularities in the sense of［ Be$]$ and ［ Na 3 ］（cf．［Pa］，［Hi］）．In［Ri］，Richardson introduced the notion of so－called the Richardson orbit．A nilpotent orbit \mathcal{O} is called Richardson if there is a parabolic subgroup Q of G such that $\mathcal{O} \cap n(\mathfrak{q})$ is an open dense subset of $n(\mathfrak{q})$ ，where $n(\mathfrak{q})$ is the nil－radical of \mathfrak{q} ．Later，Lusztig and Spaltenstein $[\mathrm{L}-\mathrm{S}]$ generalized this notion to the induced orbit．A nilpotent orbit \mathcal{O} is an induced orbit if there are a parabolic subgroup Q of G and a nilpotent orbit \mathcal{O}^{\prime} in the Levi subalgebra $\mathfrak{l}(\mathfrak{q})$ of $\mathfrak{q}:=\operatorname{Lie}(Q)$ such that \mathcal{O} meets $n(\mathfrak{q})+\mathcal{O}^{\prime}$ in an open dense subset．If \mathcal{O} is an induced orbit，one has a natural map（cf． （1．2））

$$
\nu: G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}^{\prime}}\right) \rightarrow \overline{\mathcal{O}} .
$$

The map ν is a generically finite，projective，surjective map．This map is called the generalized Springer map．In this paper，we shall study the in－ duced orbits from the view point of birational geometry．For a Richardson orbit \mathcal{O} ，the Springer map ν is a map from the cotangent bundle $T^{*}(G / Q)$ of the flag variety G / Q to $\overline{\mathcal{O}}$ ．In $[\mathrm{Fu}]$ ，Fu proved that，if $\overline{\mathcal{O}}$ has a crepant （projective）resolution，it is a Springer map．Note that Q is not unique（even up to the conjugate）for a Richardson orbit \mathcal{O} ．This means that $\overline{\mathcal{O}}$ has many
different crepant resolutions. In [Na], the author has given a description of all crepant resolutions of $\overline{\mathcal{O}}$ and proved that any two different crepant resolutions are connected by Mukai flops. The purpose of this paper is to generalize these to all nilpotent orbits \mathcal{O}. If \mathcal{O} is not Richardson, $\overline{\mathcal{O}}$ has no crepant resolution. The substitute of a crepant resolution, is a Q -factorial terminalization. Let X be a complex algebraic variety with rational Gorenstein singularities. A partial resolution $f: Y \rightarrow X$ of X is said to be a Q-factorial terminalization of X if Y has only Q -factorial terminal singularities and f is a birational projective morphism such that $K_{Y}=f^{*} K_{X}$. A Q-factorial terminalization is a crepant resolution exactly when Y is smooth. Recently, Birkar-Cascini-Hacon-McKernan [B-C-H-M] have established the existence of minimal models of complex algebraic varieties of general type. As a corollary of this, we know that X always has a Q -factorial terminalization. In particular, $\overline{\mathcal{O}}$ should have a Q -factorial terminalization. The author would like to pose the following conjecture.

Conjecture. Let \mathcal{O} be a nilpotent orbit of a complex simple Lie algebra \mathfrak{g}. Let $\tilde{\mathcal{O}}$ be the normalization of $\overline{\mathcal{O}}$. Then one of the following holds:
(1) $\tilde{\mathcal{O}}$ has Q-factorial terminal singularities.
(2) There are a parabolic subalgebra \mathfrak{q} of \mathfrak{g} with Levi decomposition $\mathfrak{q}=$ $\mathfrak{l} \oplus \mathfrak{n}$ and a nilpotent orbit \mathcal{O}^{\prime} of \mathfrak{l} such that $(a): \mathcal{O}=\operatorname{Ind}_{\mathfrak{1}}^{\mathfrak{p}}\left(\mathcal{O}^{\prime}\right)$ and (b) : the normalization of $G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime}\right)$ is a \mathbf{Q}-factorial terminalization of $\tilde{\mathcal{O}}$ via the generalized Springer map.

Moreover, if $\tilde{\mathcal{O}}$ does not have \mathbf{Q}-factorial terminal singularities, then every Q-factorial terminalization of $\tilde{\mathcal{O}}$ is of the form (2). Two Q-factorial terminalizations are connected by Mukai flops (cf. [Na], p.91).

The main result of this report is that Conjecture is true when \mathfrak{g} is classical. Recently, Fu checked Conjecture for \mathfrak{g} exceptional by a case-by-case method using the computer program GAP 4 (arxiv: 0809.5109, version 2). Combining this with our result, Conjecture holds true in full generality. However, a conceptual proof without the classification of nilpotent orbits, is still missing. This is a summary of $[\mathrm{Na}-1]$. For details on proofs, see the original paper [$\mathrm{Na}-1$].

§1. Preliminaries

(1.1) Nilpotent orbits and resolutions: Let G be a complex simple algebraic group and let \mathfrak{g} be its Lie algebra. G has the adjoint action on \mathfrak{g}. The
orbit \mathcal{O}_{x} of a nilpotent element $x \in \mathfrak{g}$ for this action is called a nilpotent orbit. By the Jacobson-Morozov theorem, one can find a semi-simple element $h \in \mathfrak{g}$, and a nilpotent element $y \in \mathfrak{g}$ in such a way that $[h, x]=2 x$, $[h, y]=-2 y$ and $[x, y]=h$. For $i \in \mathbf{Z}$, let

$$
\mathfrak{g}_{i}:=\{z \in \mathfrak{g}[h, z]=i z\} .
$$

Then one can write

$$
\mathfrak{g}=\oplus_{i \in \mathbf{Z}} \mathfrak{g}_{i}
$$

Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} with $h \in \mathfrak{h}$. Let Φ be the corresponding root system and let Δ be a base of simple roots such that h is Δ-dominant, i.e. $\alpha(h) \geq 0$ for all $\alpha \in \Delta$. In this situation,

$$
\alpha(h) \in\{0,1,2\} .
$$

The weighted Dynkin diagram of \mathcal{O}_{x} is the Dynkin diagram of \mathfrak{g} where each vertex α is labeled with $\alpha(h)$. A nilpotent orbit \mathcal{O}_{x} is completely determined by its weighted Dynkin diagram. A Jacobson-Morozov parabolic subalgebra for x is the parabolic subalgebra \mathfrak{p} defined by

$$
\mathfrak{p}:=\oplus_{i \geq 0} \mathfrak{g}_{i} .
$$

Let P be the parabolic subgroup of G determined by \mathfrak{p}. We put

$$
\mathfrak{n}_{2}:=\oplus_{i \geq 2} \mathfrak{g}_{i} .
$$

Then \mathfrak{n}_{2} is an ideal of \mathfrak{p}; hence, P has the adjoint action on \mathfrak{n}_{2}. Let us consider the vector bundle $G \times{ }^{P} \mathfrak{n}_{2}$ over G / P and the map

$$
\mu: G \times^{P} \mathfrak{n}_{2} \rightarrow \mathfrak{g}
$$

defined by $\mu([g, z]):=A d_{g}(z)$. Then the image of μ coincides with the closure $\overline{\mathcal{O}}_{x}$ of \mathcal{O}_{x} and μ gives a resolution of $\overline{\mathcal{O}}_{x}$ (cf. [K-P], Proposition 7.4). We call μ the Jacobson-Morozov resolution of $\overline{\mathcal{O}}_{x}$. The orbit \mathcal{O}_{x} has a natural closed non-degenerate 2-form ω (cf. [C-G], Prop. 1.1.5., [C-M], 1.3). By μ, ω is regarded as a 2 -form on a Zariski open subset of $G \times^{P} \mathfrak{n}_{2}$. By [Pa], [Hi], it extends to a 2-form on $G \times{ }^{P} \mathfrak{n}_{2}$. In other words, $\overline{\mathcal{O}}_{x}$ has symplectic singularity. Let $\tilde{\mathcal{O}}_{x}$ be the normalization of $\overline{\mathcal{O}}_{x}$. In many cases, one can check the $\mathrm{Q}-$ factoriality of $\tilde{\mathcal{O}}_{x}$ by applying the following lemma to the Jacobson-Morozov resolution:

Lemma (1.1.1). Let $\pi: Y \rightarrow X$ be a projective resolution of an affine variety X with rational singularities. Let ρ be the relative Picard number for π. If $\operatorname{Exc}(\pi)$ contains ρ different prime divisors, then X is Q -factorial.
(1.2) Induced orbits
(1.2.1). Let G and \mathfrak{g} be the same as in (1.1). Let Q be a parabolic subgroup of G and let \mathfrak{q} be its Lie algebra with Levi decomposition $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{n}$. Here n is the nil-radical of \mathfrak{q} and \mathfrak{l} is a Levi-part of \mathfrak{q}. Fix a nilpotent orbit \mathcal{O}^{\prime} in \mathfrak{l}. Then there is a unique nilpotent orbit \mathcal{O} in \mathfrak{g} meeting $n+\mathcal{O}^{\prime}$ in an open dense subset ([L-S]). Such an orbit \mathcal{O} is called the nilpotent orbit induced from \mathcal{O}^{\prime} and we write

$$
\mathcal{O}=\operatorname{Ind}_{1}^{\mathfrak{q}}\left(\mathcal{O}^{\prime}\right)
$$

Note that when $\mathcal{O}^{\prime}=0, \mathcal{O}$ is the Richardson orbit for Q. Since the adjoint action of Q on \mathfrak{q} stabilizes $n+\overline{\mathcal{O}}^{\prime}$, one can consider the variety $G \times{ }^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right)$. There is a map

$$
\nu: G \times^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right) \rightarrow \overline{\mathcal{O}}
$$

defined by $\nu([g, z]):=\operatorname{Ad}_{g}(z)$. Since $\operatorname{Codim}_{\mathfrak{l}}\left(\mathcal{O}^{\prime}\right)=\operatorname{Codim}_{\mathfrak{g}}(\mathcal{O})($ cf. $\quad[\mathrm{C}-$ $\mathrm{M}]$, Prop. 7.1.4), ν is a generically finite dominating map. Moreover, ν is factorized as

$$
G \times^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right) \rightarrow G / Q \times \overline{\mathcal{O}} \rightarrow \overline{\mathcal{O}}
$$

where the first map is a closed embedding and the second map is the 2-nd projection; this implies that ν is a projective map. In the remainder, we call ν the generalized Springer map for (Q, \mathcal{O}^{\prime}).
(1.2.2). Assume that Q is contained in another parabolic subgroup \bar{Q} of G. Let \bar{L} be the Levi part of \bar{Q} which contains the Levi part L of Q. Let $\overline{\mathfrak{q}}=\overline{\mathfrak{l}} \oplus \overline{\mathfrak{n}}$ be the Levi decomposition. Note that $\bar{L} \cap Q$ is a parabolic subgroup of \bar{L} and $\mathfrak{l}(\bar{L} \cap Q)=\mathfrak{l}$. Let $\mathcal{O}_{1} \subset \overline{\mathfrak{l}}$ be the nilpotent orbit induced from ($\bar{L} \cap Q, \mathcal{O}^{\prime}$). Then there is a natural map

$$
\pi: G \times^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right) \rightarrow G \times^{\bar{Q}}\left(\bar{n}+\overline{\mathcal{O}_{1}}\right)
$$

which factorizes ν as $\bar{\nu} \circ \pi=\nu$. Here $\bar{\nu}$ is the generalized Springer map for $\left(\bar{Q}, \mathcal{O}_{1}\right)$.
(1.2.3). Assume that there are a parabolic subgroup Q_{L} of L and a nilpotent orbit \mathcal{O}_{2} in the Levi subalgebra $\mathfrak{l}\left(Q_{L}\right)$ such that \mathcal{O}^{\prime} is the nilpotent orbit induced from $\left(Q_{L}, \mathcal{O}_{2}\right)$. Then there is a parabolic subgroup Q^{\prime} of G
such that $Q^{\prime} \subset Q, \mathfrak{l}\left(Q^{\prime}\right)=\mathfrak{l}\left(Q_{L}\right)$ and \mathcal{O} is the nilpotent orbit induced from $\left(Q^{\prime}, \mathcal{O}_{2}\right)$. The generalized Springer map ν^{\prime} for $\left(Q^{\prime}, \mathcal{O}_{2}\right)$ is factorized as

$$
G \times^{Q^{\prime}}\left(\mathfrak{n}^{\prime}+\overline{\mathcal{O}}_{2}\right) \rightarrow G \times^{Q}\left(\mathfrak{n}+\overline{\mathcal{O}^{\prime}}\right) \rightarrow \overline{\mathcal{O}}
$$

Lemma (1.2.4). Let

$$
\nu: G \times^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right) \rightarrow \overline{\mathcal{O}}
$$

be a generalized Springer map defined in (1.2.1). Then the normalization of $G \times{ }^{Q}\left(n+\overline{\mathcal{O}}^{\prime}\right)$ is a symplectic variety.
(1.3) Nilpotent orbits in classical Lie algebras: When \mathfrak{g} is a classical Lie algebra, \mathfrak{g} is naturally a Lie subalgebra of $\operatorname{End}(V)$ for a complex vector space V. Then we can attach a partition d of $n:=\operatorname{dim} V$ to each orbit as the Jordan type of an element contained in the orbit. Here a partition $\mathbf{d}:=\left[d_{1}, d_{2}, \ldots, d_{k}\right]$ of n is a set of positive integers with $\Sigma d_{i}=n$ and $d_{1} \geq d_{2} \geq \ldots \geq d_{k}$. Another way of writing \mathbf{d} is $\left[d_{1}^{s_{1}}, \ldots, d_{k}^{s_{k}}\right]$ with $d_{1}>d_{2} \ldots>d_{k}>0$. Here $d_{i}^{s_{i}}$ is an s_{i} times d_{i} 's: $d_{i}, d_{i}, \ldots, d_{i}$. The partition d corresponds to a Young diagram. For example, $\left[5,4^{2}, 1\right]$ corresponds to

When an integer e appears in the partition \mathbf{d}, we say that e is a member of \mathbf{d}. We call d very even when \mathbf{d} consists with only even members, each having even multiplicity.

Let us denote by ϵ the number 1 or -1 . Then a partition \mathbf{d} is ϵ-admissible if all even (resp. odd) members of d have even multiplicities when $\epsilon=1$ (resp. $\epsilon=-1$). The following result can be found, for example, in [C-M, $\S 5]$.

Proposition (1.3.1) Let $\mathcal{N} o(\mathfrak{g})$ be the set of nilpotent orbits of \mathfrak{g}.
(1) $\left(A_{n-1}\right)$: When $\mathfrak{g}=\mathfrak{s l}(n)$, there is a bijection between $\mathcal{N} o(\mathfrak{g})$ and the set of partitions \mathbf{d} of n.
(2) $\left(B_{n}\right)$: When $\mathfrak{g}=\mathfrak{s o}(2 n+1)$, there is a bijection between $\mathcal{N} o(\mathfrak{g})$ and the set of ϵ-admissible partitions \mathbf{d} of $2 n+1$ with $\epsilon=1$.
(3) $\left(C_{n}\right):$ When $\mathfrak{g}=\mathfrak{s p}(2 n)$, there is a bijection between $\mathcal{N} o(\mathfrak{g})$ and the set of ϵ-admissible partitions \mathbf{d} of $2 n$ with $\epsilon=-1$.
(4) $\left(D_{n}\right)$: When $\mathfrak{g}=\mathfrak{s o}(2 n)$, there is a surjection ffrom $\mathcal{N} o(\mathfrak{g})$ to the set of ϵ-admissible partitions \mathbf{d} of $2 n$ with $\epsilon=1$. For a partition \mathbf{d} which is not very even, $f^{-1}(\mathbf{d})$ consists of exactly one orbit, but, for very even $\mathbf{d}, f^{-1}(\mathbf{d})$ consists of exactly two different orbits.

Take an ϵ-admissible partition \mathbf{d} of a positive integer m. If $\epsilon=1$, we put $\mathfrak{g}=s o(m)$ and if $\epsilon=-1$, we put $\mathfrak{g}=s p(m)$. We denote by $\mathcal{O}_{\mathbf{d}}$ a nilpotent orbit in \mathfrak{g} with Jordan type \mathbf{d}. Note that, except when $\epsilon=1$ and \mathbf{d} is very even, $\mathcal{O}_{\mathbf{d}}$ is uniquely determined. When $\epsilon=1$ and \mathbf{d} is very even, there are two possibilities for \mathcal{O}_{d}. If necessary, we distinguish the two orbits by the labelling: $\mathcal{O}_{\mathrm{d}}^{I}$ and $\mathcal{O}_{\mathrm{d}}^{I I}$. Let us fix a classical Lie algebra \mathfrak{g} and study the relationship among nilpotent orbits in \mathfrak{g}. When \mathfrak{g} is of type B or D (resp. C), we only consider the ϵ-admissible partitions with $\epsilon=1$ (resp. $\epsilon=-1$). We introduce a partial order in the set of the partitions of (the same number): for two partitions \mathbf{d} and $\mathbf{f}, \mathbf{d} \geq \mathbf{f}$ if $\Sigma_{i \leq k} d_{i} \geq \Sigma_{i \leq k} f_{i}$ for all $k \geq 1$. On the other hand, for two nilpotent orbits \mathcal{O} and \mathcal{O}^{\prime} in \mathfrak{g}, we write $\mathcal{O} \geq \mathcal{O}^{\prime}$ if $\mathcal{O}^{\prime} \subset \overline{\mathcal{O}}$. Then, $\mathcal{O}_{\mathbf{d}} \geq \mathcal{O}_{\mathbf{f}}$ if and only if $\mathbf{d} \geq \mathbf{f}$. When \mathbf{d} and \mathbf{f} are ϵ-admissible partitions with $\mathbf{f} \geq \mathbf{g}$, we call this pair an ϵ-degeneration or simply a degeneration.

Now let us consider the case \mathfrak{g} is of type B, C or D.
Assume that an ϵ - degeneration $\mathbf{d} \geq \mathbf{f}$ is minimal in the sense that there is no ϵ-admissible partition \mathbf{d}^{\prime} (except \mathbf{d} and \mathbf{f}) such that $\mathbf{d} \geq \mathbf{d}^{\prime} \geq \mathbf{f}$. Kraft and Procesi $[\mathrm{K}-\mathrm{P}]$ have studied the normal slice $N_{\mathbf{d}, \mathbf{f}}$ of $\mathcal{O}_{\mathrm{f}} \subset \mathcal{O}_{\mathrm{d}}$ in such cases. If, for two integers r and s, the first r rows and the first s columns of \mathbf{d} and \mathbf{f} coincide and the partition $\left(d_{1}, \ldots, d_{r}\right)$ is ϵ-admissible, then one can erase these rows and columns from \mathbf{d} and \mathbf{f} respectively to get new partitions \mathbf{d}^{\prime} and \mathbf{f}^{\prime} with $\mathbf{d}^{\prime} \geq \mathbf{f}^{\prime}$. If we put $\epsilon^{\prime}:=(-1)^{s} \epsilon$, then \mathbf{d}^{\prime} and \mathbf{f}^{\prime} are both ϵ^{\prime}-admissible. The pair ($\mathrm{d}^{\prime}, \mathrm{f}^{\prime}$) is also minimal. Repeating such process, one can reach a degeneration $\mathbf{d}_{\text {irr }} \geq \mathbf{f}_{i r r}$ which is irreducible in the sense that there are no rows and columns to be erased. By $[\mathrm{K}-\mathrm{P}]$, Theorem $2, N_{\mathrm{d}, \mathrm{f}}$ is analytically isomorphic to $N_{\mathbf{d}_{i r r}, f_{i r r}}$ around the origin. According to $[\mathrm{K}-\mathrm{P}]$, a minimal and irreducible degeneration $\mathbf{d} \geq \mathbf{f}$ is one of the following:
a: $\mathfrak{g}=s p(2), \mathbf{d}=(2)$, and $\mathbf{f}=\left(1^{2}\right)$.
b: $\mathfrak{g}=\operatorname{sp}(2 n)(n>1), \mathbf{d}=(2 n)$, and $\mathbf{f}=(2 n-2,2)$.
c: $\mathfrak{g}=s o(2 n+1)(n>0), \mathbf{d}=(2 n+1)$, and $\mathbf{f}=\left(2 n-1,1^{2}\right)$.
$\mathrm{d}: \mathfrak{g}=\operatorname{sp}(4 n+2)(n>0), \mathbf{d}=(2 n+1,2 n+1)$, and $\mathbf{f}=(2 n, 2 n, 2)$.
$\mathrm{e}: \mathfrak{g}=s o(4 n)(n>0), \mathbf{d}=(2 n, 2 n)$, and $\mathfrak{f}=\left(2 n-1,2 n-1,1^{2}\right)$.
$\mathfrak{f}: \mathfrak{g}=\operatorname{so}(2 n+1)(n>1), \mathbf{d}=\left(2^{2}, 1^{2 n-3}\right)$, and $\mathbf{f}=\left(1^{2 n+1}\right)$.
$\mathrm{g}: \mathfrak{g}=s p(2 n)(n>1), \mathbf{d}=\left(2,1^{2 n-2}\right)$, and $\mathbf{f}=\left(1^{2 n}\right)$.
$\mathrm{h}: \mathfrak{g}=s o(2 n)(n>2), \mathbf{d}=\left(2^{2}, 1^{2 n-4}\right)$, and $\mathbf{f}=\left(1^{2 n}\right)$.
In the first 4 cases ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$), \mathcal{O}_{f} have codimension 2 in $\overline{\mathcal{O}}_{\mathrm{d}}$. In the last 3 cases ($\mathrm{f}, \mathrm{g}, \mathrm{h}$), \mathcal{O}_{f} have codimension ≥ 4 in $\overline{\mathcal{O}}_{\mathrm{d}}$.

Proposition (1.3.2) Let \mathcal{O} be a nilpotent orbit in a classical Lie algebra \mathfrak{g} of type B, C or D with Jordan type $\mathbf{d}:=\left[\left(d_{1}\right)^{s_{1}}, \ldots,\left(d_{k}\right)^{s_{k}}\right]\left(d_{1}>d_{2}>\ldots>\right.$ d_{k}). Let Σ be the singular locus of $\overline{\mathcal{O}}$. Then $\operatorname{Codim}_{\overline{\mathcal{O}}}(\Sigma) \geq 4$ if and only if the partition \mathbf{d} has full members, that is, any integer j with $1 \leq j \leq d_{1}$ is a member of \mathbf{d}. Otherwise, $\operatorname{Codim}_{\overline{\mathcal{O}}}(\Sigma)=2$.
(1.4.1) Jacobson-Morozov resolutions in the case of classical Lie algebras(cf. [CM], 5.3): Let V be a complex vector space of dimension m with a non-degenerate symmetric (or skew-symmetric) form $<,>$. In the symmetric case, we take a basis $\left\{e_{i}\right\}_{1 \leq i \leq m}$ of V in such a way that $\left\langle e_{j}, e_{k}\right\rangle=1$ if $j+k=m+1$ and otherwise $<\epsilon_{j}, e_{k}>=0$. In the skew-symmetric case, we take a basis $\left\{e_{i}\right\}_{1 \leq i \leq m}$ of V in such a way that $<e_{j}, e_{k}>=1$ if $j<k$ and $j+k=m+1$, and $\left.<e_{j}, e_{k}\right\rangle=0$ if $j+k \neq m+1$. When $(V,<,>)$ is a symmetric vector space, $\mathfrak{g}:=s o(V)$ is the Lie algebra of type $B_{(m-1) / 2}$ (resp. $D_{m / 2}$) if m is odd (resp. even). When $(V,<,>)$ is a skew-symmetric vector space, $\mathfrak{g}:=s p(V)$ is the Lie algebra of type $C_{m / 2}$. In the remainder of this paragraph, \mathfrak{g} is one of these Lie algebra contained in $\operatorname{End}(V)$. Let $\mathfrak{h} \subset \mathfrak{g}$ be the Cartan subalgebra consisting of all diagonal matrices, and let Δ be the standard base of simple roots. Let $x \in \mathfrak{g}$ be a nilpotent element. As in (1.1), one can choose $h, y \in \mathfrak{g}$ in such a way that $\{x, y, h\}$ is a $s l(2)$-triple. If necessary, by replacing x by its conjugate element, one may assume that $h \in \mathfrak{h}$ and h is Δ-dominant. Assume that x has Jordan type $\mathrm{d}=\left[d_{1}, \ldots, d_{k}\right]$. The diagonal matrix h is described as follows. Let us consider the sequence of integers of length m :

$$
\begin{aligned}
& d_{1}-1, d_{1}-3, \ldots,-d_{1}+3,-d_{1}+1, d_{2}-1, d_{2}-3, \ldots,-d_{2}+3,-d_{2}+1, \ldots, d_{k}- \\
& 1, d_{k}-3, \ldots,-d_{k}+3,-d_{k}+1
\end{aligned}
$$

Rearrange this sequence in the non-increasing order and get a new sequence $p_{1}^{t_{1}}, \ldots, p_{l}^{t_{l}}$ with $p_{1}>p_{2} \ldots>p_{l}$ and $\Sigma t_{i}=m$. Then

$$
h=\operatorname{diag}\left(p_{1}^{t_{1}}, \ldots, p_{l}^{t_{l}}\right)
$$

Here $p_{i}^{t_{i}}$ means the t_{i} times of p_{i} 's: $p_{i}, p_{i}, \ldots, p_{i}$. It is then easy to describe
explicitly the Jacobson-Morozov parabolic subalgebra \mathfrak{p} of x and its ideal \mathbf{n}_{2} (cf. (1.1)). The Jacobson-Morozov parabolic subgroup P is the stabilizer group of certain isotropic flag $\left\{F_{i}\right\}_{1 \leq i \leq r}$ of V. Here, an isotropic flag of V (of length r) is a increasing filtration $0 \subset F_{1} \subset F_{2} \subset \ldots \subset F_{r} \subset V$ such that $F_{r+1-i}=F_{i}^{\perp}$ for all i. The flag type of P is $\left(t_{1}, \ldots, t_{l}\right)$. The nilradical $\mathfrak{n}:=\oplus_{i>0} \mathfrak{g}_{i}$ of \mathfrak{p} consists of the elements z of \mathfrak{g} such that $z\left(F_{i}\right) \subset F_{i-1}$ for all i. On the other hand, it depends on the weighted Dynkin diagram for x how \mathfrak{n}_{2} takes its place in \mathbf{n}.

Lemma (1.4.2) Assume that \mathbf{d} has full members. For each minimal ϵ-degeneration $\mathbf{d} \geq \mathbf{f}$, the fiber $\mu^{-1}\left(\mathcal{O}_{\mathfrak{f}}\right)$ has codimension 1 in $G \times^{P} \mathfrak{n}_{2}$.

Corollary (1.4.3) Assume that \mathbf{d} is an ϵ-admissible partition and it has full members. Let $\tilde{\mathcal{O}}_{\mathbf{d}}$ be the normalization of $\overline{\mathcal{O}}_{\mathbf{d}}$. Then, $\tilde{\mathcal{O}}_{\mathbf{d}}$ has only \mathbf{Q} factorial termainal singularities except when $\mathfrak{g}=\operatorname{so}(4 n+2), n \geq 1$ and $\mathbf{d}=\left[2^{2 n}, 1^{2}\right]$.

Proof. Let k be the maximal member of \mathbf{d}. Then there are $k-1$ minimal degenerations $\mathbf{d} \geq \mathbf{f}$. By Lemma (1.4.2), $\operatorname{Exc}(\mu)$ contains at least $k-1$ irreducible divisors. When $\epsilon=1$ (i.e, $\mathfrak{g}=s o(V)$) and there is a minimal degeneration $\mathbf{d} \geq \mathbf{f}$ with \mathbf{f} very even, there are two nilpotent orbits with Jordan type \mathbf{f}. Thus, in this case, $\operatorname{Exc}(\mu)$ contains at least k irreducible divisors. On the other hand, for the Jacobson-Morozov parabolic subgroup $P, b_{2}(G / P)=k-1$ when $\mathfrak{g}=s p(V)$, or $\mathfrak{g}=s o(V)$ with $\operatorname{dim} V$ odd. When $\mathfrak{g}=\operatorname{so}(V)$ and $\operatorname{dim} V$ is even, we must be careful; if the flag type of P is of the form $\left(p_{1}, \ldots, p_{k-1} ; 2 ; p_{k-1}, \ldots, p_{1}\right), b_{2}(G / P)=k$. This happens when $\operatorname{dim} V=4 n+2$ and $\mathbf{d}=\left[2^{2 n}, 1^{2}\right]$ or when $\operatorname{dim} V=8 m+4 n+4$ and $\mathbf{d}=\left[4^{2 m}, 3,2^{2 n}, 1\right]$. In the latter case, \mathbf{d} has a minimal degeneration $\mathbf{d} \geq \mathbf{f}$ with $\mathbf{f}=\left[4^{2 m}, 2^{2 n+2}\right]$, which is very even. Note that $b_{2}(G / P)$ coincides with the relative Picard number ρ of the Jacobson-Morozov resolution. By these observations, we know that μ has at least ρ exceptional divisors except when $\mathfrak{g}=\operatorname{so}(4 n+2), n \geq 1$ and $\mathbf{d}=\left[2^{2 n}, 1^{2}\right]$. Therefore, $\tilde{\mathcal{O}}_{\mathbf{d}}$ are \mathbf{Q}-factorial in these cases. By (1.3.2) they have terminal singularities. When $\mathfrak{g}=s o(4 n+2)$, $n \geq 1$ and $\mathbf{d}=\left[2^{2 n}, 1^{2}\right], \mathcal{O}_{\mathbf{d}}$ is a Richardson orbit and the Springer map gives a small resolution of $\overline{\mathcal{O}}_{\mathbf{d}}$. Therefore, $\tilde{\mathcal{O}}_{\mathrm{d}}$ has non-Q-factorial terminal singularities.
(1.5) Induced orbits in classical Lie algebras: Let $\mathbf{d}=\left[d_{1}^{s_{1}}, \ldots, d_{k}^{s_{k}}\right]$ be an ϵ admissible partition of m. According as $\epsilon=1$ or $\epsilon=-1$, we put $G=S O(m)$ or $G=S p(m)$ respectively. Assume that \mathbf{d} does not have full members. In
other words, for some $p, d_{p} \geq d_{p+1}+2$ or $d_{k} \geq 2$. We put $r=\Sigma_{1 \leq j \leq p} s_{j}$. Then $\mathcal{O}_{\mathbf{d}}$ is an induced orbit (cf. [C-M], 7.3). More explicitly, there are a parabolic subgroup Q of G with (isotropic) flag type ($r, m-2 r, r$) with Levi decomposition $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{n}$, and a nilpotent orbit \mathcal{O}^{\prime} of \mathfrak{l} such that $\mathcal{O}_{\mathrm{d}}=$ $\operatorname{Ind}_{\mathfrak{l}}^{\mathfrak{g}}\left(\mathcal{O}^{\prime}\right)$. Here, \mathfrak{l} has a direct sum decomposition $\mathfrak{l}=g l(r) \oplus \mathfrak{g}^{\prime}$, where \mathfrak{g}^{\prime} is a simple Lie algebra of type $B_{(m-2 r-1) / 2}$ (resp. $D_{(m-2 r) / 2}$, resp. $C_{(m-2 r) / 2}$) when $\epsilon=1$ and m is odd (resp. $\epsilon=1$ and m is even, resp. $\epsilon=-1$). Moreover, \mathcal{O}^{\prime} is a nilpotent orbit of \mathfrak{g}^{\prime} with Jordan type $\left[\left(d_{1}-2\right)^{s_{1}}, \ldots,\left(d_{p}-2\right)^{s_{p}}, d_{p+1}^{s_{p+1}}, \ldots, d_{k}^{s_{k}}\right]$. Let us consider the generalized Springer map

$$
\nu: G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime}\right) \rightarrow \overline{\mathcal{O}}_{\mathbf{d}}
$$

(cf. (1.2)).
Lemma (1.5.1). The map ν is birational. In other $w o r d s, \operatorname{deg}(\nu)=1$.

§2. Main Results

(2.1) Let X be a complex algebraic variety with rational Gorenstein singularities. A partial resolution $f: Y \rightarrow X$ of X is said to be a Q -factorial terminalization of X if Y has only \mathbf{Q}-factorial terminal singularities and f is a birational projective morphism such that $K_{Y}=f^{*} K_{X}$. In particular, when Y is smooth, f is called a crepant resolution. In general, X has no crepant resolution; however, by $[\mathrm{B}-\mathrm{C}-\mathrm{H}-\mathrm{M}], X$ always has a Q -factorial terminalization. But, in our case, the \mathbf{Q}-factorial terminalization can be constructed very explicitly without using the general theory in [B-C-H-M].

Proposition (2.1.1). Let \mathcal{O} be a nilpotent orbit of a classical simple Lie algebra \mathfrak{g}. Let $\tilde{\mathcal{O}}$ be the normalization of $\overline{\mathcal{O}}$. Then one of the following holds:
(1) $\tilde{\mathcal{O}}$ has Q -factorial terminal singularities.
(2) There are a parabolic subalgebra \mathfrak{q} of \mathfrak{g} with Levi decomposition $\mathfrak{q}=$ $\mathfrak{l} \oplus \mathbf{n}$ and a nilpotent orbit \mathcal{O}^{\prime} of \mathfrak{l} such that $(a): \mathcal{O}=\operatorname{Ind}_{\mathfrak{l}}^{\mathfrak{p}}\left(\mathcal{O}^{\prime}\right)$ and (b) : the normalization of $G \times{ }^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime}\right)$ is a Q -factorial terminalization of $\tilde{\mathcal{O}}$ via the generalized Springer map.

Proof. When \mathfrak{g} is of type A, every $\tilde{\mathcal{O}}$ has a Springer resolution; hence (2) always holds. Let us consider the case \mathfrak{g} is of B, C or D. Assume that (1) does not hold. Then, by (1.4.3), the Jordan type \mathbf{d} of \mathcal{O} does not have full members except when $\mathfrak{g}=\operatorname{so}(4 n+2), n \geq 1$ and $\mathbf{d}=\left[2^{2 n}, 1^{2}\right]$. In the exceptional case, \mathcal{O} is a Richardson orbit and the Springer map gives a
crepant resolution of $\tilde{\mathcal{O}}$; hence (2) holds. Now assume that d does not have full members. Then, by (1.5), \mathcal{O} is an induced nilpotent orbit and there is a generalized Springer map

$$
\nu: G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime}\right) \rightarrow \overline{\mathcal{O}}
$$

This map is birational by (1.5.1). Let us consider the orbit \mathcal{O}^{\prime} instead of \mathcal{O}. If (1) holds for \mathcal{O}^{\prime}, then ν induces a \mathbf{Q}-factorial terminalization of $\tilde{\mathcal{O}}$. If (1) does not hold for \mathcal{O}^{\prime}, then \mathcal{O}^{\prime} is an induced orbit. By (1.2.3), one can replace Q with a smaller parabolic subgroup Q^{\prime} in such a way that \mathcal{O} is induced from $\left(Q^{\prime}, \mathcal{O}_{2}\right)$ for some nilpotent orbit $\mathcal{O}_{2} \subset \mathfrak{l}\left(Q^{\prime}\right)$. The generalized Springer map ν^{\prime} for $\left(Q^{\prime}, \mathcal{O}_{2}\right)$ is factorized as

$$
G \times^{Q^{\prime}}\left(\mathbf{n}^{\prime}+\overline{\mathcal{O}}_{2}\right) \rightarrow G \times^{Q}\left(\mathbf{n}+\overline{\mathcal{O}^{\prime}}\right) \rightarrow \overline{\mathcal{O}}
$$

The second map is birational as explained above. The first map is locally obtained by a base change of the generalized Springer map

$$
L(Q) \times{ }^{L(Q) \cap Q^{\prime}}\left(\mathfrak{n}\left(L(Q) \cap Q^{\prime}\right)+\overline{\mathcal{O}}_{2}\right) \rightarrow \overline{\mathcal{O}}^{\prime} .
$$

This map is birational by (1.5.1). Therefore, the first map is also birational, and ν^{\prime} is birational. This induction step terminates and (2) finally holds.
(2.2) We shall next show that every \mathbf{Q}-factorial terminalization of $\tilde{\mathcal{O}}$ is of the form in Proposition (2.1.1) except when $\tilde{\mathcal{O}}$ itself has \mathbf{Q}-factorial terminal singularities. In order to do that, we need the following Proposition.

Proposition (2.2.1). Let \mathcal{O} be a nilpotent orbit of a classical simple Lie algebra \mathfrak{g}. Assume that a Q-factorial terminalization of $\tilde{\mathcal{O}}$ is given by the normalization of $G \times{ }^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime}\right)$) for some $\left(Q, \mathcal{O}^{\prime}\right)$ as in (2.1.1). Assume that Q is a maximal parabolic subgroup of G (i.e. $b_{2}(G / Q)=1$), and this \mathbf{Q}-factorial terminalization is small. Then Q is a parabolic subgroup corresponding to one of the following marked Dynkin diagrams and $\mathcal{O}^{\prime}=0$:

$$
\begin{aligned}
& A_{n-1}(k<n / 2) \\
& 0 — \ldots-\cdots-\cdots \\
& 0-\cdots-\frac{\square-\mathrm{k}}{\mathrm{n}}-\cdots \\
& D_{n}(n: \text { odd } \geq 5)
\end{aligned}
$$

The following is the main theorem:
Theorem (2.2.2). Let \mathcal{O} be a nilpotent orbit of a classical simple Lie algebra \mathfrak{g}. Then $\tilde{\mathcal{O}}$ always has a \mathbf{Q}-factorial terminalization. If $\tilde{\mathcal{O}}$ itself does not have \mathbf{Q}-factorial terminal singularities, then every \mathbf{Q}-factorial terminalization is given by the normalization of $G \times{ }^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}^{\prime}}\right)$) in (2.1.1). Moreover, any two such Q -factorial terminalizations are connected by a sequence of Mukai flops of type A or D defined in [Na], pp. 91, 92.

Proof. The first statement is nothing but (2.1.1). The proof of the second statement is quite similar to that of [Na], Theorem 6.1. Assume that $\tilde{\mathcal{O}}$ does not have \mathbf{Q}-factorial terminal singularities. Then, by (2.1.1), one can find a generalized Springer (birational) map

$$
\nu: G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}^{\prime}}\right) \rightarrow \overline{\mathcal{O}}
$$

Let X_{Q} be the normalization of $G \times{ }^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}^{\prime}}\right)$. Then ν induces a Qfactorial terminalization $f: X_{Q} \rightarrow \tilde{\mathcal{O}}$. The relative nef cone $\overline{\operatorname{Amp}}(f)$ is a rational, simplicial, polyhedral cone of dimension $b_{2}(G / Q)$ (cf. (1.2.2) and [Na], Lemma 6.3). Each codimension one face F of $\overline{\operatorname{Amp}}(f)$ corresponds to a birational contraction map $\phi_{F}: X_{Q} \rightarrow Y_{Q}$. The construction of ϕ_{F} is as follows. The parabolic subgroup Q corresponds to a marked Dynkin diagram D. In this diagram, there are exactly $b_{2}(G / Q)$ marked vertexes. Choose a marked vertex v from D. The choice of v determines a codimension one face F of $\overline{\operatorname{Amp}}(f)$. Let D_{v} be the maximal, connected, single marked Dynkin subdiagram of D which contains v. Let \bar{D} be the marked Dynkin diagram obtained from D by erasing the marking of v. Let \bar{Q} be the parabolic subgroup of G corresponding to \bar{D}. Then, as in (1.2.2), we have a map

$$
\pi: G \times^{Q}\left(\mathfrak{n}+\overline{\mathcal{O}}^{\prime}\right) \rightarrow G \times^{\bar{Q}}\left(\overline{\mathfrak{n}}+\overline{\mathcal{O}_{1}}\right)
$$

Let Y_{Q} be the normalization of $G \times{ }^{\bar{Q}}\left(\overline{\mathfrak{n}}+\overline{\mathcal{O}_{1}}\right)$. Then π induces a birational $\operatorname{map} X_{Q} \rightarrow Y_{Q}$. This is the map ϕ_{F}. Note that π is locally obtained by a base change of the generalized Springer map

$$
L(\bar{Q}) \times^{L(\bar{Q}) \cap Q}\left(\mathfrak{n}(L(\bar{Q}) \cap Q)+\overline{\mathcal{O}}^{\prime}\right) \rightarrow \overline{\mathcal{O}}_{1} .
$$

Let $Z(\mathfrak{l}(\mathfrak{q}))$ (resp. $Z(\mathfrak{l}(\overline{\mathfrak{q}}))$) be the center of $\mathfrak{l}(\mathfrak{q})$ (resp. $\mathfrak{l}(\overline{\mathfrak{q}}))$. By the definition of \bar{Q}, the simple factors of $\mathfrak{l}(\overline{\mathfrak{q}}) / Z(\mathfrak{l}(\overline{\mathfrak{q}}))$ are common to those of $\mathfrak{l}(\mathfrak{q}) / Z(\mathfrak{l}(\mathfrak{q}))$
except one factor, say \mathfrak{m}. Put $\mathcal{O}^{\prime \prime}:=\mathcal{O}^{\prime} \cap \mathfrak{m}$. By (2.2.1), π (or ϕ_{F}) is a small birational map if and only if $\mathcal{O}^{\prime \prime}=0$ and D_{v} is one of the single Dynkin diagrams listed in (2.2.1). In this case, one can make a new marked Dynkin diagram D^{\prime} from D by replacing D_{v} by its dual D_{v}^{*} (cf. [Na], Definition 1). Let Q^{\prime} be the parabolic subgroup of G corresponding to D^{\prime}. We may assume that Q and Q^{\prime} are both contained in \bar{Q}. The Levi part of Q^{\prime} is conjugate to that of Q; hence there is a nilpotent orbit in $\mathfrak{l}\left(\mathfrak{q}^{\prime}\right)$ corresponding to \mathcal{O}^{\prime}. We denote this orbit by the same \mathcal{O}^{\prime}. Then \mathcal{O} is induced from ($Q^{\prime}, \mathcal{O}^{\prime}$). As above, let $X_{Q^{\prime}}$ be the normalization of $G \times{ }^{Q}\left(n\left(q^{\prime}\right)+\overline{\mathcal{O}}^{\prime}\right)$. Then we have a birational $\operatorname{map} \phi_{F}^{\prime}: X_{Q^{\prime}} \rightarrow Y_{Q}$. The diagram

$$
X_{Q} \rightarrow Y_{Q} \leftarrow X_{Q^{\prime}}
$$

is a flop. Assume that $g: X \rightarrow \tilde{\mathcal{O}}$ is a \mathbf{Q}-factorial terminalization. Then, the natural birational map $X \rightarrow X_{Q}$ is an isomorphism in codimension one. Let L be a g-ample line bundle on X and let $L_{0} \in \operatorname{Pic}\left(X_{Q}\right)$ be its proper transform of L by this birational map. If L_{0} is f-nef, then $X=X_{Q}$ and $f=g$. Assume that L_{0} is not f-nef. Then one can find a codimension one face F of $\overline{\mathrm{Amp}}(f)$ which is negative with respect to L_{0}. Since L_{0} is f-movable, the birational map $\phi_{F}: X_{Q} \rightarrow Y_{Q}$ is small. Then, as seen above, there is a new (small) birational map $\phi_{F}^{\prime}: X_{Q^{\prime}} \rightarrow Y_{Q}$. Let $f^{\prime}: X_{Q^{\prime}} \rightarrow \tilde{\mathcal{O}}$ be the composition of ϕ_{F}^{\prime} with the map $Y_{Q} \rightarrow \tilde{\mathcal{O}}$. Then f^{\prime} is a \mathbf{Q}-factorial terminanization of $\tilde{\mathcal{O}}$. Replace f by this f^{\prime} and repeat the same procedure; but this procedure ends in finite times (cf. [Na], Proof of Theorem 6.1 on pp. 104, 105). More explicitly, there is a finite sequence of \mathbf{Q}-factorial terminalizations of $\tilde{\mathcal{O}}$:

$$
X_{0}\left(:=X_{Q}\right)-\rightarrow \rightarrow X_{1}\left(:=X_{Q^{\prime}}\right)-\rightarrow \rightarrow \ldots-\rightarrow X_{k}\left(=X_{Q_{k}}\right)
$$

such that $L_{k} \in \operatorname{Pic}\left(X_{k}\right)$ is f_{k}-nef. This means that $X=X_{Q_{k}}$.
Example (2.3). We put $G=S P(12)$. Let \mathcal{O} be the nilpotent orbit in $s p(12)$ with Jordan type $\left[6,3^{2}\right]$. Let $Q_{1} \subset G$ be a parabolic subgroup with flag type $(3,6,3)$. The Levi part \mathfrak{l}_{1} of \mathfrak{q}_{1} has a direct sum decomposition

$$
\mathfrak{l}_{1}=\mathfrak{g} l(3) \oplus s p(6) .
$$

Let \mathcal{O}^{\prime} be the nilpotent orbit in $\operatorname{sp}(6)$ with Jordan type $\left[4,1^{2}\right]$. Then $\mathcal{O}=$ $\operatorname{Ind}_{\mathfrak{l}_{1}}^{s p(12)}\left(\mathcal{O}^{\prime}\right)$. Next consider the parabolic subgroup $Q_{2} \subset S P(6)$ with flag type ($1,4,1$). The Levi part \mathfrak{l}_{2} of \mathfrak{q}_{2} has a direct sum decomposition

$$
\mathfrak{l}_{2}=\mathfrak{g l} l(1) \oplus s p(4)
$$

Let $\mathcal{O}^{\prime \prime}$ be the nilpotent orbit in $s p(4)$ with Jordan type $\left[2,1^{2}\right]$. Then $\mathcal{O}^{\prime}=$ $\mathrm{Ind}_{\mathrm{I}_{2}}^{s p(6)}\left(\mathcal{O}^{\prime \prime}\right)$. One can take a parabolic subgroup Q of $S P(12)$ with flag type $(3,1,4,1,3)$ in such a way that the Levi part \mathfrak{l} of \mathfrak{q} contains the nilpotent orbit $\mathcal{O}^{\prime \prime}$. Then \mathcal{O} is the nilpotent orbit induced from $\mathcal{O}^{\prime \prime}$. We shall illustrate the induction step above by

$$
\left(\left[2,1^{2}\right], s p(4)\right) \rightarrow\left(\left[4,1^{2}\right], s p(6)\right) \rightarrow\left(\left[6,3^{2}\right], s p(12)\right)
$$

Since $\tilde{O}^{\prime \prime}$ has only Q -factorial terminal singularities, the Q -factorial terminalization of $\tilde{\mathcal{O}}$ is given by the generalized Springer map

$$
\nu: G \times^{Q}\left(n(\mathfrak{q})+\overline{\mathcal{O}}^{\prime \prime}\right) \rightarrow \overline{\mathcal{O}} .
$$

The induction step is not unique; we have another induction step

$$
\left(\left[2,1^{2}\right], s p(4)\right) \rightarrow\left(\left[4,3^{2}\right], s p(10)\right) \rightarrow\left(\left[6,3^{2}\right], s p(12)\right)
$$

By these inductions, we get another generalized Springer map

$$
\nu^{\prime}: G \times^{Q^{\prime}}\left(n\left(\mathfrak{q}^{\prime}\right)+\overline{\mathcal{O}}^{\prime \prime}\right) \rightarrow \overline{\mathcal{O}}
$$

where Q^{\prime} is a parabolic subgroup of G with flag type $(1,3,4,3,1)$. This gives another \mathbf{Q}-factorial terminalization of $\tilde{\mathcal{O}}$. The two \mathbf{Q}-factorial terminalizations of $\tilde{\mathcal{O}}$ are connected by a Mukai flop of type A_{3}.

References

[BCHM] Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of general type, math.AG/0610203
[Be] Beauville, A. : Symplectic singularities, Invent. Math. 139 (2000), 541549
[C-G] Chriss, M. , Ginzburg, V. : Representation theory and complex geometry, Progress in Math., Birkhauser, 1997
[C-M] Collingwood, D. , McGovern, W. : Nilpotent orbits in semi-simple Lie algebras, van Nostrand Reinhold, Math. Series, 1993
[Fu] Fu, B. : Symplectic resolutions for nilpotent orbits, Invent. Math. 151. (2003), 167-186
[Fu 2] Fu, B.: On Q-factorial terminalizations of nilpotent orbits, math.arxiv: 0809.5109
[Hi] Hinich, V. : On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), 297-308
[Ka] Kawamata, Y.: Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of algebraic surfaces, Ann. Math. 127 (1988), 93-163
[K-P] Kraft, H., Procesi, C.: On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57. (1982), 539-602
[L-S] Lusztig, G., Spaltenstein, N.: Induced unipotent classes, J. London Math. Soc. 19. (1979), 41-52
[$\mathrm{Na}-1$] Namikawa, Y.: Induced nilpotent orbits and birational geometry, math.arxiv: 0809.2320
[Na] Namikawa, Y.: Birational geometry of symplectic resolutions of nilpotent orbits, Advances Studies in Pure Mathematics 45, (2006), Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), pp. 75-116
[Na 2 2] Namikawa, Y.: Flops and Poisson deformations of symplectic varieties, Publ. RIMS 44. No 2. (2008), 259-314
[Na 3] Namikawa, Y.: Extensions of 2-forms and symplectic varieties, J. Reine Angew. Math. 539 (2001), 123-147
[Na 4 4] Namikawa, Y.: Birational geometry and deformations of nilpotent orbits, Duke Math. J. 143 (2008), 375-405
[Pa] Panyushev, D. I. : Rationality of singularities and the Gorenstein property of nilpotent orbits, Funct. Anal. Appl. 25 (1991), 225-226
[Ri] Richardson, R. : Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21-24

