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ABsTRAcT. This is the summai'y of the paper [14]. We show that polarized
endomorphisms of rationally connected threefolds with at worst terminal singu-
laritie$ are equivariantly built up from those on QFano threefolds, Gorenstein
log del Pezzo surfaces and Pi. Similar results are obtained for polarized en-

dernorphisms of uniruled threefolds and fourfolds. As a consequence, we show
conceptually that• every smooth Fano threefold -Fit•h a pelarized endomorphism
of degree År 1, is rational.

l. INTRODUCTION

  We work over the field C of complex numbers. We study polarized en-
domorphisms f : X - .X of varieties X, i.e., those f with f'H N qH
for some q År O and some ample line bundle H. Every surjective endo-
morphism of a projective variety of Picard number one, is polarized. If
f= [Fo : Fi : ••• : Fn] : P" - P" is a g. urjective morphism and X c P"
a f-stable subvariety, then f'H ev qH and hence flX : .X - X is polar-
ized; here H c X is a hyperplane and q = deg(Fi). If A is an abelian
variety and mA : A --År A the multiplication map by an integer m l O, then
mlH rv m2H and hence mA is polarized; here H = L+ (-1)'L with L
an ample divisor, or H is any ample divisor with (-1)'Hr tv H. One can
also construct polarized endomorphisms on quotients of P" or A. So there
are many examples of polarized endomorphisms f. See [16] for the many
conjectures on such f.
  In [1ll, it is proved that a normal variety X with a non-isomorphic polar-
ized endomorphism f either has only canonical singularities with Kx NQ O
(and further is a quotient of an abelian variety when dimX S 3), or is unir-
uled so that f descends to a polarized endomorphism fy of the non-uniruled
base variety Y (so Ky rvQ O) of a specially chosen maximal rationally con-
nected fibration X •••. Y. By the induction on dimension and since Y has
a dense set, of fy-periodic points yo,yi, . . . (cf. [2, Theorem 5.1]), the study

of polarized endomorphisms is then roduced to that of rationally connected
varieties ry, as fibres of the graph r == r(X/Y) (cf. [11, Remark 4.3]).

  The study of non-isomorphic endomorphisms of singular varieties (like ry,
above) is very important from the dynamics point of view, but is very hard
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even in dimension two and especially for rat悶 ialsurfaces; see [9] (about 150 

P晴朗）

We consider polarized endomorphisms of rationally connected varieties 
(or more generally of uniruled varieties) of dimension三3.Theorem 1.1 -
1.8 below are our main results. 

Theorem 1.1. Let X beαQ-fiαctorial threefold hαving only terminal sin-
gularitiesαndαpolarized endomorphism of degree q3 > 1. Suppose thαt x 
is rationαlly connected. Then we hαve: 

(1) There isαn s > 0 such thαt (j8)*1Nl(X) = qs id. 
(2) Either X is rationαl, or -Kx is big. 
(3) Thereαre only finitely many irreducible divisors Mi c X with the 

litαkα D-dimensionκ（X,Mi) = 0. 

Theorem 1.1 (3) apparently does not hold on an abelian variety A with a 
subtorus of codimension one, though the multiplication map mA  is polarized 
as mentioned above. Neither it holds for X = S×IP'1, where Sis a rational 
surface with infinitely many ( -1）ーcurves(the blowup of nine general points 
of IP'2 is such S酪 observedby Nagata). 

Theorem 1.1 (1) above strengthens (in our situation) Serre’s result [12] 
on a conjecture of Weil (in the projective C剖 e): (Serre) If f is a polar-
ized endomorphism of degree qdim x > 1 of a smooth variety X then every 
eigenvalue of f*IN1(X) has the same modulus q. 

The proof of Theorem 1.2 below is conceptually done. In a recent paper 
[15], we have removed the polarizedness田 sumptionin Theorem 1.2. 

Theorem 1.2. Let X beαsmooth Fαno th reef old withαpolarized endomor-
phism of degree > 1. Then X is rational. 

A klt Q-Fano variety has only finitely many extremal rays. A similar 
phenomenon occurs in the quasi-polarized c出 e.

Theorem 1.3. Let X KαQ-fiαctorial rationally connected threefold hαving 
only Gorenstein te門巾nαlsingularitiesαndαquαsi-polαrized endomorphism 
of degree> 1. Then X hαs only finitely mαny K x -negative extremαl mys. 

We expect a possible application of Theorem 1.4 below (see Theorem 1.7 
for a more detailed version) to the Dynamic ManhトMumfordco吋配turefor 
(X, !) formulated by S. -W. Zhang in [16, Conjecture 1.2.l]. This conjecture 
for (X,f) is essentially equivalent to that for (Xr,9r) because 1-1, as seen 
in Theorem 1.7, preserves the maximal subset of X where the birational 
map X…→Xr is not holomorphic. 

Further, Xr is better to be dealt with because it h田 afibration structure 
preserved by b・Theexistence of such a fibmtionπ：Xr→Y is guαranteed 
when X is uniruled by the recent development in MMP. 

Theorem 1.4. Let X beαQ-facto付。ln・fold,with nε ｛3,4}, hαving only 
log terminal singulαritiesαndαpolαrized endomorphism f of degree qn > 1. 
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Let X = Xo…→X1・・・ …→Xr beαcomposition of di仇sorialcontractions 
andβips. Replacing f by its positive power, we hαりe:

(1) The dom焼Gば rationalmaps 9i : xi…叫xi(o壬i三r)（切thgo= f) 
induced from f, areαll holomorphic. 

(2) Let η ：Xr→ Y beαn extremal contraction with dim Y話2.Then 9r 
is polα門zedαndit descends toαpolαrized endomorphism h : Y→Y 
of degree qdim Y with，賞。 9r= h oπ． 

The claim in the abstract about the building blocks of polarized endcト
mm・phisms,is justified by the remark below. 

Remark 1ふ
(1）’I'he Y in Theorem 1.4 is Q-factorial and h制 atworst log terminal 

singularitie日．
(2) s叩 posethat the X in Theorem 1.4 is rationally connected. Then Y 

is also rationally connected. Suppose further that X has at worst terminal 
singularities and (dimX, dim Y) = (3, 2). Then Y h器 atworst Du Val 

singularities by [8, Th印 rem1.2.7]. So ti問、eis a composition Y→ Y of 
divisorial contractions and叩 extremalcontr蹴 tion Y→B such that either 
dim B = 0 and Y is a Du V乱ldel Pezzo surface of Picard number 1, or 
dimB = 1 and Y→B ~ IP'1 is a IP'1-fibration with all fibres irreducible. After 

replacing f by its power, h descends to polarized endomorphisms h: Y→ Y‘ 
and k: B→B (of degree qdimB); s田 Theorems1.6. 

(3) By [2, Theorem 5.1], there are dense subsets九 cY (for the Y in 

Theorem 1.4) and Bo C B (when dimB = 1) such that for every uε 九
(resp. b E Bo) and for some r(y) > 0 ( 

hγ（b) I九） i日awell-defined polarized endomorphism of the Fano fibre. 

1主主三 remarkthat Noboru Nakayama has produced many examples of pcト
larized f on abelian surfaces which are not scalar. The result below shows 
that this happens only on abelian surf配 esand their quotients. 

Theorem 1.6. Let X beαnormαl projecti抑制ゆce.Suppose that f : X→ 
Xisαn endomorphism such that f* P三 qP for some q > 1αnd some big 
Weil Q-divisor P. Then we hαve: 

(1) f is polαバzedof degree q2. 

(2）訪ereis ans > 0 such that (f8)*[Weil(X) = q8 id unless X is Q-
αbelian with rankWeil(X）ε｛3,4}. 

More generally, we prove the two theorems below. Theorem 1.7 below 
includes Theorem 1.4出 aspecial case. 

Theorem 1.7. Let X be a Q-factorialルfold,with況を｛3,4}, having onlぎ
log terminal singularities andαpolαrized endomorphism f of degree qn > 1. 
Let X = Xo・・→X1 ・・・ …→Xr be α composition of divisorial contractions 
αnd flips. Replacing f by its positive power, (I) and (II) hold: 

(I) The dominant rational mα.ps g; : X；…→X; (0話 iさ r)(with 

90誌の inducedfrom f, are all holomorphic. Fu付her,gj 1 prese何回
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εαch irγ・educible component of the exceptional locus of X；→ xi+1 
(when it is diviso付αりorof the flipping contraction X；→Z; (when 

X；…→Xi+1 = xt isαflip). 
(II) Let π：W=Xr→Y be the contraction of a Kw-negαtive extremal 

my JR三o[C],with dim Y壬n 1. Theng ：＝針 descendstoαSUηect附

endomorphism h : Y→ Y of degree qdim Y such thαt 

πo g=h oπ． 

For αll 0三i壬T，αlleigenvαlues of g;'IN1(X;) and h*IN1(Y）α陀 of
modulus q; thereα陀 bigline bundles H X; and Hy sαtisfying 

g;'Hx包～ qHx；ラ h'

Suppose f1川 herthαt either dim Y壬2orρ（Y) = 1. Then Hwαnd 
Hy can be chosen to beαmpleαnd gαnd h白陀 polαrized.

The contraction πbelow exists by the M恥1Pfor threefolds. 

Theorem 1.8. Let X beαQ-fiαctoriαl rationally connected threefold hαりing

αt worst terminαl singulαritiesαndαpolαrized endomorphism of degree > 
1. Let X…→W be日 compositionof di仇sorialcontractions and flips，αnd 
π：W →Yαn extri目mαIcontraction of non-birational type. Suppose either 
dimY三1,or dim Yニ OαndW is smooth. Then X is Tαti onαl. 

The di田culty1.9. In Theorem 1.4, if X→X1 is a divisorial contraction, 
one can descend a polarized endomorphism f on X to an one on X 1, but 
the latter may not be polarized any more because the pushfoward of a nef 
divisor may not be nef in dimension三3(the日rstdi他；t此y).If x…→X1 is 
a flipう thenin order to descend f on X to some holomorphic Ji on X1 ・one
h硝 toshow七hata power of f preserves the centre of the flipping contraction 
(the second difficulty). The second difficulty is taken care by a key lemma 
where the polarizedness is essentially used. 

The question below is the generalization of Theorem 1.2 and the fa-
mous conjecture: everγsmooth Fano n-fold of Picard number one with a 
non-isomorphic suりectiveendomorophisrn, is JP"' (for its a伍rmativesolution 
when n = 3, see Arnerik・Rovinsky-Vande Ven [1] 8吋 Hwang-Mok[4]). 

Question 1.10. Let X be αsmooth Fαno n-fold withαnon-isomorphic 

polαrized endomorphism. Is X mtionαl ? 

For the recent development on endomorphisms of algebraic varieties, we 
refer to Amerik-Rovinsky-Van de Ven [1], Fujimoto羽 akayama[3], Hwang-
Mok[4], S. -W. Zhang [16], as well as [10], [13]. 
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