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SPIN CURVES AND SCORZA QUARTICS
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This is the joint work with Francesco Zucconi. We give some appli-
cations of 3-fold birational geometry to the study of even spin curves.
Much explanation is taken from the Dolgachev-Kanev’s paper [DK93]
and our preprints [1Z08a] and [TZ08b).

1. EVEN SPIN CURVES

Let H be a smooth projective curve of genus g and 8 a theta char-
acteristic on H, namely, 26 ~ K. A couple (H,6) is called a spin
curve and even if so is h°(H, ). Let S; be the moduli space of even
spin curves of genus g. It is known that h°(H, 6) = 0 (called ineffective
theta characteristics) for a general pair (H,6) € S;.

2. SCORZA CORRESPONDENCE

The basic of our study is the following correspondence originally
studied by G. Scorza.

Definition 2.0.1. Given an ineffective 8, h°(H,0 + z) = 1 for every
z € H by the Riemann-Roch theorem, hence 6 gives the correspondence
Iy € H x H such that (z,y) € Iy if and only if y is in the support of

the unique member of |# + z|. This is called the Scorza correspondence.
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We denote by Iy(z) the fiber of Iy — H over z. In other words, Iy(z)
is the unique member of |6 + z|.

We can easily verify the following properties of Iy by the Riemann-
Roch theorem, etc:
(a) 6 = Iy(x) — z is (of course) independent of z,
(b} h°(H,8 + z) =1 for any z € H,
(c) Iy is disjoint from the diagonal,
(d) I, is symmetric, and
(e) Iy is a (g, g)-correspondence.
By [DK93, Lemma 7.2.1}, conversely, for any reduced correspondence I’
satisfying the above conditions, there exists a unique ineffective theta
characteristic such that I’ = Iy.

Here we mention two known applications of the Scorza correspon-
dence:
Rationality of Sj. We learned the following by [DK93]. Let V be
a 3-dimensional vector space and V its dual. For a homogeneous form
G € 8™V of degree m on V, we define the (first) polar P,(G) of G at
a € P(V) by P(G) := & Zaigg, where g; and z; are coordinates of
a, and on V', respectively.

Let F € S*V be a general ternary quartic form on V. Set

S°(F) :={a € P(V) | P,(F) is projectively equivalent to the Fermat cubic}.

Then the closure S(F) := §°(F') is again a smooth quartic curve, which
is called the Clebsch covariant quartic of F'. By taking the second polars
of S(F), we have the following correspondence:

(2.1) T(F) := {(a,b) € S(F) x S(F) | rankP, ,(S(F)) < 1}.

For example, if P,(F) = {z*+y®+ 28 =0}, then b= (1:0:0),(0:
1:0)or (0:0:1), thus T(F) is a (3, 3)-correspondence. In the end,
T(F) turns out to be the Scorza correspondence I defined by a unique
theta characteristic 8.

So we have the map Sc: M3 — S7 such that Sc: [F = 0] — [S(F), 6]
defined over the open set M$§ C M; where S(F) is nonsingular. This
association map was discovered by Scorza and is called the Scorza map.
Scorza showed it is an injective birational map. Thus S7 is rational
since M3 is known to be rational by [Kat96] (see also [Boh]). The curve
F corresponding to a couple (S(F),8) is called the Scorza quartic of
(S(F),8). In other words, by setting H = S(F’), F is the unique quartic
such that if (a,b) € I4(C H x H), then rk P, 4(F) = 1 holds.

Mukai’s description of a Fano threefold. A prime Fano threefold
of genus 12 is a smooth projective threefold Az, such that —Kyu,, is
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ample, the class of —K4,, generates Pic Ajp, and such that the genus

~Ky,,)?

g(Az) = S———fl— + 1 = 12. Mukai found the description of such a

Fano as a variety of power sums.

Definition 2.0.2. Let V' be a (v + 1)-dimensional vector space and let
F € S™V be a homogeneous forms of degree m on V. Set

VSP (F,n)° := {([Hi],...,[Hq)) | H* +--- + Hy = F} C Hilb"P(V).

The closure VSP (F,n) := VSP (F,n)° is called the varieties of power
sums of F'.

Theorem 2.0.3 (S. Mukai). Let {Fy = 0} C P(V) = P? be a general

plane quartic curve. Then

(1) VSP(Fy,6) C Hilb®P? is a general prime Fano threefold of genus
12; and conversely,

(2) every general prime Fano threefold of genus 12 is of this form.

See [Muk92] and [Muk04]. Mukai observed the following:

(a) The Hilbert scheme of lines on As, is isomorphic to a smooth plane
quartic H; and the correspondence on ‘H; x H; defined by intersec-
tions of lines on Ay, gives an ineffective theta characteristic # on H;.
More precisely, 8 is constructed so that the Scorza correspondence
Iy is equal to

{11, m]) € Hy x Hy | INm # 0,1 # m}.

By the result of Scorza recalled above, the Scorza quartic {Fy = 0}
is associated to the pair (H;,#) in the same ambient plane as the
canonically embedded H;. Theorem 2.0.3 (2) claims that X is
recovered as VSP (Fy,6). (1) follows from (2) since the number
of the moduli of prime Fano threefolds of genus 12 is equal to
dim M3 = 6.

(b) The Hilbert scheme of conics on Ay, is isomorphic to the plane H,
and H, is naturally considered as the plane P2 dual to P? since, for
a conic g on Ag,, the lines intersecting g form a hyperplane section
of H;. Further, he showed the six points [Hy],...,[Hs) such that
([Hal,-..,[He]) € VSP°(Fy,6) correspond to six conics through
one point of Ay,.

3. SCORZA QUARTICS

Scorza succeeded in associating a unique quartic hypersurface, which
is also called the Scorza quartic, to a spin curve of any genus g with
ineffective theta. In the case g = 3, this association turns out to be
the inverse of the Scorza map. Dolgachev and Kanev, however, pointed
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out Scorza overlooked three conditions on spin curves mentioned below
to consturct the Scorza quartic.

Let H C P91 be a canonical curve of genus g, § an ineffective theta
characteristic on it and Iy C H x H the Scorza correspondence. Since
the linear hull (Iy(z) — y) for (z,y) € I, is a hyperplane of P71, we
can define a morphism 7y: Iy ~— Jwy| = P9~1 by (z,9) = (Is(z) — y).

The following is a crucial object to construct the Scorza quartic:

Definition 3.0.4. The image I'(6) of the above morphism mp: Iy —
P9-! (with reduced structure) is called the discriminant locus of the
pair (H,6).

By Definition 3.0.4, we have the following diagram:

(3.1) LcHxH

% \
r(9) c P! H C P9l

The three conditions mentioned above is the following, which are a
kind of generality conditions:
(A1) the degree of the map Iy — I'(6) is two, namely, (Ip(z') —y') =
(Io(z) — y) implies (z',y') = (z,y) or (y,2),

(A2) I'(8) is not contained in a quadric, and
(A3) Iy is smooth.
From now on in this section, we assume these conditions.

We can define:

Dy = me.p*(HN'H)

as a divisor, where H is an hyperplane of P91,

By using (A1)-(A3), it is not difficult to see deg I'(6) = g(g— 1) and
deg Dy = 2g(g — 1). Therefore we may expect that Dy is a quadric
section of I'(d). Actually this is true:

Proposition 3.0.5. Dy is cut out by a quadric in P91,
Now we define the following correspondence:
D:= {(q1,%) | @1 € Dg,} C T'(6) x T(6),

where H, is the hyperplane of P9~} corresponding to ¢ € Po-1. Tt is
easy to see that D is symmetric. By Proposition 3.0.5, we see that D
is the restriction of a symmetric (2,2) divisor D’ of P9~! x P91, Let
{F; = 0} be the quartic hypersurface obtained by restricting D’ to the
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diagonal of P9~! x P9~1, The Scorza quartic is the ‘dual’ quartic in
P51 of {F, = 0}.

To explain this more precisely, we give a quick review of some gener-
ality of the theory of polarity. Set V := H°(H, wHS. Each homogeneous
form F € S*V defines a linear map:

app: S2V — SV

called the apolarity map, which is nothing but the linear extension
of iterating polar maps. If apy is an isomorphism, F' is called non-
degenerate and then the inverse isomorphism is given by a F' € 54V,
that is app~! = app. The form F' € S*V is called the dual form of F.

It turns out that the constructed {F}; = 0} is non-degenerate and we
can take the dual {F; = 0}, which is the Scorza quartic.

To explain this construction of the Scorza quartic is actually the
inverse of the Scorza map in genus 3 case, we remark one of the im-
portant properties of the Scorza quartic. By the theory of polarity and
the definition of Fj, the fiber of D — I'(f) over a point ¢ € I'(6) is
defined by the second polar PH‘?(FAI). Moreover, by definition of T'(6),

it is easy to derive that Py (Fy) = ab for some a,b € H such that

(a,b) € Iy, where a,b € P91 is considered as a linear form on P9~1. By
definition of the dual, we have P,3(Fy) = HZ. Thus we have verified
the association of the Scorza quartic is the inverse of the Scorza map
in the case g = 3.

4. SPECIAL QUARTICS ARISING FROM QUINTIC DEL PEZZO 3-FOLD

Now we start explanation of our results.

‘Irigonal even spin curves of any genus and their Scorza quartics arise
from some 3-folds as in Mukai’s case.

Let B be the smooth quintic del Pezzo threefold, that is B is a
smooth projective threefold such that —Kp = 2H, where H is the
ample generator of Pic B and H® = 5. It is well known that the linear
system |H| embeds B into P°.

Let d be an arbitrary integer greater than or equal to 6. We consider a
general smooth rational curves C of degree d on B obtained inductively
from lines, more precisely, smoothings of the union of a degree d — 1
rational curve and a line intersecting it. Let f: A — B be the blow-up
along C and E¢ the f-exceptional divisor.

We explain the relation of this with Asy. If we take the blow-up
A’ — Agy along a general line on it, then there is a unique flop A’ --+ A
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and birational contraction A — B, which is the blow-up of B along
a smooth rational curve of degree 5. Thus the above situation is a
generalization of this. Moreover, a general line is mapped to a line
on B intersecting C, and a general conic is mapped to a conic on B
intersecting C' twice or more.

We consider the notions of lines and conics on A, which correspond
to lines on B intersecting €', and conics on B intersecting C twice or
more.

Definition 4.0.6. A connected and reduced curve [ C A is called a
lineon Aif ~Ks-l=1and Ec-1=1.

By —K4 = f*(—Kp) — Ec and Ec -1l = 1, f(l) is a line on B
intersecting C.

Proposition 4.0.7. The Hilbert scheme of lines on A is a smooth
trigonal curve Hy of genus d — 2.

Definition 4.0.8. A connected and reduced curve ¢ ¢ A is called a
conicon Aif —K4-q=2and Ec-q=2.

We showed that the Hilbert scheme of conics on A is an irreducible
surface and the normalization morphism is injective, namely, the nor-
malization Hs parameterizes conics on A in one to one way.

Moreover we have the full description of H: as follows. For this, let
Dy € Hy be the locus parameterizing conics on A which intersect a
fixed line [ on A.

Theorem 4.0.9. H; is so-called the White surface, namely, the surface
obtained by blowing up S*C =~ P? at s := (%) points and embedded
by |Dy| = |(d —3)h — >°;_, €], where h is the pull-back of a line, e;
are the exceptional curves of n: Hy — P2, Moreover, Hy is given by
intersection of cubics.

Here we use the notation P%3 since the ambient projective space of
H, and that of the canonical embedding of H; can be considered as
reciprocally dual as in Mukai’s case. We write the ambient of H; by
P4-3 and that of H, by P43,

Set

D2 == {(lq1], [g2]) € Ha x Ha | g1 N g2 # 0}
and denote by D, the fiber of D, — H; over a point [g]. Then Dy ~ 2D,
and Dy ~ piD, + p3D,. D, is obviously symmetric. Thus D, is the
restriction of a unique symmetric (2, 2)-divisor D} on P4~3 x P4=3. The
restriction of D} to the diagonal is a quartic hypersurface {F) = 0}
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in P*~3. We can show that F} is non-degenerate. Then we obtain the
unique quartic hypersurface {F, = 0} in P43 dual to FJ.

The following is a generalization of Theorem 2.0.3 (2):
Theorem 4.0.10. Let f: A — B be the blow-up along C, and let
p: A — A be the blow-up of A along the strict transforms of (d;2)
bi-secant lines of C on B. Then there is an injection from A to
VSP (Fj,n), where n := (%3'). Moreover the image of A is uniquely
determined by D, and is an irreducible component of

VSP (Fj,n; Hy) = (], -, [B-]) | [H] € Hz} C VSP (Fj,n).

To characterize 3-fold /T, we need extra deta Hs, which is implicit in
Mukai’s case. See [TZ08a).

5. EXISTENCE OF THE SCORZA QUARTIC

Notice that the construction of Fj is quite similar to that of the
Scorza quartic. This similarity will be clear once we define a theta
characteristic on H;.and clarify the relation of H; and Ho.

For the curve H,; parameterizing lines on A, we can introduce the
incidence correspondence as in Mukai’s case:

(5.1) Ii={({l),[m]) |1 # m,inm#0} CHy x H,

with reduced structure. We can prove I satisfies the conditions (a)—(e)
whence there exists a unique ineffective theta characteristic such that
I=1.

Moreover, as we mentioned above, there is a natural duality between
the ambient spaces of H; and H,. This gives us a very computable
way to describe the discriminant loci I'(6) of 6.

Proposition 5.0.11. For the pair (H1,0), I'(6) is contained in Hs,
and the generic point of the curve I'(6) parameterizes line pairs on A.
Moreover, T'(8) ~ 3(d —2)h — 4% ;_, e; on Ha. In particular T'(6) is
not contained in a cubic section of H,.

Moreover, we can consider { F; = 0} lives in the same ambient space
as canonically embedded H;.

Proposition 5.0.12. The special quartic {F} = 0} C P*=3 of Theorem
4.0.10 coincides with the Scorza quartic of (Hy,8).

Proof. Noting I'(6) C Ha, we can show that the restriction of the corre-
spondence defining F} to I'(8) x I'(#) coincides with the correspondence
defining the Scorza Fj. O
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The story goes further. By virtue of the above explicit computa-~
tion of the discriminant, we can prove that the pair (Hi,6) satisfies
the conditions (A1)-(A3). Then, by a standard deformation theoretic
argument, we can then verify that the conditions (A1)—(A3) hold also
for a general even spin curve, hence we answer affirmatively to the
Dolgachev-Kanev Conjecture:

Theorem 5.0.13. The Scorza guartic exists for a general even spin
curve.

See [TZ08b).
6. MODULI SPACE OF TRIGONAL EVEN SPIN CURVES

Let My and S** be the moduli space of trigonal curves of genus

g and the moduli space of even trigonal spin curves of genus g, re-
spectively. We would like to study S;* using the geometry of (B, C).
Denote by HZ the Hilbert scheme of general smooth rational curves
of degree d as in Section 4. H% is irreducible. By Aut B ~ SL(2,C),
we have the natural rational maps ns: HZ/SL(2,C) — S} mapping
Cy— (Hy,0), and 75 from HB/SL(2,C) to the moduli space Fy of Ag
(= A of degree d) mapping Cy — Aq.

HE/SL(2,C)
S% Fu

Since H2 is irreducible and HZ /SL(2,C) — F, is dominant, we see
that F; is irreducible.

Proposition 6.0.14. The map 7wz is finite. If d = 6, then degmr = 2.
Ifd > 7, then mx is birational.

Proof. degmz = 2 for d = 6 follows from the following diagram:

SN,
v N

B B,

-4'?-
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where A --+ A’ is a flop and A’ — B is also the blow-up along a
smooth rational curve C’ of degree 6 on B. This reflects the fact H;
has two different g3’s (birationality of 75 for d > 7 will reflect the fact
a general trigonal curve of genus > 5 has a unique g1). Indeed, there is
one to one correspondence between the sets lines on A and lines on A’.
Thus we identify the Hilbert schemes of lines on A and A’ and denote
it by H;. H; has two triple covers H; — C and H; — C’. These are
defined by two different gi’s of H;. Thus (B,C) and (B,C’) are not

isomorphic to each other but correspond the same A. 0O

For genus three curve, the Scorza quartic is useful to prove the ra-
tionality of Sf. Unfortunately, this is not the case in the higher genus
case for the moment since the Scorza quartics are special quartics and
there is no description of the loci of them in the space of quartics.
Nevertheless, it gives another way to study of S_j.

Proposition 6.0.15. 75 factor through mr as HZ /SL(2,C) — Im g —
Fa. In other words, A s determined from (Hy,0).

Proof. From (H,, ), we can define I'(9) and Fy. By Theorem 4.0.9 and
Proposition 5.0.11, we obtain H; as the intersection of cubics containing
I'(8). We can define the divisor D, C Hy x Hs from the dual Fy. By

Theorem 4.0.10, A is obtained from F; and H,, thus from (H.,6). O

Corollary 6.0.16. Im s is an irreducible component of SF¥, domi-
nating MY_,. In particular a general Hy is a general trigonal curve of
genus d—2. ms: HE/SL(2,C) — Imns is finite of degree two ifd =6
and birational if d > 7.

Proof. Since dim HF = 2d and dim Aut (B, C;) < dim Aut B = 3, we
see that dim Fy > 2d — 3 by Proposition 6.0.14. By Proposition 6.0.15,
dimIm s > 2d — 3. Thus by dim 8%}, = 2d — 3, the first claim follows.

If d > 7, then 7g is birational by Proposition 6.0.14. If d = 6,
then, as in the proof of Proposition 6.0.14, two triple covers H; — C
and H; — C’ are defined by two different gi’s of H;, thus (B,C) and
(B, C') are not isomorphic to each other. But (B, C) and (B, C’) define
the same theta characteristic. Thus 7 is of degree two. |
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