ON DEFORMATIONS OF LAGRANGIAN FIBRATIONS

DAISUKE MATSUSHITA

ABSTRACT. Let X be an irreducible symplectic manifold and Def(X) the Kuranishi family. Assume that X admits a Lagrangian fibration. We prove that there exists a smooth hypersurface H of Def(X) such that the restriction family $\mathscr{X} \times_{Def(X)} H$ admits a family of Lagrangian fibrations over H.

1. INTRODUCTION

A compact Kähler manifold X is said to be *symplectic* if X carries a holomorphic symplectic form. Moreover X is said to be *irreducible symplectic* if X satisfies the following two properties:

- (1) $\dim H^0(X,\Omega_X^2) = 1$ and;
- (2) $\pi_1(X) = \{1\}.$

A surjective morphism between Kähler spaces is said to be *fibration* if it is surjective and has only connected fibres. A fibration from a symplectic manifold is said to be *Lagrangian* if a general fibre is a Lagrangian submanifold. The plainest example of an irreducible symplectic is a K3 surface. An elliptic fibration from a K3 surface gives an example of a Lagrangian fibration. It is expected that a K3 surface and an irreducible symplectic manifold share many geometric properties. Let S be a K3 surface and $g: S \to \mathbb{P}^1$ an elliptic fibration. Kodaira proves that there exists a smooth hypersurface H_S in the Kuranishi space Def(S) of S which has the following three properties:

- (1) The hypersurface H_S passes the reference point.
- (2) For the Kuranishi family S of S, the base change S ×_{Def(S)} H_S admits a surjective morphsim over P¹_{Hs}. Moreover they satisfy the following diagram:

(3) The original fibration g coincides with the restriction of the above diagram over the reference point. The restriction of the diagram over a every point of H_S gives an elliptic fibration.

The following is the main theorem, which induces a higher dimensional analog of the above statement.

THEOREM 1.1. Let X be an irreducible holomorphic symplectic manifold and $\mathscr{X} \to \text{Def}(X)$ the Kuranishi family of X. Assume that X admits a Lagrangian fibration $f: X \to B$ over a projective variety B. Let L be a line bundle which is a pull back of an ample line bundle on B. Then we have a smooth hypersurface H of Def(X) and a line bundle \mathscr{L} on $\mathscr{X} \times_{\text{Def}(X)}$ H which satisfies the following two properties:

- (1) The hypersurface H passes the reference point.
- (2) The restriction of \mathcal{L} to X is isomorphic to L.
- (3) For the projection $\pi: \mathscr{X} \times_{\text{Def}(X)} H \to H$, $R^i \pi_* \mathscr{L}$ is locally free for every *i*.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14J40, Secondary 14D06.

^{*} Partially supported by Grand-in-Aid # 15740002 (Japan Society for Promortion of Sciences).

COROLLARY 1.2. Let $f: X \to B$ be as in Theorem 1.1. We also let L be a pull back of a very ample line buncle of S. The symbols π , \mathscr{X} , H and \mathscr{L} denote same objects as in Theorem 1.1. Then there exists a morphism $f_H: \mathscr{X} \times_{\text{Def}(X)} H \to \mathbb{P}(\pi_*\mathscr{L})$. Together with π , they form the following diagram:

The orginal fibration f coincides with the restriction of the above diagram over the reference point. The restriction of the diagram over a every point of H gives a Lagrangian fibration.

REMARK 1.3. If X be an irreducible symplectic manifold. Assume that X admits a surjective morphism $f: X \to S$ such that f has connected fibres and $0 < \dim S < \dim X$. If X and S are projective or X and S are smooth and Kähler then f is Lagrangian over a projective base S by [8], [9] and [5, Proposition 24.8].

ACKNOWLEDGEMENT

The author would like to express his thanks to Professors A. Fujiki, E. Markman, O. Debarre, Jun-Muk. Hwang, N. Nakayama and K. Oguiso for their comments.

2. PROOF OF THEOREM

PROPOSITION 2.1. Let $f: X \to B$ and L be as in Theorem 1.1. We denote by A a general fiber of f. Then there exists a smooth hypersurface H of Def(X) such that

- The base change X×_{Def(X)} H carries the line bundle L on X×_{Def(X)} H whose restiction to the fibre over the reference point is isomorphic to L.
- (2) The relative Douady space $D(\mathscr{X}/\text{Def}(X))$ of the morphism $\mathscr{X} \to \text{Def}(X)$ is smooth at A.
- (3) Let $D(\mathscr{X}/\text{Def}(X))_A$ be the irreducible component of $D(\mathscr{X}/\text{Def}(X))$ which contains A. The image of the induced morphism $D(\mathscr{X}/\text{Def}(X))_A \to \text{Def}(X)$ coincides with H.

Proof of Proposition 2.1. (1) By [6, (1.14)], there exists a universal deformation $(\mathscr{X}, \mathscr{L})$ of the pair (X, L). The parameter space of the universal family forms a smooth hypersurface H of Def(X). The hypersurface H and the line bundle \mathscr{L} satisfy the assertion (1) of Proposition 2.1.

(2) Let D(X/Def(X)) be the relative Douady space of the morphism X → Def(X). Since A is smooth and Lagrangian, D(X/Def(X)) is smooth at A by [11, Theorem 0.1].
(3) We need the following Lemma.

LEMMA 2.2. Let X, L and A be as in Propositon 2.1. For an element z of $H^1(X, \Omega_X^1)$, the restriction $z|_A = 0$ in $H^1(A, \Omega_A^1)$ if $q_X(z, L) = 0$, where q_X is the Beauville-Bogomolov-Fujiki form on X.

Proof. Let σ be a Kähler class of X. It is enough to prove that

$$z\sigma^{n-1}L^n=z^2\sigma^{n-2}L^n=0,$$

where $2n = \dim X$. By [3, Theorem 4.7], we have the following equation;

(1)
$$c_X q_X (z + s\sigma + tL)^n = (z + s\sigma + tL)^{2n}$$

where s and t are indeterminacy and c_X is a constant only depending on X. By the assumption,

$$c_X q_X (z + s\sigma + tL)^n = c_X (q_X(z) + s^2 q_X(\sigma) + 2sq_X(z,\sigma) + 2stq_X(\sigma,L))^n.$$

We go back to the proof of the assertion (3) of Proposition 2.1. Let $j: H^2(X, \mathbb{C}) \to H^2(A, \mathbb{C})$ be the natural induced morphism by the inclusion $A \to X$. We denote by L_X the intersection of $H^2(X, \mathbb{Q})$ and the orthogonal space of Ker(j) with respect to the Beauville-Bogomolov-Fujiki form. Since A is Lagrangian, the image of the natural projection $D(\mathscr{X}/\text{Def}(X))_A \to \text{Def}(X)$ is a smooth proper subanalytic space H_A of Def(X) by [11, 0.1 Theorem]. Moreover, the family over H_A perserves the subspace L_X of NS $(X) \otimes \mathbb{Q}$ by [11, 0.2 Corollary]. The tangent space of H_A is Ker $(j) = \text{Ker}\{H^1(X, \Omega^1_X) \to H^1(A, \Omega^1_A)\}$ by [11, 0.1 Theorem]. Let L^{\perp} be the orthogonal space of L in $H^1(X, \Omega^1_X)$ with the Beauville-Bogomolov-Fujiki form. We note that L^{\perp} is tha tangent space of H at the reference point. By Lemma 2.2, L^{\perp} is contained in Ker(j). This implies that Ker $(j) = L^{\perp}$. Moreover L_X is spaned by L, because the Beauville-Bogomolov-Fujiki form is nondegenerate. Since H is the universal family of the pair (X, L), we obtain that $H_A \subset H$. Comparing the dimension of the tangent spaces, we have $H_A = H$.

PROPOSITION 2.3. Let \mathscr{X} , Def(X), \mathscr{L} and H be as in Proposition 2.1. We also let Δ be a unit disk in H which has the following two properties:

- (1) Δ passes the reference point of Def(X).
- (2) For a very general point t of Δ , the Picard number of the fibre \mathcal{X}_i of π over t is one.

The symbols \mathscr{X}_{Δ} , π_{Δ} and \mathscr{L}_{Δ} denote the base change $\mathscr{X} \times_H \Delta$, the induced morphism $\mathscr{X}_{\Delta} \to \Delta$ and the restriction \mathscr{L} to \mathscr{X}_{Δ} , respectively. Then

 $R^i(\pi_\Lambda)_*\mathscr{L}_\Lambda,$

are locally free for all i at the reference point.

Proof. For a point u of Δ , \mathscr{X}_u and \mathscr{L}_u denote the fibre of π_Δ over u and the restriction of \mathscr{L}_Δ to \mathscr{X}_u , respectively. We consider whether \mathscr{L}_Δ has the following property:

(2) For every $u \neq o$, \mathcal{L}_u is semi-ample

If \mathcal{L}_u has the above property, the assertion of Proposition 2.3 follows from [10, Corollary 3.14]. To prove it, we need the following two lemmata.

LEMMA 2.4. For a very general point u of Δ , \mathcal{L}_u is semi-ample.

Proof. We start with proving the following claim.

CLAIM 2.5. There exists a dominant meromorphic map $\Phi : \mathscr{X}_u \dashrightarrow B_u$ such that a general fibre of Φ is compact, B_u is a Kähler manifold and dim $B_u > 0$.

Proof. We use the notation as in Proposition 2.1. By Propositon 2.1 (2), there exists a smooth open neighborhood V of A in $D(\mathscr{X}/\text{Def}(X))$. Let $D(\mathscr{X}_u)$ be the irreducible component of $D(\mathscr{X}/\text{Def}(X)) \times_H$ $\{u\}$ which intersects V. We note that $D(\mathscr{X}_u)$ is an irreucible component of the Douady space of \mathscr{X}_u . We take a resolution $D(\mathscr{X}_u)^\sim \to D(\mathscr{X}_u)$ and denote by $U(\mathscr{X}_u)^-$ the normalization of $U(\mathscr{X}_u) \times_{D(\mathscr{X}_u)}$ $D(\mathscr{X}_u)^\sim$, where $U(\mathscr{X}_u)$ is the universal family over $D(\mathscr{X}_u)$. We also denote by by p and q the natural projections $U(\mathscr{X}_u)^\sim \to \mathscr{X}_u$ and $U(\mathscr{X}_u)^\sim \to D(\mathscr{X}_u)^\sim$. The relations of these objects are summerized in the following diagram:

4

Let a be a point of \mathscr{X}_u . We define the subvarieties $G_i(a)$ of \mathscr{X}_u by

$$G_0 := a$$

 $G_{i+1} := p(q^{-1}(q(p^{-1}(G_i(a)))))$

We also define

$$G_{\infty}(a) := \bigcup_{i=0}^{\infty} G_i(a).$$

Let $B(\mathscr{X}_u)$ be the Barlet space of \mathscr{X}_u . By [1, Théorème A.3], $G_{\infty}(a)$ is compact for a general point a of \mathscr{X}_u and there exists a meromorphic map $\Phi : \mathscr{X}_u \dashrightarrow B(\mathscr{X}_u)$ whose general fibre is $G_{\infty}(a)$. By [3, (5.2) Theorem], $B(\mathscr{X}_u)$ is of class \mathscr{C} . Hence there exists an embedded resolution $B(\mathscr{X}_u)^{\sim} \to B(\mathscr{X}_u)$ of the image of Φ whose proper transformation is smooth and Kähler. We denote by B_u the proper transformation. The composition map

$$\mathscr{X}_u \dashrightarrow \operatorname{Im}(\Phi) \dashrightarrow B_u$$

gives the desired meromorphic map if the image of Φ is not a point. Hence we show that Φ is not a trivial. Let *a* be a general point of \mathscr{X}_u . Then $G_1(a)$ is a complex torus. Moreover $G_1(a)$ is a Lagrangian submanifold of \mathscr{X}_u . Thus $D(\mathscr{X}_u)$ is smooth at $G_1(a)$ and its dimension is half of those of \mathscr{X}_u . The normal bundle of $G_1(a)$ is the direct sum of the trivial bundles. Therefore *p* is locally isomorphic in a neighborhood of $p^{-1}(G_1(a))$ and *p* is generically finite. If *p* is bimeromorphic, then $G_{\infty}(a) = G_1(a)$ and we are done. If *p* is not bimeromorphic, we consider the branch locus of the Stein factorization of *p*. Since \mathscr{X}_u is smooth, the branch locus defines an effective divisor *E* of \mathscr{X}_u . We will prove that $G_{\infty}(a) \cap E = \emptyset$ if *a* is general. Since the Picard number of \mathscr{X}_u is one, \mathscr{L}_u and *E* should be numerically propotional. The pull back $p^* \mathscr{L}_u$ is numerically trivial on fibres of *q*. Hence the restiction of \mathscr{L}_u to $G_1(a) = \emptyset$ for a general point *a* of \mathscr{X}_u . Since *E* is effective, *E* is nef. By [10, Lemma 2.15], there exists an effective \mathbb{Q} -divisor *E'* on $D(\mathscr{X}_u)^{\sim}$ such that

$$p^*E = q^*E'.$$

Hence $G_{\infty}(a) \cap E = \emptyset$ if $G_1(a) \cap E = \emptyset$.

We go back to the proof of Lemma. By blowing ups and flattening, we have the following diagram:

$$\begin{array}{c} \mathcal{X}_{u} & \overleftarrow{\mathcal{Y}_{u}} & \overleftarrow{\mathcal{Y}_{u}} & \overleftarrow{\mathcal{Y}_{u}} & \overleftarrow{\mathcal{Y}_{u}} \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & B_{u} & \overleftarrow{B_{u}} & \overleftarrow{B_{u}} & \overleftarrow{B_{u}} & \overleftarrow{B_{u}} \\ \end{array}$$

where

- (1) $\mathscr{Y}_{u} \to \mathscr{X}_{u}$ is a resolution of indeterminancy of Φ .
- (2) $\mathscr{Z} \to \mathscr{Y}_u$ and $B_u^{\sim} \to B_u$ are bimeromorphic.
- (3) B_{μ}^{\sim} is smooth and Kähler.
- (4) $\mathscr{Z}_u \to B_u^{\sim}$ is flat.
- (5) $\mathscr{W}_{\mu} \to \mathscr{Z}_{\mu}$ is the normalization.

We denote by v and r the induced morphisms $\mathscr{W}_u \to \mathscr{X}_u$ and $\mathscr{W}_u \to B_u^{\sim}$, respectively. The proof consists of three steps.

Step 1. We prove that B_u^{\sim} is projective. Since B_u^{\sim} is Kähler, it is enough to prove that dim $H^0(B_u^{\sim}, \Omega^2) = 0$. We derive a contradiction assuming that dim $H^0(B_u^{\sim}, \Omega^2) > 0$. Under this assumption, there exists a holomorphic 2-form ω on B_u^{\sim} . The pull back $r^*\omega$ defines a degenerate holomorphic 2-form on

 \mathscr{W}_{u} . On the other hand, $H^{0}(\mathscr{W}_{u}, \Omega^{2}) \cong H^{0}(\mathscr{X}_{u}, \Omega^{2})$ because v is birational and \mathscr{X}_{u} is smooth. Hence dim $H^{0}(\mathscr{W}_{u}, \Omega^{2}) = 1$ and it should be generated by a generically nondegenerate holomorphic 2-form. That is a contradiction.

Step 2. We prove that \mathscr{L}_{u} is nef. This is [2, 3.4 Theorem]. For the convinience of readers, we copy their arguments. By [7, Proposition 3.2] it is enoght to prove that $\mathscr{L}_{u}.C \geq 0$ for every effective curve of \mathscr{X}_{u} . Since the Beauville-Bogomolov-Fujiki form $q_{\mathscr{X}_{u}}$ is non-degenerate and defined over $H^{2}(\mathscr{X}_{u},\mathbb{Q})$, there exists an isomorphic

$$\iota: H^{1,1}(\mathscr{X}_u, \mathbb{C})_{\mathbb{R}} \to H^{2n-1,2n-1}(\mathscr{X}_u, \mathbb{C})_{\mathbb{R}}$$

such that

$$q_{\mathscr{X}_{u}}(\mathscr{L}_{u},\iota^{-1}([C]))=\mathscr{L}_{u}.C.$$

If $q(\mathcal{L}_u, z) \neq 0$ for an element z of $H^{1,1}(\mathcal{X}_u, \mathbb{Q})$, then there exists a rational number d such that $q(\mathcal{L}_u + dz) > 0$. By [6, Corollary 3.9], this implies that \mathcal{X}_u is projective. That is a contradiction. Thus $\mathcal{L}_u.C = 0$ for every curve C.

Step 3. Let M be a very ample divisor on B_{μ}^{\sim} . We prove that there exists a rational number c such that

$$\mathcal{L}_{\mu} \sim_{\mathbb{O}} cv_* r^* M$$

It is enough to prove that

$$q_{\mathscr{X}_{u}}(\mathbf{v}_{*}r^{*}M) = q_{\mathscr{X}_{u}}(\mathscr{L}_{u}) = q_{\mathscr{X}_{u}}(\mathbf{v}_{*}r^{*}M, \mathscr{L}_{u}) = 0.$$

Since \mathscr{X}_u is non projective, $q_{\mathscr{X}_u}(v_*r^*M) \leq 0$ and $q_{\mathscr{X}_u}(\mathscr{L}_u) \leq 0$ by [6, Corollary 3.8]. On the other hand, $q_{\mathscr{X}_u}(\mathscr{L}_u) \geq 0$ because \mathscr{L}_u is nef. The linear system $|r^*M|$ contains members M_1 and M_2 such that $M_1 \cap M_2$ has a codimension two. By the definition

$$q_{\mathscr{X}_{u}}(\mathbf{v}_{*}r^{*}M)=\int (\mathbf{v}_{*}r^{*}M)^{2}\sigma^{n-1}\bar{\sigma}^{n-1},$$

where σ is a symplectic form on \mathscr{X}_u . Thus $q_{\mathscr{X}_u}(v_*r^*M) \ge 0$. Therefore $q_{\mathscr{X}_u}(v_*r^*M) = q(\mathscr{L}_u) = 0$. Since v_*r^*M is effective and \mathscr{L}_u is nef, $q_{\mathscr{X}_u}(v_*r^*M, \mathscr{L}_u) \ge 0$. Again by [6, Corollary 3.8], $q_{\mathscr{X}_u}(v_*r^*M + \mathscr{L}_u) \le 0$. Thus $q_{\mathscr{X}_u}(v_*r^*M, \mathscr{L}_u) = 0$ and we are done.

Step 4. We prove that \mathcal{L}_u is semi-ample. By [10, Remark 2.11.1] and [10, Theorem 5.5], it is enough to prove that there exists a nef and big divisor M' on B_u^{\sim} such that

$$v^* \mathscr{L}_u \sim_{\mathbb{Q}} r^* M'$$

By Step 2 and Step 3, $v^* \mathcal{L}_u \sim_{\mathbb{Q}} r^* M + \sum e_i E_i$ where E_i are v-exceptional divisors and e_i are positive rational numbers. By Step 2, $\sum e_i E_i$ is nef for every irreducible component of every fibre of r. By [10, Lemma 2.15], there exists a Q-effective divisor M_0 such that

$$\sum e_i E_i = r^* M_0.$$

If we put $M' := M + M_0$, we are done.

LEMMA 2.6. If \mathcal{L}_u is semi-ample for very general point u of Δ , then \mathcal{L}_u is semi-ample for every $u \neq o$.

Proof. Let $\Delta(k)$ be an open set of Δ which has the following two properties:

- (1) $\pi_* \mathscr{L}^{\otimes k}_{\Delta}$ is locally free.
- (2) $\mathscr{L}_{\Delta}^{\otimes k} \otimes k(u) \cong H^{0}(\mathscr{X}_{u}, \mathscr{L}_{\Delta}|_{\mathscr{X}_{u}}).$

We also define

$$\Delta^{\circ} := \{ u \in \Delta; \rho(\mathscr{X}_u) = 1. \}$$

where \mathscr{X}_u is the fibre over u and $\rho(\mathscr{X}_u)$ stands for the Picard number of \mathscr{X}_u . We fix a compact set K of Δ which contains the reference point. Then $K \setminus (K \cap \Delta(k))$ consists of finite points. Thus

$$\bigcup_{k=1}^{\infty} (K \setminus K \cap \Delta(k))$$

consists of countable infinite points. Hence

$$\left(\bigcap_{k=1}^{\infty} \Delta(k)\right) \cap K \cap \Delta^{\circ} \neq \emptyset.$$

Thus there exists a point t_0 of Δ and an integer k such that

$$\pi^*_{\Delta}(\pi_{\Delta})_*\mathscr{L}_{\Delta} \to \mathscr{L}_{\Delta}$$

is surjective on \mathscr{X}_{i_0} . This implies that the support Z of the cokernel sheaf of $\pi^*_{\Delta}(\pi_{\Delta})_*\mathscr{L}_{\Delta} \to \mathscr{L}_{\Delta}$ is a proper closed subset of \mathscr{X}_{Δ} . Hence \mathscr{L}_{u} is semi-ample if $u \in \Delta \setminus \pi(Z)$.

We complete the proof of Proposition 2.3.

Proof of Theorem 1.1. By Proposition 2.1, there exists a smooth hypersurface H of Def(X) and a line bundle \mathcal{L} which have the properties of (1) and (2) of Theorem 1.1. Assume that $R^i \pi_* \mathcal{L}$ is not locally free. We define the function $\varphi(t)$ as

$$\boldsymbol{\varphi}(t) := \dim H^{i}(\mathscr{X}_{t}, \mathscr{L}_{t})$$

where \mathscr{X}_t is the fibre of π over t and \mathscr{L}_t is the restriction of \mathscr{L} to \mathscr{X}_t . Then

$$\varphi(o) > \varphi(t),$$

where o is the reference point and t is a general point of H. The Picard number of a fibre \mathscr{X}_t over a very general point of H is one. Hence there exists a unit disk Δ such that $o \in \Delta$ and the Picard number of a very general fibre of the induced morphism $\mathscr{X} \times_H \Delta \to \Delta$ is one. By Proposition 2.3, $R^i(\pi_{\Delta})_*\mathscr{L}_{\Delta}$ is locally free for every *i*. This implies that $\varphi(o) = \varphi(t)$. That is a contradiction.

REFERENCES

- [1] F. Campana, Remarques sur le revêtement uviversel des variétés kähleriennes compactes, Bull S.M.F., 122, 255-284, (1994).
- [2] F. Campana, K, Oguiso and T. Peternell Non-algebraic hyperKähler manifolds, math.AG/0804.1682.
- [3] A. Fujiki, On the de Rham cohomology group of a compact K\u00fchler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, 105-165, North-Holland, Amsterdam, (1987).
- [4] _____, On the Douady space of a compact complex space in the category C. II, Publ. Res. Inst. Math. Sci., 20, (1984), 461-489,
- [5] M. Gross, D. Huybrechts and D. Joyce, Calabi-Yau manifolds and related geometries, Lectures from the Summer School held in Nordfjordeid, June 2001, Springer-Verlag, Berlin, (2003), viii+239.
- [6] D. Huybrechts, Compact hyperkähler manifolds: basic results, Invent. Math., 135, (1999), 63-113.
- [7] _____, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326, (2003), 499-513.
- [8] D. Matsushita, On fibre space structures of a projective irreducibe symplectic manifold, Topology, 38 (1999), 79-83.
- [9] _____, Addendum to: On fibre space structures of a projective irreducible symplectic manifold, Topology, 40 (2001), 431– 432.
- [10] N. Nakayama, The lower semicontinuity of the plurigenera of complex varieties, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, 551-590.
- [11] C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, in Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, (1992), 294–303.

DIVISION OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HOKKAIDO UNIVERSITY, SAPPORO, 060-0810 JAPAN *E-mail address*: matusita@math.sci.hokudai.ac.jp