O00000000000O0
20080 0 pp.33-39

ON DEFORMATIONS OF LAGRANGIAN FIBRATIONS

DAISUKE MATSUSHITA

ABSTRACT. Let X be an irreducible symplectic manifold and Def(X) the Kuranishi family. Assume that X
admits a Lagrangian fibration. We prove that there exists a smooth hypersurface H of Def(X) such that the
restriction family 2" X pegx) H admits a family of Lagrangian fibrations over H.

1. INTRODUCTION

A compact Kihler manifold X is said to be symplectic if X carries a holomorphic symplectic form.

Moreover X is said to be irreducible symplectic if X satisfies the following two properties:

(1) dimH°(X.Q%) =1 and;

) m(X)={1}.
A surjective morphism between Kihler spaces is said to be fibration if it is surjective and has only con-
nected fibres. A fibration from a symplectic manifold is said to be Lagrangian if a general fibre is a
Lagrangian submanifold. The plainest example of an irreducible symplectic is a K3 surface. An elliptic
fibration from a K3 surface gives an example of a Lagrangian fibration. It is expected that a K3 sur-
face and an irreducible symplectic manifold share many geometric properties. Let S be a K3 surface and
g: 8 — P! anelliptic fibration. Kodaira proves that there exists a smooth hypersurface Hg in the Kuranishi
space Def(S) of § which has the following three properties:

(1) The hypersurface Hy passes the reference point.

(2) For the Kuranishi family 5 of S, the base change % X peg(s) Hs admits a surjective morphsim

over ]P},s. Moreover they satisfy the following diagram:

54 X Def(§) Hy — > P;’s

|

Hs.

(3) The original fibration g coincides with the restriction of the above diagram over the reference
point. The restriction of the diagram over a every point of Hg gives an elliptic fibration.

The following is the main theorem, which induces a higher dimensional analog of the above statement.

THEOREM 1.1. Let X be an irreducible holomorphic symplectic manifold and 2 — Def(X) the Kuran-
ishi family of X. Assume that X admits a Lagrangian fibration f : X — B over a projective variety B. Let
L be a line bundle which is a pull back of an ample line bundle on B. Then we have a smooth hypersurface
H of Def(X) and a line bundle &£ on & X pesx) H which satisfies the following two properties:

(1) The hypersurface H passes the reference point.

(2) The restriction of £ 1o X is isomorphic to L.

(3) For the projection @ : & Xpegxy H — H, R'n,% is locally free for every i.
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COROLLARY 1.2. Let f: X — B be as in Theorem 1.1. We also let L be a pull back of a very ample line
buncle of S. The symbols &, Z', H and £ denote same objects as in Theorem 1.1. Then there exists a
morphism fy : & Xpes(x) H — P(M.L). Together with 1, they form the following diagram:

Z xDef(X)H ——>fH ]P’(n*.Sf)
nl /
H,

The orginal fibration f coincides with the restriction of the above diagram over the reference point. The
restriction of the diagram over a every point of H gives a Lagrangian fibration.

REMARK 1.3. If X be an irreducible symplectic manifold. Assume that X admits a surjective morphism
f : X — S such that f has connected fibres and 0 < dimS < dimX. If X and S are projective or X and
§ are smooth and Kdhler then f is Lagrangian over a projective base S by [8], [9] and [5, Proposition
24.8].
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2. PROOF OF THEOREM

PROPOSITION 2.1. Let f : X — B and L be as in Theorem 1.1. We denote by A a general fiber of f. Then
there exists a smooth hypersurface H of Def(X) such that
(1) The base change & X peg(x) H carries the line bundle £ on &~ X peg(xy H whose restiction to the
Jfibre over the reference point is isomorphic to L.
(2) The relative Douady space D(Z /Def(X)) of the morphism &~ — Def(X) is smooth at A.
(3) Let D(Z /Def(X))a be the irreducible component of D(Z /Def(X)) which contains A. The
image of the induced morphism D{ %" /Def(X))4 — Def(X) coincides with H.

Proof of Proposition 2.1. (1) By [6, (1.14)], there exists a universal deformation (2", %) of the pair
(X,L). The parameter space of the universal family forms a smooth hypersurface H of Def(X). The
hypersurface H and the line bundle & satisfy the assertion (1) of Proposition 2.1.

(2) Let D(Z" /Def(X)) be the relative Douady space of the morphism 2~ — Def(X). Since A is smooth
and Lagrangian, D(2" /Def(X)) is smooth at A by [11, Theorem 0.1].

(3) We need the following Lemma.

LEMMA 2.2. Let X, L and A be as in Propositon 2.1. For an element z of H'(X,Q}), the restriction
zla=0in H'(A,Q}) if gx(z,L) = O, where qx is the Beauville-Bogomolov-Fujiki form on X.

Proof. Let o be a Kéhler class of X. It is enough to prove that
20" =" =0,
where 2n = dimX. By {3, Theorem 4.7], we have the following equation;
m cxqx(z+ 50 +1L)" = (z+56 +1L)*",
where s and ¢ are indeterminacy and cy is a constant only depending on X. By the assumption,

cxqx(z+ 56 +1L)" = cx(gx (z) + s*qx () + 2sqx (z,0) + 2s1gx (o, L))".
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If we compare the s*~!¢” and §"21" terms of the both hand sides of the above equation (1), we obtain the
assertions. 0

We go back to the proof of the assertion (3) of Proposition 2.1. Let j : H*(X,C) — H?(A,C) be the
natural induced morphism by the inclusion A — X. We denote by Ly the intersection of H2(X,Q) and the
orthogonal space of Ker(j) with respect to the Beauville-Bogomolov-Fujiki form. Since A is Lagrangian,
the image of the natural projection D{(Z" /Def(X))a — Def(X) is a smooth proper subanalytic space Hy
of Def(X) by [11, 0.1 Theorem]. Moreover, the family over Hy perserves the subspace Ly of NS(X)®Q
by [11, 0.2 Corollary]. The tangent space of Hy is Ker(j) = Ker{H'(X,Q}) — H'(4,Q})} by [11,
0.1 Theorem]. Let L' be the orthogonal space of L in H(X,Q}) with the Beauville-Bogomolov-Fujiki
form. We note that L* is tha tangent space of H at the reference point. By Lemma 2.2, L* is contained in
Ker(j). This implies that Ker(j) = L*. Moreover Ly is spaned by L, because the Beauville-Bogomolov-
Fujiki form is nondegenerate. Since H is the universal family of the pair (X,L), we obtain that Hy C H.
Comparing the dimension of the tangent spaces, we have Hy = H. 0
PROPOSITION 2.3. Let 27, Def(X), & and H be as in Proposition 2.1. We also let A be a unit disk in H
which has the following two properties:

(1) A passes the reference point of Def(X).
(2) For a very general point t of A, the Picard number of the fibre Z; of & over t is one.
The symbols Za, %p and £y denote the base change 2 xy A, the induced morphism Zx — A and the
restriction £ 10 Z», respectively. Then
Ré(”&)tiﬂm

are locally free for all i at the reference point.

Proof. For a point u of A, £, and .%, denote the fibre of @, over u and the restriction of %, to Z,,,
respectively. We consider whether % has the following property:

2) For every u # o, %, is semi-ample

If %, has the above property, the assertion of Proposition 2.3 follows from [10, Corollary 3.14]. To prove
it, we need the following two lemmata.

LEMMA 2.4. For a very general point u of A, %, is semi-ample.

Proof. We start with proving the following claim.

CLAIM 2.5, There exists a dominant meromorphic map ® : &, --+ B, such that a general fibre of @ is
compact, B, is a Kédhler manifold and dimB,, > 0.

Proof. We use the notation as in Proposition 2.1. By Propositon 2.1 (2), there exists a smooth open
neighborhood V of A in D(Z" /Def(X)). Let D(.Z,,) be the irreducible component of D(Z"/Def(X)) xy
{u} which intersects V. We note that D(Z,) is an irreucible component of the Douady space of 2.
We take a resolution D(2,)~ — D(&,) and denote by U(Z,)~ the normalization of U(Z,) Xp(2;)
D(Z.)~, where U(Z,) is the universal family over D(Z,). We also denote by by p and g the natural
projections U{Z,)~ — Z, and U{Z,)~ — D{Z,)". The relations of these objects are summerized in
the following diagram:
p

/_\
Zy<— U(Z) <— U(Z)"

Lok

D(Z,) <— D(&)~

-35-
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Let a be a point of ;. We define the subvarieties G;(a) of Z,, by

Go:=a

Giv1:=plg~ ' (g(p™" (Gi(a))))
We also define -

Ga(a) := | JGi(a).
i=0

Let B(Z.,) be the Barlet space of Z,. By [1, Théoreme A.3], Gu(a) is compact for a general point a
of %, and there exists a meromorphic map ¢ : 2, --+ B(Z,) whose general fibre is G..(a). By [3,
(5.2) Theorem], B(.Z,) is of class €. Hence there exists an embedded resolution B(Z,)~ — B(Z,)
of the image of ® whose proper transformation is smooth and K#hler. We denote by B, the proper
transformation. The composition map

Z, --» Im(®) --» B,

gives the desired meromorphic map if the image of & is not a point. Hence we show that ¢ is not a
trivial. Let a be a general point of £,,. Then G (a) is a complex torus. Moreover Gy (a) is a Lagrangian
submanifold of Z,. Thus D(Z,) is smooth at G(a) and its dimension is half of those of Z,. The
normal bundle of Gy(a) is the direct sum of the trivial bundles. Therefore p is locally isomorphic in a
neighborhood of p~1(G;(a)) and p is generically finite. If p is bimeromorphic, then G(a) = G (a) and
we are done. If p is not bimeromorphic, we consider the branch locus of the Stein factorization of p. Since
Z.,. is smooth, the branch locus defines an effective divisor E of Z,,. We will prove that Go(a)NE =0
if a is general. Since the Picard number of £, is one, %, and E should be numerically propotional. The
pull back p*.%, is numerically trivial on fibres of g. Hence the restiction of .%, to G\(a) is a numerically
trivial bundle if a is general. Therefore g(p~'(E)) # D(%,)~. This implies that ENG;(a) = @ for a
general point a of Z,. Since E is effective, E is nef. By [10, Lemma 2.15], there exists an effective
Q-divisor E’ on D(Z;,)~ such that
p'E=q"E.
Hence Go.(a)NE =0if Gi(a)NE =0. O

We go back to the proof of Lemma. By blowing ups and flattening, we have the following diagram:

/’\
Zu %, 2 Y
b
Bu Bu BuN B:’

where

(1) %, — Z, is aresolution of indeteminancy of ®.

2) Z — %, and By — B, are bimeromorphic.

(3) By is smooth and Kihler.

4) 2, - By isflat.

(5) #, — %, is the normalization.
We denote by v and r the induced morphisms #;, — Z,, and #,, — B, respectively. The proof consists
of three steps.
Step1.  We prove that B} is projective. Since B} is Kahler, it is enough to prove that dimH%(B)y, Q%) =
0. We derive a contradiction assuming that dimH%(B;,Q?) > 0. Under this assumption, there ex-
ists a holomorphic 2-form @ on B;". The pull back r*® defines a degenerate holomorphic 2-form on
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#;. On the other hand, HO(#;,Q?) = H%(Z,,Q?) because V is birational and %, is smooth. Hence
dimHO(#,,Q%) = 1 and it should be generated by a generically nondegenerate holomorphic 2-form.
That is a contradiction.
Step 2.  We prove that .%, is nef. This is [2, 3.4 Theorem]. For the convinience of readers, we copy
their arguments. By [7, Proposition 3.2] it is enoght to prove that .%,.C > 0 for every effective curve of
Z,. Since the Beauville-Bogomolov-Fujiki form g4; is non-degenerate and defined over H*(Z,,Q),
there exists an isomorphic

1 HY (25, Or » H 21 (2, O)r
such that

92, (L)) = L.

If g{.%,,2) # O for an element z of HY!(Z,,,Q), then there exists a rational number d such that g(.%, +
dz) > 0. By [6, Corollary 3.9], this implies that Z,, is projective. That is a contradiction. Thus %,.C = 0
for every curve C.
Step 3.  Let M be a very ample divisor on B. We prove that there exists a rational number c such that

Ly ~g cvirM.
It is enough to prove that
g2, (Vir'™M) = 9, (L) = g2, (Ver"M, %£,) = 0.

Since £, is non projective, g2, (V,r*M) < 0 and g4, (&) < 0 by 6, Corollary 3.8]. On the other hand,
qu, (%) > 0 because ., is nef. The linear system |r*M| contains members My and M such that My MM,
has a codimension two. By the definition

q(%L(V*f*M) = /(V*r*M)2o.n-16.n_1’

where o is a symplectic form on £,. Thus g9, {(v.r*M) > 0. Therefore g 4, (v.r*M) = g(.%,) = 0. Since
v, r*M is effective and %, is nef, g4, (v,r*M,.%,) > 0. Again by [6, Corollary 3.8}, g4, (v.r*M + %) <
0. Thus g4, (var*M,%,) = 0 and we are done.

Stepd4.  We prove that .%, is semi-ample. By [10, Remark 2.11.1] and [10, Theorem 5.5], it is enough
to prove that there exists a nef and big divisor M’ on B} such that

V*fu ~Q M

By Step 2 and Step 3, v*.%, ~q r"M + ¥ e;E; where E; are v-exceptional divisors and ¢; are positive
rational numbers. By Step 2, ¥ ¢;E; is nef for every irreducible component of every fibre of r. By [10,
Lemma 2.15], there exists a Q-effective divisor My such that

Ze;E,- =r'Mp.

If we put M’ := M -+ M, we are done.
1

LEMMA 2.6. If ., is semi-ample for very general point u of A, then £, is semi-ample for every u + o.

Proof. Let A(k) be an open set of A which has the following two properties:

(1) L% is locally free.
) L @k(u) = HN X, Lal 23)-
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We also define
A ={uehp(Z,) =1},

where Z, is the fibre over u and p(Z,,) stands for the Picard number of Z;,. We fix a compact set K of
A which contains the reference point. Then K\ (KN A(k)) consists of finite points. Thus

U &\ kna®)
k=1

consists of countable infinite points. Hence

(ﬁA&OnKnN%&

k=1
Thus there exists a point 7 of A and an integer & such that

ﬂz(ﬂA)*gA — .yA
is surjective on 2. This implies that the support Z of the cokernel sheaf of 7} (75 ). — -#a is a proper
closed subset of 2. Hence %, is semi-ample if u € A\ n({Z). 0
‘We complete the proof of Proposition 2.3, O

Proof of Theorem 1.1. By Proposition 2.1, there exists a smooth hypersurface H of Def(X) and a line
bundle % which have the properties of (1) and (2) of Thearem 1.1. Assume that Rz, is not locally
free. We define the function @(¢) as

oft) == dimH{(%2;,.%)
where Z, is the fibre of # over 1 and . is the restriction of . to Z;. Then

o(0) > o(1),

where o is the reference point and ¢ is a general point of H. The Picard number of a fibre 2, over a very
general point of H is one. Hence there exists a unit disk A such that o € A and the Picard number of a very
general fibre of the induced morphsim & xy A — A is one. By Proposition 2.3, R¥(74)..%, is locally
free for every i. This implies that ¢(0) = ¢(r). That is a contradiction. O
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