
Abstract

Spatially localized structures are key components of turbulence and other spatio-temporally
chaotic systems. From a dynamical systems viewpoint, it is desirable to obtain cor-
responding exact solutions, though their existence is not guaranteed. A damping filter
method is introduced to obtain variously localized solutions, and adopted into two typical
cases. This method introduces a spatially selective damping effect to make a good guess
at the exact solution, and we can obtain an exact solution through a continuation with
the damping amplitude. First target is a steady solution to Swift-Hohenberg equation,
which is a representative of bi-stable systems in which localized solutions coexist, and a
model for span-wisely localized cases. Not only solutions belonging to the well-known
snaking branches but also those belonging to an isolated branch known as “isolas” are
found with a continuation path between them in phase space extended with the damp-
ing amplitude. This indicates that this spatially selective excitation mechanism has an
advantage in searching spatially localized solutions. Second target is a spatially localized
traveling-wave solution to Kuramoto-Sivashinsky equation, which is a model for stream-
wisely localized cases. Since the spatially selective damping effect breaks Galilean and
translational invariances, the propagation velocity cannot be determined uniquely while
the damping is active, and a singularity arises when these invariances are recovered. We
demonstrate that this singularity can be avoided by imposing a simple condition, and a
localized traveling-wave solution is obtained with a specific propagation speed.

An interface structure between turbulence and laminar flow is investigated in two-
dimensional channel flow. This spatially localized structure not only sustains itself, but
also converts laminar state into turbulence actively. A filtered simulation technique is in-
troduced to understand the invading process as an inhomogeneity-induced self-sustaining
coherent structure, which consists of a meandering jet on bulk region and near wall vor-
tex pairs. A phenomenological model, called ejection-jet cycle, reveals the relationship
between the spatial structure of the fat interface and its invading speed. This model gives
a novel insight on the inner-outer interaction in wall-turbulence.
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Chapter 1

General Introduction

1.1 Inhomogeneous dynamics in nature

Inhomogeneous states appear in various types of uniform systems: spatial patterns in
chemical reactions [18], localized turbulence in various canonical flows [1, 2], and chimera
states in coupled oscillators [20]. Classical weakly nonlinear theories have revealed a class
of pattern formulations, but most dynamic inhomogeneous states cannot be included
in this class. These strongly nonlinear regimes have been investigated with computer
simulations and it has been clarified that inhomogeneous states have much richer dy-
namics than uniform states since the inhomogeneity itself works as a component of the
dynamics. Therefore, comprehensive theories for understanding of these dynamic self-
organization are required for prediction and control in weather forecast, robotics, and life
science. While many recent studies about inhomogeneity induced dynamics are devoted
to discrete systems like coupled oscillators [45], in this thesis we consider a continuous
system, namely turbulence .

Turbulence ubiquitously appears in nature: from quark-gluon plasma [53] to the Uni-
verse [15]. Because of its strong nonlinearity, most studies related to turbulence may
have adopted more or less statistical or coarse graining approaches [10]. Though they
have vividly revealed phenomenological and/or kinematic natures of turbulence such as
the energy transfer among different scales and places, these statistical treatments are not
sufficiently adequate to elucidate concrete mechanisms of even such fundamental pro-
cesses of turbulence: For example, what substance, e.g. vortices, transfers energy or
why the energy transfer occurs. On the other hand, the dynamical systems approaches
to turbulence have helped us describe these mechanisms with numerically obtained com-
ponents (invariant sets) in the phase space such as fixed points, periodic orbits and their
connections [38].

In terms of the dynamical systems approach, we try to understand turbulence based
on coherent structures. The term coherent structure has several meanings according to
contexts. We use this term as a technical term of the dynamical systems approach. That
is, coherent structures are supposed to be related to some characteristics of solutions
to dynamical systems. Roughly speaking, coherent structures are minimal autonomous
components of dynamic and vortex structures embedded in turbulence. In other words,
an immediate objective of the dynamical systems approach in this thesis is to identify
appropriate definition of coherent structures.
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Spatio-Temporal Inhomogeneity

multiple
scales

Minimal Turbulence

• Self-Sustaining Process
• Unstable Peridoc Orbits
• Edge Staes

Weak Turbulence

• Puff, Spot, Patterns
• Localized exact solutions
• Reaciton-Diffusion model

Developed Turbulence

• Kolmogorov’s 5/3-law

Mature Turbulence

• Log-Law
• Turbulent-Laminar interface
• Boundary layers

Figure 1.1: A rough categorization of turbulence matched to the development of the
dynamical systems approach.

1.2 Dynamical systems approach to turbulence

In this section, we give a short review of the dynamical systems approach to turbulence
by introducing four terms about turbulence (see Fig. 1.1). These terms are not widely
used, but help us clarify the objective and problems of the dynamics systems approach.

1.2.1 Minimal Turbulence

Minimal turbulence denotes a temporally chaotic flow in a small periodic region. It is
well known numerically that there is the minimal periodic domain of wall-bounded flows
of which the statistical properties correspond to those of turbulence in large domains [6].
Numerical simulations of minimal flows yield low-dimensional nonlinear dynamics, i.e.
fixed points, periodic orbits, period doubling sequence, and boundary crisis. The laminar
state is stable at low Reynolds numbers, and thus these dynamics appear subcritically. We
also call these low-dimensional dynamics minimal turbulence because they are embedded
in turbulence and describe the characteristics of turbulence.

The studies for coherent structures using exact solutions have been developed with
the minimal flow turbulence [6] by rephrasing the ideas in dynamical systems theories.
Since the dynamics and spatial structures are strongly connected, invariant sets in the
dynamical systems theories, e.g. fixed points, periodic orbits, and chaotic attractor, have
corresponding structures. This correspondence is the basis of coherent structures. Espe-
cially, periodic orbits corresponding to periodic motions of coherent strucures, e.g. vor-
tices and streaks in wall-bounded flows are useful since they can be treated statically. In
other words, turbulence approximated by a closed cycle of coherent structures is statically
represented by its correspondent periodic orbit. It is very powerful for both identifying
and categorizing nonlinear dynamics. One important example of this correspondence is
Waleffe’s self-sustaining process (SSP) [14], corresponding to an unstable periodic orbit
[17]. This periodic orbit describes the regeneration cycle of near wall turbulence made
up with tilted vortices and a streak. Exact periodic solutions enable us to track how this
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structure appears and when it becomes a chaotic saddle from the attractor as Reynolds
number changes.

1.2.2 Weak Turbulence

We observe spatially extended, unsteady but not so active flows at relatively low Reynolds
number where turbulence barely keeps alive. Here, we call these flows “weak turbulence”
while this term has several meanings according to the context. The Reynolds numbers
are below the critical Reynolds numbers of linear stability of the base flows, and thus
these flows are bi-stable systems in this sense. These flows do not have continuous spatial
scales different from developed and mature turbulence, so that they can be characterized
with a few typical scales. Therefore, spatial inhomogeneity is expected to make the
dynamics of the whole system high-dimensional while local dynamics seems to be low-
dimensional. In this transitional parameter region, in fact, there exit various types of
laminar-turbulence coexisting flows, e.g. puff, slug, spot, and stripes. One important
objective is to understand this spatial inhomogeneity in terms of dynamical systems
approach.

The studies about “weak turbulence” can be roughly categorized into two groups.
One group has extended the approach that succeeded in minimal turbulence by obtaining
various localized solutions to represent localized dynamics [26, 31, 33, 44]. These localized
solutions show that the local dynamics in weak turbulence is quite similar to SSP in
minimal turbulence. Comparing them with minimal turbulence in which the system
is filled with turbulence, these localized solutions are isolated turbulent patches (see
Fig. 1.4).

The other group has developed effective coarse grained models. There are several
attempts to describe the spatial patterns in weak turbulence under the reaction-diffusion
contexts [37, 43]. For representing the “reaction” component, some use the four-mode
Galerkin approximations model [14] or the first model for SSP [11], and others more
simplified modes. Locally bi-stable models, i.e. stable laminar and “turbulence” states,
can describe the slug expansion process well. To explain the puff splitting process, Barkley
et al.[37] introduced a stochastic transition from the “turbulence” to the laminar state.
This model corresponds to the chaotic saddle creation in minimal flows [51]. These
stochastic models are summarized into percolation models [25, 40, 41, 48], and well
describe the transitional processes [23, 36]. These results indicate that the turbulence
in the transitional parameter region can be represented by the combination of local or
pointwise dynamics corresponding to SSP and its simple diffusive spatial interactions.
In other words, Waleffe’s SSP explains how the cite of percolation appears from the
continuous systems. There are two simplifications: One is the low-dimensional models
of local dynamics, and the other is the diffusive interactions among coherent structures.
These simplifications seem to reflect the local low-dimensionality and weak inhomogeneity
of near transitional flows.

1.2.3 Developed Turbulence

At relatively higher Reynolds number, the difference between the maximum and minimum
scales in turbulence becomes wider, and the dynamics becomes multi-scale. Here, we in-
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Figure 1.2: Cited from Kawahara & Kida, JFM (2001) [17]. Nine snapshots of unstable
periodic orbit corresponding to SSP, the regeneration cycle of near wall turbulence.
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Figure 1.3: Cited from Duguet et al. JFM (2010) [34]. Turbulent spot (upper) and
Turbulent pattern (lower) in simulations of plane Couette flow.
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Figure 1.4: Cited from Avila et al. PRL(2013)[44]. Localized exact traveling-wave
solutions and chaotic solutions in pipe flow.

troduce two terms, developed and mature turbulence to represent these spatio-temporally
highly chaotic flows. We call multiscale uniform turbulence developed turbulence. It
should be noted that uniform turbulence contains internal spontaneous inhomogeneity
while long-time mean becomes uniform. In other words, we use the term developed tur-
bulence if we focus on the multiscale property without inhomogeneity.

Large amounts of studies about turbulence have been devoted to statistical theories
for developed turbulence. K41 model known as Kolmogorov’s 5/3-law would be one of
the most famous ones. Richardson’s energy cascade picture describes the energy transfer
from large scale vortices to small scale vortices. This picture introduces a fundamental
energy transfer between vortices of adjacent scales. The energy cascade picture is widely
accepted as a phenomenological explanation, but the spatio-temporal dynamics of this
fundamental energy transfer is still hardly understood. Recent numerical analyses [28,
54] try to understand the dynamics of this fundamental process. The dynamical systems
approach should be able to treat this problem. However, the current framework based on
exact localized solutions is hardly adopted since it is incredibly hard to obtain localized
exact solutions of this system.

1.2.4 Mature Turbulence

Turbulence in real world is further complex than developed turbulence defined above.
Most turbulence have autonomous spatial inhomogeneity even in isotropic turbulence
[32]. The intensities in active and inactive regions significantly differ, and a sharp in-
terface is formed between them [46]. If a wall exists, the properties of turbulence in
the boundary layer is neither isotropic nor uniform, and we usually have to consider
flows around complicated walls or objects. So the real world turbulence is character-
ized by inhomogeneity and multiscaleness. To fill the gap between developed and real
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Figure 1.5: Cited from Ishihara et al. Annu. Rev. Fliud Mech. (2009) [32]. Spontaneous
spatial inhomogeneity in isotropic turbulence. There are active and inactive turbulent
regions.
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Figure 1.6: Cited from Goto, PTP (2012) [42]. Vortex structures of fundamental process
of Richardson’s cascade.
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world turbulence, we introduce a class of turbulence to focus on the inhomogeneity which
cannot be represented as weak turbulence, and call it mature turbulence.

For example, we include statistically steady wall-turbulence dominated by the log-law
in mature turbulence because of its spatial inhomogeneity in the wall-normal direction.
Fundamental processes of the log-law in wall turbulence have been discussed based on the
classical mixing length theory, which introduces hypothetical vortices to understand the
momentum transfer from the bulk to the wall. In the engineering context, some parts of
these processes are approximated into the eddy viscosity model, so that the effect of these
fundamental processes are reduced to the correction of the viscosity coefficient. Other
studies, e.g. free shear flow approximations [49], and the vortex wave interaction theory
[47] try to obtain coherent structures corresponding to this hypothetical vortex. These
studies suggest that the log-law can be understood by the hierarchal collective dynamics
of coherent structures corresponding to fundamental mixing processes. This hierarchal
property is similar to the Richardson’s cascade in developed turbulence, but in this case
the properties of coherent structures differ according to their positions; near wall vortices
are small and far wall vortices are large. In other words, mature turbulence is character-
ized by spatially segregated different coherent structures. Such collective dynamics sig-
nificantly differ from the diffusive connection appeared in weak turbulence. The frame-
work used in the studies of weak turbulence, i.e. diffusive connection between coherent
structures, seems not to be able to treat these “functional” corporation of coherent struc-
tures: The fundamental coherent structure of log-law will have a function of momentum
transfer, and that of Richardson’s cascade will have a function of energy transfer. These
functions should be responsible not for the interaction among them but for each coherent
structure, and thus we call them “functional coherent structures”. A simple example of
mature turbulence is introduced in Chapter 3. Such complex functionality of coherent
structures seems to appear at larger Reynolds number, and then the dynamics of mature
turbulence must be multiscale.

Comparing developed and mature turbulence, mature turbulence may be more com-
plicated. However, a model that we introduce in Chapter 3 to represent a functional
corporation of coherent structures should be included in mature turbulence. Spatial in-
homogeneity rather helps us separate the dynamics of coherent structures. Considering
coherent structures in mature turbulence will be a possible path of the extension of the
dynamical systems approach to developed turbulence.

1.3 Outline

As discussed above, the current dynamical systems approach based on exact solutions
can be adopted to weak turbulence, but cannot be applied to developed and mature
turbulence. This thesis makes two attempts:

• Chapter 2: We extend the exact solution based approach to mature turbulence

• Chapter 3: We introduce a new framework, “functional coherent structure” instead
of the exact solution based one.

Both of two attempts are based on a common technique called a damping filter method
in which a damping filter term is introduced to the equation of motion.
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In Chapter 2, we introduce a novel efficient methodology to obtain localized exact so-
lutions. This study extends the localized exact solution approach in weak turbulence to
mature turbulence. In weak turbulence, localized pointwise dynamics is minimal turbu-
lence, whose properties are well studied in minimal flow simulations. However, localized
dynamics in mature turbulence does not have corresponding minimal flow because var-
ious coherent structures will only appear as a part of mature turbulence. This method
gives an efficient way to split out such coherent structures as localized exact solutions,
which contain abundant information about the local dynamics.

In Chapter 3, we focus on a turbulent-laminar interface structure in two-dimensional
channel flow. Since we deal with flows at relatively high Reynolds number, Re = 6000 →
10000, the laminar flow is unstable, and turbulence invades the laminar part. This
transient process is kept permanent using damping filter technique. It is shown here that
this system is included in mature turbulence. There is a self-sustaining coherent structure
in the interface region, and it transfers energy from the laminar part to a following weak
turbulence part. The self-sustaining mechanism of this functional coherent structure is
summarized into a phenomenological model, we call ejection-jet cycle.

In the last chapter, we give a comprehensive discussion how these two approaches
extend the current framework of coherent structures. We also summarize and conclude
this thesis comprehensively.
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Chapter 2

Damping filter method

2.1 Introduction

There exist various types of localized structures. For example, turbulent puffs in pipe
flow are localized in the stream-wise direction; turbulent spots in channel flow do both
in the stream-wise and span-wise directions. If there exists a solution corresponding to
large scale motions, it will be localized in the wall-normal direction. In this paper, we
focus on the two typical cases both of which will be instructive in understanding localized
structures observed in turbulence. We show not only basic usage and results but also
remarkable features of our method in Sections 2.3 and 2.4.

We first consider localized solutions to Swift-Hohenberg equation (SHE) [24, 29, 30].
This is a representative example of localized solutions in bi-stable systems. This class of
localized solutions contains, for example, span-wisely localized solutions corresponding to
roll-streak structures in plane Couette flow [35]. Their solution branches are very similar
to the “snaking” branches seen in SHE [24]. Similar structures of solution branches are
also found in doubly diffusive convection systems [27]. These facts indicate that there
exists a universal mechanism of spatially localized solutions in the bi-stable systems. We
deal with solutions in this class in Section 2.3.

Second, we examine a spatially localized traveling-wave solution to Kuramoto-Sivashinsky
equation. Such a solution can be regarded as a stream-wisely localized solution. Stream-
wisely localized structures can be observed in pipe flow (turbulent puffs), boundary layers
(hairpin vortexes), and so on. The sustaining mechanism of them might be different from
that of span-wisely localized solutions, and thus it is necessary to obtain the correspond-
ing solutions in order to analyze them from a dynamical systems viewpoint. At a glance,
since our method utilizes a spatially selective damping effect that breaks translational
invariance, it seems to have only limited capability for this issue. However, we show that
this is not the case in Section 2.4.

This chapter is organized as follows. In Section 2.2, a damping filter method is intro-
duced, where we explain its concept and concrete procedure. In Sections 2.3 and 2.4 we
adopt the method to Swift-Hohenberg equation and Kuramoto-Sivashinsky equation re-
spectively in order to obtain spatially localized solutions. Finally, this paper is concluded
with concluding remarks in Section 2.5.
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2.2 Numerical Procedure

In this section the protocol of the damping filter method is explained. This method
consists of three steps. Since this method can be used for various systems, a general form
evolution equation, ∂tu = F [u], is used in the following explanation.

The first step of this method is to introduce a spatially selective damping term into
the evolution equation. The damping term works only in a region Ω. If we want to obtain
a span-wisely localized solution, Ω should be a region localized in span-wise direction.
If we want to obtain a solution localized like turbulent spot, Ω should be a spot region.
Then the damping term is introduced as follows:

∂tu(x, t) = F [u](x, t)− AfH(x)u(x, t). (2.1)

We call this equation “filtered equation” hereafter. The damping term consists of the
filter amplitude Af and a filter function H(x). H(x) is defined to be zero in the region Ω
and to be 1 out of Ω, and smoothed by taking a convolution with a mean-zero Gaussian
N0,σ2(x) in order to avoid the numerical singularity:

H(x) =

∫
N0,σ2(x− y)Ĥ(y)dy, (2.2)

Ĥ(x) =

{
0 (x ∈ Ω)

1 (x 6∈ Ω)
. (2.3)

The integral is taken in the whole region. The damping term causes a linear damping
effect out of Ω (filtered region), and the filtered equation equals to the original equation
∂tu = F [u] in Ω (unfiltered region).

The second step is to obtain an exact solution to the filtered equation (2.1). Owing
to the spatially selective damping effect, the direct numerical simulation (DNS) of the
filtered equation tends to yield a spatially localized time series u(x, t), in other words,
u(x, t) decreases exponentially fast as x goes away from Ω after a relaxation time. In
addition, since the damping effect weakens the instability of the system, DNS sometimes
yields a non-trivial stable solution for enough large filter amplitudes and an appropriate
Ω. In this case the second step is finished with this stable solution. If any stable solutions
are not obtained, a solution to the filtered equation is obtained by solving an equation
F [u] − AfH(x)u = 0 about u(x) with Newton method. Since the degree of freedom is
also reduced by the damping term, it is expected that such a solution can be obtained
easily.

The third step is a continuation process. The solution obtained in the second step
depends on the filter amplitude Af , and often this dependency is continuous. A contin-
uation with Af is started from this solution. The filter amplitude Af is decreased until
it gets to zero, where the filtered equation is restored to the original equation in the
whole region. Then the continuated solution is nothing but that to the original equation.
This is the goal of the damping filter method. The continuation is implemented by the
arc-length method with Newton-Krylov iterative method, and thus applicable to systems
having large degree of freedom.

The good feature of our method is that an appropriate guess of a spatially localized
solution is constructed as a solution to the filtered equation (2.1). This guess reflects
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Figure 2.1: (Color online) Three steps in the damping filtering method.
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the dynamics of spatially localized structures since the filtered equation equals to the
original equation in the region Ω. In another study [5], an artificial external forcing is
used for constructing a guess of solutions. It was designed by hand from the inference
about the dynamics of localized structures. In our method such artificial manipulation
is not needed except for determining the region Ω.

This spatially selective damping is inspired by the work [16]. They have investigated
an autonomous behaviors of near-wall structures by a filtered dynamics. In contrast to
them, our method uses this filtered dynamics only for guesses and continuations, and
removes the filter finally. Thus, our method enable us to study the non-filtered dynamics
by localized solutions.

2.3 Span-wisely localized solutions

In this section we consider one-dimensional Swift-Hohenberg equation (SHE):

∂u

∂t
= F [u] =

(
r −

(
∂2

∂x2
+ 1

)2
)
u+ 2u3 − u5. (2.4)

As noted in the introduction, a series of solutions to SHE is regarded as a representative
of localized solutions in the bi-stable systems. The following subsections show two things:
(i) We can obtain span-wisely localized solutions by our method. In order to show
this, we reproduce solutions belonging to the homoclinic snaking branches. The practical
detail of our method is also described. (ii) Our method has a capability for obtaining
various solutions that are usually hard to be found. Indeed, we find an isolated and
closed solution branch. Since isolated solution branches cannot be found by the weakly
nonlinear framework, this success indicates an advantage of our method.

2.3.1 Homoclinic snaking branches

In this subsection we apply our method to SHE in order to obtain a localized steady so-
lution belonging to the snaking branches. Although the branches contain stable localized
solutions for a parameter region, the attracting basins of them are very small, and thus
it is almost impossible to obtain these localized solutions by DNSs with arbitrary initial
conditions.

Before adopting our method, the setting of system is described. We consider SHE in
a region [0, L], L = 180, and impose a fixed boundary conditions u(0) = u(L) = 0. The
parameter r is set to −0.669 in this subsection, and −0.633 is used in the next subsection.
Time evolutions are solved by the quasi-spectral method with the classical fourth-order
Runge-Kutta method. We regard a steady point of DNS as a steady solution to the
equation, so the DNS code is used also in continuation processes.

We describe the practical details of our method hereafter. The first step of our method
is to introduce the damping term. The unfiltered region Ω is set to be [80, 100], and the
filter function H(x) is smoothed with σ2 = 0.01. The amplitude of the filter Af is set to
be 1.

The second step is to obtain an solution to the filtered equation (2.1) with F [u] of
Eq. (2.4). This equation has a stable localized steady solution with these parameters. The
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Figure 2.2: (Color online) The trajectory of continuation projected onto a Af -‖u‖ space.
Each of two labeled solutions (a),(b) on the line Af = 0 denotes a solution to SHE. The
continuation is continued after the filter amplitude Af became zero, and yield a solution
labeled (b). The profile of these solutions are shown in Fig. 2.3.

initial condition of this DNS is the stable steady sine-like solution of non-filtered equation
(2.4), which is not spatially localized but spatially extended. Such a localized solution
to the filtered equation exists while r . −0.72. This lower limit almost agrees with that
of the snaking branches. Since the spatial period of the sine-like solution is 2π, these
localized solutions to the filtered equation contain almost three periodic components.

The third step is a continuation process. The parameter traced in this continuation
is the filter amplitude Af , and the parameter r is fixed. The result of the continuation
is shown in Fig. 2.2, which displays the trajectory of the continuation projected onto a
Af -‖u‖ plane. Here ‖ · ‖ denotes the L2-norm. The trajectory crosses the line Af = 0
twice. Although a solution to SHE is obtained when the trajectory crosses the line first
and thus the damping filter method finishes at this time, we find that the trajectory turns
back and crosses the line Af = 0 again. Eventually, we successfully obtain two solutions to
SHE, and the profile of them are shown in Fig. 2.3. These solutions are localized almost
in [70, 110], which is larger than Ω = [80, 100]. This fact indicates that Ω is only a guide
for obtaining a spatially localized solution, which obeys not the damping filter but the
original equation.
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Figure 2.3: (Color online) The profiles of the solutions obtained in the continuation
shown in Fig. 2.2. Since the tails of the solutions decay exponentially, These solutions
are localized almost in [70, 110], and have an exponentially decaying tail.
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Figure 2.4: (Color online) The trajectory of continuation projected onto Af -‖u‖ started
from an unstable solution to the filtered equation. This continuation also cross the line
Af = 0 twice, but a complicated path is realized. Two labeled points (c) and (d) on the
line Af = 0 are also solutions to SHE, and their profiles are shown in Fig. 2.5. As noted
in the text a switching between solution branches are occured in this complicated part of
the trajectory.

2.3.2 An isolated closed branch

We execute the same procedure for various values of the parameter r. For most of r
it yields continuation trajectories and solutions to SHE similar to those shown in the
previous section. However, we also find quite different behaviors in some cases, one of
which we focus on in this subsection.

As an initial guess we use a solution to the filtered equation obtained by a continuation
with the parameter r started from the solution to the filtered equation used in the previous
section. The other parameters are same as those of the previous section: Ω = [80, 100]
and Af = 1.

The result of the continuation with Af starting from this starting solution is displayed
in Fig. 2.4. Compared with Fig. 2.2, the continuation trajectory is very complicated
especially in the region Af < 0. The two solutions on the line Af = 0 are labeled as (c)
and (d), and their profiles are displayed in Fig. 2.5.

A difference between the solutions (c) and (d) can be observed in its profile: The
solution (c) is a single pulse solution like the solutions (a) and (b). On the other hand,
the solution (d) seems to be a combination of two antisymmetric pulse solutions. There
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Figure 2.5: (Color online) The profiles of the solutions (c) and (d). In contrast to
Fig. 2.3, the profiles of the solutions (c) and (d) are qualitatively different.
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Figure 2.6: (Color online) The snaking branches and isolas projected onto a r-‖u‖ plane.
The snaking branches consist of two coupled branches, and solutions (a), (b) and (c)
belong to the same one of them (dashed blue line). The red (dark gray) figure-eight
shaped line denotes the isolas containing the solution (d). Such eight-figured branches
can be seen also in two-pulse solutions to SHE [39]. This similarity tells that the solution
(d) should be regarded as a connected two-pulse solution.

exists the definitive difference in their solution branches as shown in Fig. 2.6. This figure
shows that the solutions (a), (b), and (c) belong to the snaking branches, but the solution
(d) belongs to an isolated closed branch. Such closed isolated solution branches are called
“isolas” in [39].

It should be noted that two distinct branches are connected by the continuation with
Af . Moreover, they connect through the region where Af becomes negative, where the
term −AfH(x)u works as an excitation term. Thus the connection can be regarded as
a result of the instability caused by this term. Since u(x) has an exponentially decaying
tail, this instability occurs only around the edge of Ω. So this linear exitation is also
spatially selective.
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2.4 Stream-wisely localized solutions

In this section a stream-wisely localized solution, in other words, a solution localized in
its moving direction is studied with Kuramoto-Sivashinsky equation (KSE):

∂u

∂t
= F [u] = −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
. (2.5)

It should be noted that KSE has no localized equilibrium solution whose tail decays
exponentially. If we adopt our method to Eq. (2.5), the continuation about Af yields the
flat solution u = 0 before Af reaches zero. So we seek a stream-wisely localized traveling-
wave solution (TWS) such that u(x, t) = û0(x− ct) satisfying boundary conditions

û0(x− ct → ±∞) → 0.

In contrast to the case of span-wisely localized solutions, there are two issues in this
case: One is a treatment of the propagation velocity of the solution, and the other is a
breakdown of the localization. These issues will arise in more general cases since they are
based on Galilean and translational invariances. In the following subsections a solution
to these issues are described.

2.4.1 A treatment of the propagation velocity

Since a TWS travels downstream, its localized region must accompany. In order to obtain
a localized TWS by our method, it is necessary to introduce a moving damping filter or
a steady damping filter in a moving frame, and we chose the latter. Then the equation
becomes as follows:

∂û

∂t′
= −(û− c)

∂û

∂x′ −
∂2û

∂x′2 − ∂4û

∂x′4 − AfH(x′)û, (2.6)

where x′ = x−ct, t′ = t, û(x′, t′) = u(x, t). We seek a steady solution satisfying ∂t′û = 0 in
this frame. However, the velocity of the moving frame c is unknown unless the solution is
obtained. Since KSE does not allow their solutions to continuously depend on c, a specific
value c0 with which a solution û0(x− c0t) exists must be determined simultaneously.

Such a situation sometimes occurs when obtaining a TWS to an equation ∂tu = F [u].
In these cases, this problem is usually resolved by regarding c as an unknown variable,
and solving −c∂xu = F [u] for u(x) and c. Since the translational invariance reduces the
degree of freedom, this simultaneous equation can be solved. In our method, however,
the damping filter breaks Galilean and translational invariances, thus the usual technique
cannot be adopted.

Although TWSs to KSE do not continuously depend on c, our results show that
TWSs to the filtered equation do. This fact reflects the breaking of the translational
invariance by the filter. The details are discussed in the last part of this section. Thus
the propagation velocity c becomes one of the control parameters of the solution and can
be chosen arbitrarily in a certain range. See also schematic view in Fig.2.7.

Then the other issue arises; how do we obtain the specific value c0? Although there is
a range of c in which the solution exists continuously, this range becomes narrower and
narrower as Af goes to zero, and finally converges to a point on Af = 0. We get over this
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continuously depends
on both Af and c

c0

singular
Af

0

c

Figure 2.7: (Color online) An image for the continuous existence of solutions and singu-
larity at Af = 0. The existence of the solution is displayed in Af -c plane. The solution
exists continuously on the yellow (thin gray) crosshatched region, and cannot be traced
beyond its rim. There is no guarantee that this solution branch connects to the line
Af = 0. If it does, only a point is allowed because the solution cannot exist continuously
on the line Af = 0.

issue by imposing an implicit relationship between c and Af . This technique to impose
the restriction is a key point to obtain a stream-wisely localized TWS. The details are
discussed in the next subsection with our data.

2.4.2 Adopting the damping filtering method to KSE

In the first step of the damping filtering method, a localized region Ω is determined. We
set the system size to L = 200 and the localized region Ω = [97, 103] in order to obtain
a one-peak TWS. The filter function H(x) is smoothed by Gaussian with σ2 = 0.01 and
the filter amplitude Af is set to 4.8.

In the second step, a solution to the filtered Eq. (2.1) is obtained to start the contin-
uation. As notated in the previous subsection, we can choose an arbitrary propagation
velocity c in a certain range, and we choose c = 0 here. We execute a DNS of non-filtered
equation (2.6) to produce a spatio-temporal chaotic field, which is used for an initial con-
dition of a DNS of Eq. (2.6). This yields a stable solution, which is labeled as (a). These
DNSs are solved by the quasi-spectral method with the classical forth-order Runge-Kutta
method. Although a localized solution has an exponentially decaying tail and does not
get exactly to zero in a finite distance, we regard small values comparable to the trun-
cation error as zero and assume that the fixed boundary conditions u(0) = u(L) = 0 are
satisfied. We use sine transform to ensure this condition with N = 2048 modes.

The third step is a continuation process. Since the propagation velocity c becomes
a continuous parameter of the solution on Af > 0 region, this continuation becomes
essentially two-dimensional. It is almost impossible to obtain a full two-dimensional
solution branch because of the numerical cost, we introduce a path on Af -c space as
follows.

As noted above, if c is fixed to zero then a continuation with Af yields the flat solution
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Figure 2.8: (Color online) The trajectory of the continuation projected onto Af -‖u‖
plane. A closeup around Af = 0 is also shown.
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c0 (e)

The “appropriate”
value c = c(Af )

Figure 2.9: (Color online) An schematic view of the parameter dependency of the solution
around Af = 0. The yellow (thin gray) crosshatched region denotes one where a solution
continuously exists, and the green (thick gray) region denotes one where a “localized”
solution continuously exists. Here a “localized” solution means that it does not have the
oscillation around the boundary. The three steps are as follows: (i): (b) → (c), (ii): (c)
→ (d), (iii): (d) → (e).

u = 0 before Af reaches zero. In order to avoid this dead end, we first fix Af to 4.8 and
execute a continuation with c. The solution is traced up to c ' 1.21, which is labeled as
(b). This value of c is determined by trial and error here, but a more practical criterion
will be discussed in a future work.

The following continuation procedure is delicate because the uniqueness of the prop-
agation velocity c must recover when Af = 0. In short, the procedure consists of three
steps (see Fig. 2.9): (i) Af is reduced around 0.05 while c is fixed. (ii) Af is fixed and c
is adjusted to an “appropriate” value c = c(Af ). (iii) c and Af are traced simultaneously
keeping the “appropriate” condition c = c(Af ).

In the step (i), we fix c to 1.21 and execute a continuation with Af . This continuation
leads Af around 0.01, but Af cannot reach 0. In this continuation the profile of the
solution changes as shown in Fig. 2.10. We define a characteristic length of the tail of the
solution as the inverse of its decaying rate. As Af decreases, it becomes longer and an
oscillation starts to appear around the left boundary. If this tracing is continued further,
the oscillation grows up and the solution may not be kept localized. Such non-localized
solutions also cannot be traced till Af = 0. This shows that a localized TWS to KSE
cannot be obtained using only the continuation with Af .
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Figure 2.10: (Color online) The left tails of the solutions obtained while the tracing
(b) to (c) whose Af is 0.8323, 0.3265, 0.2244, 0.1254, 0.0496 and 0.0137 respectively. As
Af decreases, the characteristic length of the tail becomes longer and longer. Finally an
oscillation appears around the left boundary due to the boundary condition.

25



-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0  20  40  60  80  100

u
(x

)

x

1.2101
1.2161
1.2225
1.2291
1.2319
1.2361

Figure 2.11: (Color online) A part of the profile of solutions obtained while the tracing
(c) → (d) whose traveling velocity c is 1.2101(c), 1.2161, 1.2225, 1.2291, 1.2319(d), 1.2361.
The mechanism of this weakening of the localization is argued in Section 2.4.3.

In order to avoid the oscillation around the boundary, we focus on the tail of the
solution. In Fig. 2.10, the oscillation seems to appear when the tail loses its flat part.
Indeed, at Af = 0.2244 where its flat part is around [0, 60] and Af = 0.1254 where it
is around [0, 40] the oscillation does not appear. We conclude that the disappearance of
the flat part, which may occur when Af < 1.0, is a precursor of the oscillation at the
boundary. We call this decrease of the flat part “the weakening of the localization”, and
will discuss this mechanism in the next section.

We found that there exists a specific value c for each Af such that the flat part
recovers. Figure 2.11 shows the change in the tail of the solution while the continuation
with c (Af is fixed to 0.0496). At c = 1.2319 the flat part recovers to be [0, 80]. This
continuation is the step (ii), and the “appropriate” value is c = 1.2319.

This “appropriate” value of c varies with Af . In other words, the “appropriate”
relation c = c(Af ) defines a path on the two-dimensional parameter space c-Af . Along
this path the solution has always a flat part. In order to trace the solution along the
path c = c(Af ), however, it is necessary to express the condition c = c(Af ) numerically.
It can be easily done with the following integral value:

El =

∫ l

0

u(x)dx, (2.7)

26



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.2  1.21  1.22  1.23  1.24  1.25

e
d
g
e
 i
n
te

g
ra

l 
E

l

phase speed

(c)

(d)

Figure 2.12: (Color online) El is plotted against the traveling velocity c. El measures
how long the tail of the solution is. El(c) cross the line El = 0, and this point is labeled
(d). This crossing behavior is also argued in Section 2.4.3.

where l is chosen to be in the tail part. The change of El in the continuation men-
tioned above is shown in Fig. 2.12. The relation c = c(Af ) is now implicitly defined by
El(c, Af ) = 0. Then we can continuate the branch u(x; c(Af ), Af ) with Af . This con-
ditional continuation can be implemented by a (N + 1)-dimensional arc-length method,
and we have succeeded to trace the solution till Af = 0 within a numerical accuracy.
This solutions is labeled as (e) in Fig. 2.8, and its profile is displayed in Fig. 2.13. Its
propagation velocity c0 = c(0) equals to 1.2143. This is the same solitary-wave solution
as that shown in fig.4c of [3].

2.4.3 Why the tail of the solution becomes longer?

In this subsection the mechanism of the weakening of the localization is considered. This
weakening behavior enable us to obtain an implicitly defined path in Af -c space. In order
to generalize this technique to more complicated systems such as channel flows or pipe
flows, it is necessary to investigate its details more precisely.

A steady localized solution u(x) to Eq. (2.6) satisfies the ordinary differential equation:

d4u

dx4
+

d2u

dx2
+ (u− c)

du

dx
+ AfH(x)u = 0. (2.8)
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Figure 2.13: (Color online) The profiles of TWS to Eq. (2.5). It takes non-zero value on
a region [90 : 115], which is much wider than Ω = [97 : 103].
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Here hats and primes are omitted for convenience. Regarding x as a virtual time, this
equation defines a four-dimensional dynamical system. Then a localized solution u(x) to
Eq. (2.6) corresponds to a homoclinic orbit connecting the saddle point of this dynamical
system, and the tails of the solution describes the asymptotic behavior of the homoclinic
orbit from and to the saddle point. It should be noted that this reinterpretation has less
compatibility with the fixed boundary condition u(0) = u(L) = 0 since we now consider
the asymptotic behaviors in an infinite region (−∞,∞) instead of the bounded region
[0, L]. However the following arguments are all valid whenever u(x) decays fast enough
to be negligible comparing with the truncation error.

This dynamical system has a trivial fixed point (saddle point)

(u, ∂xu, ∂xxu, ∂xxxu) = (0, 0, 0, 0)

corresponding to the solution u(x) = 0 to Eq. (2.6). The localized solution u(x) can
be regarded as a homoclinic trajectory of this trivial fixed point. Then the tail of the
localized solution can be analyzed by the eigenvalues of Jacobi matrix of this dynamical
system at the fixed point. Since H(x) equals to 1 in the tail region, the eigen equation
of the Jacobi matrix becomes as follows:

λ4 + λ2 − cλ+ Af = 0. (2.9)

This quartic equation has two real roots λ0, λ1 and two complex roots λ±. Since we focus
on the case Af � 1, we first consider the case Af = 0, and then a perturbation expansion
about Af .

When Af = 0, the eigenvalues are λ0 = 0 and three roots of a cubic equation λ3 +
λ− c = 0. This cubic equation has a real root λ1 and two complex roots

λ± = (−λ1 ± i
√
3λ2

1 + 4)/2.

The real nonzero root λ1 is positive when c > 0 and negative when c < 0, and here we
consider the c > 0 case. Then the left and right tails of the solution can be written as
follows:

uL(x) = A1e
λ1x, (2.10)

uR(x) = A+e
λ+x + A−e

λ−x. (2.11)

The coefficients A1, A+, A− are determined in the nonlinear region. Since exp(λ0x) does
not goes to zero as x → ±∞,u(x) cannot contain this term.

When 0 < Af � 1 the zero eigenvalue is modified as λ0 = Af/c + O(A2
f ). Then the

left tail of the solution can be written as follows:

uL(x) = A0e
λ0x + A1e

λ1x. (2.12)

The coefficients A0 and A1 are also determined in the nonlinear region, and depend both
on c and Af . Each of the terms in Eq. (2.12) defines a tail whose characteristic length is
1/λ0 and 1/λ1, and the realized tail is a superposition of them. As Af goes to zero, the
characteristic length 1/λ0 = c/Af diverges. Thus the modified eigenvalue λ0 is the origin
of the weakening, i.e., the long tail.
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Next, we consider why we can obtain a solution with a short tail by the condition
El = 0 for every small Af . Using Eq. (2.12), El can be written as follows:

El '
∫ l

−∞
uL(x)dx =

A0

λ0

eλ0l +
A1

λ1

eλ1l. (2.13)

Since 1/λ0 � 1/λ1 when Af � 1, the first term in Eq. (2.12) is dominant except for a
region near the nonlinear region. Thus the first term in Eq. (2.13) is rather dominant for
an appropriate l. Then El roughly measures A0, and El = 0 is realized when A0 is zero
where the tail by λ0 disappears. A more precise argument is also possible. The condition
El = 0 can yield the condition of A0 as follows:

A0 = −λ0

λ1

A1e
(λ1−λ0)l

= −Af

cλ1

A1e
(λ1−λ0)l +O(A2

f ).

(2.14)

Thus A0 is not exactly zero while Af > 0. However, since λ0 goes to zero as Af → 0, A0

satisfying this condition also goes to zero.
The essence of the above arguments is the existence of the zero eigenvalue λ0 and

its modification due to the damping. The modified zero eigenvalue introduces another
degree of freedom in the determination of tails of solutions. Calculating the eigenvector
of the zero eigenvalue, it corresponds to a uniform level raising of the velocity field,
u(x) 7→ u(x) + δc, so it corresponds to Galilean invariance. In other words, the reason
why this small eigenvalue appears is the breakdown of Galilean invariance. This fact
indicates that such the weakening of the localization is expected to occur whenever a
stream-wisely localized TWS is going to be obtained in Galilean-invariant systems by our
method.

At last, we conclude this section with an error estimate. Since the continuous param-
eter dependence on c disappears when Af = 0, the continuation becomes unstable as Af

goes to zero. Although the point Af = 0 is a singular point in this continuation problem,
Af can get an arbitrary value as small as the numerical accuracy allows. Indeed, we get
Af ∼ 10−10 in the conditional continuation. This is as small as a threshold for Newton
method, εNewton. Then the continuated solution can be regarded as a solution to KSE
within an numerical error εNewton + Af‖u‖.

2.5 Concluding Remarks

In this paper we introduce the damping filter method for obtaining spatially localized
solutions. We adopt our method into two fundamental cases. First, in the Section 2.3,
we consider localized solutions to Swift-Hohenberg equation (SHE). Then our method can
not only reproduce known solutions, but also obtain another spatially localized solution
which belongs to a closed isolated solution branch. Next, in the Section 2.4, we consider a
stream-wisely localized traveling-wave solution (TWS) to Kuramoto-Sivashinsky equation
(KSE). In this case, since the propagation velocity c is unknown, we have to continuate
the solution with c and the filter amplitude Af . In order to make continuation one-
dimensional we introduce an implicit condition about the tail of solutions. Here we
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reinterpret these result from a general point of view in order to adopt our method into
more general cases.

The most interesting result in the Section 2.3 is the connection between two distinct
solution branches. We show that two solution branches are connected with each other
through the continuation with the filter amplitude Af . We first introduce the filter term
−AfH(x)u in order to obtain a guess at spatially localized solutions. However, it works
as an excitation when Af < 0. This excitation only works near the localized region
where both u(x) and H(x) are non-zero. This causes an instability which may lead
another localized solution. Indeed, we obtain the solution (d) in Section 2.3 only by the
continuation with Af . This spatially selective excitation mechanism has an advantage
in searching spatially localized solutions. The result for SHE indicates that if another
localized solution exists near the localized solution already obtained in the phase space,
they may connect through this excitation mechanism. So our method may enable us to
search localized solutions automatically.

In the Section 2.4, we have dealt with a spatially localized TWS to KSE. The main
issue of this section is a treatment of the invariances. The damping filter term breaks
the translational and Galilean invariances, but they recover when the filter disappears.
This singular behavior is avoided by imposing the condition c = c(Af ) by the implicit
condition El(c, Af ) = 0.

This artificial condition can be reinterpreted as a critical line of the orbit-flip bifurca-
tion [13]. For fixed Af an orbit-flip bifurcation occurs when A0, defined in Section 2.4.3,
changes its sign with increasing c, see Fig. 2.9 and Fig. 2.11. Moreover, if Af � 1, the
relation A0 ∼ Af ∼ 0 holds on c = c(Af ) because of Eq. (2.14). Therefore we can infer
that the condition c = c(Af ) corresponds to the critical line of the orbit-flip bifurcation
in the four-dimensional ODE system Eq. (2.8).

To implement the critical condition directly, we can utilize an algorithm for tracking
the orbit-flip bifurcation in AUTO [55]. This algorithm replaces the condition El = 0
with an orthogonal condition to keep the tangency between the homoclinic orbit and
the leading eigenspace. Moreover, this method clarifies the mathematical meaning of
our condition. However, since it is designed for a homoclinic orbit to ODE, it might be
difficult to apply it for spatially two- or three-dimensional PDE systems. We thus expect
that our method using El will be more suitable for the dynamical systems approach to
turbulence.
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Chapter 3

Ejection-Jet cycle: self-sustaining
interface

3.1 Introduction

We focus on interfaces, which has critical importance to understand inhomogeneous sys-
tems since most properties changes along it. However, interfaces themselves can be com-
plicated in strongly nonlinear inhomogeneous state. Turbulence-laminar interface appears
most flows, e.g. boundary layers, jet, wake, and so on. In three dimensional flows, the
dynamics of the interface is spatio-temporally chaotic [50]. It is sometimes even hard to
detect the interface since they have intricate spatial geometry. These complexities pre-
vent us from detail studies of interfaces. To avoid this problem, we use a two-dimensional
channel flow, where interfaces become much quiet than those in three-dimensional flows.
This will be one of the most simple example of localized chaotic coherent structures in-
duced by spatial inhomogeneity.

This chapter consists of four sections. The Section 3.2 describes the simulation setting
and shows an energy balance analysis. It is used to define a coherent structure, which
we call chaotic interface. In Section 3.3, we confirm the self-sustainability of the chaotic
interface using “filtered” simulations. Here we propose a self-sustaining mechanism of
the chaotic interface, called ejection-jet cycle. A mechanism of determining the traveling
speed of the interface is also argued. The last Section 3.4 give a short summary of this
chapter.

Turbulent side Laminar side

Figure 3.1: (color online) A snapshot of the vorticity deviation. ζ varies from −25 to
25 on the walls, and regions ζ > 1.5 (ζ < −1.5) are colored by the same color of ζ = 1.5
(ζ = −1.5).

32



3.2 chaotic interface structure

Two-dimensional laminar channel flow has the same critical Reynolds number Rec as
three-dimensional one. In 2D case, the TS-wave solution appearing at this critical point
bifurcates into a weak chaotic state, which we call chaotic TS-wave, as its Reynolds
number increases [4, 8, 9, 12]. In this paper, we consider a channel which contains both
turbulent and laminar regions.

We adopt a frame of reference moving at a speed cI against the laboratory frame
for CI not to march, and call it interface frame. The streamwise and the wall-normal
coordinates are denoted by x and y, respectively in this interface frame, and this system
is non-dimensionalized by the half width of the channel, so that y ∈ [−1, 1]. The velocity
field in this frame is denoted by u. We deal with a very long box [0, L = 20π]× [−1, 1] to
emulate the dynamics realized in an infinitely long channel. To clarify the direction we
call the left side of Fig. 3.1 as the turbulent side, and the right side as the laminar side.
Since the walls move in the interface frame, the non-slip boundary conditions become

u(x,±1) = −cIx̂,

where x̂ denotes the x directional unit vector. The Reynolds number Re is fixed to 8000
in this paper to exceed the critical value Rec = 5772 of stability of the laminar flow.
We have confirmed that the qualitative nature of CI reported below does not change for
Re = 6000, 7000, 9000, and 10000.

To analyze the dynamics of this process in a finite computational box, we have to keep
supplying laminar flow since the turbulent region becomes wider. We resolve this problem
using the damping filter [52] in the interface frame. We introduce a linear damping term
into the incompressible Navier-Stokes (NS) equation to reproduce a laminar Poiseuille
flow

UL = (1− y2 − cI)x̂

in a small region Ω = [0, 1.4]× [−1, 1]:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u−Hσ2,Ω(x) (u−UL) ,

Hσ2,Ω(x) =
1√
2πσ2

∫
Ω

dx′ exp

(
(x− x′)2

2σ2

)
,

where the last term of NS equation is the damping filter term. The periodic boundary
condition is imposed in x-direction. Since cI is larger than the phase velocity of the
chaotic TS-wave, this damping term laminarizes it, and the laminarized flow returns
upstream (x = L) due to the periodic boundary condition. We use the streamfunction-
vorticity scheme, and thus the state variable is the z component of vorticity of the velocity
deviation,

ζ = (∇× (u−UL))z .

We used Fourier(x)-Chebyshev(y) spectral method for spatial discretization, and explicit
(convection term) and implicit (viscous term) Euler schemes for temporal evolution.

There were several steps to determine cI . First, we created a uniform turbulent state
in the laboratory frame using an initial condition

u(x, y, t = 0) = ε(1− y2)2 cos(kx)
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like as [9], where ε = 0.3 and k = 2π/L. Second, we created a turbulent puff by executing
short simulation in the laboratory frame with the damping filter Ω = [0, 20] ∪ [40, L] ×
[−1, 1]. Third, we executed non-filtered simulation to estimate the cI , This simulation
suggests cI ' 0.8. Last, we executed filtered simulation discussed above with cI = 0.8.
Then we adjusted cI for the interface not to march, and this procedure yields cI = 0.855.

In this setting a turbulent-laminar interface is simulated permanently. In Fig. 3.1,
there are three regions: weak turbulence (WT, x . xl), chaotic interface (CI, xl .
x . xr), and laminar (xr . x) regions. Moreover, the chaotic interface contains dynamic
inner structures, a meandering bulk structure and strong wall shear layers. The weak
turbulence consists of spatially modulated chaotic TS-waves [4].

To focus on its streamwise inhomogeneity, we consider the y-averaged energy balance
equation:

∂E

∂t
+ ∂x(Ju + Jν) = Pp + Pν −Dν + F. (3.1)

The energy is defined in the interface frame:

E(x, t) =

∫ 1

−1

dy‖u‖2/2.

Since the walls move, there is an energy injection due to the viscosity on the walls

Pν = P+
ν + P−

ν ,

where
P±
ν = ∓cI∂yux|y=±1/Re

in addition to the bulk viscous dissipation

Dν =
1

Re

∫ 1

−1

dy
(
2 (∂xux)

2 + (∂xuy)
2 + (∂yux)

2) . (3.2)

The term

Pp(x, t) = −
∫ 1

−1

dy (u · ∇) p

denotes the energy injection due to the pressure gradient, and takes both positive and
negative values. Pp > 0 means the flow accelerated by the pressure gradient, and Pp < 0
does the flow against the pressure gradient. Pp balances almost with the gradient of the
energy flux ∂xJu, where

Ju =

∫ 1

−1

dyux‖u‖2/2,

and their spatial means are smaller than those of the viscous terms Pν and Dν . The flux
due to the viscosity Jν is negligible.

F = −
∫ 1

−1

dyHσ2,Ωu · (u−UL)

is the energy damping by the filter term.
To argue the energy balance of the chaotic interface, we give a definition of the sepa-

ration points, xl and xr. We use the maximum point of the time-average of Ju, xl = 18.5,
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Figure 3.2: (color online) Time series of each integrated value in Eq. (3.3). They are
weakly chaotic. Dotted lines of each color denote the mean values.
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Figure 3.3: (color online) A schematic view of the ejection-jet cycle.

as the left side of CI. The right side xr = 35 is determined by the decay of the wall vor-
ticity. It will be well displayed in Fig. 3.5. Taking spatial integration of Eq. (3.1) over
[xl, xr], we obtain the following equation:

dĒ

dt
= J (L)

u − J (T )
u + P̄p + P̄ν − D̄ν , (3.3)

where the bar ·̄ denotes the integral over the interface, and J
(L)
u = Ju(xr), J

(T )
u = Ju(xl)

respectively. Since the interface marches faster than the mean flow, the energy flux of
the laminar flow is negative in the interface frame. In other words, the chaotic interface
withdraws the energy from the laminar flow by invading them. The time averages 〈·〉
of these terms are calculated over t ∈ [0, 300]:

〈
J
(L)
u

〉
= −0.074,

〈
J
(T )
u

〉
= −0.072,〈

P̄p

〉
= 2.4 × 10−3,

〈
P̄ν

〉
= 1.08 × 10−2,

〈
D̄ν

〉
= 1.09 × 10−2, and the summation of

them is almost zero:
〈
dĒ/dt

〉
= 7.5 × 10−5 ≈ 0. The time series of these values are

displayed in Fig. 3.2. Each of these variables Pp, Pν , and J
(T )
u −J

(L)
u behave as chaotically

amplified periodic motions. The periodicity strongly suggests the existence of a self-
sustaining mechanism of the interface structure, and the chaotic amplitude suggests that
its dynamics is effectively low-dimensional.

3.3 ejection-jet cycle

Here we give a concrete description of the self-sustaining mechanism of the chaotic inter-
face. This sustaining process is constituted by the interaction among vortex ejections on
the walls and the meandering jet in the bulk region. This collective dynamics is further
split into four steps as summarized in Fig. 3.3. In the step (i), a pair of sheet-like vor-
tices is created by the meandering jet. This process is taken place around x ' xr (see
Fig. 3.5). In x > xr the jet becomes straight, and the creation of vortex pairs ceases.

The step (ii) is the convective growth of the vortex pair. The thin vortex pair gen-
erated in the step (i) grows up into an intense vortex ejection. To display this process,
we use the intensity of the vorticity on the lower wall ζL(x, t) = ζ(x, y = −1, t), which is
displayed onto x-t plane in Fig. 3.4. Two dotted lines in this figure indicate that there
are two traveling velocities except for cI . The black dotted line guides the minimum of
ζL around x ∈ [20, 30] to measure the traveling velocity cv of the vortex pair, and this
line indicates cv ' 0.52. Since we define the velocity in the laboratory frame, positive cv
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Figure 3.4: (color online) The vorticity at the lower wall ζL(x, t) = ζ(x, y = −1, t).
Black dotted line guides the minimum of ζL(x, t) (deep blue lines) around x ∈ [20 : 30].
The slope of this line indicates that local minimum points move as xmin = c′vt ' −0.33t,
and thus they move with cv = cI − c′v ' 0.52 in the laboratory frame.

37



means that the vortex pair goes to the laminar side in the laboratory frame, though it
moves to the turbulent side in the interface frame since cv − cI < 0. The gray dotted line
indicates the traveling velocity of weak turbulence cw = 0.38, which is consistent with
the previous work [4].

The step (iii) is the vortex ejection process, which excites the jet and makes it meander.
This ejection occurs on the turbulent side of the chaotic interface, namely around 22 <
x < 28. A very strong shear accompanies this vortex ejection process. The wall unit
lτ is estimated at 2.1 × 10−3, and the friction Reynolds number Reτ = l−1

τ is about
460. This means that the width of the interface is 5000 times larger than lτ . Therefore,
we should regard this interface structure as a large-scale motion in the wall-turbulence
context. After the intensive ejection process, the vortex structures are swept to turbulent
side, and this corresponds to the leak of the energy 〈∆Ju〉 from the interface to the weak
turbulence region.

The step (iv) is an energy transportation taken by the meandering jet. Most part
of the fluid goes to the turbulent side in the interface frame since the invading speed
cI = 0.855 is faster than their traveling speeds, but the meandering jet goes to the
laminar side even in the interface frame. The jet is strongly meandering around the
ejection (x ∼ 25) because of the alternate ejections on the lower and upper walls, and it
becomes straight as leaving from the ejection. Then the cycle is closed, and we call this
cycle an “ejection-jet” cycle (EJC).

To complete the EJC model, let us consider how the invading speed cI is determined.
There are two dynamical processes, the convective growth of the vortex pair and energy
flux taken by the jet. The spatial growth of the vortex pair on the lower wall is displayed
in Fig. 3.5. The maximum absolute value of the vorticity ζ is realized around x = 25,
where the intensive ejection of the step (iii) occurs. The temporal minimum value of
ζ(x, y = −1) changes linearly around x ∈ [25, 35] as guided by a dotted line. Though
the yielded graph is linear, it should be understood as an algebraic growth due to the
nonlinear process of the step (ii). Since the vortex pair moves at the constant speed
cv in this region as shown in Fig. 3.4 (black dotted line), this spatial algebraic growth
means a temporal algebraic growth of the minimum vorticity ω of the vortex pair in the
Lagrangian viewpoint:

ω = −α(x− x0) = α(cv − cI)(t− t0). (3.4)

In addition, we assume the minimum of the vorticity ωmin ≈ −25, which is realized around
x = 25 on the lower wall, is independent of cI . It should be determined only by Reynolds
number. Then Eq. (3.4) gives a constant width of CI: ∆x = ωmax/α. The difference
cI − cv is regarded as the relative speed between the jet and the vortex pair, and thus it
characterizes the mean shear exerting on the vortex pair. This means that the jet loses
its energy for enhancing the vortex pairs. Here we can summarize the mechanism of the
cI determination. If cI is too large, this energy loss prevents the creation of new vortex
pairs, and thus cI decreases. Conversely, if cI is too small, the energy loss decreases, and
thus the jet is accelerated. These two processes yield spontaneous determination of cI .
Quantitative validations of these assumptions are left for future works.

Let us review the EJC model by introducing filtered simulations. We make other
three runs in which the filtered region Ω is set to damp one of the specific processes in
the EJC, namely, (a) weak turbulence, (b) vortex ejection, and (c) vortex pair excitation.
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Figure 3.5: (color online) Spatial growth of the vorticity at the lower wall ζL(x, t) =
ζ(x, y = −1, t). A snapshot ζL(x, t = 58), temporal mean ζmean(x) = 〈ζL(x, t)〉t, max-
imum ζmax(x) = max0≤t≤T ζL(x, t), and minimum ζmin(x) = min0≤t≤T ζL(x, t), are dis-
played with T = 100.
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These filtered simulations help us confirm that these four steps are necessary and minimal
components. A snapshot of the previous simulation is used as the initial condition of
these filtered simulations. Animations visualized by the turbulent vorticity are included
in the supplementary materials.

Case (a): we set Ω(a) = [0, 22] × [−1, 1] to damp the weak turbulent region, and to
confirm the self-sustainability of the chaotic interface. In this setting we yield a permanent
chaotic interface, whose invading speed and the spatial structure are hardly changed.
We conclude that the following weak turbulence is additional as assumed in the EJC
model. Furthermore, the selection process of cI and the spatial structure is completely
closed in the chaotic interface. In other words, the weak turbulence region hardly affects
the selection process.

Case (b): we set Ω(b) = [0, 30] × [−1, 1] to confirm that the jet is maintained by
the acceleration due to the vortex ejection. If the meandering jet is self-sustaining, this
simulation could yield a permanent finite amplitude solution. However, the laminar flow
has occupied whole region. In this sense, the meandering of the jet is only a component
mechanism of this self-sustaining process, and is not self-sustaining.

Case (c): we set Ω(c) = [30, 20π]× [−1, 1] to obstruct the step (i). In this case the non-
filtered region of the chaotic interface (20 < x < 30) keeps alive on the same position until
t . 20, and then it travels to the turbulent side. This time lag corresponds to the growth
time Tv of the vortex ejection, and thus this result also supports the EJC model. After
a long transient, another chaotic interface is reconstructed around 15 . x . 27. Their
invading speed and spatial structure are same as the previous one. This result insists that
the chaotic interface structure is robust while a laminar region exists. This robustness is
an important issue for the pattern selection problem, but the current framework of the
dynamical systems approach lacks tools applicable for settling this issue.

3.4 Concluding Remarks

We have investigated the turbulent-laminar interface in two-dimensional channel flow,
and proposed a novel self-sustaining mechanism, ejection-jet cycle (EJC). In a technical
viewpoint, the filtered simulation has been introduced, and utilized to confirm the self-
sustainability of EJC.

Comparing from simple interfaces like shocks in compressible fluids, the chaotic in-
terface (CI) has internal dynamics. It is hard to capture such dynamical properties in
current approaches to interfaces. For example, there is a classical heteroclinic orbit tech-
nique [19], which has been developed to analyze effectively one-dimensional interfaces.
This method rephrases the spatial structure of the interface into a heteroclinic orbit of
a corresponding low-dimensional dynamical system, and thus it is incompatible to time-
dependent interface. Our approach to treat the local self-sustainability directly by the
filtered simulations will be an alternative approach to attack dynamical interfaces. It is
well compatible with the coherent structure approach since the interface itself would be
a coherent structure.
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Chapter 4

General Conclusion

4.1 Damping filter method

In chapter Chapter 2, we have introduced the damping filter method for obtaining spa-
tially localized solutions. The damping term works on a filtered region Ω, and vanishes
out of Ω (unfiltered region). An exact solution of this filtered equation is connected to
a solution of original equation by executing a continuation. The damping filter term en-
ables us to extract local dynamics as a localized solution. This method has been applied
to Swift-Hohenberg equation and Kuramoto-Sivashinsky equation. Technical issues in
the continuation process have been successfully resolved.

Since localized exact solutions provide abundant information about local dynamics, we
intend to apply this filtering method for mature turbulence in which the techniques used
in weak turbulence to obtain localized solutions may not expect to work well. Moreover,
different from approximate techniques, e.g. proper orthogonal decomposition [7] and
Koopman mode decomposition [21], the exact solutions allow us to analyze their stabilities
and origins using bifurcation diagrams. Such global information helps us understand
when and why the local dynamics appears and even how to control it. It should be noted
that such localized exact solutions sometimes do not exist in mature turbulence because of
the properties of its local dynamics. Even for these cases, however, the filtered simulations
can be of advantage to seeking localized dynamics embedded in mature turbulence as
shown in Chapter 3.

4.2 Ejection-Jet cycle

We have investigated the novel self-sustaining mechanism, we call ejection-jet cycle (EJC).
EJC is realized in two-dimensional channel flows at relatively high Reynolds number
Re = 6000 to 10000. This self-sustaining mechanism describes a synchronized interscale
collective dynamics: This cycle consists of the meandering jet corresponding to outer-
wall dynamics of the outer scale and the vortex pairs corresponding to the inner-wall
dynamics of the wall scale. While Waleffe’s self-sustaining process [11] utilizes an absolute
instability, the EJC model does a convective instability, which needs sufficient space to
grow up. That is, the convective instability makes it possible for the structures of the two
different scales to interact with each other. This two-scale interaction mechanism may
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be applied for the large-scale motion in three-dimensional wall-turbulence [22], although
the chaotic nature of CI is far weaker than that of three-dimensional wall-turbulence.
We should try to combine such a convective interaction scenario with the wall-turbulence
theories, namely the mixing length picture and/or the attached eddy picture, and this
remains as our future works.

In the damping filter method argued in Chapter 2, the damping filter is finally re-
moved. However, we cannot obtain an exact localized solution to Navier-Stokes equation
corresponding to CI because CI have to feed the weak turbulence region. This additional
“role” uncloses the self-sustaining dynamics of CI. Spatially-localized coherent structures
can be represented by localized exact solutions to exact, i.e. unfiltered Navier-Stokes
equation if they are governed by closed dynamics. We call them “isolable” coherent
structures, and have shown that EJC is locally self-sustaining but is not isolable. We
rather expect that such unclosed local self-sustaining dynamics is ubiquitous in devel-
oped and mature turbulences where hypothetical coherent structures, i.e., vortices play a
role in energy or momentum cascades in scale or physical spaces. Therefore, the filtered
simulation is expected to be available to isolate such unclosed dynamics.

4.3 Functional Coherent Structures

Two-dimensional channel is one of simple examples where the local dynamics is not iso-
lated. EJC robs energy from the laminar flow, and gives some energy to the following
weak turbulence region (WT). The filtered simulations reveal the self-sustainability of the
chaotic interface (CI) and its minimal mechanism, i.e. ejection-jet cycle. The chaotic
interface should be regarded as a spatially-localized coherent structure, and thus this
system can be understood in the dynamical systems viewpoint. However, strictly speak-
ing the dynamics of CI is not isolated and significantly different properties from localized
coherent structures discussed in the exact solution based dynamical systems approach.
Rather, these properties are significantly similar to the fundamental processes of Richard-
son’s energy cascade and the log layer as we discussed on mature turbulence in the
introduction. Two different type of coherent structures, i.e. CI and WT are spatially
segregated, and they make up the one-sided interaction. Thus, this system is categorized
in mature turbulence.

We introduce “functional” coherent structure (FCS) to denote the chaotic interface
(CI). Since CI has the “role” in addition to the unclosed dynamics as noted above and
the role represents some “function”, we adopt these properties as the definition of FCS.
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In general, we use a functional coherent structure to describe a locally self-sustaining
coherent structure of which local dynamics is unclosed due to its additional function. In
this sense, the FCS-based dynamical systems approach can be called role-based approach.
FCS is characterized by its additional role: The role of CI is to pump energy from the
laminar flow to the following weak turbulence region.

While the turbulence-laminar interface in two-dimensional channel flow is a single
FCS system, we can consider multiple FCS systems where FCSs work cooperatively, and
we expect that the Richardson’s cascade is one of them. Although the original cascade
picture is discussed in the scale (wave-number) space, recent studies try to detect its
fundamental process as a spatially localized dynamics. To realize this attempt, we have
to solve several technical and theoretical issues. One large problem is the creation and
annihilation of FCS. The vortex structures corresponding to the fundamental process
of Richardson’s cascade seem not to be persistent. Such a coherent structure repeats
creation, annihilation and even swept away. We expect that these fragile FCS could
be represented with some Lagrangian picture and local saddle-like phase space structure.
These expectations will be confirmed in our future works.
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