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Abstract

The purpose of this thesis is to present our recent studies on the exact large N expansion of

the partition function of the N = 4 U(N) circular quiver superconformal Chern-Simons theories.

These theories are known to describe the N stack of the M2-branes in the M-theory on various

orbifold. With the help of the formal relation between the partition function and a quantum

statistical system of N -particle ideal Fermi gas discovered by Marino and Putrov, we achieved

to determine the all order perturbative corrections in 1/N to the partition function in large N

expansion.

We also analyzed the non-perturbative effects in 1/N . In the context of the AdS/CFT corre-

spondence, these non-perturbative effects in 1/N can be interpreted quantitatively as the effects

of fundamental M2-branes winding non-trivial three-cycles in the dual eleven dimensional back-

ground geometry, and thus called the instantons. We determined the explicit expression of several

instanton coefficients and found the following interesting property. If the quantum number of two

different kinds of instantons satisfy particular rational relation, they exhibit the same exponential

suppression in 1/N . We discovered that the individual instanton coefficient is always singular at

the coincidence, while the divergences are always precisely cancelled in the net coefficients.

Restricting ourselves onto one particular theory among the N = 4 theories which describes the

N stack of the M2-branes probing the orbifold (C2/Z2×C2/Z2)/Zk, we also achieved to determine

the coefficients of all kinds of instantons and at arbitrary quantum numbers. We finally found that

the instanton coefficients are completely reproduced by the free energy of the refined topological

string theory.
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1 Introduction

Quantum formulation of the gravity is a long-standing problem in the theoretical physics. One of

the strong candidates is the superstring theory, where a point like degree of freedom is replaced

with the fundamental string extending in (1+1) dimension. In string theory the problems on the

ultraviolet divergence, appearing in the field theory approach toward the quantum gravity, are

avoided.

The type IIA string theory can be formulated by first giving a background geometry, a clas-

sical solution in the ten dimensional type IIA supergravity, and describing the embedding of a

string worldsheet into the bulk spacetime by a two dimensional supersymmetric sigma model.

The interactions among the strings can be incorporated as the non-trivial topology of the en-

tire worldsheet. This formalism is perturbative in the coupling constant gs of string interaction.

However, it was suggested [1] that we can regard gs as the size of the eleventh extra dimen-

sion. Various other types of the string theory with critical dimensions can be also understood

as the different compactifications of the eleven dimension. In this sense, the quantum version of

the eleven dimensional supergravity, called the M-theory, will provide the non-perturbative and

unified formulation for the perturbative string theories.

To understand the M-theory, it will be helpful to focus on the solitonic objects in the eleven

dimensional supergravity. There are two kinds of half BPS solitons which are extending in (1+2)

dimension and (1+5) dimension respectively and called the M2-brane and the M5-brane. Various

extending objects in string theory, the fundamental string and the Dp-branes, can be interpreted

as the compactification of these M-branes with or without winding in the eleventh direction. In

the string theory, a stack of D-branes can be described by some field theory, which we shall call

the worldvolume theory of the branes. The fields living on the branes can be interpreted as the

fundamental strings ending on the branes, and the Lagrangian of the worldvolume theory will

be obtained by studying the interactions of these open strings. Interestingly, although the string

theory is formulated in the perturbation, these field theory themselves can be analyzed for finite

coupling constant and thus expected to exist non-perturbatively. Hence it is natural to expect

that the M-branes can also be described by some field theories, which will play important roles

in understanding the M-theory.

Different from the case of the D-branes, so far we do not know the origin of the fundamental

degrees of freedom living on the M-branes. Thus the worldvolume theory of the M-branes have

been mysterious for long time. However, the symmetries preserved by the M-brane solitons in

the eleven dimentional supergravity and the relation to the D-branes under the compactification

provide many hints for the candidates of such field theory. Recently the worldvolume theory on

a stack of N M2-branes was finally proposed as a particular class of the U(N) superconformal

Chern-Simons matter theory [2, 3, 4, 5].

There have been various consistency checks for the proposals. The most striking one among
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them would be that the partition function of the theory behaves in the large N limit as logZ(N) ∼
N3/2. This reproduces the behavior of the gravitational entropy of the M2-branes estimated in [6].

The correspondence is stated more concretely as the following AdS4/CFT3 correspondence [7].

Consider a stack of N coincident M2-branes. Then the correspondence says that, the free energy

of the worldvolume theory for this setup should coincide, in the limit N →∞, with the action of

the classical supergravity evaluated on the AdS4 background which is the near horizon geometry

of this setup. It was shown that the coefficient in front of N3/2 is also precisely consistent with

the calculation in the gravity side, in accordance with this correspondence.

Having the concrete worldvolume theory on the M2-branes in our hand, how can we utilize

these theory to understand the M-theory? One idea is the extension of the AdS4/CFT3 corre-

spondence. In the original correspondence the limit N →∞ is required to suppress the curvature

of geometry so that the classical approximation for gravity will be justified. Conversely, it is

natural to expect that the 1/N corrections in the worldvolume theory correspond to the quantum

corrections to the classical supergravity. Indeed this naive idea have been supported by various

computations in the case of the D3-branes.

In our recent works we studied the 1/N corrections to the free energy logZ(N) systematically

in various theories of the M2-branes. In a large class of theories which describe the M2-branes on

(C2/Zq×C2/Zp)/Zk, which we shall call the (q, p)k models, we achieved to determine the all order

perturbative corrections in 1/N to the free energy [8]. We also found interesting structure in the

non-perturbative effects [9] in 1/N which will be explained later in this thesis. Moreover, for a

special case q = p = 2 among these theories we also discovered an interesting correspondence [10]

between the non-perturbative effects and the Gopakumar-Vafa formula in the topological string

theory [11]. This implies we can generate the whole non-perturbative expansion for arbitrarily

high order. Hopefully these structures and the quantitative results in the large N expansion will

help us to unveil the M-theory in future.

The thesis consists of two parts other than the appendices. In part I we briefly review the

three dimensional theories which describe the stack of N M2-branes, and the exact computation of

their partition function in the strict large N limit. Note that the review is not fully self-contained.

Various details we have omitted will be found in the references therein. In part II, after reviewing

the systematic method of analysis called the Fermi gas formalism [12], we introduce our recent

works on the exact large N expansion of the partition function. In contrast to part I, we describe

the results in full detail and also append several technical aspects which were omitted in the

original papers.

Note that the exact computation have been rapidly developed in recent years, before and after

the publication of our works. Especially the data for the small k expansion in section 7 and for

finite k in section 8 and 9 were remarkably improved in the independent work [13]. In section 9

we try to explain the guesswork in the determination relying only on the original data, though

one will obtain the same conclusions more smoothly if he/she uses these additional data.
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Part I

Gauge theory on M2-branes

In this part we have reviewed the field theoretical description of the M2-branes, which we shall

call the worldvolume theory of the M2-branes. In the eleven dimensional supergravity, a stack

of M2-branes is described as a half BPS soliton with (1 + 2) dimensional extension. For single

M2-brane the worldvolume theory is given by a simple Nambu-Goto type action, which coincide

with the low energy effective action of the massless modes around the M2-brane soliton solution

in the supergravity.

For a stack of multiple M2-branes, on the other hand, the worldvolume theory must contain

the interacting modes among the M2-branes which are not contained in the naive set of these

massless modes. Such theory have been completely obscure for long time due to the lack of the

picture of the fundamental degrees of freedom on the M2-branes, in contrast to the case of the

D-branes where the fundamental degree of freedom in the worldvolume theory can be understood

as the open strings ending on the D-branes.

Moreover, a computation of the gravitational entropy or the AdS4/CFT3 correspondence for

classical gravity suggests a strange scaling of the degree of freedom on N M2-branes: logZ(N) ∼
N3/2 [6]. This is again in contrast to the N2 scaling in the case of the D3-branes in type IIB

string theory which allows an intuitive way of understanding by the combinatorics for the two

endpoints of a fundamental string.

Another obstacle was associated to the gauge fields on the branes. Since the worldvolume

theory of the M2-branes is the strong coupling limit of that on the D2-branes, the field content

on the M2-branes should also contain the gauge fields. On the other hand, from the study of the

massless modes it follows that there are eight scalars and eight fermions, which correspond to the

Nambu-Goldstone modes of the translations and the supersymmetries broken by the M2-brane

soliton respectively. Hence the additional gauge fields seem to contradict with the remaining (3d

N = 8) supersymmetry preserved by the M2-branes.

In [14] a solution to this dilemma was proposed that there is a Chern-Simons gauge field on

the M2-branes, which do not have on-shell degree of freedom. Based on this idea the method to

realize high supersymmetry in Chern-Simons matter theory have been developed, and finally a

N = 8 superconformal Chern-Simons matter theory was proposed as the worldvolume theory of

two M2-branes [15, 16, 17, 18]. Though these proposal are successful only for two M2-branes, the

worldvolume theories for the stack of N ≥ 3 M2-branes have also been constructed as the U(N)

superconformal Chern-Simons matter theories.

Below we first construct such theories from the quiver diagrams, and also provide two evidences

which support that the theory indeed describe the M2-branes in section 2. In section 3 we show

that the theory have eight dimensional moduli space which can be interpreted as the translation
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Figure 1: A part of a quiver diagram. Each vertex in the quiver diagram is assigned with a vector

multiplet Va, while each edge between the vertex a and the vertex b is assigned with a pair of

chiral multiplet Xab and Yab.

moduli of the M2-branes in the eleven dimensional spacetime. In section 4 we evaluate the

partition function of these theory in the limit N →∞ and reproduce the N3/2 scaling predicted

from the gravity side.

2 U(N) circular quiver superconformal Chern-Simons theory

In this thesis, we shall call a diagram which consist of the set of the vertices and the edges

connecting the vertices like figure 1 as a quiver diagram.1 Given a quiver diagram with a pair of

numbers (Na, ka) on each a-th vertex, we can construct a 3d N = 2 supersymmetric Chern-Simons

matter theory by assigning a U(Na) N = 2 Chern-Simons vector multiplet

Va = (Aa,µ, σa, χa, Da) (2.1)

with the Chern-Simons level ka on the a-th vertex and a pair of N = 2 chiral (matter) multiplets

Xab = (Xab, φab, Fab), Yab = (Yab, ψab, Gab) (2.2)

on each edge connecting a-th vertex and b-th vertex. Here the chiral multiplets are in the bi-

fundamental representation in the gauge group U(Na) and U(Nb) on the endpoints of the edge,

(N̄a, Nb) and (Na, N̄b) respectively.

We especially focus on the circular quivers with M vertices and the uniform rank of the gauge

groups N1 = N2 = · · · = NM = N . In this case it is convenient to call the matter multiplets

Xa,a+1 and Ya,a+1 as Xa and Ya respectively, as in figure 2. The action of these theories consist

of three terms

S = SCS + Smat + Spot, (2.3)

1Usually a “quiver diagram” stands for a diagram which consists of the set of vertices and the arrows connecting

the vertices [19]. In this thesis, however, we always consider the case where any pair of vertices is either connected

by oppositely oriented two arrows or not connected at all. Hence we depict such pair of arrows just by an edge.

8



<

k1

k2k3

k4

kM

V1

V2

V3

V4

VM

X1

X2

X3

XM

Y1

Y2

Y3

YM

<

<
<

<<
<

<

Figure 2: A N = 3 circular quiver with M nodes.

where the first term is the Chern-Simons action of the vector multiplets

SCS =

∫ M∑
a=1

ka
4π

Tr

(
Aa ∧ dAa +

2

3
Aa ∧Aa ∧Aa − χ̄aχa + 2Daσa

)
. (2.4)

while the other two terms are the action for the matter multiplets. In terms of the superfields

they can be written as

Smat =

∫
dθ4

M∑
a=1

Tr(e−VaX†
ae

Va+1Xa + eVaYae
−Va+1Y †

a ),

Spot =

∫
dθ2W + (h.c). (2.5)

Here we choose the superpotential W as

W =

M∑
a=1

1

ka
Tr(YaXa −Xa−1Ya−1)

2. (2.6)

Though we do not use the superspace formalism for the computations in this thesis, we would

like to note that the Chern-Simons action (2.4) can also be written in terms of the superfields

[20]. Hence the action is manifestly invariant under the 3d N = 2 supersymmetry transformation.

This theory also enjoys the N = 2 superconformal symmetry, which follows from the fact that

the superpotential is quartic in the matter fields [20].

Due to the requirement of the gauge invariance and the flux quantization condition, the Chern-

Simons levels are restricted to integers [21]. As we shall see in the next section, the levels also

have to satisfy the following condition

M∑
a=1

ka = 0 (2.7)
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if we require that the dimension of the Moduli space is eight so that the theory can describe

the M2-branes in an eleven dimensional spacetime. In this case the supersymmetry enhances to

N = 3.

On the other hand it is allowed to choose a Chern-Simons level zero ka = 0, where the

Chern-Simons action is absent. Though the corresponding terms in the superpotential (2.6) are

ill defined, we can define a well defined theory by introducing an auxiliary adjoint chiral multiplet

Φa on each vertex with ka = 0 and replace the singular superpotentials with

W̃a = TrΦa(YaXa −Xa−1Ya−1). (2.8)

Above we have chosen the superpotentials just by hand. Actually, if we only require the

N = 2 supersymmetry and the conformal invariance at classical level, an arbitrary quartic term

in Xa, Ya is allowed for the superpotential W . However if we consider a concrete type IIB brane

setup to realize the Chern-Simons terms [22, 23], we can naturally deduce our particular choice

of the superpotential (2.6), including the exceptional cases of ka = 0 (2.8) [3].

10



3 Eight dimensional moduli space

In this section we review the study of the vacuum moduli space of the theory we have defined

in the previous section [3, 24]. We show that there exists an eight dimensional branch of moduli

space if and only if the Chern-Simons levels add up to zero (2.7).

3.1 Generic Chern-Simons levels

Let us write down the bosonic potential terms in the Lagrangian (2.3)

LCS =
M∑
a=1

ka
2π

TrDaσa + · · · ,

Lmat =

M∑
a=1

Tr
[1
4
(σaX

†
a −X†

aσa+1)(Xaσa − σa+1Xa)

+
1

4
(σaYa − Yaσa+1)(Y

†
a σa − σa+1Y

†
a )

+
1

2
Da(−X†

aXa +Xa−1X
†
a−1 + YaY

†
a − Y

†
a−1Ya−1) + F †

aFa +GaG
†
a

]
+

M∑
a=1

[
2iTr

{( 1

ka
+

1

ka+1

)
YaXaYa −

1

ka
Xa−1Ya−1Ya −

1

ka+1
YaYa+1Xa+1

}
Fa

+ 2iTrGa

{( 1

ka
+

1

ka+1

)
XaYaXa −

1

ka
XaXa−1Ya−1 −

1

ka+1
Ya+1Xa+1Xa

}
+ (h.c)

]
+ · · · , (3.1)

where the last three lines in Lmat come from the superpotential (2.6). Integrating the auxiliary

fields Fa and Ga in the chiral multiplets we obtain the following F -term conditions

(ka + ka+1)YaXaYa − ka+1Xa−1Ya−1Ya − kaYaYa+1Xa+1 = 0,

(ka + ka+1)XaYaXa − ka+1XaXa−1Ya−1 − kaYa+1Xa+1Xa = 0. (3.2)

To obtain the D-term conditions we first integrate out the auxiliary fields Da in the vector

multiplet to obtain the following constraints

ka
π
σa = X†

aXa −Xa−1X
†
a−1 − YaY

†
a + Y †

a−1Ya−1. (3.3)

From the first two lines in the potential terms (3.1), the D-term conditions are

Xaσa − σa+1Xa = 0, σaYa − Yaσa+1 = 0 (3.4)

with substitution of (3.3). The vacuum moduli space is the space of the solutions to the F -term

conditions (3.2) and the D-term conditions (3.4) modulo the gauge transformations.
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For simplicity we shall only display the analysis for the abelian cases N=1. We shall also

concentrate ourselves on the branch where Xa, Ya ̸= 0. In this case, the F -term conditions and

the D-term conditions simplify respectively as

F →(ka + ka+1)XaYa = kaXa+1Ya+1 + ka+1Xa−1Ya−1,

D →(ka + ka+1)(|Xa|2 − |Ya|2) = ka(|Xa+1|2 − |Ya+1|2) + ka+1(|Xa−1|2 − |Ya−1|2). (3.5)

Let us estimate the dimension of the moduli space, assuming that the total Chern-Simons

level vanishes (2.7). As commented above, the dimension of the moduli space can be written

schematically as

dim(MU(1)) = 4M − (# of F - and D-term conditions)− (# of gauge d.o.f), (3.6)

where the first 4M is the total number of the matter scalar fields. To count the second ingredient,

it is convenient to rearrange the F -term conditions (together with the complex conjugates) and

the D-term conditions (3.5) as

Kab

(
Xa Y †

a

)
σα

(
X†

b

Yb

)
= 0, α = 1, 2, 3 (3.7)

where σα are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (3.8)

and K is a matrix defined by the Chern-Simons levels as

K =



k1 + k2 k1 0 · · · · · · 0 k2

k3 k2 + k3 k2 0 · · · · · · 0

0 k4 k3 + k4 k3 0 · · · 0
. . .

0 · · · 0 kM−1 kM−2 + kM−1 kM−2 0

0 · · · · · · 0 kM kM−1 + kM kM−1

kM 0 · · · · · · 0 k1 kM + k1


. (3.9)

Under the condition (2.7), the rank of this matrix is rank(K) =M−2, hence the F -term conditions

and the D-term conditions are 3(M − 2) real equations in total.

Next let us count the gauge transformations. Though there are M gauge groups U(1)M

assigned on the vertices of the quiver, it is obvious that no fields transform under the “overall

U(1) gauge transformation”. Moreover, due to the condition (2.7) the corresponding gauge field

Aover =
M∑
a=1

Aa (3.10)
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do not have the own Chern-Simons term coupling to itself but only couple to the other gauge

fields, i.e. (up to the integration by parts)

M∑
a=1

ka
4π

∫
AadAa =

∫
AothersdAover + · · · . (3.11)

This implies that we can dualize the overall gauge field Aover into a free scalar field, which

compensates another U(1) gauge transformation. We conclude that there areM−2 gauge degrees

of freedom in total.

From these arguments the dimension of the moduli space is estimated as

dim(MU(1)) = 4M − 3(M − 2)− (M − 2) = 8. (3.12)

This result is consistent with the number of transverse directions to an M2-brane in eleven di-

mensional spacetime 11 − (2 + 1) = 8, and supports the proposal to describe the M2-branes by

the superconformal quiver Chern-Simons theory. If the Chern-Simons levels do not sum up to

zero, on the other hand, the total number of F - and D-term conditions increases since the rank

of the coefficient matrix K is rank(K) = M − 1. What is worse, there are no reduction of the

gauge degree of freedom discussed above. As a result the dimension of the moduli space would

be smaller than 8. Hence the condition (2.7) is indeed essential for the theory to describe the

M2-branes.

3.2 Vanishing Chern-Simons levels

We need to modify the arguments if the theory contains vanishing Chern-Simons levels ka = 0.

For simplicity we shall only consider the special case

k1 = k, k2 = k3 = · · · = kq = 0, (3.13)

kq+1 = −k, kq+2 = kq+3 = · · · kq+p = 0 (3.14)

with k, q, p ∈ N. We will call this theory as (q, p)k minimal model for the reason explained in

section 6, and study this theory in full detail thereafter. This model is special in the sense that

the supersymmetry enhances from N = 3 to N = 4 [3].

Again assume the abelian gauge groups. First consider the F -term condition for the auxiliary

scalars FΦa in the adjoint chiral multiplets Φa. The potential terms containing these auxiliary

fields are

Smat =
∑

a ̸=1,q+1

iFΦa(YaXa −Xa−1Ya−1) + (h.c.) + · · · . (3.15)

Since there are no Kahler term for the adjoint chiral multiplets, we obtain the δ-function con-

straints by integrating FΦa

X1Y1 = X2Y2 = · · · = XqYq ≡ µ+, Xq+1Yq+1 = Xq+2Yq+2 · · · = XMYM ≡ µ−. (3.16)
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Second we consider the F -term conditions for the bifundamental chiral multiplet. Since the

original superpotential other than W̃a only contains F1, Fq, Fq+1, FM and G1, Gq, Gq+1, GM , let

us first consider the F -term conditions for the other auxiliary fields. From W̃a, we obtain the

following condition for F2 and G2 respectively

Y2(ϕ2 − ϕ3) = 0, X2(ϕ2 − ϕ3) = 0. (3.17)

Here ϕa is the lowest scalar component of the adjoint chiral multiplet Φa. Assuming Xa, Ya ̸= 0

as in the case of non-zero Chern-Simons levels, the two conditions reduce to ϕ2 = ϕ3. Repeating

the manipulation one by one in order, we finally obtain the following conditions

ϕ2 = ϕ3 = · · · = ϕq ≡ ϕ+, ϕq+2 = ϕq+3 = · · · = ϕM ≡ ϕ−. (3.18)

The F -term conditions for the other auxiliary fields Fa, Ga (a = 1, q, q + 1,M) are the slight

modifications of (3.2) due to W̃a. After applying the conditions in our hands (3.16) and (3.18),

only two of the eight conditions are found to be independent:

F1 →
2

k
(µ+ − µ−)− ϕ+ = 0,

Fq+1 → −
2

k
(µ− − µ+)− ϕ− = 0. (3.19)

Third we shall consider the D-term conditions. From Da with a ̸= 1, q+1 we obtain the δ-function

constraints wihch reduce to

|X1|2 − |Y1|2 = |X2|2 − |Y2|2 = · · · = |Xq|2 − |Yq|2 ≡ µ3+, σ2 = σ3 = · · · = σq+1 ≡ σ+ (3.20)

for a = 2, 3, · · · q and

|Xq+1|2 − |Yq+1|2 = |Xq+2|2 − |Yq+2|2 = · · · = |XM |2 − |YM |2 ≡ µ3−, (3.21)

σq+2 = σq+3 = · · · = σ1 ≡ σ− (3.22)

for a = q + 2, q + 3, · · ·M . On the other hand, the D-terms conditions for Da with a = 1, q + 1,

which are again simplified with the help of these results, are

µ3+ − µ3− =
kσ+
π
, σ+ = σ−. (3.23)

In summary

◦ ϕa and σa do not carry independent degrees of freedom.

◦ We have 2q complex scalars Xa, Ya (a = 1, 2, · · · , q) subject to 3(q − 1) real constraints

(3.16) and (3.20), and (q − 1) independent gauge transformations acting on them.

◦ We also have 2p complex scalars Xa, Ya (a = q + 1, q + 2, · · · ,M) subject to 3(p − 1) real

constraints (3.16) and (3.21), and (p−1) independent gauge transformations acting on them.
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Hence the real dimension of the moduli space is again 8 from (3.6)

dim(MU(1)) = 4q − 3(q − 1)− (q − 1) + (4p− 3(p− 1)− (p− 1)) = 8. (3.24)

The concrete expression of the moduli space of the (q, p)k model is determined in [3] as

(C2/Zq × C2/Zp)/Zk. (3.25)
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4 Large N partition function

In this section we review the computation of the partition function Z(N) of the N = 3 U(N)

circular quiver superconformal Chern-Simons theory in the limit of N → ∞. In the first two

subsections we will explain that the partition function of the theory realized on the round three

sphere S3 with unit radius is given by the following finite dimensional integration (which we shall

call a matrix model) [25, 26, 27].

Z(N) =
1

(N !)M

M∏
a=1

N∏
i=1

[∫
dλa,i
2π

e
ika
4π

λ2
a,i

] M∏
a=1

∏
i<j 2 sinh

λa,i−λa,j

2

∏
i<j 2 sinh

λa+1,i−λa+1,j

2∏
i,j 2 cosh

λa,i−λa+1,j

2

. (4.1)

We would like to provide only the basic idea of the localization technique which is the most

essential in the whole derivation and a few sketches for the other parts of the derivation, while

skip almost all the detail of the derivation.2 After that we demonstrate the evaluation of the

matrix model in the large N limit for the case of the simplest quiver {ka}2a=1 = {k,−k}, which is

called the ABJM theory [2, 4].

4.1 Localization technique

Here we shall explain the powerful computational technique in the supersymmetric gauge theories,

called the localization technique [28, 29]. Consider a theory with the field content Φ and the action

S(Φ), and try to compute the following expectation value of a composite O(Φ)

⟨O⟩ =
∫
DΦOe−S . (4.2)

Then, it follows that

◦ Suppose there exists some symmetry Q of the theory respected by O, QS = QO = 0,

and some Q-exact functional QV (Φ) which is positive semi definite in Φ and Q-closed

Q(QV ) = 0. Then path integral partly reduces to the Gaussian integrations around the

locus of QV (Φ) = 0

⟨O⟩ =
∑

Φ0(QV (Φ0)=0)

O(Φ0)e
−S(Φ0)Z1-loop

([
1

2

δ2QV

δΦδΦ

]
Φ0

)
, (4.3)

where Z1-loop(·) is the functional determinant of an operator over the fluctuations of Φ

around Φ0.

This can be shown as follows. First we introduce a deformation parameter t > 0 to (4.2) as

⟨O⟩t =
∫
DΦOe−S−tQV . (4.4)

2The readers who accept the matrix model expression of the partition function (4.1) may skip section 4.1 and

4.2.
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The original expectation value is reproduced by taking t = 0

⟨O⟩ = ⟨O⟩t=0. (4.5)

On the other hand, differentiating (4.4) we obtain

d

dt
⟨O⟩t =

∫
DΦ(−QV )Oe−S−tQV

=

∫
DΦQ

(
−VOe−S−tQV

)
= 0, (4.6)

where we have used QS = QO = Q(QV ) = 0 and have supposed the Q-invariance of the inte-

gration measure. This implies that ⟨O⟩t is actually independent of the deformation parameter t.

Hence we conclude that the original expectation value ⟨O⟩ can be evaluated by ⟨O⟩t in the limit

t→∞. Since QV is positive semi definite, the path integral almost localizes to the configurations

QV = 0 in this limit. The deviation from this rough estimation can be obtained by expanding

the fields as

Φ = Φ0 +
1√
t
∆Φ, (4.7)

with which

S = S(Φ0) +O(t−
1
2 ),

tQV =
1

2
∆Φ

[
δ2QV

δΦδΦ

]
Φ0

∆Φ+O(t−
1
2 ). (4.8)

Here we have used the fact that QV = δQV/(δΦ) = 0 at Φ = Φ0. Plugging these expressions into

(4.4) and sending t to infinity we obtain (4.3).

A familiar example for such reduction would be the process of the BRST gauge fixing in a

gauge theory, where Q is the BRST charge and Φ0 are the general field configurations on some

particular gauge slice. Typically the saddle point loci Φ0 themselves keep some functional degree

of freedom, as in the case of this example, and there still remain non-trivial path integrals. In

some of the supersymmetric field theories with Q an appropriate choice of the supersymmetry

transformation, however, the path integral localizes completely and the remaining sum over Φ0 is

discrete sum or at most finite dimensional ordinary integrals. The matrix model expression of the

partition function (4.1) is obtained by applying this technique to the partition function (O = 1)

of the superconformal Chern-Simons theory on S3.

Note that, in the above argument we have implicitly assumed that the differential with respect

to t commute with the path integral, that is, that the path integral converges for arbitrary fixed t

in 0 ≤ t <∞. Roughly speaking, the action on S3 is realized by Euclideanize the original action

(2.3), replacing the derivatives with the covariant derivatives, and adding curvature coupling terms

appropriately. The compactification will introduce a inflared cutoff to the theory. Moreover, due
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to the curvature coupling the contribution of a large constant mode will be suppressed, which

regularize the divergence caused by infinite volume of the moduli space of the theory. These are

the reasons for why we consider the theory on a sphere.

4.2 Partition function as matrix model – sketch of derivation

In this section we briefly explain the derivation of each factor in (4.1) for the N = 3 U(N) quiver

superconformal Chern-Simons theory. First, we shall quote that the localization locus which solve

the conditions

δχa = 0, δϕab = 0, δψab = 0 (4.9)

is found to be [25]

σa = σ0a, (σ0a: constant matrix)

Da = −σa, other fields = 0. (4.10)

Due to the gauge invariance of the action we can choose the saddle point values σ0a as diagonal

matrices in exchange of the appearance of the Vandermonde determinant in the integration over

the saddle point configurations (Weyl integration formula) as

σ0a =


σ0a,1

σ0a,2
. . .

σ0a,N

 ,

∑
saddle

→ 1

N !

M∏
a=1

N∏
i=1

∫
dσa,i

M∏
a=1

∏
i̸=j

(σ0a,i − σ0a,j). (4.11)

After the substitution of the saddle point configuration into the action, only the Dσ term in SCS

survives and we obtain

e−S|saddle = e−i
∫
S3 dx3√g

∑M
a=1

ka
2π

TrDaσa = eπik
∑M

a=1

∑N
i=1 σ

2
0a,i , (4.12)

where the prefactor i comes in through the Euclideanization of the action (2.4).

Next, we would like to sketch the derivation of the 1-loop determinant. Expanding the reg-

ulator potential QV as (4.8), we will obtain the kinetic terms with supersymmetric version of

the covariant derivatives, i.e. the diffeomorphism/gauge covariant derivatives plus the Yukawa

terms with σ = σ0.
3 On the round sphere Sd we can explicitly list the eigenfunctions of the

kinetic operators, labeled by d integers as well as the spin/gauge indices. Though almost all the

contributions from these modes are cancelled between the bosonic fields and the fermionic fields,

3Notice that the 3d N = 2 supermultiplets are the dimensional reduction of the 4d N = 1 supermultiplets,

where the scalar σ is originally the fourth component of the gauge field Aµ.
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nevertheless there typically remains some infinite series of eigenvalues with reduced dimension.

Here we shall just display the final results [25]. For the adjoint multiplet on the a-th vertex in

the quiver we obtain

Zadj
1-loop =

∏
i ̸=j

∏∞
ℓ=1(ℓ+ i(σ0a,i − σ0a,j))∏∞
ℓ=1(ℓ− i(σ0a,i − σ0a,j))

=
∏
i̸=j

2 sinhπ(σ0a,i − σ0a,j)
σ0a,i − σ0a,j

, (4.13)

while for the pair of bifundamental multiplet on the a-th edge

Zmatter
1-loop =

[ N∏
i,j=1

∞∏
ℓ=1

(
ℓ+ 1

2 + i(σ0a,i − σ0a+1,j)

ℓ− 1
2 − i(σ0a,i − σ0a+1,j)

)ℓ]2
=

N∏
i,j=1

1

2 coshπ(σ0a,i − σ0a+1,j)
, (4.14)

where the index ℓ originates from the labels of the spherical Harmonics on S3, surviving after the

cancellation between the bosons and the fermions. The σ0a-dependence reflects the representation

of each supermultiplet under the gauge groups.

Putting above results together, with the rescaling σ0a,i = λa,i/(2π), we obtain the matrix

model expression of the partition function (4.1).

4.3 Large N limit of partition function

In the last sections we have shown that the partition function of the quiver superconformal Chern-

Simons theory can be evaluated by the finite dimensional ordinary integrals (4.1), without being

bothered by the non-trivial path integrals. Nevertheless we have to evaluate the large number

(MN) of integrals, which is still a non-trivial task. In the strict large N limit, however, we

can evaluate the integrals with the help of the saddle point approximation. The result perfectly

coincide with the action of the eleven dimensional supergravity on the dual background geometry,

which provides a consistency check for the theory to describe N M2-branes.

Historically the matrix model was first solved for the simplest case, the ABJM theory, in the ’t

Hooft limit k,N →∞ with k/N fixed [30]. Later the matrix model for general N = 3 quiver was

uniformly solved in the limit N → ∞ while the levels ka kept finite [31], which is more directly

interpreted as the dual of the eleven dimensional geometry and called the “M-theoretical limit”

[32]. In this section we shall review the latter way of analysis, while considering the ABJM theory

for simplicity.

Let us denote λa=1 and λa=2 as λ and λ̃ respectively, and write the matrix model (4.1) as

Z(N) =
N∏
i=1

∫
dλidλ̃ie

f(λ,λ̃) (4.15)

with

f(λ, λ̃) =
ik

4π

N∑
i=1

(λ2i − λ̃2i ) +
∑
i̸=j

log 2 sinh
λi − λj

2
+
∑
i̸=j

log 2 sinh
λ̃i − λ̃j

2
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− 2
N∑

i,j=1

log 2 cosh
λi − λ̃j

2
− 2 log(2πN !). (4.16)

Then the saddle point approximation for the partition function is

Z(N) ∼ ef(λ,λ̃)
∣∣∣∣
saddle

(4.17)

where “saddle” stands for the substitution of the solution of the following saddle point equations:

0 =
∂f

∂λi
=
ik

2π
λi +

∑
j( ̸=i)

coth
λi − λj

2
−
∑
j

tanh
λi − λ̃j

2
,

0 =
∂f

∂λ̃i
= − ik

2π
λ̃i +

∑
j(̸=i)

coth
λ̃i − λ̃j

2
+
∑
j

tanh
λj − λ̃i

2
. (4.18)

The sum over the indices in (4.16) implies that f(λ, λ̃) generically grows in some positive power of

N , and hence the saddle point approximation for the partition function (4.15) becomes accurate

in the limit N →∞.

We can estimate the solution of the saddle point equation by a numerical study. Consider a

2N pair of infinite sequences {λ(n)i , λ̃
(n)
i }∞n=1 generated by the following recursion relation(

λ
(n+1)
i

λ̃
(n+1)
i

)
=

(
λ
(n)
i

λ̃
(n)
i

)
+ E

∂f(λ
(n)
i ,λ̃

(n)
i )

∂λi

∂f(λ
(n)
i ,λ̃

(n)
i )

∂λ̃i

 (4.19)

with E some 2N × 2N matrix. Given k, N , the initial values and the matrix E we can easily

generate the whole sequence numerically. Now suppose the sequence converges. Then it follows

from the recursion relation that the set of values of convergence (λi, λ̃i) is a solution to the saddle

point equation (4.18). For k = 4 and N = 20, 80, for example, the sequence can converge for the

following choice of E

E =

(
0.001× i1 0

0 −0.001× i1

)
. (4.20)

The results are displayed in figure 3.

Now let us solve the saddle point equation analytically in the large N limit. Comparing the

numerical results for N = 20 and N = 80, and for λ and λ̃, it is reasonable to pose the following

ansatz:

λi =
√
Nxi + iyi, λ̃i =

√
Nxi − iyi (4.21)

with xi and yi some real numbers of O(1). For these ansatz the saddle point equations for λ̃,

∂f/∂λ̃i, are simply the complex conjugate of ∂f/∂λi. It is also convenient to regard the solutions

as a continuous distribution by introducing the eigenvalue density ρ(x) in the real axis

xi → x,
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Figure 3: The numerical result of ({λi}, {λ̃i}) for N = 20 ((blue circle, red triangle)) and those for

N = 80 ((blue cross, red inverted triangle)). We observe that λ̃i are distributed on the complex

conjugates of λi. Also notice that the real part scales as
√
N (doubled as N is quadrupled) while

the imaginary part is not scaled.

yi → y(x),∑
i

→ N

∫ L

−L
dxρ(x) (4.22)

where we have assumed the support of distribution to be a single segment (−L,L) and have

normalized ρ(x) as ∫ L

−L
dxρ(x) = 1. (4.23)

Expanding the saddle point equations in the large N limit under these expressions, we finally

obtain the following equations from the real/imaginary part respectively

k

2π
− 4ρ

dy

dx
− 4

dρ

dx
y = 0,

kx

2π
− 4ρy = 0. (4.24)

From the numerical result we postulate y(x) to be linear in x and find the following solution to

the differential equation and the normalization condition (4.23).

y =
kLx

4π
, ρ =

1

2L
. (4.25)

Though the constant L remains undetermined at this stage, it can be determined by minimizing

the free energy f (4.16). In the continuum notation (4.21) with (4.22), the leading part of f can

be written as

f = N
3
2

(
−k
π

∫ L

−L
dxρy − π2

∫ L

−L
dxρ2 + 4

∫ L

−L
dxy2ρ2

)
. (4.26)
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Substituting the solution (4.25) we obtain

f = N
3
2

(
−k

2L3

24π2
− π2

2L

)
(4.27)

which is minimized at

L = π

√
2

k
. (4.28)

Hence we obtain the partition function in the large N limit as

Z(N) ∼ exp

[
−π
√
2k

3
N

3
2

]
. (4.29)

Note that the abelian moduli space of the ABJM theory is C4/Zk (3.25) and this partition function

can be written with the volume of the radial section of C4/Zk, vol(Y ) as

Z(N) ∼ exp

[
−N

3
2

√
2π6

27 vol(Y )

]
(4.30)

and precisely consistent with the calculation in the gravity side. Though here we have only

considered the ABJM theory, the computation is parallel also for the general N = 3 quivers and

we will obtain the same final expression (4.30) with Y the radial section of the moduli space of

each theory [31].
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5 Summary for part I

In this part we have review on the N = 3 U(N) superconformal quiver Chern-Simons theories

proposed as the worldvolume theory of N M2-branes. Different from the case of D-branes, so far

there are no first principle derivation for the fundamental degree of freedom in the worldvolume

theory on M2-branes, hence the proposal would be in some sense heuristic. Supported by a

variety of circumstantial evidences, however, these theories are believed to actually describe the

M2-branes.

We have introduced two of these evidences. The first one is that the theory have eight dimen-

sional moduli space, corresponding to the location of the M2-branes in the eleven dimensional

spacetime. The second one is that the large N limit of the free energy is consistent with the

calculation in the gravity side: N3/2 scaling behavior as well as its prefactor. In order the mod-

uli space to be eight dimensional, the vanishing of the total Chern-Simons level (2.7) is crucial.

Though we have assumed this condition in the computation of the partition function above, the

localization and the saddle point analysis are also applicable for the non-vanishing cases and we

can show that (2.7) is the necessary condition also for the leading N3/2 scaling of the free energy

[33].

Remarkably, the N = 3 U(N) circular quiver superconformal Chern-Simons theories we have

considered can be realized by particular D3-NS5-(1, k)5 brane setups in the type IIB string theory

[2, 3]. Here (1, k)5 is the bound state of one NS5 brane and k D5-branes. These systems can

be lifted up to the system of the M2-branes via appropriate duality transformations, where the

D3-branes turn into the M2-branes while the five branes become the geometry called Kaluza-Klein

monopole. Close to the core, the Kaluza-Klein monopole geometry is asymptotically an orbifolded

plane which precisely reproduce the orbifold action on the moduli space. This strongly supports

that the proposed theories are indeed the worldvolume theory of the M2-branes.

In terms of the gauge/gravity correspondence, in this part we have used the gravity side to

confirm the gauge theory. Once we accept the quiver superconformal Chern-Simons theory as the

worldvolume theory, however, we can provide new predictions to the gravity side from the gauge

side. Hopefully the exact analysis of the superconformal Chern-Simons theory beyond the large

N limit will give new predictions to the quantum effect of the gravity. In the next part we present

our recent works where we compute such corrections systematically.
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Part II

Beyond large N limit

In this part we review our recent works on the exact computation of the partition function of the

N ≥ 3 U(N) superconformal Chern-Simons theories beyond the large N limit.

In section 4 we have reviewed that the partition function of the superconformal Chern-Simons

theory can be reduced to finite dimensional ordinary integrals, i.e. a matrix model, with the help

of the localization technique. In the large N limit we can further evaluate the remaining integrals

and obtain the result consistent with the classical supergravity.

However, it is still non-trivial how to evaluate these integrals beyond the strict limit N →∞.

Generally, for small N , i.e. N = 1, 2, etc. it would be possible to evaluate the integrals exactly or

at least numerically. In the context of the AdS/CFT correspondence, however, such results are

quite difficult to translate in the language of gravity. To be successful, it will be more helpful to

express the deviation from the large N limit as the large N expansion, where the 1/N corrections

may be interpreted in the gravity side based on the language of classical geometry.

Though such computation is difficult due to the increasing number of integrations, there is

a powerful traditional technique in the matrix model, the ’t Hooft expansion. In this method

we take the limit k,N → ∞ while keeping the ’t Hooft coupling λ = N/k finite, and compute

the partition function in perturbation with respect to λ. This method was indeed successful in

the case of the ABJM theory [34] so that the authors finally achieved to determine the all order

perturbative corrections to the partition function in 1/N . However, the computation heavily relies

on the non-trivial correspondence between the ABJM matrix model and the topological string

theory on the local P1×P1 [35]. Also, as the dimension of the moduli space C4/Zk is reduced in the

limit k → ∞, it correspond to the ten dimensional IIA limit rather than the eleven dimensional

M-theoretical regime. Especially, the non-perturbative effects in 1/k would be invisible in the ’t

Hooft expansion.

Recently, an alternative technique was proposed in [12], which is called the Fermi gas formal-

ism. We can compute the large N limit of the partition function and the leading coefficient for

general quivers far more easily even compared with the saddle point method in section 4. As we

will see below, this formalism also provide various systematic methods to compute the partition

function without taking the IIA limit k → ∞. Interestingly, the computation simplifies in the

opposite limit k → 0.4 As a result we can obtain the all order perturbative corrections to the

partition function in 1/N and even the non-perturbative effects in N like O(e−
√
N ).

This part is organized as follows. In section 6 we first review the derivation of the Fermi gas

formalism itself for general U(N) N = 3 circular quiver superconformal Chern-Simons theories.

4Though the Chern-Simons levels must be integers in the original field theory, in the matrix model (4.1) we can

continue them to general irrational numbers.
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Using the Fermi gas formalism we also provide the all order perturbative corrections to the

partition function in 1/N , which sum up to an Airy function. In section 7 we analyze the

partition function in the small k expansion, and discover the non-perturbative contributions in

1/N . These effects are non-perturbative also in 1/k, hence invisible in the perturbative ’t Hooft

expansion, and can be interpreted as the D-brane instantons [36]. After establishing another

method in section 8, in section 9 we determine the non-perturbative effects for finite k. We

finally reveal a beautiful structure of the whole non-perturbative effects: the coincidence with the

Gopakumar-Vafa formula [11] for the refined topological string theory.

6 Fermi gas formalism and all order perturbative corrections in

1/N

In this section we first introduce the Fermi gas formalism where the partition function Z(N) is

re-expressed as the partition function of the quantum statistical system of an ideal Fermi gas with

non-trivial one particle density matrix ρ̂ (6.20). After that, in section 6.1 we reveal the general

structure of the large N expansion of the partition function. Surprisingly, we can show that the

all order perturbative corrections to the partition function sum up to an Airy function

Zpert(N) = eAC− 1
3 Ai[C− 1

3 (N −B)], (6.1)

where C, B and A are some constants depending on the detail of the theory, and the Airy function

is defined by the following integration expression

Ai(x) =

∫ i∞

−i∞

dz

2πi
e

1
3
z3−xz. (6.2)

The large (N − B) expansion of the free energy logZ is obtained from the asymptotic behavior

of the Airy function as

logZ = − 2

3
√
C
(N −B)

3
2 − 1

4
log(N −B) +A− log[2

√
πC

1
4 ] +O((N −B)−

3
2 ). (6.3)

The leading behavior in the limit N →∞ is consistent with the results obtained from the classical

supergravity on AdS4 × Y7 if C = vol(Y7). We also obtain the explicit expression of C, which is

indeed consistent with the requirement. In this section 6.2 we determine the explicit expression

of the second coefficient B for a special class of the quivers.

Our starting point is the partition function of the N = 3 U(N) circular quiver superconformal

Chern-Simons theory, which is reduced to a matrix model after the application of the localization

technique [25, 26, 27, 31]

Z(N) =
1

(N !)M

∫
Dλa,i

M∏
a=1

∏
i<j 2 sinh

λa,i−λa,j

2

∏
i<j 2 sinh

λa+1,i−λa+1,j

2∏
i,j 2 cosh

λa,i−λa+1,j

2

, (6.4)
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where

Dλa,i =
dλa,i
2π

e
ikaλ2a,i

4π . (6.5)

Notice that the 1-loop determinants are decomposed into the pieces each of which is in the form

of the Cauchy determinant formula∏
i<j(xi − xj)

∏
j<j(yi − yj)∏

i,j(xi + yj)
= det

i,j

1

xi + yj
(6.6)

as ∏
i<j 2 sinh

λa,i−λa,j

2

∏
i<j 2 sinh

λa+1,i−λa+1,j

2∏
i,j 2 cosh

λa,i−λa+1,j

2

= det
i,j

1

2 cosh
λa,i−λa+1,j

2

. (6.7)

We shall also use the following formula (see appendix A in [37]) to swap the order of the integra-

tions and the determinant

1

N !

N∏
i=1

∫
dzi

[
det
i,j
f(xi, zj)

][
det
i,j
g(zi, yj)

]
= det

i,j

∫
dzf(xi, z)g(z, yj). (6.8)

Applying these formulas repeatedly to (6.4) we finally obtain the following expression for the

partition function

Z(N) =
1

N !

N∏
i=1

∫
dxi
2π

det
i,j
ρ0(xi, xj) =

1

N !

N∏
i=1

∫
dxi
2π

∑
σ∈SN

(−1)σ
N∏
i=1

ρ0(xi, xσ(i)) (6.9)

with

ρ0(x, y) =
M∏
a=2

∫
dza
2π

e
ik1
4π

x2 1

2 cosh x−z2
2

e
ik2
4π

z22
1

2 cosh z2−z3
2

e
ik3
4π

z23 · · · e
ikM
4π

z2M
1

2 cosh zM−y
2

. (6.10)

The expression (6.9) is the same form as the partition function of N particle ideal Fermi gas in

the statistical system.

In the statistical system, it is often easier to study the grand potential J (µ) defined by

introducing an auxiliary parameter µ called the chemical potential as

eJ (µ) =
∞∑

N=0

eNµZ(N) (6.11)

rather than the partition function itself. Indeed the grand potential can be written compactly as

(see appendix A)

J (µ) = Tr log(1 + eµρ0). (6.12)

This quantity is much easier to analyze than the partition function Z(N), as we will see in the

following sections.
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To take advantages of the techniques of the quantum statistical mechanics, it is useful to

rewrite the grand potential in the operator formalism. Since the Chern-Simons level ka sum up

to zero it is more reasonable to assign the numbers sa on the edges of the circular quiver to define

the levels as the differences

ka =
k(sa − sa−1)

2
. (6.13)

In this notation the quantity ρ0 (6.10) can be written as

ρ0 =

M∏
a=2

∫
dza
2π

[
e

iks1x
2

8π
1

2 cosh x−z2
2

e−
iks1z

2
2

8π

]
[
e

iks2z
2
2

8π
1

2 cosh z2−z3
2

e−
iks2z

2
3

8π

]
· · ·
[
e

iksMz2M
8π

1

2 cosh zM−y
2

e−
iksMy2

8π

]
. (6.14)

Using the Fourier transformation formula

1

2 cosh x
2

=

∫
dp

2π
e

ipx
2π

1

2 cosh p
2

, (6.15)

each factor in the square bracket in (6.14) can be rewritten as

e
iksaz2a

8π
1

2 cosh za−za+1

2

e−
iksaz2a+1

8π = k

⟨
kza

∣∣∣∣e isax̂2

8πk
1

2 cosh p̂
2

e−
isax̂2

8πk

∣∣∣∣kza+1

⟩
, (6.16)

where we have introduced the canonical position/momentum operators (x̂, p̂) and their eigenstates

(|x⟩, |p⟩) normalized so that

[x̂, p̂] = iℏ, (ℏ = 2πk)

⟨x|x′⟩ = 2πδ(x− x′), ⟨p|p′⟩ = 2πδ(p− p′), ⟨x|p⟩ = 1√
k
e

ipx
2πk . (6.17)

In the operator formalism, the (M − 1) integrals in ρ0 (6.10) together with the k factored out in

(6.16) are interpreted as the insertion of unity

1 =

∫
dx

2π
|x⟩⟨x|, (x = kz) (6.18)

hence the grand potential (6.12) can be rewritten as

J (µ) = Tr log(1 + eµρ̂) (6.19)

with

Tr(·) =
∫
dx

2π
⟨x| · |x⟩,

ρ̂ =
1

2 cosh[12(p̂−
s1
2 x̂)]

1

2 cosh[12(p̂−
s2
2 x̂)]

· · · 1

2 cosh[12(p̂−
sM
2 x̂)]

. (6.20)

Here we have used (6.16) and the formula

e
i
2ℏ x̂

2
f(p̂)e−

i
2ℏ x̂

2
= f(p̂+ x̂). (6.21)

Interestingly, the grand potential J (µ) extremely simplifies in the limit k → 0, the opposite

to the IIA limit k →∞. In this limit the statistical system can be treated classically.
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6.1 All order perturbative corrections in Airy function

In this section we show the Airy function structure (6.1) of the perturbative expansion of the

partition function Z(N) in 1/N . Though the structure looks complicated in the partition function,

this is equivalent to the following simple structure in the large µ expansion of the grand potential

J(µ)5

J(µ) =
C

3
µ3 +Bµ+A+O(e−µ). (6.23)

Indeed the inverse transformation from the grand potential to the partition function follows from

(6.11) as6

Z(N) =

∫ i∞

−i∞

dµ

2πi
eJ(µ)−µN , (6.25)

which immediately produce the Airy function (6.1) after the substitution of (6.23).

In this section we shall derive the large µ expansion of J(µ) (6.23) with some simple ideas of

the statistical mechanics. First note that the large µ expansion (6.23) for the grand potential is

equivalent to the following large E expansion for the “number of states” n(E) with the energy

less than E, Ĥ ≤ E,

n(E) = CE2 +B − π2C

3
+O(e−E). (6.26)

Here Ĥ = − log ρ̂ is the one particle Hamiltonian of the statistical system. This can be seen as

follows. First, as we may often do in the statistical mechanics, we try to compute the trace in

(6.12) with the energy eigenstates

J(µ) =

∫ ∞

0
dE

dn(E)

dE
log(1 + eµ−E). (6.27)

Integrating by parts we obtain

J(µ) =

∫ ∞

0
dEn(E)

eµ−E

1 + eµ−E
, (6.28)

5Note that J(µ) is slightly different from J (µ) defined by (6.11), which is periodic in µ: eJ (µ+2πi) = eJ (µ). The

original grand potential J (µ) should be understood as a periodic superposition of the large µ expansion J(µ) as

[58]

eJ (µ) =
∑
n∈N

eJ(µ+2πin). (6.22)

6This inversion relation (6.25) follow from the following inversion relation for the original grand potential J (µ)

Z(N) =

∫ iπ

−iπ

dµ

2πi
eJ (µ)−µN (6.24)

which follows from (6.11), and the relation between J(µ) and J (µ) (6.22).
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where we have assumed n(0) = 0. This integration convert a polynomial in E in n(E) into

polylogarithm functions Li(−eµ) in the grand potential J(µ), which again produces a polynomial

in µ in the large µ expansion:∫ ∞

0
dEEα eµ−E

1 + eµ−E
= −Γ(α+ 1)Liα+1(−eµ) =

(2πi)α

α+ 1
Bα+1

(
1

2
+

µ

2πi

)
+O(e−µ), (6.29)

where α ∈ Z+ and we have used the identity for the polylogarithm functions

Lin(z) + (−1)n Lin
(1
z

)
= −(2πi)n

n!
Bn

(1
2
+

log(−z)
2πi

)
. (6.30)

Here Bn(z) are the Bernoulli polynomial, whose explicit expression for small n is

B1(z) = z − 1

2
, B2(z) = z2 − z + 1

6
, B3(z) = z3 − 3z2

2
+
z

2
, · · · . (6.31)

From these explicit expressions we can find that the large E expansion (6.26) is indeed converted

into the large µ expansion (6.23). Hence we can determine the first two coefficients C and B by

analyzing n(E).

Now let us compute the number of states n(E) in the semiclassical limit k → 0. In this limit,

the Hamiltonian is mere a c-numbered function on the (x, p)-phase space

H(x, p) =

M∑
a=1

log

(
2 cosh

p− sax
2

2

)
, (6.32)

and n(E) is the phase space volume inside the Fermi surface F = {(x, p) ∈ R2|H = E} as

n(E) =

∫
dxdp

2πℏ
θ(H − E). (6.33)

The Fermi surface F is plotted in figure 4. From the graph we can read off that F approaches

a polygon. Indeed, assuming |p − sax/2| ≫ 1 for all a, each term in the Hamiltonian (6.32)

approaches a linear function and the Fermi surface can be approximated with a polygon

Fpol =

{
(x, p) ∈ R2

∣∣∣∣ M∑
a=1

∣∣∣∣p− sax

2

∣∣∣∣ = 2E

}
. (6.34)

Hence we conclude that the leading term in n(E) in the large E limit is given by the volume of

this approaching polygon as

n(E) =
2

πℏ

M∑
a=1

|s′a+1 − s′a|∑M
b=1 |s′a+1 − s′b|

∑M
c=1 |s′a − s′c|

E2 + · · · (6.35)

where s′a are equal to sa but reordered so that s′a ≤ s′a+1 for a = 1, 2, · · · ,M − 1. Thus

C =
4

πℏ

M∑
a=1

|s′a+1 − s′a|∑M
b=1 |s′a+1 − s′b|

∑M
c=1 |s′a − s′c|

. (6.36)
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Figure 4: The solid red line is the classical Fermi surface for N = 3 circular quiver with three

vertices with {sa}3a=1 = {−2,−1, 1} at energy E = 10. The dashed blue line is the approaching

polygon (6.34). We call the region located around the line p = s′ax/2 (x > 0) and surrounded by

the lines connecting the midpoints of the edges of the polygon (solid black lines) as va.

For {sa} = {(+1)q, (−1)p}, for example, we obtain

C =
2

π2qpk
, (6.37)

which completely coincide with the volume of the radial section of (C2/Zq ×C2/Zp)/Zk. Though

being complicated, the general expression is also shown to coincide with the volume of the hy-

perKahler cone obtained from the moduli space of N = 3 superconformal quiver Chern-Simons

theory argued in section 3 [31].

Before closing this subsection, we shall estimate the possible small k corrections in the semi-

classical expansion. Roughly speaking, the effects of the commutators can be included through

the derivatives of the c-numbered functions. Therefore the quantum corrections never grows as

fast as linear in (x, p) as we send x or p infinity. This implies the approaching polygon (6.34) in

the limit of E → ∞ will not be modified by the quantum corrections and thus the expression of

the constant C (6.37) is exact for finite k. On the other hand, the constant B, which is associated

with the deviation from the polygon, should be modified. This estimation is justified from the

explicit computation in the N = 4 cases in the next subsection.
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6.2 Semiclassically corrected Fermi surface and exact expression of B

In the last subsection we have found that the all order perturbative corrections to the Free

energy add up to an Airy function. This is powerful prediction to the quantum corrections to

the computation in supergravity. What we will encounter in an honest large N expansion of the

free energy, however, is not the asymptotic expansion of the Airy function but rather an O(N
1
2 )

correction due to the shift of the M2-brane charge N by a constant B in (6.1). Therefore it would

be important to determine the explicit expression of B.

As we have argued above, the analysis in the classical limit k → 0 is not enough to determine

B. We need to extend our analysis to include the semiclassical corrections. Though this is difficult

for general cases, recently we successfully evaluated such corrections [8] for the special cases where

sa take only two kinds of values which can be chosen as sa = ±1, that is,

s1 = s2 = · · · sq1 = +1, sq1+1 = sq1+2 = · · · sq1+p1 = −1,

sq1+p1+1 = · · · = sq1+p1+q2 = +1, sq1+p1+q2+1 = · · · sq1+p1+q2+p2 = −1,
...

sq1+p1+···+pm−1 = · · · = sq1+p1+···pm−1+qm = +1, sq1+p1+···qm = · · · sq1+p1+···+qm+pm = −1
(6.38)

for some qa, pa ∈ N (
∑M

a=1(qa + pa) = M). From now on we shall abbreviate this choice as

{sa}Ma=1 = {(+1)q1 , (−1)p1 , (+1)q2 , (−1)p2 , · · · , (+1)qm , (−1)pm}. This is known as the most gen-

eral choice for the supersymmetry enhancement from N = 3 to N = 4 [5]. Especially, we call the

cases of minimal separation between sa = ±1

{sa}Ma=1 = {(+1)q, (−1)p} (6.39)

as the “(q, p)k minimal models”. In [8] we finally obtained the following expression for the coeffi-

cient B

B =
1

6k

(
4

qp
− p

q
− q

p

)
+ k

(
Σ(q, p2)

q
+

Σ(q, p2)

p
− Σ(q, p)2

2qp
− Σ(q, p)

2
+
qp

24

)
, (6.40)

where

q =

m∑
a=1

qm, p =

m∑
a=1

pm, Σ(qα, pβ) =
1

α!β!

∑
1≤a≤b≤m

qαa p
β
b . (6.41)

Remarkably, the semiclassical correction to B terminates at O(k), which implies that we have

obtained the non-perturbatively exact expression of B although we have used the perturbation in

k.

Below we first explain the derivation of (6.40). After that we try to determine B in more

general N = 3 theories, which will be successful only in the classical limit k → 0.
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Figure 5: The solid red line is the Fermi surface for N = 4 circular quiver with {sa}5a=1 =

{(+1)2, (−1)3} at energy E = 10. The dashed blue line is the approaching diamond (6.45). We

call the region located around the vertices (Q,P ) = (±2E/q, 0) as region I,III and that around

the vertices (Q,P ) = (0,±2E/p) as region II,IV.

6.2.1 B for N = 4 quivers

Since there are only two kinds of arguments p̂ ± x̂
2 in the density matrix (6.20), it is reasonable

to redefine these two as the canonical operators

Q̂ = −p̂+ x̂

2
, P̂ = p̂+

x̂

2
, ([Q̂, P̂ ] = iℏ) (6.42)

and rewrite ρ̂ as

ρ̂ = e−q1U(Q̂)e−p1T (P̂ )e−q2U(Q̂)e−p2T (P̂ ) · · · e−qmU(Q̂)e−pmT (P̂ ) (6.43)

with

U(Q) = log

(
2 cosh

Q

2

)
, T (P ) = log

(
2 cosh

P

2

)
. (6.44)

In this case the Fermi surface of energy E approaches in the limit E →∞ to a diamond

Fpol =

{
(Q,P ) ∈ R2

∣∣∣∣q|Q|2
+
p|P |
2

= E

}
. (6.45)

See figure 5.
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To compute the quantum corrections systematically, we shall introduce the notion of the

Wigner transformation [12, 38, 39, 40, 41] Ô → OW

OW ≡
∫
dQ′

2π

⟨
Q+

Q′

2

∣∣∣∣Ô∣∣∣∣Q− Q′

2

⟩
e

iQ′P
ℏ . (6.46)

The non-commutativity of operators Ô are encoded in the following non-commutative ⋆-product

of the c-numbered functions OW on the phase space

⋆ = exp

[
iℏ
2

(←−
∂ Q
−→
∂ P −

←−
∂ P
−→
∂ Q

)]
(6.47)

as

(ÂB̂)W = AW ⋆ BW , (6.48)

which can be derived from the definition of the Wigner transformation (6.46). One can also easily

show that the trace of a operator becomes the phase space integral of its Wigner transformation

Tr Â =

∫
dQdP

2πℏ
AW , (6.49)

hence the number of states n(E) is given as7

n(E) = Tr θ(Ĥ − E) ≈
∫
HW<E

dQdP

2πℏ
. (6.50)

As advertised at the end of the previous section, the Wigner transformation precisely convert

the commutators into the differentials. Now we can argue the (ir-)relevance of higher order

commutators to the 1/N perturbative computation more concretely. Note that both U(Q) and

T (P ) in (6.44) satisfy

∂2QU(Q) = O(e−|Q|), ∂2PT (P ) = O(e−|P |) (6.51)

for large arguments. Therefore, since we are concerned with the small deviation of the Fermi sur-

face from the diamond (6.45) where at least one of Q and P is of order O(E), we can neglect all the

terms proportional to U (a)T (b) with a, b ≥ 2. According to the Baker-Campbell-Hausdorff formula,

the Hamiltonian operator Ĥ can be expanded with the commutators U, T, [U, T ], [U, [U, T ]], · · · .
Here we would like to choose the bases of higher commutators as

P

( ℓ∏
i=1

adLi

)
[U, T ] (6.52)

with L = (L1, L2, · · ·Lℓ) any finite sequence of U and T ,8 such as

[U, [U, T ]], [U, [U, [U, T ]]], [U, [T, [U, T ]]], [T, [T, [U, T ]]], · · · . (6.53)

7Precisely speaking, f(Ô)W does not necessarily coincide with f(OW ). This deviation is treated in detail in the

next section, and indeed turns out to be irrelevant in the computation here.
8There are still some redundancy, e.g. [T, [U, [U, T ]]] = [U, [T, [U, T ]]].
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Let us look at the terms with the fewest number of differential in each commutator. Due to the

definition of ⋆-product, these are obtained by the following replacements

[U, T ]→ iℏU ′T ′,

adU → iℏU ′∂P ,

adT → −iℏT ′∂Q. (6.54)

From these rules we can see that the commutator contains U (a) with a ≥ 2 if the sequence L in

(6.52) contains at least one U while the commutator contains T (a) with a ≥ 2 if L contains at

least one T . Therefore we conclude that the only commutators relevant to our computation are

Ĥ = cUU + cTT + cUT [U, T ] +
∑
ℓ≥1

cUℓ+1T [U, [U, [· · · , U︸ ︷︷ ︸
ℓ

, [U, T ] · · · ]

+
∑
ℓ≥1

cT ℓUT [T, [T, [· · · , T︸ ︷︷ ︸
ℓ

, [U, T ] · · · ] + · · · , (6.55)

where c··· are constant coefficients depending on {qa, pa}ma=1. The relevant terms in the Wigner

Hamiltonian are

HW = cUU + cTT + iℏcUTU
′T ′ +

∑
ℓ≥1

(iℏ)ℓ+1cUℓ+1T (U
′)ℓ+1T (ℓ+1)

−
∑
ℓ≥1

(−iℏ)ℓ+1cT ℓUT (T
′)ℓ+1U (ℓ+1) + · · · . (6.56)

Below we assume that the Hamiltonian is hermitian, i.e. cUT = 0. This is achieved by the

similarity transformation

ρ̂→ exU ρ̂e−xU (6.57)

with some constant x. The values of c··· and x will be displayed at the end of this section.

Now let us evaluate the small deviation of n(E) from the result of diamond approximation

(6.45), which we shall call δn. We divide the deviation into the contributions from the region

close to each vertex of the diamond as depicted in figure 5

δn = − 1

2πℏ
(vol(I) + vol(II) + vol(III) + vol(IV))

= − 1

πℏ
(vol(I) + vol(II)). (6.58)

In the second line we have used the facts vol(III) = vol(I) and vol(IV) = vol(II) which are obvious

from the point symmetry of the Fermi surface. First we shall consider the volume of the region

I. Since Q is positive and of order O(E) in this region we can replace U → Q/2 and neglect the

higher derivatives of U , U (a) with a ≥ 2, to approximate the Fermi surface HW = E as

qQ

2
+ pT +

∑
ℓ≥1

cUℓ+1T

( iℏ
2

)ℓ+1
T (ℓ+1) = E. (6.59)
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Denoting the points on this Fermi surface as (QFS(P ), P ) while those on the diamond as (Qpol(P ), P )

the volume of region I can be written as

vol(I) =

∫ E
p

−E
p

dP (Qpol(P )−QFS(P ))

=
2

q

∫ E
p

−E
p

dP
[
p
(
T − |P |

2

)
+
∑
ℓ≥1

cUℓ+1T

( iℏ
2

)ℓ+1
T (ℓ+1)

]
(6.60)

where we have tentatively chosen the boundary of the integration domain as the midpoints of the

edges. Since the integrand is exponentially suppressed for large P , we can push these boundaries

to ±∞ without changing the perturbative result in 1/E. Using the explicit expression of T (P )

(6.44) we can perform the integration over P ∈ (−∞,∞) to obtain

vol(I) =
2

q

[pπ2
6
− ℏ2

4
cUUT

]
. (6.61)

Remarkably, the higher derivatives T (ℓ+1) with ℓ ≥ 2 do not contribute. In the region II, on the

other hand, we replace T → P/2 and neglect T (a) with a ≥ 2. By the similar manipulation as in

the case of region I, we finally find that only (T ′)2U (2) contributes among the terms from higher

commutators and

vol(II) =
2

p

[qπ2
6

+
ℏ2

4
cTUT

]
. (6.62)

Putting these result together with the relation between n(E) and B (6.26), we obtain B as

B = − 1

6k

(
4

qp
− p

q
− q

p

)
+ k

(
cUUT

q
− cTUT

p

)
, (6.63)

where we have also used ℏ = 2πk.

Finally we shall display the explicit expression of the undetermined coefficients cUUT and

cTUT . In appendix B we argue the expansion coefficients of

eh = eq1Uep1T eq2Uep2T · · · eqmUepmT eqm+1U . (6.64)

From the results (B.13) therein with replacement

q1 → −(q1 − x), qm+1 → −x,

qa → −qa (a = 2, 3, · · · ,m),

pa → −pa (a = 1, 2, · · · ,m) (6.65)

together with the multiplication of overall (−1), the coefficients cUT , cUUT and cTUT can be

written as

cUT = xp− Σ(q, p) +
qp

2
,
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cUUT =
x2p

2
+ x
(qp
2
− Σ(q, p)

)
+Σ(q2, p)− Σ(q, p)q

2
+
q2p

12
,

cTUT = −Σ(q, p2) + Σ(q, p)p

2
− qp2

12
. (6.66)

Fixing the value of x from the condition cUT = 0 as

x =
Σ(q, p)

p
− q

2
, (6.67)

we obtain

cUUT = Σ(q2, p)− q2p

24
− Σ(q, p)2

2p
. (6.68)

Substituting the values of cUUT and cTUT into (6.63) we finally obtain the explicit expression of

B (6.40).

6.2.2 B for N = 3 quivers in classical limit

Before closing this section we shall introduce the similar determination of B in more general

N = 3 theories [8]. The semiclassical expansion of the Hamiltonian would be considered with

the help of the Wigner transformation. However, the hermiticity of leading Hamiltonian, which

is required for the arguments using the Fermi surface, is non-trivial in this case. Hence we shall

focus on the classical limit

F =

{
(x, p) ∈ R2

∣∣∣∣ M∑
a=1

log

(
2 cosh

p− s′ax
2

2

)
= E

}
, (6.69)

where s′a are the reordered sa (see below the equation (6.35)), and evaluate the deviation of the

volume from the polygon approximation (6.34).

The computation is almost parallel as in the N = 4 cases. First we shall divide the Fermi

surface into the pieces around each vertex of the polygon, as in figure 4. Since the Fermi surface

is point symmetric about the origin, below we shall only consider the right half of them and call

the region around the line p− s′ax/2 = 0 as va. On the polygon (6.34) the arguments |p− s′ax/2|
are always of order O(E), except around each vertex of the polygon where |p−s′ax/2| ∼ 0 only for

the corresponding a. Hence it is reasonable to approximate the a-th piece of the original Fermi

surface (6.69) as

log 2 cosh
p− s′ax

2

2
+
∑
b̸=a

|p− s′bx
2 |

2
= E. (6.70)

We shall introduce a tilted coordinate (x, p̃a) = (x, p−s′ax/2
2 ), as in figure 6. Since the Jacobian for

the coordinate transformation (x, p)→ (x, p̃) is trivial, we can compute the deviation of n(E) on

this piece as

δn(E) = − 1

2πℏ

∫
dp̃adx. (6.71)
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Figure 6: Left: v3; right: v3 in the tilted coordinates (x, p̃3).

The points on the Fermi surface (6.70) can be expressed as (xFS(p̃a), p̃a) with

xFS(p̃a) =
4∑

b |s′a − s′b|

[
− log 2 cosh

p̃a
2

+
M + 1− 2a

2
p̃a

]
. (6.72)

Here we have used the facts

p−
s′bx

2
> 0 (b < a),

p−
s′bx

2
< 0 (b > a). (6.73)

Similarly, the points on the polygon (6.34) near the a-th vertex can be expressed as (xpol(p̃a), p̃a)

with

xpol(p̃a) =
4∑

b |s′a − s′b|

[
− p̃a

2
+
M + 1− 2a

2
p̃a

]
. (6.74)

The deviation of the volume (6.71) is computed as

δn(E) = − 1

2πℏ

∫
dp̃a(xpol − xFS) = −

2

πℏ
∑

b ̸=a |s′a − s′b|

∫ p̃a+

p̃a−

dp̃a

[
log 2 cosh

p̃a
2
−
∣∣∣∣ p̃a2
∣∣∣∣]. (6.75)

Here p̃a± may correspond to the midpoints on the edge of the polygon, where p̃a± are of order

O(E). Since the integrand are of order O(e−E) for p̃a ∼ E, we can replace the domain of

integration from (p̃a−, p̃a+) to (−∞,∞) without changing the results in the perturbative expansion

in 1/E. Therefore the deviation δn(E) is computed as

δn(E) = − 2

πℏ
∑

b ̸=a |s′a − s′b|

∫ ∞

−∞
dp̃a

[
log 2 cosh

p̃a
2
−
∣∣∣∣ p̃a2
∣∣∣∣]

= − π

3ℏ
∑

b |s′a − s′b|
. (6.76)
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Assembling the results together we conclude

B =
π2C

3
− 1

3k

M∑
a=1

1∑
b |s′a − s′b|

+O(k). (6.77)

6.3 Discussion and Comments

In this section we have determined the all order perturbative corrections in 1/N to the leading

N3/2 scaling behavior of the partition function. From the Fermi gas formalism it follows that

these all order corrections universally add up to an Airy function as (6.1). Interestingly, the

infinite series of perturbative corrections in the partition function are summarized into a simple

cubic polynomial in terms of the grand potential J(µ) (6.23). Thus we may expect that the grand

potential not only simplify the computation but also clarify beautiful structures of the large N

expansion which are hidden in the original partition function Z(N). In the following sections we

analyze the non-perturbative effects O(e−µ) in J(µ), which correspond to the effects of O(e−
√
N )

in Z(N), and indeed observe various interesting structures.

It will be very interesting future work to reproduce the large N expansion obtained in this

section from the gravity side. The logarithm in the asymptotic expansion of the Airy function (6.3)

can be understood as the 1-loop effect in the supergravity [42]. More recently, it was also proposed

that the whole Airy function is possibly reproduced by applying the localization technique to the

four dimensional supergravity on AdS4 [43]. On the other hand, the coefficient B in (6.1) was not

explained by neither of these ways. As commented at the beginning of section 6.2 the shift B is

more relevant than the logN correction and thus may be in some sense classical effect. Indeed

the same effect is caused by the modification of the charge quantization condition due to the

orbifold on the background, as argued in [44] for AdS4×S7/Zk. There is a discrepancy, however,

between their result and the exact result in the dual theory, the ABJM theory [34]. We hope

that our explicit results for the class of N = 4 theories, where the pair of (q, p) (the total number

of sa = ±1) is the same while the ordering is different, will help us to resolve the mismatch,

clarifying the relation between the shift B and the geometry.

Notice that in this section we have completely ignored the remaining coefficient, the overall

constant A. Though the perturbative coefficients B and C in the grand potential J(µ) are

determined from the perturbative coefficients of n(E), we can not determine A in the same way,

as the non-perturbative terms in n(E) O(e−E) also contributes to the constant part of the grand

potential as (α ∈ Z+)∫ ∞

0
dEe−αE eµ−E

1 + eµ−E
=

∞∑
n=1

enµ

n+ α
(−1)n−1 =

1

α
+O(e−µ). (6.78)

To determine A we need to compute J(µ) exactly with respect to the chemical potential µ, which

we will explain in the next section.
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7 WKB expansion and membrane instantons in (q, p)k models

In the last section we analyzed the grand potential J(µ) by considering the Fermi surface for

large energy E perturbatively in 1/E. Though this treatment is sufficient for the determination

of the Airy function structure of the perturbative part of the partition function (6.1) and the

coefficients C (6.37) and B (6.40) therein, we can not determine the overall constant A. It is

also impossible to analyze the non-perturbative corrections in 1/N , or O(e−µ) in J(µ), at all.

To determine these ingredients we need to analyze the grand potential exactly in µ. Fortunately

in the (q, p)k minimal models (6.39) it is possible to determine the µ dependence of the grand

potential completely exactly, order by order in the semiclassical expansion.

In this section we first explain how to perform such exact computation. To extract the

constant A and the non-perturbative effects, we need to re-express the grand potential in the

large µ expansion. After the exact computation, we explain how to do this. We also comment on

the interpretation of the non-perturbative effects in the gravity side.

First recall the definition of the grand potential (6.19)

J (µ) = Tr log(1 + eµ−Ĥ). (7.1)

Expanding the logarithm, we can rewrite the grand potential as

J (µ) =
∞∑
n=1

(−1)n−1

n
enµZ(n), (7.2)

where

Z(n) = Tr e−nĤ =

∫
dQdP

2πℏ
(e−nĤ)W . (7.3)

Here we have used the Wigner transformation introduced in the last section. Below we explain

how to compute this quantity Z(n) exactly in the semiclassical expansion.

First let us consider the classical limit k → 0, where Z(n) can be written as

Z(n) = 1

ℏ
Z0(n). (7.4)

In the classical limit we can simply replace the integrand as

(e−nĤ)W → e−nHcl (7.5)

with

Hcl = qU + pT. (7.6)

Here U(Q) and T (P ) are c-functions (6.44). Therefore we can compute the Z0(n) with the help

of the following integration formula (y ∈ R)∫
dx
( 1

2 cosh x
2

)y
=

Γ(y2 )
2

Γ(y)
, (7.7)
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as

Z0(n) =
1

2π

Γ(nq2 )2Γ(np2 )2

Γ(nq)Γ(np)
. (7.8)

Now let us consider the higher order corrections in the semiclassical expansion

Z(n) =
∑
ℓ≥0

ℏℓ−1Zℓ(n). (7.9)

The quantum corrections originates from the following two kinds of deviations

◦ The deviation of HW from Hcl = qÛ + pT̂ ,

◦ The deviation of (e−nĤ)W from e−nHW .

(7.10)

The first effects are already argued in the previous section: we can compute them by first

computing the higher commutators in the Hamiltonian operator and then computing the Wigner

transformation of each commutator. On the other hand the second effects have been completely

ignored in the previous section, so we would like to explain them here. Notice that the difference

between the ⋆-product and the ordinary product (identity) is not only in the anti-symmetric part.

Expanding the exponential in the definition of the ⋆-product (6.47) we also find the symmetric

deviations as

AW ⋆ BW = AWBW + · · · − ℏ2

4
{(∂2QAW )(∂2PBW )− (∂Q∂PAW )(∂Q∂PBW )}+ · · · , (7.11)

which are the origin of the second deviation. Due to this fact it follows that f(Ô)W ̸= f(OW )

for a general function f(x). An effective way to evaluate the deviation is to consider the Taylor

expansion of f(Ô) around Ô = OW as

f(Ô) =
∞∑
n=0

1

n!

dnf

dxn

∣∣∣∣
x=OW

(Ô − OW )n. (7.12)

Since the Wigner transformation act only on operators, the Wigner transformation of both sides

are

f(Ô)W =

∞∑
n=0

1

n!

dnf(x)

dxn

∣∣∣∣
x=OW

Gn(OW ), (7.13)

with

Gn(OW ) ≡ (Ô − OW )nW . (7.14)

As f(x) = e−nx in our case we obtain

(e−nĤ)W = e−nHW

∞∑
ℓ=0

(−n)ℓ

ℓ!
Gℓ(HW ). (7.15)
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The semiclassical expansion of the grand potential is infinite series expansion. For tractability,

the number of correction terms need to be finite at each order of ℏ and also the correction terms

need to be computable recursively order by order. For the first kind of the deviations in (7.10), this

property is obviously granted. From the definition of the ⋆-product (6.47) we can immediately

show that a commutation [·, ·] always raise the power of ℏ by at least one. Therefore in the

computation of Zℓ(n) we only need to compute ℓ′-th commutators with ℓ′ ≤ ℓ in Ĥ. These higher

commutators can be generated recursively by the Baker-Campbell-Hausdorff formula.

The second kind of the deviations also satisfy the requirements, if treated in terms of Gℓ. First
note that Gℓ(OW ) exhibit the following ℏ-expansion

Gℓ(OW ) =
∑

j≥[ ℓ+2
3

]

ℏ2jG(j)ℓ (OW ), (7.16)

regardless of the explicit form of the operator Ô. Therefore in the computation of Zs(n) we only

need to compute a finite number of Gℓ. Moreover, we can also construct the following recursive

structure of G. For ℓ = 0, 1, Gℓ are trivially given as

G0 = 1, G1 = 0, (7.17)

and for ℓ ≥ 2 there is a recursive system for Gℓ

OW ⋆OW ⋆ · · · ⋆OW︸ ︷︷ ︸
ℓ

= OW ⋆ (OW ⋆OW ⋆ · · · ⋆OW︸ ︷︷ ︸
ℓ−1

),

Gℓ(O) = OW ⋆OW ⋆ · · · ⋆OW︸ ︷︷ ︸
ℓ

−Oℓ
W −

ℓ−1∑
m=2

(
ℓ

m

)
Oℓ−m

W Gm(O). (7.18)

Plugging these results into the original Z(n) we obtain

∑
ℓ≥0

ℏℓZℓ(n) =

∫
dQdP

2π
e−nHcle−n(HW−Hcl)

[
1 +

∞∑
ℓ=2

(−n)ℓ

ℓ!
Gℓ(HW )

]
. (7.19)

Now the ℏ corrections to Zℓ(n) will be systematically obtained by expanding the second and third

factor in the integrand in the r.h.s.

7.1 Computation and universal structure of Zℓ(n)

The correction terms in the integrand (7.19) can be systematically integrated as follows. First

note that the correction terms in the two factors in (7.19) are some polynomial of the derivatives

of U and T

Zs(n) =

∫
dQdP

2π
e−nHcLPoly({U (a)}, {T (b)}). (7.20)
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Since U(Q) and the prefactor e−nHcl are even functions and the domain of integration is symmetric

under the reflection Q → −Q, only the terms containing even number of Q-differentials ∂Q in

total contribute to Zℓ(n). As a derivative is always accompanied with a ℏ through the ⋆-product

(6.47), this implies that Zℓ(n) = 0 for any odd ℓ.

Hence we have only to consider the Zℓ(n) for even ℓ, where each term in the “Poly” takes the

form of

U (a1)U (a2) · · ·T (b1)T (b2) · · · .
(∑

i

ai =
∑
i

bi = ℓ ∈ 2N
)

(7.21)

Due to the differential properties of the cosine hyperbolic functions, such a term can always be

rewritten as a polynomial of

U (2) =
1

(2 cosh Q
2 )

2
, T (2) =

1

(2 cosh P
2 )

2
. (7.22)

For example,

(U ′)2 =
1

4
− U (2), U ′U (3) = −1

2
U (2) + 2(U (2))2, U (4) = U (2) − 6(U (2))2,

U (3)U (3) = (U (2))2 − 4(U (2))3, U ′U (5) = −U
(2)

2
+ 8(U (2))2 − 24(U (2))3,

U (6) = U (2) − 30(U (2))2 + 120(U (2))3 (7.23)

Therefore the computation of Zℓ reduces to the following integrals∫
dQdP

2π

1

(2 cosh Q
2 )

qn+2α

1

(2 cosh P
2 )

pn+2β
=

(nq2 )2α(
np
2 )2β

(nq)2α(np)2β
Z0(n). (7.24)

with some α, β ∈ Z+. Here (z)ζ are Pochhammer symbol Γ(z + ζ)/Γ(z) which are merely poly-

nomial of degree ζ in z.

From these arguments we conclude that Zℓ(n) have the following universal structure

Zℓ(n) =

0 (ℓ: odd)

fℓ(q, p;n)Z0(n) (ℓ: even)
, (7.25)

where fℓ(q, p;n) are some rational functions of n.

From the explicit computation we explicitly determined the rational functions fℓ for ℓ ≤ 8 [9]

as

f0(q, p;n) = 1, f2(q, p;n) =
q2p2(1− n2)n2

384(1 + qn)(1 + pn)
,

f4(q, p;n) =
q3p3(1− n2)n2

92160(1 + qn)(1 + pn)

[
−(9− n2)(8 + 3qn)(8 + 3pn)

16(3 + qn)(3 + pn)
+ 4− n2

]
,

f6(q, p;n) =
q3p3(1− n2)n3

3963617280(1 + qn)(3 + qn)(5 + qn)(1 + pn)(3 + pn)(5 + pn)
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(1920q3 + 1920p3 + 7168n+ 5376q2n+ 14336qpn+ 2944q3pn+ 5376p2n

+ 2304q2p2n+ 2944qp3n+ 14336qn2 + 576q3n2 + 14336pn2 + 17920q2pn2

+ 17920qp2n2 + 1656q3p2n2 + 576p3n2 + 1656q2p3n2 + 5376q2n3

+ 25088qpn3 + 2272q3pn3 + 5376p2n3 + 12272q2p2n3 + 2272qp3n3

+ 367q3p3n3 + 576q3n4 + 8960q2pn4 + 8960qp2n4 + 1488q3p2n4 + 576p3n4

+ 1488q2p3n4 + 928q3pn5 + 3088q2p2n5 + 928qp3n5 + 178q3p3n5

+ 312q3p2n6 + 312q2p3n6 + 31q3p3n7),

f8(q, p;n) = −
q3p3(1− n2)

30440580710400
1

(1 + qn)(3 + qn)(5 + qn)(7 + qn)(1 + pn)(3 + pn)(5 + pn)(7 + pn)

(3225600q5 + 3225600p5 + 24576000n+ 10321920q2n+ 9216000q4n

+ 55050240qpn+ 11796480q3pn+ 5406720q5pn+ 10321920p2n

+ 22118400q2p2n+ 1105920q4p2n+ 11796480qp3n− 1474560q3p3n

+ 9216000p4n+ 1105920q2p4n+ 5406720qp5n+ 58982400qn2

+ 18063360q3n2 + 153600q5n2 + 58982400pn2 + 107347968q2pn2

+ 21872640q4pn2 + 107347968qp2n2 + 36495360q3p2n2 + 3751680q5p2n2

+ 18063360p3n2 + 36495360q2p3n2 + 1234944q4p3n2 + 21872640qp4n2

+ 1234944q3p4n2 + 153600p5n2 + 3751680q2p5n2 + 52101120q2n3

+ 2764800q4n3 + 127795200qpn3 + 75792384q3pn3 + 952320q5pn3

+ 52101120p2n3 + 161206272q2p2n3 + 23761920q4p2n3 + 75792384qp3n3

+ 35307520q3p3n3 + 1340992q5p3n3 + 2764800p4n3 + 23761920q2p4n3

+ 812160q4p4n3 + 952320qp5n3 + 1340992q3p5n3 + 18063360q3n4

+ 153600q5n4 + 104398848q2pn4 + 12840960q4pn4 + 104398848qp2n4

+ 90491904q3p2n4 + 1443840q5p2n4 + 18063360p3n4 + 90491904q2p3n4

+ 13250304q4p3n4 + 12840960qp4n4 + 13250304q3p4n4 + 260784q5p4n4

+ 153600p5n4 + 1443840q2p5n4 + 260784q4p5n4 + 2764800q4n5

+ 34504704q3pn5 + 737280q5pn5 + 79982592q2p2n5 + 15375360q4p2n5

+ 34504704qp3n5 + 43215616q3p3n5 + 876992q5p3n5 + 2764800p4n5

+ 15375360q2p4n5 + 3419040q4p4n5 + 737280qp5n5 + 876992q3p5n5

+ 27859q5p5n5 + 153600q5n6 + 5099520q4pn6 + 25334784q3p2n6

+ 879360q5p2n6 + 25334784q2p3n6 + 7105536q4p3n6 + 5099520qp4n6

+ 7105536q3p4n6 + 220944q5p4n6 + 153600p5n6 + 879360q2p5n6

+ 220944q4p5n6 + 276480q5pn7 + 3624960q4p2n7 + 7757056q3p3n7

+ 398528q5p3n7 + 3624960q2p4n7 + 1151040q4p4n7 + 276480qp5n7

43



+ 398528q3p5n7 + 14359q5p5n7 + 192000q5p2n8 + 1080576q4p3n8

+ 1080576q3p4n8 + 63696q5p4n8 + 192000q2p5n8 + 63696q4p5n8

+ 56128q5p3n9 + 147360q4p4n9 + 56128q3p5n9 + 3481q5p5n9

+ 7536q5p4n10 + 7536q4p5n10 + 381q5p5n11). (7.26)

The explicit expression for higher ℓ were also obtained by the authors of [13] (note that f2ℓ(q, p; ∂µ) =
D(ℓ)

2π in appendix B of [13]).

7.2 Large µ expansion of grand potential

Now that we have explicitly obtained Zℓ(n), let us consider the large µ expansion of the grand

potential J(µ). We shall define the grand potential in the small k expansion corresponding to the

semiclassical expansion of Z(n) (7.9)

J (µ) =
∑
ℓ≥0

ℏℓ−1Jℓ(µ) (7.27)

with

Jℓ(µ) =
∞∑
n=1

(−1)n−1

n
enµZℓ(n). (7.28)

Below we mainly focus on the classical grand potential

J0(µ) =
∞∑
n=1

(−1)n−1

n
enµZ0(n). (7.29)

Once we have obtained the large µ expansion of J0(µ), the factorizing structure (7.25) together

with the factor enµ in (7.2) implies that the semiclassical corrections Jℓ(µ) are obtained by re-

placing the n in fℓ(q, p;n) with the differential ∂µ as

Jℓ(µ) = fℓ(q, p; ∂µ)J0(µ). (7.30)

The large µ expansion of this series was first obtained in [8] by resumming the series with the

help of the series expansion of the ratio of Gamma functions and the formal identities converting

the series of eµ into that of e−µ, like (µ ∈ R)

∑
ℓ∈Z

(−eµ)ℓ

ℓ+ α
=

π

sinπα
e−αµ. (7.31)

Later in [45] the large µ expansion of the grand potential was more generally argued by using

a different method. In this section we would like to explain the latter method which is more

systematic than the original derivation.
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The key for the derivation is the following integration (µ ∈ R)

−
∫ ϵ+i∞

ϵ−i∞

ds

2πi
Γ(s)Γ(−s)Z0(s)e

sµ. (7.32)

where 0 < ϵ < 1 is an arbitrary real parameter. There are two different ways to evaluate (7.32),

depending on the sign of µ. First assume µ < 0. In this case the integrand decays as s → ∞,

so we can evaluate the integration by pinching the contour right as in figure 7 and collecting the

residues therein

−
∫ ϵ+i∞

ϵ−i∞

ds

2πi
Γ(s)Γ(−s)Z0(s)e

sµ =

∫
C+

ds

2πi
Γ(s)Γ(−s)Z0(s)e

sµ

=
∑

s
(+)
a (Re(s

(+)
a )>ϵ)

Res[Γ(s)Γ(−s)Z0(s)e
sµ, s→ s(+)

a ]. (7.33)

Since Z0(s) (7.8) have no poles in this region, the set of poles is only s
(+)
a = 1, 2, · · · coming from

Γ(−s). We find that the residues at this infinite series of poles precisely reproduce the original

small eµ expansion of the grand potential J0(µ) (7.29).

In this sense, the integration (7.32) provides the analytic continuation of J0(µ) from µ < 0

(eµ < 1) to µ > 0 (eµ > 1), i.e. the large µ expansion. The integration (7.32) is called the

Mellin-Barnes representation of the series (7.29). Indeed, assuming µ > 0, the integration can be

evaluated by pinching the contour left

J0(µ) = −
∫ ϵ+i∞

ϵ−i∞

ds

2πi
Γ(s)Γ(−s)Z0(s)e

sµ

=
∑

s
(−)
a (Re(s

(−)
a )≤0)

Res[−Γ(s)Γ(−s)Z0(s)e
sµ, s→ s(−)

a ]. (7.34)

Due to the factor esµ in the integrand the residues are exponentially suppressed or at most

polynomial in µ for µ→∞, which immediately gives the desired large µ expansion of the grand

potential.

7.3 Perturbative part and A

The residue at s = 0 is polynomial in µ, which produces the perturbative part of the grand

potential. Indeed, since the integrand in (7.32) is O(s−4) as s→ 0 we obtain a cubic polynomial

in µ by expanding the factor esµ. Taking into account the semiclassical corrections (7.30) as well,

we find that the coefficients of the cubic term, the quadratic term (vanishing) and the linear term

determined by the Fermi surface analysis are precisely reproduced.

On the other hand the small k expansion of the remaining constant A do not terminate at

finite order and found to be [8]9

A =
2ζ(3)

πℏ
p3 + q3

qp
− ℏqp(q + p)

48π
− ℏ3q2p2(q + p)

69120π
+

ℏ5q2p2(q3 + p3)

58060800π
− ℏ7q2p2(q5 + p5)

13005619200π

9Precisely speaking, the small k expansion of A was computed up to O(ℏ3) in [8] and then extended up to O(ℏ7)
while preparing [10].
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−

Figure 7: The original contour (left), the contour for Re(µ) < 0 (center) and the contour for

Re(µ) > 0 of the integral (7.32).

+O(ℏ9). (7.35)

At first sight the expression seems complicated. However, we figure out the following interesting

decomposition structure at each order:

2ζ(3)

πℏ
p3 + q3

qp
=
ζ(3)

π2

[
p2

qk
+
q2

pk

]
,

−ℏqp(q + p)

48π
= − 1

24
(p2 · (qk) + q2 · (pk)),

−ℏ3q2p2(q + p)

69120π
= − π2

8640
(p2 · (qk)3 + q2 · (pk)3),

... (7.36)

that is

A =
p2f(qk) + q2f(pk)

2
. (7.37)

with f(k) given by the small k expansion as

f(k) =
2ζ(3)

π2k
− k

12
− π2k3

4320
+

π4k5

907200
− π6k7

50803200
+O(k9). (7.38)

This f(k) coincide with the small k expansion of the constant map in the ABJM theory AABJM(k)

[46]. Indeed if we postulate the decomposition (7.37), we can deduce f(k) = AABJM(k) by taking

the limit q, p→ 1 where our theory reduce to the ABJM theory. Hence we conjecture

A =
p2AABJM(qk) + q2AABJM(pk)

2
. (7.39)

This expression is also confirmed for small k ∈ N, as we will explain in section 8.
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7.4 Non-perturbative part

Now let us consider the residues at Re(s) < 0. From the explicit expression Z0(n) (7.8) we find

three infinite series of poles

s = −2l

q
, (l = 1, 2, · · · )

s = −2m

p
, (m = 1, 2, · · · )

s = −n, (n = 1, 2, · · · ). (7.40)

As the rational prefactor fℓ(q, p;n) in the higher order corrections have at most finite number of

poles,10 we conclude that there are three corresponding series of non-perturbative effects in the

grand potential

Jnp = J (q)
np + J (p)

np + J (2)
np , (7.41)

with

J (q)
np =

∞∑
ℓ=1

c
(q)
l (k)e

− 2lµ
q , J (p)

np =

∞∑
m=1

c(p)m (k)e
− 2mµ

p , J (2)
np =

∞∑
n=1

c(2)n (k)e−nµ. (7.42)

Here c
(q)
l , c

(p)
m and c

(2)
n are some k-dependent constants given in the small k expansion as

c
(q)
l =

∞∑
ℓ=0

ℏ2ℓ−1c
(q)
ℓ,l , c(p)m =

∞∑
ℓ=0

ℏ2ℓ−1c
(p)
ℓ,m, c(2)n =

∞∑
ℓ=0

ℏ2ℓ−1c
(2)
ℓ,n. (7.43)

The leading part c
(q)
0,l , c

(p)
0,m and c

(2)
0,n can be read off from the explicit expression of Z0(s) as

c
(q)
0,ℓ =

1

πℓ sin 2πℓ
q

(
2ℓ

ℓ

)
Γ(−pℓ

q )
2

Γ(−2pℓ
q )

, c
(p)
0,m =

1

πm sin 2πm
p

(
2m

m

)
Γ(− qm

p )2

Γ(−2qm
p )

,

c
(2)
0,n =

(−1)n−1

2πn

Γ(− qn
2 )2

Γ(−qn)
Γ(−pn

2 )2

Γ(−pn)
, (7.44)

where we have used the following formula

Γ(z)Γ(1− z) = π

sinπz
(7.45)

to rewrite some of the Gamma functions. The higher order corrections are obtained by multiplying

f2s(q, p; ∂µ) with replacement ∂µ → −2ℓ/q, −2m/p or −n, respectively.
10At least up to O(k9), all of these finite poles are precisely cancelled with the zeroes coming from the Gamma

functions in the numerator of Z0(n).
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7.5 Gravitational interpretation of non-perturbative effects as instantons

Here we shall briefly comment on the interpretation of the non-perturbative corrections O(e−µ)

to the grand potential J(µ) in the gravity side. The dual eleven dimensional geometry to the

(q, p)k model we are considering is AdS4 × Y7,

ds211 =
R2

AdS

4
ds2AdS4 +R2

AdSds
2
Y7
, (7.46)

where Y7 is the radial section of (C2/Zq,×C2/Zp)/Zk according to the analysis of the moduli

space [3] commented in section 3. The AdS radius RAdS is given by

RAdS = (32π2qpkN)
1
6 ℓ(11)p (7.47)

with ℓ
(11)
p the eleven dimensional Planck length. Below we provide an evidence that the non-

perturbative effects can be interpreted as fundamental membranes winding on Y7.

Suppose the perturbative grand potential (6.23) is corrected with a non-perturbative effect

e−ωµ with some constant ω as

J(µ) = Jpert + e−ωµ. (7.48)

Substituting this into the inversion relation J(µ)→ Z(N) (6.25), we obtain

Z(N) =

∞∑
n=0

1

n!

∫ i∞

−i∞

dµ

2πi
eJ

pert(µ)−µ(N+nω)

= eAC− 1
3

∞∑
n=0

1

n!
Ai[C− 1

3 (N −B + nω)], (7.49)

where we have expanded the exponential of the non-perturbative correction and used the integra-

tion formula defining the Airy function (6.2). In terms of the free energy F = logZ(N), the term

n = 0 correspond to the perturbative part (6.1) while the terms n > 0 gives the non-perturbative

free energy

F np = log

[
1 +

∞∑
n=1

1

n!

Ai[C− 1
3 (N −B + nω)]

Ai[C− 1
3 (N −B)]

]
. (7.50)

With the help of the asymptotic expansion formula of the Airy function (6.3) we find that the

leading behavior of F np is

F np ∼ e−ω
√

N/C . (7.51)

From the explicit expressions of the constant C (6.37) and RAdS (7.47) the exponent is found to

coincide, up to numerical factors, with

ω

√
N

C
∝ ωR3

AdSTM2 (7.52)

48



Hence the exponent can be interpreted as the energy of closed Euclidean M2-branes winding on

some non-trivial 3-cycle inside Y7.

Such winding effects are called the membrane instantons [36]. In current case Y7 is the radial

section of (C2/Zq ×C2/Zp)/Zk. As it would be natural to guess that the M2-branes can wind on

the cycle orbifolded by Zq or Zp, this way of interpretation indeed seems to be consistent with

the variety of the non-perturbative effects (7.42).11 For these reasons, from now on we shall call

the non-perturbative effects O(e−µ) as the “instantons”.

7.6 Instanton coefficients and pole cancellation

So far we have formally regarded q and p as arbitrary real parameters in the computations, where

the instanton coefficient are generically finite. However, some of the instanton coefficients diverge

for the special values of q and p. Actually, the divergence always occurs for physical parameters,

i.e. q, p ∈ N. At first sight the occurrence of the divergences seems to be a contradiction, since

the partition function itself is finite even for these special values. However, as we shall see in

detail below, a divergence is always accompanied with the degeneracy of the instanton exponents

over the sectors. The divergence of the individual coefficient actually occurs pairwisely in these

degenerating instantons, and interestingly, they precisely cancel each other’s divergence. The

remaining coefficients are always finite and thus the grand potential is well defined.

To see the structure of divergences, it is convenient to rewrite the coefficients of the three

species of instantons in a symmetric manner by using the formula (7.45)

J
(zi)
0,np(µ) =

∞∑
ℓi=1

F ( ℓizi ;µ)

ℓi

3∏
j=1(̸=i)

cot
πzjℓi
zi

, (7.53)

where we have introduced zi = (q, p, 2), ℓi = (l,m, n) and

F (r;µ) = − 2π

cos 2πr

Γ(2qr + 1)

Γ(qr + 1)2
Γ(2pr + 1)

Γ(pr + 1)2
e−2rµ. (7.54)

In this expression all the Gamma functions in the instanton coefficients are finite. The divergent

structure are expressed only with the cotangent factors. Explicitly speaking, the divergence

appears at l ∈ q
gcd(q,p)N ∪

q
gcd(q,2)N in J

(q)
0,np(µ), at m ∈

p
gcd(p,2)N ∪

p
gcd(p,q)N in J

(p)
0,np(µ) and at

n ∈ 2
gcd(2,q)N ∪

2
gcd(2,p)N in J

(2)
0,np(µ). As the factor F (r;µ) from different sectors share the same

instanton exponent at these special instanton numbers, however, the divergences are possibly

cancelled among those terms with the degenerating exponent. In [9] we have explicitly checked

the cancellation of divergence by regularizing the divergence by the replacement (q, p) → (q(1 +

11Different from the Zk, there are the fixed point sets on S7 for the orbifold action of Zq and Zp. Therefore the

volume of the 3-cycle containing these directions can be zero (vanishing cycle) and the volume interpretation of the

instanton exponents seems to collapse. This problem would be avioded if we consider the appropriate blow up of

the conical singularity.
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ε1), p(1 + ε2)). After summing all the relevant contributions we can see the instanton coefficient

is indeed finite in the undeformed limit ε1, ε2 → 0.

To see the explicit coefficients remaining after the cancellation, however, it is more conve-

nient to go back to the Mellin-Barnes integration representation (7.32). The integrand have

double/triple pole at the degeneracy of the instanton exponents. The finite part of the instanton

coefficient is simply given by the residue at this pole. Here we shall demonstrate the computation

for the case of triple degeneracy, which occurs when the three instanton numbers satisfy

l

q
=
m

p
=
n

2
=
ℓ

r
, (ℓ ∈ N) (7.55)

where r = gcd(q, p, 2). To obtain the residue it is convenient again to eliminate the singular

Gamma functions from integrand in (7.32) with the help of the formula (7.45) as

−Γ(s)Γ(−s)Z0(s)e
sµ =

1

sin(πs) tan πqs
2 tan πps

2

2π2Γ(1− qs)Γ(1− ps)
sΓ(1− qs

2 )
2Γ(1− ps

2 )
2
esµ. (7.56)

Now only the first factor is singular at s = −2ℓ/r

1

sin(πs) tan πqs
2 tan πps

2

∣∣∣∣
s=− 2ℓ

r
+ϵ

=
4

π3qpϵ3

(
1 +

π2ϵ2(2− q2 − p2)
12

+ · · ·
)

(7.57)

while the remaining terms are expanded as

2π2Γ(1− qs)Γ(1− ps)
sΓ(1− qs

2 )
2Γ(1− ps

2 )
2
esµ
∣∣∣∣
s=− 2ℓ

r
+ϵ

= −
π2rΓ(1 + 2qℓ

r )Γ(1 + 2pℓ
r )

ℓΓ(1 + qℓ
r )

2Γ(1 + pℓ
r )

2[
1 + ϵ

{
µ+

r

2ℓ
−H1

( ℓ
r

)}
+ ϵ2

{
µ2

2
+

(
r

2ℓ
−H1

( ℓ
r

))
µ

+
r2

4ℓ2
− r

2ℓ
H1

( ℓ
r

)
− 1

2
H1

( ℓ
r

)2
+H2

( ℓ
r

)
+
π2(q2 + p2)

24

}]
e−

2ℓµ
r . (7.58)

Here Hs(r) is defined with the harmonic numbers hs

hs(m) =

m∑
ℓ=1

1

ℓs
, (7.59)

as

Hs(r) = qs
(
2s−1hs(2qr)− hs(qr)

)
+ ps

(
2s−1hs(2pr)− hs(pr)

)
. (7.60)

The appearances of Hs(r) are due to the derivatives of the Gamma functions in F (r;µ), through

the formula

ψ(0)(m) = −γ + h1(m− 1), ψ(1)(m) =
π2

6
− h2(m− 1), (7.61)
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where γ is the Euler-Mascheroni constant. The polygamma functions are defined as

ψ(s−1)(x) =

(
d

dx

)s

log Γ(x). (7.62)

Plugging these results together we finally obtain the instanton coefficient of e−2ℓ/r as

(a0,ℓµ
2 + b0,ℓµ+ c0,ℓ)e

− 2ℓ
r (7.63)

with

a0,ℓ = −
2r

πqpℓ

(
2qℓ
r
qℓ
r

)(
2pℓ
r
pℓ
r

)
, b0,ℓ = a0,ℓ ×

[
r

ℓ
− 2H1

( ℓ
r

)]
,

c0,ℓ = a0,ℓ ×
[
r2

2ℓ2
− r

ℓ
H1

( ℓ
r

)
−H1

( ℓ
r

)2
+ 2H2

( ℓ
r

)
+
π2(4− q2 − p2)

12

]
. (7.64)

It is important to notice that an instanton coefficient is generally not constant but polynomial in

µ after the pole cancellation. The degree of the polynomial coefficient is given as

(# of species contributing to the instanton)− 1. (7.65)

7.7 Effective chemical potential for triple degeneracy

As we have seen above, the instanton coefficient is quadratic polynomial in µ when all the three

species of the instantons contribute to the pole cancellation

Jnp = Jaµ
2 + Jbµ+ Jc + · · · , (7.66)

where

Ja =
∑
ℓ≥1

aℓe
− 2ℓµ

r , Jb =
∑
ℓ≥1

bℓe
− 2ℓµ

r , Jc =
∑
ℓ≥1

cℓe
− 2ℓµ

r , (7.67)

and we have abbreviate the other instanton effects as “· · · ”. aℓ, bℓ, and cℓ are some µ independent

constants whose explicit expressions in the limit k → 0 are given as (7.64).

Note that the quadratic part Ja can be absorved into the perturbative part of the grand

potential by shifting the chemical potential µ,

µeff = µ+
Ja
C
, (7.68)

as

J(µ) =
C

3
µ3 +Bµ+A+ Jaµ

2 + Jbµ
2 + Jc + · · ·

=
C

3
µ3eff +Bµeff +A+ J̃bµeff + J̃c + · · · , (7.69)
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where

J̃b = Jb −
J2
a

C
, J̃c = Jc +

2J3
a

3C2
− BJa

C
− JaJb

C
. (7.70)

Now J̃b and J̃c should be regarded as the instanton effects with exponents e−2ℓµeff/r:

J̃b =
∑
ℓ≥1

b̃ℓe
− 2ℓµeff

r , J̃c =
∑
ℓ≥1

c̃ℓe
− 2ℓµeff

r . (7.71)

Interestingly, a little simplification occurs in the instanton coefficients by the introduction of this

“effective chemical potential” µeff (??). Speaking concretely,

◦ The instanton coefficients (7.64) are somehow asymmetric for

a0,ℓ, b0,ℓ ∈ Q/π, while c0,ℓ ∈ Q/π + πQ. (7.72)

On the other hand, the instanton coefficients in terms of µeff, b̃ and c̃ are both in Q/π.

◦ The same rationality is satisfied also for the higher order in small ℏ expansion. This implies

that the Taylor expansions of the instanton coefficients on the triple degeneracy aℓ, b̃ℓ(k)

and c̃ℓ(k) schematically take the following form

1

π

∑
m≥0

αmℏ2m−1, (αm ∈ Q). (7.73)

Below we shall prove these properties.

Let us start with the classical limit. Remember the rationality of the perturbative coefficients

(6.37) and (6.40),

C =
1

ℏ
C0, B =

1

ℏ
B0 + ℏB2 (7.74)

with

C0 =
4

πqp
∈ Q/π,

B0 =
π(4− q2 − p2)

3qp
∈ πQ,

B2 =
qp

48π
∈ Q/π. (7.75)

First note that

Ja
C

=
∑
ℓ≥1

a0,ℓ
C0

e−
2ℓµ
r (7.76)

have always rational coefficients. This ensures that the coefficients in J̃b and J̃c computed before

expanding e−2ℓµ/r with e−2ℓµeff/r have the same rationality as those after the expansion. Therefore
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we would like to argue the rationality of the coefficients before expanding the exponents. The

linear part J̃b can be written explicitly, in the classical limit, as

J̃b =
1

ℏ
∑
ℓ≥1

(
b0,ℓ −

1

C0

∑
ℓ1,ℓ2≥1(ℓ1+ℓ2=ℓ)

a0,ℓ1a0,ℓ2

)
e−ℓµ. (7.77)

Since a0,ℓ, b0,ℓ, C0 ∈ Q/π, we conclude b̃0,ℓ ∈ Q/π. Similarly we can see that the following combi-

nation in the constant part J̃c

2J3
a

3C2
− JaJb

C
(7.78)

have rational coefficients up to ℏ in the classical limit. The only non-trivial parts are the remaining

terms in J̃c

Jc −
BJa
C

. (7.79)

Using the explicit expression of the coefficients we find the πQ part precisely cancels as

a0,ℓ ·
π2(4− q2 − p2)

12
− π(4− q2 − p2)

3qp
· a0,ℓ ·

πqp

4
= 0. (7.80)

Therefore we also conclude c̃ℓ ∈ Q/π.

Next let us consider the higher order corrections in the small k expansion. The higher order

corrections are generated by operating

ℏℓ−1fℓ(q, p; ∂µ) (7.81)

(f(q, p;n) are rational functions of n with rational coefficients, given as (7.26)) on the instantons

in the classical limit

1

ℏ
∑
ℓ≥1

(a0,ℓµ
2 + b0,ℓµ+ c0,ℓ)e

− 2ℓµ
r . (7.82)

It is easy to see that the differential ∂µ converts the coefficients as

∂µ :

aℓbℓ
cℓ

→M

aℓbℓ
cℓ

 (7.83)

with

M =

−
2ℓ
r 0 0

2 −2ℓ
r 0

0 1 −2ℓ
r

 . (7.84)

Since the transformation matrixM and the power ofM have only rational components and always

satisfies Mn
i,j = 0 for i < j, the coefficients a0,ℓ take the form of (7.73). Therefore in the purpose

of the derivation of the schematic structure (7.73) we can again neglect the corrections coming

from the exponents e−2ℓµ/r ̸= e−2ℓµeff/r. Since b0,ℓ also take the form of (7.73), we can see b̃ℓ take

the form of (7.73) as well by the similar manipulations as in the classical limit. Moreover, since

Mn
1,1 = Mn

3,3 and B2 ∈ Q/π the cancellation of the πQ irrational part in (7.80) still holds. This

ensures that c̃ℓ also satisfies the structure (7.73).
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7.8 Discussion and Comments

In this section we have analyzed the grand potential J(µ) in small k expansion but exactly with

respect to the chemical potential µ. The analysis provides the small k expansion of the constant

A(k) in the perturbative partition function (6.1) which we could not determine in the last section.

Though the small k expansion does not terminate at finite order, we have achieved to conjecture

its exact k dependence by discovering a simple decomposition structure (7.37).12

We have also obtained quantitative results on the non-perturbative effects in µ. In the gravity

side these effects can be understood as the Euclidean M2-branes winding on some non-trivial

three cycles, called the instantons. In this picture the exponents of the non-perturbative effects

are related to the volume of the winding, and our observation of the variety of exponents modded

by q and p nevertheless matches with the variety of orbifolds in the moduli space of the theory

(C2/Zq × C2/Zp)/Zk.

As we will see later there also exist the instantons of O(e−µ/k) which are completely invisible

in the small k expansion. In the case of the ABJM theory, there are two kinds of instantons,

O(e−4µ/k) and O(e−2µ). The former corresponds to the M2-branes winding on the cycle modded

by Zk while the latter the M2-branes winding in some other three directions. Regarding the

modded cycle as the M-theory direction and adopt the terminology of IIA picture, the former

instantons correspond to the winding of the fundamental strings while the latter that of the D2-

branes. In this sense the former instantons O(e−4µ/k) are called the worldsheet instantons [50]

while the latter O(e−2µ) are called the membrane instantons [51].

Obtaining the exact instanton coefficients (7.44) we have discovered an interesting pole struc-

ture of the instantons: regarding q and p as continuous parameters the individual instanton

coefficient diverges at some special values of q and p while the divergences completely cancel

among the different species of the instantons. The physical implication of this pole cancellation

mechanism is still obscure. Since q and p are always integers in physical theories as they are

associated with the orbifold (or the number of vertices in the quiver), it is unclear whether there

should be some counterpart of these phenomena in the gravity side or in the original field theory.

Nevertheless, for the purpose to reveal the exact structures of the instanton effects the pole

cancellation provides great hint to guess the instanton coefficients. Suppose we only know of one

series of the instanton e−2µ/q but with the explicit expression of their instanton coefficients c
(q)
0,ℓ

(7.44). The pole cancellation implies that in this case the pole structure of the explicit coefficient

predict the other two series of the instantons e−2µ/p and e−µ. Conversely, once we recognize all

the instanton species e−2µ/q, e−2µ/p and e−µ but without their coefficients, the pole cancellation

requires that the coefficient, say c
(q)
ℓ must have the following infinite series of poles: c

(q)
ℓ → ∞

at ℓp/q ∈ N or 2ℓ/q ∈ N, which strongly restrict the (q, p) dependence of the coefficients. In

12Interestingly, the similar decomposition structure as well as the correlation to the subdivision of the membrane

instantons is observed also in other theories [47, 48, 49]. We hope to provide some physical interpretation to these

structure in future.
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section 9 we will determine exact k dependence of the instanton coefficients by applying these

ideas between the worldsheet instantons and the membrane instantons.

Lastly, though we have focused on the theory with minimal separation of sa = ±1 in the

levels (6.39), the similar techniques are also applicable to the non-minimal cases. Since they are

identical to the minimal theory in the classical limit, we obtain the completely same series of

instanton exponents and the pole cancellation mechanism.
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8 Instanton effects for finite k

As we explain in this section, in the (q, p)k minimal models we can compute the exact values of

the partition function Z(N) for small integers k, q, p ∈ N iteratively in N , using the techniques

developed in [52, 53, 54, 10].13 These results provide distinct data for the exact expression of the

grand potential from the small k expansion in the section 7.

Using the exact values we can confirm our conjectural expression of the constant A (7.37)

in the perturbative partition function. Moreover, since the obtained values are exact, even the

“small errors” from the Zpert(N) = eAC− 1
3 Ai[C− 1

3 (N − B)] are meaningful quantities as well.

We can read off the instanton effects for finite k from these deviations. Interestingly we encounter

new kind of instanton effects O(e−µ/k) which were completely invisible in the small k expansion.

8.1 Exact partition function for (q, p)k models

Here we shall explain a systematic method to compute the quantities Tr ρ̂n. Once these quantities

are determined for 1 ≤ n ≤ N , we can read off the exact partition function Z(N) according to

the definitions (6.11) and (6.19).

8.1.1 p = 1

First we would like to explain the computation in the (q, p)k models with p = 1 [54]. Notice that

the matrix element of the density matrix ρ̂ is written as

ρ(Q1, Q2) =
1

2π
⟨Q1|ρ̂|Q2⟩ =

1

2πk

1(
2 cosh Q1

2

)q/2 1

2 cosh Q1−Q2

2k

1(
2 cosh Q2

2

)q/2 , (8.1)

where we have used the following Fourier transformation formula

⟨Q1|
1

2 cosh P̂
2

|Q2⟩ =
∫

dP

2πk

ei(Q1−Q2)P/ℏ

2 cosh P
2

=
1

k

1

2 cosh Q1−Q2

2k

. (8.2)

The exact computation is achieved due to the following structure of this matrix element

ρ(Q1, Q2) =
E(Q1)E(Q2)

M(Q1) +M(Q2)
, (8.3)

where individual ingredients are given explicitly as

M(Q) = 2πke
Q
k , E(Q) =

e
Q
2k(

2 cosh Q
2

)q/2 . (8.4)

To see this fact let us express (8.3) schematically as

{M,ρ} = E ⊗ E. (8.5)

13See also [55] for the early development for the exact computation of Z(N) with N = 1 and 2.
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Here we have regarded ρ,M and E respectively as a symmetric matrix with components (ρ)Q,Q′ =

ρ(Q,Q′), (M)Q,Q′ =M(Q)δ(Q−Q′) and (E)Q = E(Q), respectively. The integrations over Q in

the power of the density matrix or the trace are regarded as the operations of matrix product.

Using (8.5) repetitively, it is easy to derive similar (anti-)commutation relation for ρn with n ≥ 2

Mρn − (−1)nρnM =

n−1∑
m=0

(−1)m(ρm · E)⊗ (ρn−1−m · E). (8.6)

These (anti-)commutation relations imply that, if we define a new set of vectors ψm by

ψm(Q) =
(ρm · E)(Q)

E(Q)(
≡ 1

E(Q)

n∏
i=1

∫
dQiρ(Q,Q1)ρ(Q1, Q2) · · · ρ(Qn−1, Qn)E(Qn)

)
, (8.7)

the powers ρn can be written as

ρn(Q1, Q2) =
E(Q1)E(Q2)

M(Q1)− (−1)nM(Q2)

n−1∑
m=0

(−1)mψm(Q1)ψn−1−m(Q2). (8.8)

The efficiency of this formula is worth stressing. When we compute a power of some matrix we

need to compute the product of matrices at each step. In our formula, however, we can compute

ρn just by picking up a specific vector E and multiplying ρ to it. Hence it is expected that our

formula substantially simplifies the computation.

Moreover, for k, q ∈ N the vectors ψm(Q) can be computed by simple iterative steps. From

the definition (8.7) we obtain the following recursion relation

ψm+1(Q) =
1

E(Q)

∫
dQ′ρ(Q,Q′)E(Q′)ψm(Q′) (8.9)

with the initial condition

ψ0(Q) = 1. (8.10)

When k, q ∈ N, we can introduce new integration variable u = eQ/(2k) and rewrite the integration

as

ψm+1(u) =
1

π

∫ ∞

0
dv

1

v2 + u2
vqk+1

(v2k + 1)q
ψm(v). (8.11)

This integration can be simplified by expanding ψm(u) in the series of log u

ψm(u) =
∑
j≥0

ψ(j)
m (u)(log u)j , (8.12)

where ψ
(j)
m (u) are rational functions in u, as [53]

ψm(u) = − 1

π

∑
j≥0

(2πi)j+1

j + 1

∑
va∈C\R+

Res

[
1

v2 + u2
vqk+1

(v2k + 1)q
ψ(j)
m (v)Bj+1

[
log(+) v

2πi

]
, v → va

]
.

(8.13)
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Here log(+) is the logarithm function with the branch cut on R+, i.e.

log(+) z =

log z (0 < Arg(z) < π

log z + 2πi (−π < Arg(z) < 0)
. (8.14)

with log the usually used logarithm with branch cut on R−, and Bj(z) are the Bernoulli polyno-

mials defined like (6.31). We shall assume u ∈ R+ to collect the residue at v = ±iu.

Once ψm are computed in this manner, we can obtain Tr ρ̂ by integrating (8.8) with Q2 = Q1

by the same technique. For odd n we obtain

Trρ̂n = − 1

2π

∑
j≥0

(2πi)j+1

j + 1

∑
va∈C\R+

Res

[
vqk−1

(v2k + 1)q
f (j)n (v)Bj+1

[
log(+) v

2πi

]
, v → va

]
, (8.15)

while if n is even the result is

Trρ̂n = − 1

2π

∑
j≥0

(2πi)j+1

j + 1

∑
va∈C\R+

Res

[
vqk

(v2k + 1)q
g(j)n (v)Bj+1

[
log(+) v

2πi

]
, v → va

]
. (8.16)

Here we have defined the rational functions f
(j)
n (u) and g

(j)
n (u) as

∑
j≥0

f (j)n (u)(log u)j =

n−1∑
m=0

(−1)mψm(u)ψn−m−1(u),

∑
j≥0

g(j)n (u)(log u)j =

n−1∑
m=0

(−1)m∂uψm(u)ψn−m−1(u). (8.17)

8.1.2 p = 2

Similar computation is possible also for the (q, p)k models with p = 2 [10]. In this case we use the

Fourier transformation formula

⟨Q1|
1

(2 cosh P̂
2 )

2
|Q2⟩ =

∫
dP

2πk

ei(Q1−Q2)P/ℏ(
2 cosh P

2

)2 =
1

2πk2
Q1 −Q2

2 sinh Q1−Q2

2k

(8.18)

to rewrite the density matrix as

ρ(Q1, Q2) =
1

2π
⟨Q1|ρ̂|Q2⟩ =

1

(2πk)2
1(

2 cosh Q1

2

)q/2 Q1 −Q2

2 sinh Q1−Q2

2k

1(
2 cosh Q2

2

)q/2 . (8.19)

which has the following structure

ρ(Q1, Q2) =
(Q1 −Q2)E(Q1)E(Q2)

M(Q1)−M(Q2)
(8.20)

with

M(Q) = (2πk)2e
Q
k , E(Q) =

e
Q
2k(

2 cosh Q
2

)q/2 . (8.21)
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Schematically, this result can be rewritten as

[M,ρ] = (EQ)⊗ E − E ⊗ (EQ). (8.22)

This implies that we can follow almost similar iterative steps as in the case of p = 1; the only

difference is that we need to introduce two series of vectors corresponding to E and EQ

ϕm(Q) =
(ρm · E)(Q)

E(Q)
, ψm(Q) =

(ρm · EQ)(Q)

E(Q)
, (8.23)

which are computed recursively as

ϕm(Q) =

∫
dQ′ 1

E(Q)
ρ(Q,Q′)E(Q′)ϕm−1(Q

′), ϕ0(Q) = 1,

ψm(Q) =

∫
dQ′ 1

E(Q)
ρ(Q,Q′)E(Q′)ψm−1(Q

′), ψ0(Q) = Q. (8.24)

The powers of the density matrix are written as

ρn(Q1, Q2) =
E(Q1)E(Q2)

M(Q1)−M(Q2)

n−1∑
m=0

[
ψm(Q1)ϕn−1−m(Q2)− ϕm(Q1)ψn−1−m(Q2)

]
, (8.25)

and the traces can be computed as

Tr ρ̂n =

∫
dQ

E(Q)2

dM/dQ

n−1∑
m=0

[dψm(Q)

dQ
ϕn−1−m(Q)− dϕm(Q)

dQ
ψn−1−m(Q)

]
. (8.26)

8.1.3 p ≥ 3

Now the generalization to the (q, p)k models with p ≥ 3 is straightforward [10], with the help of

following Fourier transformation formula

⟨Q1|
1

(2 cosh P̂
2 )

p
|Q2⟩ =

∫
dP

2πk

ei(Q1−Q2)P/ℏ(
2 cosh P

2

)p

=



1

(p− 1)!k

1

2 cosh Q1−Q2

2k

p−1
2∏

j=1

[(
Q1 −Q2

2πk

)2

+
(2j − 1)2

4

]
(for odd p)

Q1 −Q2

2π(p− 1)!k2
1

2 sinh Q1−Q2

2k

p
2
−1∏

j=1

[(
Q1 −Q2

2πk

)2

+ j2
]

(for even p)

. (8.27)

They coincide with the Fourier transformation for p = 1, 2 respectively up to some factor of

polynomial in Q1 −Q2. Therefore, with M(Q) ∝ e
Q
k , the quantity

Mρ− (−1)pρM (8.28)

is written as a linear combination of (EQℓ)⊗ (EQℓ′) with ℓ, ℓ′ ≥ 0 and ℓ+ ℓ′ ≤ p−1. This ensures

that Tr ρ̂n can be calculated as in the cases of p = 1, 2 by introducing the series of vectors

ϕ(ℓ)m (Q) =
(ρm · EQℓ)(Q)

E(Q)
, (8.29)

with ℓ = 0, 1, · · · , p− 1.
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Figure 8: The exact values of Z(N) for (q, p)k = (2, 2)1 model (red circles) and the plot of the

Airy function Zpert(N) (6.1) (blue line).

8.2 Numerical support for A

With the help of the methods explained in the last section we can compute the exact values of the

partition function Z(N) for a variety of the (q, p)k models recursively in N . We have computed

the partition function Z(N) with N = 1, 2, · · · , Nmax for various (q, p), where the values of Nmax

are listed in table 1. In appendix C we display the explicit results for q = p = 2.

First, let us focus on the constant A in the Airy function expression of the perturbative par-

tition function (6.1). As we can see in figure 8 the exact partition functions can be approximated

with high accuracy by the Airy function, and hence we can read off the value of A numerically by

fitting. On the other hand, it is known that the A in the ABJM theory is related to the constant

map in the topological string and the explicit expression for finite k is available [46, 54] as

AABJM(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞

0
dx

x

ekx − 1
log(1− e−2x), (8.30)

with which we can extrapolate the conjectural expression of A (7.37) to finite k. Comparing the

values of A obtained in these two ways we find considerable agreement of the results (see table

1).

8.3 Instanton exponents for finite k

Now let us go on to the instanton effects. Subtracting the perturbative part as

δZ(N) =
Z(N)

Zpert(N)
− 1, (8.31)

where Z(N) are the exact values and Zpert(N) is the perturbative part given by (6.1)

Zpert(N) = eAC− 1
3 Ai[C− 1

3 (N −B)] (8.32)
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(q, p)k Nmax A((7.37)) A(fitting) fitting/(7.37) ω(fitting) 2
p

4
kqp

(1, 2)1 20 0.28567667616 0.28567667513 0.99999999990 1.82 1 2

(1, 2)2 13 −0.3103049 −0.3103040 0.999997 0.940 1 1

(1, 3)2 12 −0.650390 −0.650343 0.99993 0.616 0.667 0.667

(2, 2)1 15 −0.2435877 −0.2435843 0.999986 0.887 1 1

(2, 2)2 13 −1.508088 −1.508040 0.99997 0.4992 1 0.5

(2, 2)3 6 −3.011 −0.299947 0.996 0.3330 1 0.3333

(2, 2)4 7 −4.91 −4.89 0.994 0.2519 1 0.25

(2, 2)6 6 −10.06 −9.80 0.97 0.189 1 0.167

Table 1: The values A(fitting) are determined by comparing the perturbative partition function

(8.32) with the exact value at N = Nmax. The values of ω are determined by fitting the exact

values of log |Z(Nmax − 1)| and log |Z(Nmax)| with (8.35).

with the coefficients C (6.37), B (6.40) and A (7.37), we observe that the exact values of the

deviation δZ(N) behaves as

δZ(N) ∼ e−ω
√

N/C (8.33)

with some positive constant ω. See figure 9. This behavior indeed corresponds to the instanton

effects

Jnp(µ) ∼ e−ωµ, (8.34)

as argued in section 7.5. We can estimate the leading instanton exponents by fitting the exact

values of δZ(N) with the function

c0 exp

[
−2

3
C− 1

2 (N
3
2 − (N + ω)

3
2 )

]
, (c0: constant) (8.35)

as in table 1.

In some cases the exponent ω are found to be inversely proportional to k. These non-

perturbative effects can be interpreted as the M2-branes winding on the cycle in (C2/Zq ×
C2/Zp)/Zk which is orbifolded by Zk. Indeed the values of ω are somehow consistent with the

value 4/(qpk) estimated by the orbifold [13].14

8.4 Instanton coefficients by fitting

After recognizing the instanton exponents

e
− 2µ

q , e
− 2µ

p , e
− 4µ

qpk , (8.36)

14The case of mismatches can be understood to be due to the polynomial instanton coefficients.
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Figure 9: The deviation of the exact values from the Airy function for (q, p)k = (2, 2)1 model.

we can try to read off the instanton coefficients. First we shall write down the more concrete

relation between the grand potential and the partition function. Denote the non-perturbative

effects in the grand potential Jnp(µ) as

Jnp(µ) = f1(µ)e
−ω1µ + f2(µ)e

−ω2µ + · · · . (8.37)

Here {ωi}∞i=1 (ω1 < ω2 < ω < 3 · · · ) is the discrete set of positive numbers generated by the three

fundamental exponents (8.36).

{ωi}∞i=1 =

{
2ℓ1
q

+
2ℓ2
p

+
4ℓ3
qpk

∣∣∣∣ℓ1, ℓ2, ℓ3 ≥ 0, ℓ1 + ℓ2 + ℓ3 ≥ 1

}
. (8.38)

The integrand in the inversion relation J(µ)→ Z(N) (6.25) can be expanded as

Z(N) =

∫ i∞

−i∞

dµ

2πi
eJ

pert(µ)−µN (1 + g1(µ)e
−ω1µ + g2(µ)e

−ω2µ + · · · ) (8.39)

where gi(µ) are again polynomials in µ generated by

e
∑

i fi(µ)e
−ωiµ = 1 +

∑
i

gi(µ)e
−ωiµ. (8.40)

We can convert the µ dependence of each term in the expansion (8.39) through the term e−µN to

obtain

Z(N) = Zpert(N) + g1(−∂N )Zpert(N + ω1) + g2(−∂N )Zpert(N + ω2) + · · · . (8.41)

We compare the logarithm of this expansion expression with the exact values. Omitting the

terms with higher ωi which are highly suppressed, we have only a small number of unknown

coefficients, which we can determine by fitting.

Let us demonstrate the process of fitting for (q, p)k model with q = p = 2 and k = 1, where

the exact values are available for 1 ≤ N ≤ Nmax = 15. Since the three instanton exponents (8.36)

coincide to e−µ, the non-perturbative part of the grand potential can be expanded as

Jnp(µ) = f1(µ)e
−µ + f2e

−2µ + · · · . (8.42)
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The number of unknowns to be determined by fitting must be smaller than or equal to the number

of data points. Assuming fi(µ) are at most quadratic15

f1(µ) = α1µ
2 + β1µ+ γ1, (8.43)

we can take into account at most [Nmax/3] = 5 distinct instantons in (8.37).

First let us take into account fi(µ) with i ≤ 2 which generate g1(µ) and g2(µ) as

g1(µ) = f1, g2(µ) = f2 +
f21
2
. (8.44)

Then we find by fitting the exact values of log |Z(N)| as16

α1 → 0.4052855304342130 · · · ,

β1 → 0.4052620261973124 · · · ,

γ1 → 0.4054490736521232 · · · ,

α2 → −2.6981751787051466 · · · ,

β2 → 0.8972468610591679 · · · ,

γ2 → −2.1703751084209262 · · · . (8.45)

This value of α1 is found to be 4/π2 with high precision:

α1/

(
4

π2

)
= 1.00000196 · · · . (8.46)

As the effects of higher instantons are suppressed for large N , the error of fitting would be

expected to be minimized if we omit the data with small N . Indeed, if we use only the data with

N = 10, 11, 12, 13, 14, 15 we obtain the coincidence (8.46) with improved precision

α1/

(
4

π2

)
= 0.99999999976 · · · . (8.47)

Hence we shall conclude α1 is exactly 4/π2.

Fitting the remaining five unknowns with more restrictive data N = 11, 12, 13, 14, 15 we obtain

β1 → 0.4052847346628331 · · · ,

γ1 → 0.4052847326530695 · · · ,

α2 → −2.6309461188679967 · · · ,

β2 → −0.2173534321981312 · · · ,

γ2 → 2.5502103476881299 · · · ,

15We may tentatively include the cubic term. These coefficients are, however, fitted to be extremely small

numbers, say O(10−6).
16We have used the “FindFit” command in Mathematica with the option “MaxExtraPrecision→300”.
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where the value of β1 coincide with 4/π2 with higher precision

β1/

(
4

π2

)
= 1.00000000023 · · · . (8.48)

After determining the coefficients of the lower order instantons we can include the higher order

terms fi(µ)e
−ωiµ in (8.37) and continue the fitting process. The exact values are summarized in

table 2 in the next section.

8.5 Discussion and Comments

In this section we have introduced the systematic computation of the exact values of the partition

function. The exact values strongly support our conjecture for A (7.37). Once we accept the

conjecture, then the exact values provide the information on the instanton effects for finite k. By

the method of fitting we can determine the instanton coefficients in the grand potential order by

order in the instanton expansion (8.37).

The determination of the instanton coefficients might seems to be ambiguous. However, if we

substitute a wrong value to the coefficient at some step, the fitting in the next order requires the

fine-tuning of huge values of the fitting parameter, which indicates the fitting is failed. The fitting

would be successful only the lower coefficients hit the correct values, hence the determination is

nevertheless plausible.

On the other hand there are also many disadvantages in our method. The determination of

the exact coefficient become more difficult for higher order coefficients. Actually, in the case of

(q, p)k = (2, 2)2 the rational coefficients in table 2 are getting more complicated as we go to the

higher order instantons. The determination becomes also difficult as q, p and k become larger,

since the instantons are less suppressed in such cases. Especially for large values of q or p, each

instanton coefficient is generically a complicated ratio of the Gamma functions even at the level

of small k expansion, as obtained in section 7.4. In these cases it would be extremely difficult to

guess the exact coefficients from the results of fitting.

In the next section we focus on the cases of (q, p) = (2, 2) and try to determine the exact

k-dependence of the instanton coefficients. Fortunately these models avoid the problems listed

above. In these cases the unit of the instanton exponents are not so small and the instanton

coefficients in small k expansion are simple rational numbers modulo π (see (7.64), and (9.3) and

(9.10) in the next section). We successfully determine the first few coefficients for k = 1, 2, 3, 4, 6.

Moreover we observe a new structure of k-dependence in these leading coefficients. Once we

have the idea of exact expression of the whole instanton expansion, we do not need to guess the

coefficients from the numerical values obtained by fitting but rather can use them to check our

conjecture.
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9 Completely Exact results for (2, 2) model and topological string

In the preceding sections we have investigated the qualitative aspects of the instanton effects in

various ways. In this section we try to determine the instanton effects for finite k quantitatively.

Although we can analyze the grand potential for k = 1, 2, · · · or around k = 0, there are no

general technique to study the grand potential directly for general finite k. Hence our method

will be the interpolation from k = 1, 2, · · · and the extrapolation from the small k expansion.

It is reasonable to restrict ourselves to the simplest theories among the general (q, p)k models.

From the observation in the small k expansion, the instanton effects seem to simplify at q = p = 1

or q = p = 2. In these cases the three kinds of the membrane instanton completely degenerate

together. Therefore there is only one series of the membrane instanton whose coefficients are

uniformly quadratic in µ.17 Indeed the complete determination of the instanton coefficients was

successful for q = p = 1 (ABJM theory) in [56] based on [57, 58, 59, 60] and for q = p = 2 in [10].

In this section we especially focus on the case q = p = 2. From the arguments in the last two

sections, the membrane instanton exponent in the (2, 2)k model is e−µ and that of the worldsheet

instanton is e−µ/k. Hence the whole non-perturbative part of the grand potential will be expanded

as follows

Jnp(µ) =
∑

ℓ,m≥0((ℓ,m)̸=(0,0))

fℓ,m(µ)e−(ℓ+m
k
)µ (9.1)

with fℓ,m(µ) some polynomials in µ. Note that the non-perturbative effects consist not only of

the pure membrane instantons (m = 0) and the pure worldsheet instanton (ℓ = 0), but also of

the possible bound states of them (ℓ,m ̸= 0). Below we will denote the coefficients of the pure

membrane/worldsheet instantons as

fℓ,0(µ) = aℓµ
2 + bℓµ+ cℓ, f0,m(µ) = dm(µ). (9.2)

Once we postulate this expression of the instanton expansion we can determine the explicit values

of the instanton coefficients at k = 1, 2, 3, 4, 6 for small ℓ,m by fitting the exact values of the

partition functions Z(N) (C.1) as table 2. In the following sections we use these discrete data

together with the data of the small k expansion to determine the instanton coefficients as the

functions of k

9.1 Membrane instanton by extrapolation

First let us consider pure membrane instantons. Since the worldsheet instantons and the bound

states are the non-perturbative effects in k we can neglect both of them in the small k expansion

17One might think that the q = p ≥ 3 are also simple at the same extent since the ghost instantons e−µ never

produce independent exponents. In these cases, however, the degrees of the instanton coefficients are not uniform:

they can be linear or quadratic depending on whether the ghost instanton contribute or not. Actually the differential

relation (9.12) in the membrane instanton coefficients do not hold in these cases and we can not determine the

instanton coefficients with simple ansatz.
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Jnp
k=1 =

4µ2 + 4µ+ 4

π2
e−µ +

[
−26µ2 + µ+ 9/2

π2
+ 2

]
e−2µ

+

[
736µ2 − 608µ/3 + 616/9

3π2
− 32

]
e−3µ

+

[
−2701µ2 − 13949µ/12 + 11291/48

π2
+ 466

]
e−4µ

+

[
161824µ2 − 1268488µ/15 + 1141012/75

5π2
− 6720

]
e−5µ

+

[
−1227440µ2 − 10746088µ/15 + 631257/5

3π2
+

292064

3

]
e−6µ

+

[
37567744µ2 − 2473510336µ/105 + 9211252832/2205

7π2
− 1420800

]
e−7µ

+O(e−8µ),

Jnp
k=2 = 4e−

1
2
µ +

[
2µ2 + 2µ+ 2

π2
− 6

]
e−µ +

16

3
e−

3
2
µ +

[
−13µ2 + µ/2 + 9/4

π2
− 14

]
e−2µ

+
544

5
e−

5
2
µ +

[
368µ2 − 304µ/3 + 308/9

3π2
− 288

]
e−3µ − 640

7
e−

7
2
µ +O(e−4µ),

Jnp
k=3 =

16

3
e−

1
3
µ − 4e−

2
3
µ +

[
4µ2 + 4µ+ 4

3π2
+

128

9

]
e−µ − 613

9
e−

4
3
µ +

3536

15
e−

5
3
µ

+

[
−26µ2 + µ+ 9/2

3π2
− 7318

9

]
e2µ +

544352

189
e−

7
3
µ +O(e−

8
3
µ),

Jnp
k=4 = 8e−

1
4
µ − 8e−

1
2
µ +

80

3
e−

3
4
µ +

[
µ2 + µ+ 1

π2
− 96

]
e−µ +

1888

5
e−

5
4
µ − 4736

3
e−

3
2
µ

+
44416

7
e−

7
4
µ +O(e−2µ),

Jnp
k=6 = 16e−

1
6
µ − 52

3
e−

1
3
µ +

148

3
e−

1
2
µ − 189e−

2
3
µ +

4336

5
e−

5
6
µ

+

[
2µ2 + 2µ+ 2

3π2
− 38102

9

]
e−µ +

446032

21
e−

7
6
µ +O(e−

4
3
µ).

Table 2: Instanton effects in the (2, 2)k model found by fitting the exact values of the partition

function (C.1)

of the grand potential. Hence the instanton coefficients obtained in section 7 directly correspond

to the small k expansion of the membrane instanton coefficients fℓ,0(µ).

From the results in section 7 we find the explicit small k expansion of the quadratic part aℓ

a1 =
2

π2k
+O(k9),

a2 = −
9

π2k
+ 2k − 2π2k3

3
+

4π4k5

45
− 2π6k7

315
+O(k9),
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a3 =
200

3π2k
− 32k +

32π2k3

3
− 64π4k5

45
+

32π6k7

315
+O(k9),

a4 = −
1225

2π2k
+ 500k − 752π2k3

3
+

704π4k5

9
− 5792π6k7

315
+O(k9),

a5 =
31752

5π2k
− 7840k +

17440π2k3

3
− 26944π4k5

9
+

10592π6k7

9
+O(k9),

a6 = −
71148

π2k
+ 123480k − 128968π2k3 +

296272π4k5

3
− 901624π6k7

3
+O(k9),

.... (9.3)

As we have seen in section 7.7 the linear part and the constant part of the instanton coefficients

are slightly simplified by the introduction of the effective chemical potential. First let us introduce

the following notations

Ja =

∞∑
ℓ=1

aℓe
−ℓµ, Jb =

∞∑
ℓ=1

bℓe
−ℓµ, Jc =

∞∑
ℓ=1

cℓe
−ℓµ, (9.4)

to rewrite the semiclassical grand potential as

J(µ) =
C

3
µ3 +Bµ+A+ Jaµ

2 + Jbµ+ Jc. (9.5)

Then if we introduce the effective chemical potential as

µeff = µ+
1

C

∑
ℓ≥1

aℓe
−ℓµ, (9.6)

then the quadratic part Ja of the membrane instantons is absorved into the perturbative part

J(µ) =
C

3
µ3eff +Bµeff +A+ J̃bµeff + J̃c (9.7)

where J̃b and J̃c are slightly modified from the original components Jb and Jc as

J̃b = Jb −
J2
a

C
, J̃c = Jc −

BJa
C
− JaJb

C
+

2J3
a

C2
. (9.8)

Introducing the instanton coefficients b̃ℓ and c̃ℓ for J̃b and J̃c

J̃b =
∑
ℓ≥1

b̃ℓe
−ℓµeff , J̃c =

∑
ℓ≥1

c̃ℓe
−ℓµeff , (9.9)

we finally obtain the explicit small k expansion of these coefficients as

b̃1 = −
4

π2k
+

4k

3
+

4π2k3

45
+

8π4k5

945
+

4π6k7

4725
+O(k9),

b̃2 =
9

π2k
− 6k +

14π2k3

5
− 44π4k5

105
+

18π6k7

175
+O(k9),

b̃3 = −
328

9π2k
+

184k

3
− 152π2k3

5
+

752π4k5

105
+

8π6k7

525
+O(k9),
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b̃4 =
777

4π2k
− 598k +

9704π2k3

15
− 16448π4k5

45
+

202304π6k7

1575
+O(k9),

b̃5 = −
30004

25π2k
+

18004k

3
− 96700π2k3

9
+

1957000π4k5

189
− 169748π6k7

27
+O(k9),

b̃6 =
8146

π2k
− 60732k +

835836π2k3

5
− 26743288π4k5

105
+

18972788π6k7

75
+O(k9),

... (9.10)

and

c̃1 = −
8

π2k
− 8π2k3

45
− 32π4k5

945
− 8π6k7

1575
+O(k9),

c̃2 =
9

π2k
− 14π2k3

5
+

88π4k5

105
− 54π6k7

175
+O(k9),

c̃3 = −
656

27π2k
+

304π2k3

15
− 3008π4k5

315
− 16π6k7

525
+O(k9),

.... (9.11)

Interestingly, we observe that the c̃ℓ are always written as the derivative of b̃ℓ as

c̃ℓ = −
k2

ℓ

d

dk

(
b̃ℓ
k

)
. (9.12)

This relation hold at least up to O(k9) while can be shown for arbitrary ℓ from the exact grand

potential at each order in small k expansion. If we believe that this relation exact for finite k, the

unknown membrane instanton coefficients are only aℓ and b̃ℓ.

Let us try to determine the instanton coefficients aℓ(k) and b̃ℓ(k) for finite k by the extrapola-

tion. First note that our explicit result of the small k expansion indicates that πaℓ and πb̃ℓ always

have rational coefficients in terms of ℏ = 2πk, as argued in section 7.7. To decide the ansatz for

b̃ℓ we further consult the pole cancellation mechanism among the instanton effects. In section 7.6

we have discovered that the coefficients of the membrane instantons are singular as the function

of (q, p) at the points where the instanton exponent degenerate with each other. It would be

reasonable to expect that the similar structure also exist between the membrane instanton and

the worldsheet instantons. That is, the membrane instanton coefficients should be singular at k

where the membrane instanton exponent e−ℓµ degenerates with that of some worldsheet instanton

e−
mµ
k . Since the worldsheet instanton number m can be arbitrary positive integer, we conclude

that the ℓ-th membrane instanton coefficient should be singular at k ∈ N/ℓ. Reflecting this infinite

series of poles, we shall postulate the following “trigonometric” ansatz for b̃ℓ

b̃ℓ(k) =
1

π sin ℓπk

∑
a≥0

αa cos aπk, (9.13)

with αa some constants.

Next consider the quadratic part aℓ(k). In section 7.6 we have also observed that the degree of

the instanton coefficient increases at the pole cancellation. Hence the instanton coefficient would
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be a cubic polynomial in µ, if aℓ would also diverges at k ∈ N/ℓ. Since we find at most quadratic

coefficients in the exact coefficients at k ∈ N obtained by fitting table 2, we shall suppose aℓ(k)

to be finite at k ∈ N/ℓ and pose the following ansatz

aℓ(k) =
1

π2k

∑
a≥0

αa cos aπk (9.14)

again with some constants (independent of those in b̃ℓ (9.13)).

Now we can find the following expression for aℓ(k) from the results of the small k expansion

(9.3) as

a1 =
2

π2k
,

a2 = −
8 + cos 2πk

π2k
,

a3 =
152 + 48 cos 2πk

3π2k
,

a4 = −
788 + 416 cos 2πk + 21 cos 4πk

2π2k
,

a5 =
17352 + 12800 cos 2πk + 1520 cos 4πk + 80 cos 6πk

5π2k
,

a6
?
= −100538 + 92604 cos 2πk + 18264 cos 4πk + 1864 cos 6πk + 174 cos 8πk

3π2k
, (9.15)

(annotation “?” for a6 will be commented shortly) while for b̃ℓ we can determine

b̃1 =
−4 cosπk
π sinπk

,

b̃2 =
9 + 8 cos 2πk + cos 4πk

π sin 2πk
,

b̃3 =
−4(45 cosπk + 28 cos 3πk + 9 cos 5πk)

3π sin 3πk
. (9.16)

Remarkably, we find that these expression b̃ℓ enjoy the following multi-covering structures

b̃1 = β1(k), b̃2 =
1

2
β1(2k) + β2(k), b̃3 =

1

3
β1(3k) + β3(k). (9.17)

Here βℓ are trigonometric and even simpler functions rather than the original coefficients b̃ℓ

β1(k) = −
4

π sinπk
, β2(k) = −

9 cosπk + cos 3πk

π sinπk
, β3(k) = −

24 cosπk + 12 cos 3πk

π sinπk
. (9.18)

If we further postulate similar structure for b̃4, b̃5 and b̃6

b̃4 =
1

4
β1(4k) +

1

2
β2(2k) + β4(k), b̃5 =

1

5
β1(5k) + β5(k),

b̃6 =
1

6
β1(6k) +

1

3
β2(3k) +

1

2
β3(2k) + β6(k), (9.19)
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and the following ansatz for βℓ

βℓ =
1

π sinπk

∑
a≥1

αa cos(2a− 1)πk, (9.20)

we can also determine β4 and β5 as

β4(k) =
96 cosπk + 78 cos 3πk + 18 cos 5πk

π sinπk
,

β5(k) = −
480 cosπk + 440 cos 3πk + 240 cos 5πk + 40 cos 7πk

π sinπk
,

β6(k)
?
=

2841 cosπk + 2307 cos 3πk + 2166 cos 5πk + 672 cos 7πk + 168 cos 9πk

π sinπk
. (9.21)

In the above results the extrapolation of each instanton coefficients is achieved with a few

number of the profile functions as (9.13), (9.14) and (9.20). The number of the profile coefficients

αa required for each aℓ(k) and βℓ(k) (except a6(k) and β6(k)) are always smaller than 5, the

number of the data. We also observe that the coefficients are quite simple: αa ∈ (−1)ℓ−1Z+/ℓ

in aℓ and αa ∈ (−1)ℓZ+ for βℓ. These observations would be nevertheless nontrivial evidences to

support our conjecture (9.15), (9.18) and (9.21). Especially, the uniform signs would imply that

we have not relied on the “fine tuning” to make up the data of the small k expansion.

Unfortunately, however, we can not continue our determination for higher instanton coeffi-

cients. The number of profile functions required for extrapolation increases as ℓ becomes larger.

Indeed we have found that a6 and β6 requires five nonzero coefficients αa. Since the small k ex-

pansion only provides five linear equations for each set of αa these determination are less plausible

in such cases. For higher instantons our strategy completely collapse as the data never fix the

profile coefficients uniquely.

Also notice that the determination of the instanton coefficients above are completely heuristic.

Of course our ansatz (9.13) and (9.14) are not the unique choice for the requirements of the pole

cancellations at all. Indeed there is another reason for our choice: we expect that the whole

structure of the instanton is an natural, not so complicated, generalization of that in the ABJM

case priorly determined in [56]. Even after accepting the restrictive ansatz (9.13) and (9.14) one

may still doubt whether it is reasonable to determine the entire functions in k just from the

first five coefficients in the small k expansions. As we press on, however, we will encounter an

increasing number of non-trivial checks in our analysis.

9.2 Effective chemical potential for finite k

If we replace µ → µeff in the worldsheet instanton effect e−µ/k, it produces the contribution in

the form of the bound states

e−
mµeff

k = e−
mµ
k +

∑
ℓ≥1

[
m

C
aℓ +

m2

2C2

∑
ℓ′,ℓ′′≥1(ℓ′+ℓ′′=ℓ)

aℓaℓ′ + · · ·
]
e−(ℓ+m

k
)µ. (9.22)
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Hence the effective chemical potential possibly explains the bound states in the instanton effects

of the grand potential (9.1). In the ABJM theory all the effective chemical potential indeed

incorporates all the bound states in the grand potential [60, 56]. It motivate us to use the

effective chemical potential µeff as the fundamental variable of the grand potential for finite k,

not only in the small k expansion.

If we consider only the instantons effects e−ωµ with exponent ω ≤ 5 + 1
k , our determination

of aℓ for ℓ ≤ 5 (9.15) are enough to rewrite the data of the exact instanton expansion in table

2 in terms of µeff. For k ∈ N, however, we can completely determine µeff including all order

nonperturbative effects by a similar trick as in the ABJM case [60]. In (9.15) we have found

that not only the trigonometric ansatz (9.14) works but also that the arguments of the cosine

functions in the numerator are always in 2πkZ+. If these structures hold in the higher membrane

instantons as well, it follows from the periodicity of the cosine function that

aℓ =
(kaℓ)

∣∣
k=0

k
(k ∈ N). (9.23)

We know the r.h.s. exactly from the classical limit of the grand potential (7.64). After the

substitution of q = p = 2 we obtain∑
ℓ≥1

(kaℓ)|k=0e
−ℓµ = Jnp

0,a =
2e−µ

π2
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;−16e−µ

)
. (9.24)

Hence we obtain the exact expression of the effective chemical potential for integral k

µeff = µ+ 4e−µ
4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2;−16e−µ

)
. (9.25)

If we express the instanton expansion in table 2 with µeff, redefining the non-perturbative part

of the grand potential as

Jnp(µeff) = J − C

3
µ3eff −Bµeff −A, (9.26)

the instanton coefficients of 1/π2 become somewhat simpler

Jnp
k =

∞∑
ℓ=1

fk,ℓ
π2

(
ℓ2

2
µ2eff + ℓµeff + 1

)
e−ℓµeff +

∞∑
m=1

gk,me
−m

µeff
k , (9.27)

with fk,ℓ and gk,m being rational numbers (see table 3).

9.3 Worldsheet instanton

Now let us try to determine the k dependence of the worldsheet instanton coefficients d̃ℓ in

Jnp(µeff) =
∑
ℓ≥1

(̃bℓµeff + c̃ℓ)e
−ℓµeff +

∑
m≥1

d̃me
− ℓµeff

k + · · · . (9.28)
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Jnp
k=1 =

2(µ2eff + 2µeff + 2)

π2
e−µeff +

[
−
9(2µ2eff + 2µeff + 1)

2π2
+ 2

]
e−2µeff

+

[
164(9µ2eff + 6µeff + 2)

27π2
− 16

]
e−3µeff

+

[
−
777(8µ2eff + 4µeff + 1)

16π2
+ 138

]
e−4µeff

+

[
15002(25µ2eff + 10µeff + 2)

125π2
− 1216

]
e−5µeff

+

[
−
4073(18µ2eff + 6µeff + 1)

3π2
+

32852

3

]
e−6µeff

+

[
1445404(49µ2eff + 14µeff + 2)

343π2
− 100272

]
e−7µeff +O(e−8µeff),

Jnp
k=2 = 4e−

1
2
µeff +

[
µ2eff + 2µeff + 2

π2
− 7

]
e−µeff +

40

3
e−

3
2
µeff

+

[
−
9(2µ2eff + 2µeff + 1)

4π2
− 75

2

]
e−2µeff +

724

5
e−

5
2
µeff

+

[
82(9µ2eff + 6µeff + 2)

27π2
− 1318

3

]
e−3µeff +

7704

7
e−

7
2
µeff +O(e−4µeff),

Jnp
k=3 =

16

3
e−

1
3
µeff − 4e−

2
3
µeff +

[
2(µ2eff + 2µeff + 2)

3π2
+

112

9

]
e−µeff − 61e−

4
3
µeff

+
3376

15
e−

5
3
µeff +

[
−
3(2µ2eff + 2µeff + 1)

2π2
− 2266

3

]
e−2µeff +

52880

21
e−

7
3
µeff

+O(e−
8
3
µeff),

Jnp
k=4 = 8e−

1
4
µeff − 8e−

1
2
µeff +

80

3
e−

3
4
µeff +

[
µ2eff + 2µeff + 2

2π2
− 197

2

]
e−µeff +

1928

5
e−

5
4
µeff

− 4784

3
e−

3
2
µeff +

44976

7
e−

7
4
µeff +O(e−2µeff),

Jnp
k=6 = 16e−

1
6
µeff − 52

3
e−

1
3
µeff +

148

3
e−

1
2
µeff − 189e−

2
3
µeff +

4336

5
e−

5
6
µeff

+

[
µ2eff + 2µeff + 2

3π2
− 38137

9

]
e−µeff +

148752

7
e−

7
6
µeff +O(e−

4
3
µeff).

Table 3: Instanton expansion in the (2, 2)k model in table 2 rewritten in terms of the effective

chemical potential µeff.

from the interpolation of the data in table 3. Here we denote the possibly remaining bound states

as “· · · ”. We can use the coefficients of e−µeff/k in Jnp
k (µeff) for k = 2, 3, 4, 6 to determine d̃1, those

of e−
2
k
µeff in Jnp

k (µeff) for k = 3, 4, 6 to determine d̃2, and so on. First of all, from these data we

conclude that d̃ℓ are µeff-independent constants.

Again counting on the pole cancellation mechanism, we expect that the worldsheet instanton
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coefficients d̃ℓ are singular at k = ℓ/N and postulate the following ansatz

d̃m(k) =
1

sin2 π
k

∑
a≥0

αa cos
aπ

k
. (9.29)

where we assume double pole since to compensate the double pole of c̃ℓ (9.12).

In the determination of d̃1(k) we can use the four coefficients of e−µeff/k in Jnp
k (µeff) for k =

2, 3, 4, 6. We can use the term e−µeff in Jnp
k=1(µeff) as well, which consist of the membrane instanton

e−µeff and the worldsheet instanton e−µeff/k|k=1. Now that the membrane instanton coefficient is

determined, this data also provide new constraint on d̃1(k). The pole cancellation occurs on this

coefficient. The membrane instanton effect is expanded at k → 1 as

(̃b1µeff + c̃1)e
−µeff =

[
− 4

π2(k − 1)2
− 8 + 4µeff
π2(k − 1)

− 4

3
+O(k − 1)

]
e−µeff , (9.30)

while the worldsheet instanton (be careful of the k dependent exponent)

d1e
−µeff

k =

[∑
a≥0

αa(−1)a
(

1

π2(k − 1)2
+

2 + µeff
π2(k − 1)

+
3µ2eff + 6µeff + 6 + 2π2

6π2

)

− π2

2

∑
a≥0

a2αa(−1)a +O(k − 1)

]
e−µeff , (9.31)

From the requirements that the singular part completely cancels and that the finite part repro-

duces the coefficient in table 3, we obtain the following two constraints for αa∑
a≥0

αa(−1)a = 4,
∑
a≥0

a2αa(−1)a = 0. (9.32)

Hence six equations are available in total, with which we can determine

d̃1 =
4

sin2 π
k

. (9.33)

By the same steps, we can also determine

d̃2 =
2

sin2 2π
k

(
−9− 10 cos

2π

k

)
, d̃3 =

1

3 sin2 3π
k

(
112 + 144 cos

2π

k
+ 72 cos

4π

k

)
. (9.34)

We find two interesting properties (analogous to the ABJM case):

◦ Our result d̃2 together with b̃2 (9.16) and c̃2 (9.12) also reproduces the non-perturbative

effects of e−2µeff in Jnp
k=1(µeff) in table 3, where originally the “bound state” e−(ℓ+m/k)µeff

with (ℓ,m) = (1, 1) could also contribute. Similarly d̃3 in (9.34) also reproduces the term

e−3µeff in Jnp
k=1(µeff) and e−3µeff/k in Jnp

k=2(µeff), both of which could contain the bound

state of (ℓ,m) = (1, 1). This implies that the bound state are completely explained by the

nonperturbative shift of the chemical potential µ→ µeff (9.6).

73



◦ The worldsheet instanton coefficients have the same multicovering structure as that observed

in the membrane instanton coefficients (9.17)

d̃1 = δ1(k), d̃2 =
1

2
δ1

(k
2

)
+ δ2(k), d̃3 =

1

3
δ1

(k
3

)
+ δ3(k), (9.35)

with

δ1(k) =
4

sin2 π
k

, δ2(k) = −
5

sin2 π
k

, δ3(k) =
12

sin2 π
k

. (9.36)

The new coefficients are again extremely simple. Moreover, the decomposition in the mul-

ticovering structure is consistent with the pole cancellation: all the divergences cancel only

among the δm, βℓ and corresponding contribution in c̃ℓ with the same multicovering level n

in (9.17) and (9.35).

The assumption that there are no explicit bound states in Jnp(µeff) increase the number of

constraint available for the determination of d̃ℓ, as it allows us to use the higher order terms in

table 3. On the other hand the assumption of the multicovering structure reduces the arbitrariness

of d̃ℓ. As a result we can determine the higher worldsheet instanton coefficients. Assuming the

multicovering structure

d̃4 =
1

4
δ1

(k
4

)
+

1

2
δ2

(k
2

)
+ δ4(k), d̃5 =

1

5
δ1

(k
5

)
+ δ5(k). (9.37)

with ansatz

δm(k) =
1

sin2 π
k

∑
a≥0

αa

(
sin

π

k

)2a

, (9.38)

we obtain

δ4(k) = −
48

sin2 π
k

+ 5, δ5(k) =
240

sin2 π
k

− 96. (9.39)

In the determination of d6 and d7 we need b̃6 and b̃7 to make use of the data at k = 1 in table

3 which we could not determine from the WKB expansion. Once we accept the trigonometric

ansatz and the multicovering structure for them, however, the explicit expression of them is not

required for our purpose. Let us assume b̃6 to be written as

b̃6 =
1

6
β1(6k) +

1

3
β2(3k) +

1

2
β3(2k) + β6(k), (9.40)

with

β6(k) =

∑nmax
n=1 m6,n sin 2πkn

π sin2 πk
. (9.41)

What we will use in the determination of d̃6 is the expansion of b̃6 around k = 1, which is given

as

b̃6(1 + ϵ) =
1

6
β(6ϵ) +

1

3
β2(3ϵ) +

1

2
β3(2ϵ) + β6(ϵ) = b̃6(ϵ). (9.42)
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d 1 2 3 4 5 6 7

nd0 16 −20 48 −192 960 −5436 33712

nd1 0 0 0 5 −96 1280 −14816
nd2 0 0 0 0 0 −80 2512

nd3 0 0 0 0 0 0 −160
nd4 0 0 0 0 0 0 0

Table 4: The diagonal Gopakumar-Vafa invariants identified for the (2, 2)k model.

Here we have used the periodicity of the sine functions in β. Therefore we already know of the

expansion, which is just given by the WKB expansion. Now we have six constraint for d̃6 from

k = 1, 2, 3, 4, 6 in hand, with which we can determine the explicit expression of d̃6 as

d̃6 =
1

6
δ1

(k
6

)
+

1

3
δ2

(k
3

)
+

1

2
δ3

(k
2

)
+ δ6(k), (9.43)

with

δ6(k) = −
1359

sin2 π
k

+ 1280− 320 sin2
π

k
. (9.44)

Similarly, once we assume

b̃7 =
1

7
β1(7k) + β7(k), β7(k) =

∑nmax
n=1 m7,n sin 2πkn

π sin2 πk
, (9.45)

we can determine d̃7 as

d̃7 =
1

7
δ1

(k
7

)
+ δ7(k), (9.46)

with

δ7(k) =
8428

sin2 π
k

− 14816 + 10048 sin2
π

k
− 2560 sin4

π

k
. (9.47)

9.4 Mysterious correspondence to topological string

The multicovering structure of the worldsheet instanton (9.35) together with the trigonometric

ansatz (9.38) can be summarized into the following expansion form of the worldsheet instantons∑
m≥1

d̃me
−µeff

k =
∑
n,d≥1

∑
g≥0

ndg
1

n

(
2 sin

πn

k

)2g−2
e−

ndµeff
k . (9.48)

where we have renamed the index a and the profile coefficients αa in δd as a→ g and αa → 22a−2ndg.

Surprisingly,
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◦ The worldsheet instanton series (9.48) completely coincide with the Gopakumar-Vafa for-

mula [11] for the free energy of the topological string theory

FGV(g) =
∑
−→
d ,n

n
−→
d
g

1

n
(2 sinhπngs)

2g−2e−n
−→
d ·

−→
T (9.49)

with the string coupling constant gs and the set of the Kahler parameters
−→
T identified as

gs = 1/k and
−→
T = µeff/k(1, 1, · · · , 1).

◦ We can read off the leading “diagonal” Gopakumar-Vafa invariants

ndg =
∑

−→
d (

∑
i di=d)

n
−→
d
g (9.50)

from the worldsheet instanton coefficients (9.36), (9.39), (9.44) and (9.47) as in table 4. We

found that they completely coincide with the indices of a known Calabi-Yau threefold, the

local D5 del Pezzo (see table 6 in [61]).

Moreover, rewriting the membrane instanton series as

∑
ℓ≥1

(̃bℓµeff + c̃ℓ)e
−ℓµeff =

∂

∂gs

∞∑
n=1

∑
−→
d

∑
jL,jR

N
−→
d
jL,jR

gs
− sin πn(2jL+1)

gs
sin πn(2jR+1)

gs

4πn2 sin3 πn
gs

e
− n

gs

−→
d ·

−→
T
. (9.51)

This completely coincide with the Nekrasov-Shatashvili limit of the free energy of the refined

topological string theory. The BPS indices N
−→
d
jL,jR

are related to the Gopakumar-Vafa invariants

through

∑
jL,jR

N
−→
d
jL,jR

sR sin 2πgssL
sin 2πgs

=

∞∑
g=0

n
−→
d
g (2 sinπgs)

2g, (9.52)

and partly determined from the membrane instanton coefficients (9.18) and (9.21) as in table 5.

9.5 Discussion and Comments

In this section we have challenged the complete determination of the instanton coefficients for finite

k. Starting from the most leading part, we have discovered various beautiful structure at each

step: the trigonometric expression, multicovering structure and the bound state incorporation

through the effective chemical potential, which help us to determine the higher order instantons.

We have finally obtained a non-trivial correspondence with the (refined) topological string theory.

In the determination, the pole cancellation mechanism have played the key role. Our final finding

that structure that both the worldsheet instantons and the membrane instantons are related to the

topological string with the same Calabi-Yau threefold is the manifestation of the pole cancellation

mechanism.
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d
∑

jL,jR
(−1)d−1Nd

jL,jR
(jL, jR)

1 8(0, 12)

2 8(0, 12) + (0, 32)

3 8(0, 12) + 8(0, 32)

4 (4 + 2m1 + 5m2)(0,
1
2) + (30−m1 −m2)(0,

3
2) + (9−m2)(0,

5
2)

+(5− 3m1 − 5m2)(
1
2 , 0) +m1(

1
2 , 1) +m2(

1
2 , 2)

5 (−80 + 2m3 + 5m4 + 7m5)(0,
1
2) + (80−m3 −m4)(0,

3
2)

+(80−m4 −m5)(0,
5
2) + (16−m5)(0,

7
2)

+(96− 3m3 − 5m4 − 7m5)(
1
2 , 0) +m3(

1
2 , 1) +m4(

1
2 , 2) +m5(

1
2 , 3)

Table 5: The diagonal BPS indices identified for the (2, 2)k model. m1,m2, · · · ,m5 are some

numbers which cannot be fixed from (9.18) nor (9.21). The overall sign (−1)d−1 is introduced to

make the numbers in table non-negative.

It is also remarkable that the coefficients in (9.48) actually coincide with the topological

invariants of known CY3, called the local D5 del Pezzo. This implies we can predict the instanton

effects up to arbitrarily higher order in principle.

Actually, the similar correspondence was also discovered in the ABJM theory [56]. In that

case the worldsheet instantons are already related to the topological string theory on local P1×P1

at first stage [35]. The membrane instantons were determined with the help of that relation and

the exact computation. Nevertheless, our example is the first one without the highest maximal

supersymmetry and would suggest that the correspondence is not completely accidental.

There are several problem to be addressed in future. First, though the diagonal Gopakumar-

Vafa invariants coincide with the literature, there are discrepancies between the BPS indices

determined from the membrane instantons in table 5 and those listed in [62] (see section 5.4

therein). Second, also note that there are more than one Kahler parameters in general while in

the correspondence above we have to choose a special “diagonal” slice of them. In the case of

the ABJM theory and it is understood that the non-diagonal choice are realized by changing the

rank of the gauge group on each vertex. Roughly speaking we can assign the individual chemical

potential µa dual to each rank Na, thus the number of parameters 2 indeed coincide with the

number of Kahler parameter for P1×P1. In the case of the (2, 2)k model, however, the number of

chemical potential we can introduce is 4, which is smaller than 6 the number of Kahler parameters

of the D5 del Pezzo. It is non-trivial whether we can introduce additional two deformations in

the matrix model.18

18An another evidence for CY3 = local dP5 argued in [63, 13] is the similarity between the approaching polygon

(6.45) for Fermi surface and polygon dual to the toric diagram of dP5 in [62]. In this sense, one may expect we can

introduce the new parameters by the ordering of {sa} as

{(+1)2, (−1)2} → {(+1)q1 , (−1)p1 , · · · },
(∑

a

qa =
∑
a

pa = 2

)
(9.53)
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10 Summary of thesis and future directions

In this thesis we have reviewed our recent works, where we have computed the partition function

of the N ≥ 3 U(N) superconformal Chern-Simons theory in large N expansion. With the help of

the Fermi gas formalism, we can show that the perturbative corrections to the partition function in

1/N universally add up to an Airy function which is characterized by three parameters depending

on the detail of the theory. For a particular class of theories with N = 4 supersymmetry, which

we have called the (q, p)k models, we achieved to determine these parameters exactly.

We also analyzed the non-perturbative effects in 1/N , which can be interpreted as the instanton

effects in the dual eleven dimensional geometry, and discovered an interesting singular structure

of the instanton effects. Based on this structure, in a special case q = p = 2, we successfully

determined the k dependence of the instanton effects for finite k. We finally figured out in

this theory the complete formula generating the whole instanton series, which coincide with the

Gopakumar-Vafa formula in the topological string theory.

It would be interesting whether we can solve the other theories and how the above correspon-

dence will be generalized. Also, though we have introduced only the result for the special class

of the theories characterized by circular quivers, recently the Fermi gas formalism was found to

be applicable to the more general theories which include the theories with non-circular quivers

[47, 65], the ones with non-unitary gauge groups [66, 48, 55] and the ones without conformal

symmetry [49]. In particular, the last set of theories is an example which contains continuous

deformation parameters. As we can compute various observables other than the partition function

by the differentiation with respect to the deformation parameters, the study of these theories will

be interesting also in purpose of the applications.

The theories we have considered can be interpreted as the worldvolume theories of the M2-

branes. If we believe that the AdS4/CFT3 correspondence hold also in quantum level, our results

must be reproduced as the quantum effects in the gravity side. It was indeed suggested that the

Airy function structure of the perturbative might be obtained by applying the localization tech-

nique to the AdS4 supergravity [43]. Though that proposal does not includes the non-perturbative

corrections in 1/N , according to their interpretation as the instantons, they would be incorpo-

rated by the dynamical effects in the compactified seven dimensions. Through the efforts in these

directions we hope to shed new light to the M-theory.

which do not modify the Fermi surface under the polygon approximation. According to the IIB brane construction,

however, such deformation will be related to the rank deformation through the Hanany-Witten transitions [64].
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A Fredholm determinant formula: Z(N)→ J (µ)

In this appendix we explain the derivation of (6.12)

J (µ) = Tr log(1 + eµρ0). (A.1)

The derivation is achieved by the rearrangement of the sum over the permutations in the partition

function (6.9)

Z(N) =
1

N !

N∏
i=1

∫
dxi
2π

det
i,j
ρ0(xi, xj) =

1

N !

N∏
i=1

∫
dxi
2π

∑
σ∈SN

(−1)σ
N∏
i=1

ρ0(xi, xσ(i)). (A.2)

First note that a permutation can be always decomposed into a product of cyclic permutations.

For example in S3 and S6

σ =

(
1 2 3

1 3 2

)
→ (1)(2, 3), σ =

(
1 2 3

2 3 1

)
→ (1, 2, 3),

σ =

(
1 2 3 4 5 6

2 4 6 1 3 5

)
→ (1, 2, 4)(3, 6, 5),

σ =

(
1 2 3 4 5 6

3 5 4 2 6 1

)
→ (1, 3, 4, 2, 5, 6). (A.3)

Now let us suppose σ consists of pℓ pieces of ℓ-th cyclic permutation (ℓ = 1, 2, · · · )

σ →
∏
ℓ≥1

pℓ∏
α=1

(n
(ℓ,α)
1 , n

(ℓ,α)
2 , · · · , n(ℓ,α)ℓ ), (A.4)

with the constraint ∑
ℓ≥1

ℓpℓ = N. (A.5)

Then the sign of σ is

(−1)σ =
∏
ℓ≥1

(−1)(ℓ−1)pℓ (A.6)

while the integrations in (A.2) are decomposed into those in each cyclic permutation as

ℓ∏
i=1

∫ dx
n
(ℓ,α)
i

2π
ρ0(xn(ℓ,α)

1

, x
n
(ℓ,α)
2

)ρ0(xn(ℓ,α)
2

, x
n
(ℓ,α)
3

) · · · ρ(x
n
(ℓ,α)
ℓ

, x
n
(ℓ,α)
1

) = Tr ρℓ0. (A.7)

Hence each contribution to (A.2) depends only on the sizes of cyclic permutations or {pℓ}, but
independent of the permuted numbers n

(ℓ,α)
i themselves. Counting the number of independent

permutations for each set of (p1, p2, · · · ) which is found to be∏
ℓ≥1

1

ℓpℓpℓ!
, (A.8)
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we can finally rewrite the sum (6.9) as the sum over {pℓ}ℓ≥1

Z(N) =
∑

p1,p2,···≥0 (
∑

ℓ≥1 ℓpℓ=N)

∏
ℓ≥1

1

ℓpℓpℓ!
(−1)(ℓ−1)pℓ(Tr ρℓ0)

pℓ . (A.9)

The sum over {pℓ}ℓ≥1 is complicated due to the constraint (A.5). However, we can convert it into

the unconstrained sum by introducing the chemical potential µ and switching to the generating

function (grand partition function) with respect to N (6.11)∑
N≥0

eµNZ(N) =
∏
ℓ≥0

∑
p≥0

eµℓp
1

ℓpp!
(−1)(ℓ−1)p(Tr ρℓ0)

p (A.10)

=
∏
ℓ≥0

exp

[
(−1)ℓ−1

ℓ
eµℓTr ρℓ0

]
, (A.11)

where we have performed the sum over p. Further performing the product over ℓ we finally obtain

the simple expression for the grand potential J (µ) (A.1).

B Recursive determination of N = 4 Hamiltonian

The one particle Hamiltonian in the Fermi gas formalism of the U(N) N = 4 circular quiver

Chern-Simons theory takes the following form.

eh = eq1Uep1T eq2Uep2T · · · eqm+1U . (B.1)

Precisely speaking, the Hamiltonian Ĥ is related to h as

Ĥ = −h(qa → −qa, pa → −pa). (B.2)

According to the Baker-Campbell-Hausdorff formula h can be expanded with U , T and their

commutators as

h = cUU + cTT + cUT [U, T ] + cUUT [U, [U, T ]] + cTUT [T, [U, T ]] + · · · , (B.3)

where obviously

cU =

m+1∑
a=1

qa, cT =

m∑
a=1

pb. (B.4)

In this section we show that the other coefficients can be determined recursively order by order

with the help of the following quantities

Σ(qα, pβ, qγ , · · · ) ≡ 1

α!β!γ! · · ·
∑

a≤b<c···
qαa p

β
b q

γ
c . (B.5)

First let us rewrite the r.h.s of (B.1) as

eh = (eq1Uep1T eq2Uep2T · · · eqm+1U )(eq1Uep1T eq2Uep2T · · · eqm+1U )
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(e−qm+1U · · · e−p2T e−q2Ue−p1T · · · e−q1U ), (B.6)

where the last two products completely cancel each other. Since the middle set of factors in this

expression is eh, we obtain the following relation for h

(eq1 adUep1 adT eq2 adUep2 adT · · · eqm+1 adU − 1)h = 0. (B.7)

Here ad(·) is a linear map adO : X → [O, X]. Expanding the l.h.s. order by order we obtain the

equations relating the coefficients c···. Here we shall demonstrate the determination of cUT from

the terms of order O(U2T ). The contributions consist of the terms in h with the orders raised by

the actions of adU or adT :∑
a

qacUT [U, [U, T ]] +

(∑
a ̸=b

qaqb +
∑
a

1

2
q2a

)
cT [U,U, T ] +

∑
a≤b

qapbcU [U, [T,U ]] = 0 (B.8)

Notice that each additional coefficient takes the form of (B.5)∑
a

qa = Σ(q),
∑
a ̸=b

qaqb +
1

2

∑
a

q2a = Σ(q2),
∑
a≤b

qabb = Σ(q, p). (B.9)

From this equation we obtain cUT in terms of cU and cT as

cUT =
Σ(q, p)cU − Σ(q2)cT

Σ(q)
. (B.10)

Similarly we obtain cUUT and cTUT as

cUUT = − 1

Σ(q)
(Σ(q2)cUT +Σ(q3)cT − Σ(q2, p)cU ),

cTUT = − 1

Σ(p)
(Σ(p2)cUT − Σ(p3)cU +Σ(p2, q)cT ). (B.11)

Note that the definition of Σ(· · · ) are redundant and there are several relations among them. For

example,

Σ(qα) =
1

α!
Σ(q)α, Σ(pα) =

1

α!
Σ(p)α,

Σ(p, q) = Σ(q)Σ(p)− Σ(q, p),

Σ(p2, q) =
Σ(q)Σ(p)2

2
− Σ(p)Σ(q, p) + Σ(q, p2). (B.12)

We can write down the explicit expression of the leading coefficients as

cUT = Σ(q, p)− Σ(q)Σ(p)

2
,

cUUT = −Σ(q)Σ(q, p)

2
+ Σ(q2, p) +

Σ(q)2Σ(p)

12
,

cTUT =
Σ(p)Σ(q, p)

2
− Σ(q, p2)− Σ(q)Σ(p)2

12
. (B.13)

We can determine the higher order coefficients in the same way, though we have to be careful

about the independent commutators.
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C Exact values of the partition function for (2, 2)k models Z
(2,2)
k (N)

The first few exact values of the partition function of the (2, 2)k model are computed by the

technique explained in section 8, as

Z
(2,2)
1 (1) =

1

4π2
, Z

(2,2)
1 (2) =

15− π2

576π4
, Z

(2,2)
1 (3) =

855 + 75π2 − 16π4

518400π6
,

Z
(2,2)
2 (1) =

1

8π2
, Z

(2,2)
2 (2) =

528− 136π2 + 9π4

73728π4
,

Z
(2,2)
2 (3) =

67680− 31200π2 + 22454π4 − 2025π6

265420800π6
,

Z
(2,2)
3 (1) =

1

12π2
, Z

(2,2)
3 (2) =

4131− 1593π2 − 128
√
3π3 + 192π4

1259712π4
,

Z
(2,2)
3 (3) = (22537035− 19628325π2 − 1296000

√
3π3 + 15828048π4 + 2188800

√
3π5

− 2560000π6)/(275499014400π6),

Z
(2,2)
4 (1) =

1

16π2
, Z

(2,2)
4 (2) =

552− 272π2 − 72π3 + 45π4

294912π4
,

Z
(2,2)
4 (3) =

152640− 184800π2 − 43200π3 + 167482π4 + 77400π5 − 38475π6

4246732800π6
,

Z
(2,2)
6 (1) =

1

24π2
, Z

(2,2)
6 (2) =

136080− 92232π2 − 25088
√
3π3 + 21801π4

161243136π4
,

Z
(2,2)
6 (3) = (1565192160− 2799360000π2 − 711244800

√
3π3 + 2988770238π4

+ 1550649600
√
3π5 − 1090902475π6)/(141055495372800π6) . (C.1)

To display the complete data, we shall adopt the plain-text style so that the readers who try to

confirm our results can easily put these data into Mathematica. Here each Z22k stands for the

list {Z(2,2)
k (1), Z

(2,2)
k (2), · · · , Z(2,2)

k (Nmax)}.

Z221 = {1/(4 \[Pi]^2), -((-15 + \[Pi]^2)/(576 \[Pi]^4)), (

855 + 75 \[Pi]^2 - 16 \[Pi]^4)/(518400 \[Pi]^6), (

60165 + 69090 \[Pi]^2 - 43463 \[Pi]^4 + 3632 \[Pi]^6)/(

812851200 \[Pi]^8), (

5608575 + 24900750 \[Pi]^2 - 31048605 \[Pi]^4 + 10115600 \[Pi]^6 -

732672 \[Pi]^8)/(

2194698240000 \[Pi]^10), (2731650075 + 33679748025 \[Pi]^2 -

70150543155 \[Pi]^4 + 48479305215 \[Pi]^6 -

12507386672 \[Pi]^8 +

838964736 \[Pi]^10)/(38240422133760000 \[Pi]^12), \

(2119933690875 + 61136013863925 \[Pi]^2 - 192479256844875 \[Pi]^4 +

227858160084555 \[Pi]^6 - 121910335426880 \[Pi]^8 +

27429824344832 \[Pi]^10 -

1745071865856 \[Pi]^12)/(1266675742758666240000 \[Pi]^14),
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1/(18240130695724793856000000 \[Pi]^16) (614658246827625 +

37211876234032500 \[Pi]^2 - 165704461466994450 \[Pi]^4 +

300314300500714500 \[Pi]^6 - 271611766174283535 \[Pi]^8 +

123836221634288800 \[Pi]^10 - 25323384980987136 \[Pi]^12 +

1547093849702400 \[Pi]^14),

1/(569310959274962265833472000000 \[Pi]^18) (338298787177225875 +

39871029262403839500 \[Pi]^2 - 239415641043753324150 \[Pi]^4 +

619599595267431078300 \[Pi]^6 - 850018115192454653445 \[Pi]^8 +

645047772730512409440 \[Pi]^10 -

262012693656247569152 \[Pi]^12 +

49813477980198027264 \[Pi]^14 - 2945074585927680000 \[Pi]^16),

1/(82208502519304551186353356800000000 \[Pi]^20) \

(765621683210169410625 + 166062633159099004453125 \[Pi]^2 -

1296997005244105169754750 \[Pi]^4 +

4572669583655871879431250 \[Pi]^6 -

8899684658812204257075075 \[Pi]^8 +

10119575319053733909455625 \[Pi]^10 -

6742436565811685754883040 \[Pi]^12 +

2503309857017096864096000 \[Pi]^14 -

448876279110137070993408 \[Pi]^16 +

25818684401823252480000 \[Pi]^18), (2303477077177729663835625 +

880027764146777853547565625 \[Pi]^2 -

8690371157670945742834584750 \[Pi]^4 +

40368672123285212086316186250 \[Pi]^6 -

106565948142012635084257524075 \[Pi]^8 +

170109742285438685942415328125 \[Pi]^10 -

167739240307876225120652575440 \[Pi]^12 +

100821204198157435732126956800 \[Pi]^14 -

34794190696827750548244369408 \[Pi]^16 +

5943095518870268728096849920 \[Pi]^18 -

333862667882982109347840000 \

\[Pi]^20)/(17546911611730440623420005888819200000000 \[Pi]^22), \

(4492286876955442308509390625 +

2917757919401410419124749708750 \[Pi]^2 -

35607661605835159061826983503125 \[Pi]^4 +

212720608909823970746040000250500 \[Pi]^6 -

737845661629782989070933445925625 \[Pi]^8 +

1582153613854678741883413405348350 \[Pi]^10 -

2165566768005216294033393063013875 \[Pi]^12 +

1904379643270082510000083628779920 \[Pi]^14 -
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1051687827591894017128702640326400 \[Pi]^16 +

341403395703886072903587365228544 \[Pi]^18 -

55952797622851481033269350236160 \[Pi]^20 +

3079075624747251953219665920000 \

\[Pi]^22)/(2673307077870356089859284737173382758400000000 \[Pi]^24), \

(4448584040297369309652193003125 +

4769863402554401198067329527968750 \[Pi]^2 -

70594342302205792357812920710940625 \[Pi]^4 +

532909377734580331865869877951062500 \[Pi]^6 -

2373194390617844893057015458584308125 \[Pi]^8 +

6622829860438203731846226010179618750 \[Pi]^10 -

12045192327124569447436429954950198375 \[Pi]^12 +

14548091692535526094611790225407330000 \[Pi]^14 -

11634904346739726928960509478551097600 \[Pi]^16 +

5982804036260434340273345197881856000 \[Pi]^18 -

1843224125874746027995843625905422336 \[Pi]^20 +

291466982574153983300048391241728000 \[Pi]^22 -

15749165340694202177783070720000000 \

\[Pi]^24)/(225894448080045089593109560291150843084800000000000 \

\[Pi]^26), (3051803535907858703033108449528125 +

5268908152311874169936996064652621875 \[Pi]^2 -

93086842398874316393881992295280371875 \[Pi]^4 +

876886569456044433151878064944363346875 \[Pi]^6 -

4927508637637263727811919266560386560625 \[Pi]^8 +

17475439355937735393734592311075789570625 \[Pi]^10 -

40913967137846750070950447460873269861625 \[Pi]^12 +

65000152227761714776681166325963154844625 \[Pi]^14 -

70732735000697479821983645244899320292400 \[Pi]^16 +

52205312372415824928514733244944089465600 \[Pi]^18 -

25251757245793417253990753791236995149824 \[Pi]^20 +

7434638350328956545170481114463497486336 \[Pi]^22 -

1139271286450925065304408425758720000000 \[Pi]^24 +

60561690915695198597801500999680000000 \

\[Pi]^26)/(14345201030875183369520829516729243139257139200000000000 \

\[Pi]^28), (23137407456809612391454351085216578125 +

62954229635321050575163339190798441484375 \[Pi]^2 -

1309941573799988455483805232788098117096875 \[Pi]^4 +

15268186040900301480202826750556336795234375 \[Pi]^6 -

106832754164533132727288247242710361809490625 \[Pi]^8 +

472580252338941135993059689678828904724328125 \[Pi]^10 -
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1390168248662692186179877009622320394777330625 \[Pi]^12 +

2815133306189432412358921616126980481987353125 \[Pi]^14 -

3994692175349508807371135938089071463886404000 \[Pi]^16 +

3979783013945165918923095709064436004748160000 \[Pi]^18 -

2741904362221974405434817031786724710050734080 \[Pi]^20 +

1257645940814959433539447857684291851319705600 \[Pi]^22 -

355810400761262299389892970480636009417539584 \[Pi]^24 +

53024334172261922336242288102326927360000000 \[Pi]^26 -

2777398435926318104088460698499153920000000 \

\[Pi]^28)/(\

10857882660269426292390315861212364132103728660480000000000000 \

\[Pi]^30)};

86



Z222 = {1/(8 \[Pi]^2), (528 - 136 \[Pi]^2 + 9 \[Pi]^4)/(

73728 \[Pi]^4), (

67680 - 31200 \[Pi]^2 + 22454 \[Pi]^4 - 2025 \[Pi]^6)/(

265420800 \[Pi]^6), (

85881600 - 12983040 \[Pi]^2 + 55295520 \[Pi]^4 -

63338032 \[Pi]^6 + 5854275 \[Pi]^8)/(

13317754060800 \[Pi]^8), (8990956800 + 12289536000 \[Pi]^2 -

16340073120 \[Pi]^4 - 21239357200 \[Pi]^6 +

20153965077 \[Pi]^8 -

1808375625 \[Pi]^10)/(71915871928320000 \[Pi]^10), \

(156552412262400 + 799484432947200 \[Pi]^2 -

2370598432392960 \[Pi]^4 + 759104950897920 \[Pi]^6 +

1917623480954896 \[Pi]^8 - 1343578259469672 \[Pi]^10 +

115898191014375 \[Pi]^12)/(80195977758659051520000 \[Pi]^12),

1/(10625646269111289690193920000 \[Pi]^14) (269997793396531200 +

3375269695429632000 \[Pi]^2 - 15176985987729646080 \[Pi]^4 +

17787224418566803200 \[Pi]^6 + 3502265231226329568 \[Pi]^8 -

19634110615575048320 \[Pi]^10 + 10705416177165260130 \[Pi]^12 -

888481148528098125 \[Pi]^14),

1/(4896297800806482289241358336000000 \[Pi]^16) \

(1384621596275613696000 + 35344001963880529920000 \[Pi]^2 -

212495559558761480601600 \[Pi]^4 +

405893735329776325632000 \[Pi]^6 -

162167991395052325562880 \[Pi]^8 -

453291486612233871347200 \[Pi]^10 +

661962025500724840347072 \[Pi]^12 -

297606457449165047911200 \[Pi]^14 +

23842627179995514515625 \[Pi]^16), (838481028426223902720000 +

39289330617873488216064000 \[Pi]^2 -

289921890979481098770432000 \[Pi]^4 +

701758634325752176446873600 \[Pi]^6 -

345509462633369038574169600 \[Pi]^8 -

1445881178560991398471365120 \[Pi]^10 +

3195722106661710197912741440 \[Pi]^12 -

2902223406682130096671398432 \[Pi]^14 +

1123231781667534159396656475 \[Pi]^16 -

87181723128690845748843750 \

\[Pi]^18)/(305646493917543850423602552766464000000 \[Pi]^18), \

(66528275066241892655431680000 +

5326483453826678515762790400000 \[Pi]^2 -

87



44608639779283744620715843584000 \[Pi]^4 +

103868043482475177416771420160000 \[Pi]^6 +

122080809881383595286591414067200 \[Pi]^8 -

1051271621523299016434901146112000 \[Pi]^10 +

2262184008121886009635025297149440 \[Pi]^12 -

2641259086366948817061653077107200 \[Pi]^14 +

1829911076924045340147848927295408 \[Pi]^16 -

628703319147188508427242455055000 \[Pi]^18 +

47435136087981530297499324609375 \

\[Pi]^20)/(2824662638188373248074765351646553702400000000 \[Pi]^20), \

(436912150740920502085323325440000 +

56727578594862025097492413808640000 \[Pi]^2 -

492833405780458096666761727229952000 \[Pi]^4 +

351934271249299908795455443181568000 \[Pi]^6 +

11356400347163558260547093186011545600 \[Pi]^8 -

59682079394776415740330276665370214400 \[Pi]^10 +

144363789403743702437818621246871761920 \[Pi]^12 -

202440124249725444952635227177713338880 \[Pi]^14 +

180492695411838158385595041288589564704 \[Pi]^16 -

104407825216754802164378328068074130016 \[Pi]^18 +

32558742999830421534051420349193966250 \[Pi]^20 -

2394926034675333836453129810879296875 \

\[Pi]^22)/(2411629168581916558248280862867388033820262400000000 \

\[Pi]^22), (14828272487567572180648820610170880000 +

2999574211071546036460636269623377920000 \[Pi]^2 -

23695073470583144042578272047024308224000 \[Pi]^4 -

121874070665560368224587503677815259136000 \[Pi]^6 +

2396019969373408736990056276462428148531200 \[Pi]^8 -

13632011926578482670397192060420915426099200 \[Pi]^10 +

41378626110811285707564864250443182515568640 \[Pi]^12 -

75501944264160285333693295979701332389437440 \[Pi]^14 +

87033186415611556408523265961468322527516928 \[Pi]^16 -

66026412501369972745989827760090350036560128 \[Pi]^18 +

33507258734959873192796134101476170776240096 \[Pi]^20 -

9641052639367613838177103066820846342130000 \[Pi]^22 +

693126540034893267246815942104315140234375 \

\[Pi]^24)/(\

11757328866937348847431746752626313655314707749273600000000 \

\[Pi]^24), (15921650348825216567679087681680179200000 +

4860587824778186472164580250028605440000000 \[Pi]^2 -

88



26541413011383797210515705396002403123200000 \[Pi]^4 -

740810055204465752324299872110728200192000000 \[Pi]^6 +

11793683377067794909885285982399781058682880000 \[Pi]^8 -

79452267420763911711702702559835265374822400000 \[Pi]^10 +

307784819405755261357826135019233173860501504000 \[Pi]^12 -

745408688631023302219883955097959352340935680000 \[Pi]^14 +

1162543883473094885990918112851367767855387961600 \[Pi]^16 -

1183606853362388768608108812963252842345636416000 \[Pi]^18 +

802994655701893608743639595119345211928466684256 \[Pi]^20 -

368600748065516251067001372724623001864373394000 \[Pi]^22 +

99083123898551154866571847163739530218835859375 \[Pi]^24 -

6977314322753100309485007394126561223291015625 \

\[Pi]^26)/(\

1986988578512411955215965201193847007748185609627238400000000000 \

\[Pi]^26)};

89



Z223 = {1/(12 \[Pi]^2), (

4131 - 1593 \[Pi]^2 - 128 Sqrt[3] \[Pi]^3 + 192 \[Pi]^4)/(

1259712 \[Pi]^4),

1/(275499014400 \[Pi]^6) (22537035 - 19628325 \[Pi]^2 -

1296000 Sqrt[3] \[Pi]^3 + 15828048 \[Pi]^4 +

2188800 Sqrt[3] \[Pi]^5 - 2560000 \[Pi]^6), (153806997015 -

163949745330 \[Pi]^2 - 11384997120 Sqrt[3] \[Pi]^3 +

305029727667 \[Pi]^4 + 72216748800 Sqrt[3] \[Pi]^5 -

319258457424 \[Pi]^6 - 54966352896 Sqrt[3] \[Pi]^7 +

55705395200 \[Pi]^8)/(104971736462745600 \[Pi]^8),

1/(7652439588134154240000 \[Pi]^10) (154770778554525 -

68699776650750 \[Pi]^2 - 12711123936000 Sqrt[3] \[Pi]^3 +

195357994149465 \[Pi]^4 + 231276614688000 Sqrt[3] \[Pi]^5 -

1229311921719600 \[Pi]^6 - 482840928460800 Sqrt[3] \[Pi]^7 +

1291183043083776 \[Pi]^8 + 251698589286400 Sqrt[3] \[Pi]^9 -

231500021760000 \[Pi]^10),

1/(6480134818845365869019136000 \[Pi]^12) (1460030404410807075 +

2474487005320655325 \[Pi]^2 -

123237815995324800 Sqrt[3] \[Pi]^3 -

13702478434623715275 \[Pi]^4 +

5769688110442502400 Sqrt[3] \[Pi]^5 -

7023094125716803365 \[Pi]^6 -

24222904922403411840 Sqrt[3] \[Pi]^7 +

63307957689755781552 \[Pi]^8 +

31713757725013816320 Sqrt[3] \[Pi]^9 -

62035096973680074240 \[Pi]^10 -

13147388255483412480 Sqrt[3] \[Pi]^11 +

11255034191937536000 \[Pi]^12)};
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Z224 = {1/(16 \[Pi]^2), (

552 - 272 \[Pi]^2 - 72 \[Pi]^3 + 45 \[Pi]^4)/(294912 \[Pi]^4), (

152640 - 184800 \[Pi]^2 - 43200 \[Pi]^3 + 167482 \[Pi]^4 +

77400 \[Pi]^5 - 38475 \[Pi]^6)/(

4246732800 \[Pi]^6), (13310640 - 24037440 \[Pi]^2 -

5503680 \[Pi]^3 + 44641352 \[Pi]^4 + 32457600 \[Pi]^5 -

50681332 \[Pi]^6 - 31171644 \[Pi]^7 +

13593825 \[Pi]^8)/(26635508121600 \[Pi]^8),

1/(2301307901706240000 \[Pi]^10) (12392956800 -

22710240000 \[Pi]^2 - 6314112000 \[Pi]^3 +

53976318480 \[Pi]^4 + 90366192000 \[Pi]^5 -

174030757000 \[Pi]^6 - 233010993600 \[Pi]^7 +

220886345682 \[Pi]^8 + 166341324600 \[Pi]^9 -

66374083125 \[Pi]^10), -(1/(

1283135644138544824320000 \[Pi]^12)) (-60317238643200 +

43909065446400 \[Pi]^2 + 34512065280000 \[Pi]^3 +

235764285482880 \[Pi]^4 - 1068346008576000 \[Pi]^5 +

718244435187840 \[Pi]^6 + 5351172561504000 \[Pi]^7 -

4491355363103048 \[Pi]^8 - 9456677491852800 \[Pi]^9 +

6369403190832576 \[Pi]^10 + 5653633803147000 \[Pi]^11 -

2111768611981875 \[Pi]^12),

1/(680041361223122540172410880000 \[Pi]^14) (233191874397081600 +

514801922732697600 \[Pi]^2 - 141592190861721600 \[Pi]^3 -

8789321000992371840 \[Pi]^4 + 8920712618737920000 \[Pi]^5 +

23218762446896976960 \[Pi]^6 - 74856884046254069760 \[Pi]^7 -

1059165605080719136 \[Pi]^8 + 241586730273496608000 \[Pi]^9 -

106730926490725032496 \[Pi]^10 -

342602951891211595584 \[Pi]^11 +

177448845285662967558 \[Pi]^12 +

181810853889070933800 \[Pi]^13 -

64472565083164363125 \[Pi]^14)};
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Z226 = {1/(24 \[Pi]^2), (

136080 - 92232 \[Pi]^2 - 25088 Sqrt[3] \[Pi]^3 + 21801 \[Pi]^4)/(

161243136 \[Pi]^4), (1565192160 - 2799360000 \[Pi]^2 -

711244800 Sqrt[3] \[Pi]^3 + 2988770238 \[Pi]^4 +

1550649600 Sqrt[3] \[Pi]^5 -

1090902475 \[Pi]^6)/(141055495372800 \[Pi]^6),

1/(1719856930205623910400 \[Pi]^8) (183530640948480 -

556534185903360 \[Pi]^2 - 137221312757760 Sqrt[3] \[Pi]^3 +

1131265400205024 \[Pi]^4 + 861676733030400 Sqrt[3] \[Pi]^5 -

1446129417081168 \[Pi]^6 - 1171549427586048 Sqrt[3] \[Pi]^7 +

734020872735325 \[Pi]^8),

1/(250755140423979966136320000 \[Pi]^10) (201088903991673600 -

813776233338432000 \[Pi]^2 -

206610867542016000 Sqrt[3] \[Pi]^3 +

2164521400969203360 \[Pi]^4 +

2704085561673216000 Sqrt[3] \[Pi]^5 -

5073325561376895600 \[Pi]^6 -

9315384492703564800 Sqrt[3] \[Pi]^7 +

8355360744608825259 \[Pi]^8 +

10289831957525612800 Sqrt[3] \[Pi]^9 -

5964558896187478125 \[Pi]^10),

1/(67949138478055983614726095503360000 \[Pi]^12) \

(333828167370597372211200 - 1468389904971364134144000 \[Pi]^2 -

425460227326305583104000 Sqrt[3] \[Pi]^3 +

2525073484417964968561920 \[Pi]^4 +

10171666064302843871232000 Sqrt[3] \[Pi]^5 -

4200831601041824440876800 \[Pi]^6 -

64718303488163279964979200 Sqrt[3] \[Pi]^7 +

22395224367807764836693968 \[Pi]^8 +

169142367590272739935641600 Sqrt[3] \[Pi]^9 -

85068987959605512160545480 \[Pi]^10 -

166824040534731773800358400 Sqrt[3] \[Pi]^11 +

91280395214844546207371875 \[Pi]^12)};
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