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Abstract

The purpose of this thesis is to present our recent studies on the exact large N expansion of
the partition function of the N'=4 U(N) circular quiver superconformal Chern-Simons theories.
These theories are known to describe the N stack of the M2-branes in the M-theory on various
orbifold. With the help of the formal relation between the partition function and a quantum
statistical system of N-particle ideal Fermi gas discovered by Marino and Putrov, we achieved
to determine the all order perturbative corrections in 1/N to the partition function in large N

expansion.

We also analyzed the non-perturbative effects in 1/N. In the context of the AdS/CFT corre-
spondence, these non-perturbative effects in 1/N can be interpreted quantitatively as the effects
of fundamental M2-branes winding non-trivial three-cycles in the dual eleven dimensional back-
ground geometry, and thus called the instantons. We determined the explicit expression of several
instanton coefficients and found the following interesting property. If the quantum number of two
different kinds of instantons satisfy particular rational relation, they exhibit the same exponential
suppression in 1/N. We discovered that the individual instanton coefficient is always singular at

the coincidence, while the divergences are always precisely cancelled in the net coefficients.

Restricting ourselves onto one particular theory among the NV = 4 theories which describes the
N stack of the M2-branes probing the orbifold (C2/Z4 x C2?/Z3)/Z},, we also achieved to determine
the coeflicients of all kinds of instantons and at arbitrary quantum numbers. We finally found that
the instanton coefficients are completely reproduced by the free energy of the refined topological

string theory.
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1 Introduction

Quantum formulation of the gravity is a long-standing problem in the theoretical physics. One of
the strong candidates is the superstring theory, where a point like degree of freedom is replaced
with the fundamental string extending in (1+ 1) dimension. In string theory the problems on the
ultraviolet divergence, appearing in the field theory approach toward the quantum gravity, are

avoided.

The type ITA string theory can be formulated by first giving a background geometry, a clas-
sical solution in the ten dimensional type IIA supergravity, and describing the embedding of a
string worldsheet into the bulk spacetime by a two dimensional supersymmetric sigma model.
The interactions among the strings can be incorporated as the non-trivial topology of the en-
tire worldsheet. This formalism is perturbative in the coupling constant gs of string interaction.
However, it was suggested [1] that we can regard gs as the size of the eleventh extra dimen-
sion. Various other types of the string theory with critical dimensions can be also understood
as the different compactifications of the eleven dimension. In this sense, the quantum version of
the eleven dimensional supergravity, called the M-theory, will provide the non-perturbative and

unified formulation for the perturbative string theories.

To understand the M-theory, it will be helpful to focus on the solitonic objects in the eleven
dimensional supergravity. There are two kinds of half BPS solitons which are extending in (14 2)
dimension and (14 5) dimension respectively and called the M2-brane and the M5-brane. Various
extending objects in string theory, the fundamental string and the Dp-branes, can be interpreted
as the compactification of these M-branes with or without winding in the eleventh direction. In
the string theory, a stack of D-branes can be described by some field theory, which we shall call
the worldvolume theory of the branes. The fields living on the branes can be interpreted as the
fundamental strings ending on the branes, and the Lagrangian of the worldvolume theory will
be obtained by studying the interactions of these open strings. Interestingly, although the string
theory is formulated in the perturbation, these field theory themselves can be analyzed for finite
coupling constant and thus expected to exist non-perturbatively. Hence it is natural to expect
that the M-branes can also be described by some field theories, which will play important roles

in understanding the M-theory.

Different from the case of the D-branes, so far we do not know the origin of the fundamental
degrees of freedom living on the M-branes. Thus the worldvolume theory of the M-branes have
been mysterious for long time. However, the symmetries preserved by the M-brane solitons in
the eleven dimentional supergravity and the relation to the D-branes under the compactification
provide many hints for the candidates of such field theory. Recently the worldvolume theory on
a stack of N M2-branes was finally proposed as a particular class of the U(N) superconformal
Chern-Simons matter theory [2, 3, 4, 5].

There have been various consistency checks for the proposals. The most striking one among



them would be that the partition function of the theory behaves in the large N limit as log Z(N) ~
N3/2_ This reproduces the behavior of the gravitational entropy of the M2-branes estimated in [6].
The correspondence is stated more concretely as the following AdS,/CFT3 correspondence [7].
Consider a stack of NV coincident M2-branes. Then the correspondence says that, the free energy
of the worldvolume theory for this setup should coincide, in the limit N — oo, with the action of
the classical supergravity evaluated on the AdS background which is the near horizon geometry
of this setup. It was shown that the coefficient in front of N3/2 is also precisely consistent with

the calculation in the gravity side, in accordance with this correspondence.

Having the concrete worldvolume theory on the M2-branes in our hand, how can we utilize
these theory to understand the M-theory? One idea is the extension of the AdS,/CFT3 corre-
spondence. In the original correspondence the limit N — oo is required to suppress the curvature
of geometry so that the classical approximation for gravity will be justified. Conversely, it is
natural to expect that the 1/N corrections in the worldvolume theory correspond to the quantum
corrections to the classical supergravity. Indeed this naive idea have been supported by various

computations in the case of the D3-branes.

In our recent works we studied the 1/N corrections to the free energy log Z(N) systematically
in various theories of the M2-branes. In a large class of theories which describe the M2-branes on
(C?/7,xC?/7,)/Zk, which we shall call the (g, p)x models, we achieved to determine the all order
perturbative corrections in 1/N to the free energy [8]. We also found interesting structure in the
non-perturbative effects [9] in 1/N which will be explained later in this thesis. Moreover, for a
special case ¢ = p = 2 among these theories we also discovered an interesting correspondence [10]
between the non-perturbative effects and the Gopakumar-Vafa formula in the topological string
theory [11]. This implies we can generate the whole non-perturbative expansion for arbitrarily
high order. Hopefully these structures and the quantitative results in the large N expansion will

help us to unveil the M-theory in future.

The thesis consists of two parts other than the appendices. In part I we briefly review the
three dimensional theories which describe the stack of N M2-branes, and the exact computation of
their partition function in the strict large N limit. Note that the review is not fully self-contained.
Various details we have omitted will be found in the references therein. In part II, after reviewing
the systematic method of analysis called the Fermi gas formalism [12], we introduce our recent
works on the exact large N expansion of the partition function. In contrast to part I, we describe
the results in full detail and also append several technical aspects which were omitted in the

original papers.

Note that the exact computation have been rapidly developed in recent years, before and after
the publication of our works. Especially the data for the small k expansion in section 7 and for
finite k in section 8 and 9 were remarkably improved in the independent work [13]. In section 9
we try to explain the guesswork in the determination relying only on the original data, though

one will obtain the same conclusions more smoothly if he/she uses these additional data.



Part 1
Gauge theory on M2-branes

In this part we have reviewed the field theoretical description of the M2-branes, which we shall
call the worldvolume theory of the M2-branes. In the eleven dimensional supergravity, a stack
of M2-branes is described as a half BPS soliton with (1 4+ 2) dimensional extension. For single
M2-brane the worldvolume theory is given by a simple Nambu-Goto type action, which coincide
with the low energy effective action of the massless modes around the M2-brane soliton solution

in the supergravity.

For a stack of multiple M2-branes, on the other hand, the worldvolume theory must contain
the interacting modes among the M2-branes which are not contained in the naive set of these
massless modes. Such theory have been completely obscure for long time due to the lack of the
picture of the fundamental degrees of freedom on the M2-branes, in contrast to the case of the
D-branes where the fundamental degree of freedom in the worldvolume theory can be understood

as the open strings ending on the D-branes.

Moreover, a computation of the gravitational entropy or the AdS,/CFT3 correspondence for
classical gravity suggests a strange scaling of the degree of freedom on N M2-branes: log Z(N) ~
N3/2 [6]. This is again in contrast to the N? scaling in the case of the D3-branes in type I1IB
string theory which allows an intuitive way of understanding by the combinatorics for the two

endpoints of a fundamental string.

Another obstacle was associated to the gauge fields on the branes. Since the worldvolume
theory of the M2-branes is the strong coupling limit of that on the D2-branes, the field content
on the M2-branes should also contain the gauge fields. On the other hand, from the study of the
massless modes it follows that there are eight scalars and eight fermions, which correspond to the
Nambu-Goldstone modes of the translations and the supersymmetries broken by the M2-brane
soliton respectively. Hence the additional gauge fields seem to contradict with the remaining (3d

N = 8) supersymmetry preserved by the M2-branes.

In [14] a solution to this dilemma was proposed that there is a Chern-Simons gauge field on
the M2-branes, which do not have on-shell degree of freedom. Based on this idea the method to
realize high supersymmetry in Chern-Simons matter theory have been developed, and finally a
N = 8 superconformal Chern-Simons matter theory was proposed as the worldvolume theory of
two M2-branes [15, 16, 17, 18]. Though these proposal are successful only for two M2-branes, the
worldvolume theories for the stack of N > 3 M2-branes have also been constructed as the U (V)

superconformal Chern-Simons matter theories.

Below we first construct such theories from the quiver diagrams, and also provide two evidences
which support that the theory indeed describe the M2-branes in section 2. In section 3 we show

that the theory have eight dimensional moduli space which can be interpreted as the translation
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Figure 1: A part of a quiver diagram. Each vertex in the quiver diagram is assigned with a vector
multiplet V,, while each edge between the vertex a and the vertex b is assigned with a pair of

chiral multiplet X, and Y.

moduli of the M2-branes in the eleven dimensional spacetime. In section 4 we evaluate the
partition function of these theory in the limit N — co and reproduce the N3/2 scaling predicted

from the gravity side.

2 U(N) circular quiver superconformal Chern-Simons theory

In this thesis, we shall call a diagram which consist of the set of the vertices and the edges
connecting the vertices like figure 1 as a quiver diagram.! Given a quiver diagram with a pair of
numbers (N, kq) on each a-th vertex, we can construct a 3d N = 2 supersymmetric Chern-Simons

matter theory by assigning a U(N,) N = 2 Chern-Simons vector multiplet
Vo= (Aa,uaa'aa)(avDa) (2'1)
with the Chern-Simons level k, on the a-th vertex and a pair of N' = 2 chiral (matter) multiplets

Xab = (Xabs Cabs Fav), Yoo = Yabs Yab, Gab) (2.2)

on each edge connecting a-th vertex and b-th vertex. Here the chiral multiplets are in the bi-
fundamental representation in the gauge group U(N,) and U(N,) on the endpoints of the edge,
(Ng, Np) and (N, Ny) respectively.

We especially focus on the circular quivers with M vertices and the uniform rank of the gauge
groups N1 = Ny = --- = Njp;y = N. In this case it is convenient to call the matter multiplets
Xg,a+1 and Y, o411 as X, and Y, respectively, as in figure 2. The action of these theories consist

of three terms

S = SCS + Smat + Spot7 (23)

1Usually a “quiver diagram” stands for a diagram which consists of the set of vertices and the arrows connecting
the vertices [19]. In this thesis, however, we always consider the case where any pair of vertices is either connected

by oppositely oriented two arrows or not connected at all. Hence we depict such pair of arrows just by an edge.



Figure 2: A N = 3 circular quiver with M nodes.

where the first term is the Chern-Simons action of the vector multiplets

M
ka 2
Scs = E — Tr{ Ay ANdAg + —Ag AN Ag N Ag — XaXa + 2Dg0g ). (2.4)
~ 47 3

while the other two terms are the action for the matter multiplets. In terms of the superfields

they can be written as
M
Smat = /dc94 Z Tr(e Ve X]eVor1 X, + VoY e Vat1y ),
a=1

Spot = / d6*W + (h.c). (2.5)

Here we choose the superpotential W as
M
W= ; e Tr(Yo Xy — Xo 1Yo 1)2 (2.6)

Though we do not use the superspace formalism for the computations in this thesis, we would
like to note that the Chern-Simons action (2.4) can also be written in terms of the superfields
[20]. Hence the action is manifestly invariant under the 3d N' = 2 supersymmetry transformation.
This theory also enjoys the N' = 2 superconformal symmetry, which follows from the fact that
the superpotential is quartic in the matter fields [20].

Due to the requirement of the gauge invariance and the flux quantization condition, the Chern-
Simons levels are restricted to integers [21]. As we shall see in the next section, the levels also

have to satisfy the following condition

> ka=0 (2.7)



if we require that the dimension of the Moduli space is eight so that the theory can describe

the M2-branes in an eleven dimensional spacetime. In this case the supersymmetry enhances to

N =3.

On the other hand it is allowed to choose a Chern-Simons level zero k, = 0, where the
Chern-Simons action is absent. Though the corresponding terms in the superpotential (2.6) are
ill defined, we can define a well defined theory by introducing an auxiliary adjoint chiral multiplet

®, on each vertex with k, = 0 and replace the singular superpotentials with

Wy =Tr®(YoXy — Xa—1Ya_1). (2.8)

Above we have chosen the superpotentials just by hand. Actually, if we only require the
N = 2 supersymmetry and the conformal invariance at classical level, an arbitrary quartic term
in X,,Y, is allowed for the superpotential W. However if we consider a concrete type IIB brane
setup to realize the Chern-Simons terms [22, 23|, we can naturally deduce our particular choice

of the superpotential (2.6), including the exceptional cases of k, = 0 (2.8) [3].

10



3 Eight dimensional moduli space

In this section we review the study of the vacuum moduli space of the theory we have defined
in the previous section [3, 24]. We show that there exists an eight dimensional branch of moduli

space if and only if the Chern-Simons levels add up to zero (2.7).

3.1 Generic Chern-Simons levels

Let us write down the bosonic potential terms in the Lagrangian (2.3)

M

k
£CS:Z§T1"DGU&+---,

a=1

M
1
Linat = § Tr [Z(UQX(]; - X;Ua-l—l)(XaO'a - 0a+1Xa)
a=1

1
+ (0aYa — Yo0ar1)(Yioa — 0ar1Yy)
1
+ 5D~ XXa + Xamt X]_ + YoV =Y Yoo) + F[F, + GaG(ﬂ
al 11 1 1
+ Z 21 Tl“{ <l€7a + E>YaXaYa - Faxa—lya—lya - K_Hyaya—HXa-&-l}Fa
) 1 1 1 1
+2iTr Ga{ (7 + >XaYaXa - 7XaXa—1Ya—1 - Ya+1Xa+1Xa}
ka ka+1 ka ka+1
N (3.1)

where the last three lines in L5t come from the superpotential (2.6). Integrating the auxiliary

fields F, and G, in the chiral multiplets we obtain the following F-term conditions

(ka + kaJrl)YaXaYa - kaJrlXalealea - kaYaYa+1Xa+l = 07
(ka + ka+1)XaYaXa - ka+1XaXa—1Ya—1 - kaYa+1Xa+1Xa =0. (32)

To obtain the D-term conditions we first integrate out the auxiliary fields D, in the vector

multiplet to obtain the following constraints
%aa = XIX,— Xo 1 X! VY Y vV, (3.3)
From the first two lines in the potential terms (3.1), the D-term conditions are
Xa0q—0011Xa =0, 0,Ys— Y0401 =0 (3.4)
with substitution of (3.3). The vacuum moduli space is the space of the solutions to the F-term

conditions (3.2) and the D-term conditions (3.4) modulo the gauge transformations.

11



For simplicity we shall only display the analysis for the abelian cases N=1. We shall also
concentrate ourselves on the branch where X,,Y, # 0. In this case, the F-term conditions and

the D-term conditions simplify respectively as
F _>(ka + ka—i—l)XaYa - kaXa—i—lYa—i-l + ka-l—lXa—lYa—l:

D _>(ka + ka+l)(|Xa|2 - |Ya|2) = ka(‘Xa-i-l’z - ’Ya+l‘2) + ka+1(|Xa—l‘2 - ‘Ya—1|2)' (3'5)

Let us estimate the dimension of the moduli space, assuming that the total Chern-Simons
level vanishes (2.7). As commented above, the dimension of the moduli space can be written

schematically as
dim(Mys1)) = 4M — (# of F- and D-term conditions) — (# of gauge d.o.f), (3.6)

where the first 4M is the total number of the matter scalar fields. To count the second ingredient,
it is convenient to rearrange the F-term conditions (together with the complex conjugates) and
the D-term conditions (3.5) as

Xt
Kab (Xa Yj)aa< b) =0, a=123 (3.7)

where o, are the Pauli matrices

01 0 —i 1 0
Ul:(l 0)’ JQ:(i 0)’ 03:(0 —1)’ (3:8)

and K is a matrix defined by the Chern-Simons levels as

btk kb 0 - 0 ko
ks katks ko 0 . . 0
0 k4 ks + ky ks 0
K= (3.9)
0 kv ka—2 +ky—1 knr—2 0
0 ke Eyvi—1+ kv ka1
kot 0 e 0 ki kut

Under the condition (2.7), the rank of this matrix is rank(XC) = M —2, hence the F-term conditions

and the D-term conditions are 3(M — 2) real equations in total.

Next let us count the gauge transformations. Though there are M gauge groups U(1)M
assigned on the vertices of the quiver, it is obvious that no fields transform under the “overall

U(1) gauge transformation”. Moreover, due to the condition (2.7) the corresponding gauge field

M
Agver = Y Aq (3.10)
a=1

12



do not have the own Chern-Simons term coupling to itself but only couple to the other gauge

fields, i.e. (up to the integration by parts)

Mok
azz:l E /AadAa = /Aothcrsdoner + - (311)

This implies that we can dualize the overall gauge field Aover into a free scalar field, which
compensates another U (1) gauge transformation. We conclude that there are M —2 gauge degrees

of freedom in total.

From these arguments the dimension of the moduli space is estimated as
dim(My 1)) = 4M — 3(M —2) — (M —2) = 8. (3.12)

This result is consistent with the number of transverse directions to an M2-brane in eleven di-
mensional spacetime 11 — (2 4+ 1) = 8, and supports the proposal to describe the M2-branes by
the superconformal quiver Chern-Simons theory. If the Chern-Simons levels do not sum up to
zero, on the other hand, the total number of F- and D-term conditions increases since the rank
of the coefficient matrix I is rank(K) = M — 1. What is worse, there are no reduction of the
gauge degree of freedom discussed above. As a result the dimension of the moduli space would
be smaller than 8. Hence the condition (2.7) is indeed essential for the theory to describe the
M2-branes.

3.2 Vanishing Chern-Simons levels

We need to modify the arguments if the theory contains vanishing Chern-Simons levels k, = 0.

For simplicity we shall only consider the special case

ki=k, ko=kz3=---=k;=0, (3.13)
k'q+1 - —k’, kq+2 = k‘q+3 = k‘q+p =0 (314)
with k,q,p € N. We will call this theory as (g, p)r minimal model for the reason explained in

section 6, and study this theory in full detail thereafter. This model is special in the sense that

the supersymmetry enhances from N =3 to N’ =4 [3].

Again assume the abelian gauge groups. First consider the F-term condition for the auxiliary
scalars Fp, in the adjoint chiral multiplets ®,. The potential terms containing these auxiliary

fields are

Smat = Y iFp, (YaXa— Xao1Yao1) + (hee) + -+ . (3.15)
a#1l,q+1

Since there are no Kahler term for the adjoint chiral multiplets, we obtain the §-function con-

straints by integrating Fg,

X1 =XoYo = = X)Yy = py, XgnYgr1 = XgpoYgro - = XuYu = p—. (3.16)

13



Second we consider the F-term conditions for the bifundamental chiral multiplet. Since the
original superpotential other than Wa only contains F1, Fy, Fyi1, Fir and G1,Gg, Gy, G, let
us first consider the F-term conditions for the other auxiliary fields. From W,, we obtain the

following condition for F» and Go respectively

Ya(¢2 — ¢3) =0,  Xa(d2 — ¢3) = 0. (3.17)

Here ¢, is the lowest scalar component of the adjoint chiral multiplet ®,. Assuming X,,Y, # 0
as in the case of non-zero Chern-Simons levels, the two conditions reduce to ¢ = ¢3. Repeating

the manipulation one by one in order, we finally obtain the following conditions

P2 =03 =" =0 =y, Qgr2=0gr3=" "=y = . (3.18)

The F-term conditions for the other auxiliary fields F,, G, (a = 1,q,q9 + 1, M) are the slight
modifications of (3.2) due to W,. After applying the conditions in our hands (3.16) and (3.18),

only two of the eight conditions are found to be independent:

2
Fy — %(M‘i— —p-) — ¢4 =0,
2
Forr = = (u- = py) = ¢ =0. (3.19)

Third we shall consider the D-term conditions. From D, with a # 1, ¢+ 1 we obtain the d-function

constraints wihch reduce to
X1P =P = [Xo? = Yo = = X = [V = psy, o2=03="=041=04 (3.20)
fora=2,3,---q and

[ Xgr1l? = [Yor1* = [Xgral* = [Yoral? = - = [Xur|* = [Yar|* = pis-, (3.21)

fora=q+2,q+3,--- M. On the other hand, the D-terms conditions for D, with a = 1,9+ 1,

which are again simplified with the help of these results, are

k?0'+

M3+ — H3— = P Or =0-. (3.23)

In summary

o ¢4 and o, do not carry independent degrees of freedom.

o We have 2¢q complex scalars X,,Y, (@ = 1,2,---,q) subject to 3(¢ — 1) real constraints
(3.16) and (3.20), and (¢ — 1) independent gauge transformations acting on them.

o We also have 2p complex scalars X,,Y, (a = ¢+ 1,¢+2,---, M) subject to 3(p — 1) real

constraints (3.16) and (3.21), and (p—1) independent gauge transformations acting on them.

14



Hence the real dimension of the moduli space is again 8 from (3.6)
dim(My)) =49 -3(¢=1) = (¢-1)+ (@dp-3(p—-1) - (p-1) =8 (3.24)
The concrete expression of the moduli space of the (g, p)r model is determined in [3] as

(C?/z, x C*/7,)/Z,. (3.25)

15



4 Large N partition function

In this section we review the computation of the partition function Z(N) of the N' = 3 U(N)
circular quiver superconformal Chern-Simons theory in the limit of N — oco. In the first two
subsections we will explain that the partition function of the theory realized on the round three
sphere S% with unit radius is given by the following finite dimensional integration (which we shall
call a matrix model) [25, 26, 27].

M N

_ M . Aa,i—Na,j . Aat1,i—Aat1,j
1 H [/ dXg.i zﬁlkii] H Hi<j2smh Sedgtl Hi<j2smh catliofatll

Z(N) = e
| M )\a,if)\a 7
(N1 . 2 [1; ;2 cosh 2i—petls

(4.1)
=1i=1 a=1
We would like to provide only the basic idea of the localization technique which is the most
essential in the whole derivation and a few sketches for the other parts of the derivation, while
skip almost all the detail of the derivation.? After that we demonstrate the evaluation of the
matrix model in the large N limit for the case of the simplest quiver {k,}2_; = {k, —k}, which is

called the ABJM theory [2, 4].

4.1 Localization technique

Here we shall explain the powerful computational technique in the supersymmetric gauge theories,
called the localization technique [28, 29]. Consider a theory with the field content ® and the action
S(®), and try to compute the following expectation value of a composite O(®P)

(0) = / DPOe . (4.2)
Then, it follows that

o Suppose there exists some symmetry ) of the theory respected by O, QS = QO = 0,
and some Q-exact functional QV(®) which is positive semi definite in ® and @-closed
Q(QV) = 0. Then path integral partly reduces to the Gaussian integrations around the
locus of QV(®) =0

162QV
0) = O(®g)e 5 ®0) 7, S 4.3
(0) Z (®o)e Loop | | 5 5 D5d o ) (4.3)

©0(QV (20)=0)

where Zjjo0p(-) is the functional determinant of an operator over the fluctuations of ®

around ®g.

This can be shown as follows. First we introduce a deformation parameter ¢ > 0 to (4.2) as

(0); = / DPOe 51V, (4.4)

2The readers who accept the matrix model expression of the partition function (4.1) may skip section 4.1 and
4.2.
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The original expectation value is reproduced by taking ¢ = 0
(0) = (O) =0 (4.5)

On the other hand, differentiating (4.4) we obtain
d
(o) = / DO(—QV) OS2V

- / DoQ (Ve 51V
—0, (4.6)

where we have used QS = QO = Q(QV) = 0 and have supposed the @Q-invariance of the inte-
gration measure. This implies that (O); is actually independent of the deformation parameter ¢.
Hence we conclude that the original expectation value (O) can be evaluated by (O); in the limit
t — o0o. Since QV is positive semi definite, the path integral almost localizes to the configurations
QV = 0 in this limit. The deviation from this rough estimation can be obtained by expanding
the fields as

1
=g+ A, 47
0t 7 (4.7)

with which

S = S(®g) + O(t77),
52QV
0PI

1
tQV = A(I)[ } AD + Ot 2). (4.8)
2 oo
Here we have used the fact that QV = 6QV/(6®) = 0 at & = (. Plugging these expressions into
(4.4) and sending ¢ to infinity we obtain (4.3).

A familiar example for such reduction would be the process of the BRST gauge fixing in a
gauge theory, where @) is the BRST charge and ®( are the general field configurations on some
particular gauge slice. Typically the saddle point loci ®g themselves keep some functional degree
of freedom, as in the case of this example, and there still remain non-trivial path integrals. In
some of the supersymmetric field theories with ) an appropriate choice of the supersymmetry
transformation, however, the path integral localizes completely and the remaining sum over ®g is
discrete sum or at most finite dimensional ordinary integrals. The matrix model expression of the
partition function (4.1) is obtained by applying this technique to the partition function (O = 1)

of the superconformal Chern-Simons theory on S3.

Note that, in the above argument we have implicitly assumed that the differential with respect
to t commute with the path integral, that is, that the path integral converges for arbitrary fixed ¢
in 0 <t < co. Roughly speaking, the action on S® is realized by Euclideanize the original action
(2.3), replacing the derivatives with the covariant derivatives, and adding curvature coupling terms

appropriately. The compactification will introduce a inflared cutoff to the theory. Moreover, due
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to the curvature coupling the contribution of a large constant mode will be suppressed, which
regularize the divergence caused by infinite volume of the moduli space of the theory. These are

the reasons for why we consider the theory on a sphere.

4.2 Partition function as matrix model — sketch of derivation

In this section we briefly explain the derivation of each factor in (4.1) for the N'= 3 U(N) quiver
superconformal Chern-Simons theory. First, we shall quote that the localization locus which solve

the conditions

0Xa =0, 0¢ap =0, 0P =0 (49)
is found to be [25]

Oaq = 00a, (00q: constant matrix)

D, = —o,, other fields = 0. (4.10)

Due to the gauge invariance of the action we can choose the saddle point values og, as diagonal
matrices in exchange of the appearance of the Vandermonde determinant in the integration over

the saddle point configurations (Weyl integration formula) as

00a,1
00a,2
00a — . )
00a,N
1 M N M
>= = 3y LTI f doas TT TTiova — o0 o
saddle a=11i=1 a=1i#j

After the substitution of the saddle point configuration into the action, only the Do term in Scg

survives and we obtain

. M k . M N 2
e_S|sadd1e — 6_2 f53 d$3\/§2a:1 ﬁ Tr Daog — eﬂ'lk Za:1 i=1 an’i7 (412)

where the prefactor ¢ comes in through the Euclideanization of the action (2.4).

Next, we would like to sketch the derivation of the 1-loop determinant. Expanding the reg-
ulator potential QV as (4.8), we will obtain the kinetic terms with supersymmetric version of
the covariant derivatives, i.e. the diffeomorphism/gauge covariant derivatives plus the Yukawa
terms with ¢ = 0¢.> On the round sphere S¢ we can explicitly list the eigenfunctions of the
kinetic operators, labeled by d integers as well as the spin/gauge indices. Though almost all the

contributions from these modes are cancelled between the bosonic fields and the fermionic fields,

3Notice that the 3d N = 2 supermultiplets are the dimensional reduction of the 4d N = 1 supermultiplets,

where the scalar o is originally the fourth component of the gauge field A,,.
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nevertheless there typically remains some infinite series of eigenvalues with reduced dimension.
Here we shall just display the final results [25]. For the adjoint multiplet on the a-th vertex in

the quiver we obtain

adi H HZ 1 (¢ + (00a,i — 00a,j)) _ H 2sinh m(00q,i — an’j)7 (4.13)

)
ooP 10 —i(00a,i — 00a,5)) 00a,i — O0a,j

i#] 7]

while for the pair of bifundamental multiplet on the a-th edge

f—|— +'L 00a,i — 00a+1 ) 2 al 1
tt _ J _
2y = [H H( = 1 secirron <, (414)
ij=1

b
i,j=140=1 b—5—i UOM - 00a+17y) O0a,i — UOa-i—l,g)

where the index ¢ originates from the labels of the spherical Harmonics on S2, surviving after the
cancellation between the bosons and the fermions. The og,-dependence reflects the representation

of each supermultiplet under the gauge groups.

Putting above results together, with the rescaling ogq; = Aq,i/(27), we obtain the matrix

model expression of the partition function (4.1).

4.3 Large N limit of partition function

In the last sections we have shown that the partition function of the quiver superconformal Chern-
Simons theory can be evaluated by the finite dimensional ordinary integrals (4.1), without being
bothered by the non-trivial path integrals. Nevertheless we have to evaluate the large number
(MN) of integrals, which is still a non-trivial task. In the strict large N limit, however, we
can evaluate the integrals with the help of the saddle point approximation. The result perfectly
coincide with the action of the eleven dimensional supergravity on the dual background geometry,

which provides a consistency check for the theory to describe N M2-branes.

Historically the matrix model was first solved for the simplest case, the ABJM theory, in the 't
Hooft limit k, N — oo with k/N fixed [30]. Later the matrix model for general N' = 3 quiver was
uniformly solved in the limit N — oo while the levels k, kept finite [31], which is more directly
interpreted as the dual of the eleven dimensional geometry and called the “M-theoretical limit”
[32]. In this section we shall review the latter way of analysis, while considering the ABJM theory

for simplicity.

Let us denote \,—1 and \,—2 as A and h respectively, and write the matrix model (4.1) as

N ~
=11 / dAidhie! AN (4.15)
i=1

with
ik y  ~o Ai — )\ X=X
FNN) = yp E;()\ — X))+ ; log 2sinh ——Z + ; log 2 sinh ————
= 1] 7]
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Ai —
-2 Z log 2 cosh ———— — 2log(27 N!). (4.16)
i,j=1

Then the saddle point approximation for the partition function is

Z(N) ~ ef OV (4.17)

saddle

where “saddle” stands for the substitution of the solution of the following saddle point equations:

Ztanh)\ _)\

0= Bf Zk Z coth

N 27‘(’
J(#)
of ik ~ A
0= v —o it g)c oth 2N Ztanh (4.18)
7(#2

The sum over the indices in (4.16) implies that f(\, X) generically grows in some positive power of
N, and hence the saddle point approximation for the partition function (4.15) becomes accurate
in the limit N — oo.

We can estimate the solution of the saddle point equation by a numerical study. Consider a

2N pair of infinite sequences {)\l( )\(n) o°_, generated by the following recursion relation
)\(n+1) )\(n) 8f(/\§;>)\,xz(n))
) _ 7
(X(-"”) ) (XW> +E | ooy (1.19)
(2 1 - i~
oN;
with £ some 2N x 2N matrix. Given k, N, the initial values and the matrix £ we can easily
generate the whole sequence numerically. Now suppose the sequence converges. Then it follows
from the recursion relation that the set of values of convergence (A, XZ) is a solution to the saddle

point equation (4.18). For kK = 4 and N = 20, 80, for example, the sequence can converge for the

following choice of €

0.001 x i1 0
€= . . (4.20)
0 ~0.001 x i1

The results are displayed in figure 3.

Now let us solve the saddle point equation analytically in the large N limit. Comparing the
numerical results for N = 20 and N = 80, and for A and X, it is reasonable to pose the following

ansatz:
N = \/NZ’Z + 2y, Xz = \/ﬁ% — 1Y (4'21)

with z; and y; some real numbers of O(1). For these ansatz the saddle point equations for X,
of/ 8}:1', are simply the complex conjugate of 9f/0\;. It is also convenient to regard the solutions

as a continuous distribution by introducing the eigenvalue density p(x) in the real axis

Ty — T,
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Figure 3: The numerical result of ({\;}, {Xz}) for N = 20 ((blue circle, red triangle)) and those for
N = 80 ((blue cross, red inverted triangle)). We observe that \; are distributed on the complex
conjugates of \;. Also notice that the real part scales as v N (doubled as N is quadrupled) while

the imaginary part is not scaled.

yi = y(@),
L
zi: — N/_L dxp(zx) (4.22)

where we have assumed the support of distribution to be a single segment (—L, L) and have

normalized p(x) as
L
/ dzp(z) = 1. (4.23)
-

Expanding the saddle point equations in the large N limit under these expressions, we finally

obtain the following equations from the real/imaginary part respectively

k dy dp
AT e A o o
o Pix dz? 0,

kx
2 4py =0, 4.24
5 — 4y =0 (4.24)

From the numerical result we postulate y(x) to be linear in x and find the following solution to

the differential equation and the normalization condition (4.23).

_ kLz 1

_ kL _ 4.2
y= PTop (4.25)

Though the constant L remains undetermined at this stage, it can be determined by minimizing

the free energy f (4.16). In the continuum notation (4.21) with (4.22), the leading part of f can

ko[* 2 (" 2 g 2 2
—— dxpy —m dzp” +4 dzy“p® ). (4.26)
T™J-L —L —L
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Substituting the solution (4.25) we obtain

f= N%( KL ”2> (4.27)

L = W\/g (4.28)

Hence we obtain the partition function in the large N limit as

7T\/32k Ng] '

which is minimized at

Z(N) ~ exp [— (4.29)
Note that the abelian moduli space of the ABJM theory is C*/Z}, (3.25) and this partition function

can be written with the volume of the radial section of C*/Zy, vol(Y) as

2 6
Z(N) ~ exp {—Nﬁ T }

27 vol(Y) (4.:30)

and precisely consistent with the calculation in the gravity side. Though here we have only
considered the ABJM theory, the computation is parallel also for the general N' = 3 quivers and
we will obtain the same final expression (4.30) with Y the radial section of the moduli space of
each theory [31].
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5 Summary for part I

In this part we have review on the N' = 3 U(N) superconformal quiver Chern-Simons theories
proposed as the worldvolume theory of N M2-branes. Different from the case of D-branes, so far
there are no first principle derivation for the fundamental degree of freedom in the worldvolume
theory on M2-branes, hence the proposal would be in some sense heuristic. Supported by a
variety of circumstantial evidences, however, these theories are believed to actually describe the
M2-branes.

We have introduced two of these evidences. The first one is that the theory have eight dimen-
sional moduli space, corresponding to the location of the M2-branes in the eleven dimensional
spacetime. The second one is that the large N limit of the free energy is consistent with the
calculation in the gravity side: N3/2 scaling behavior as well as its prefactor. In order the mod-
uli space to be eight dimensional, the vanishing of the total Chern-Simons level (2.7) is crucial.
Though we have assumed this condition in the computation of the partition function above, the
localization and the saddle point analysis are also applicable for the non-vanishing cases and we

can show that (2.7) is the necessary condition also for the leading N 3/2 gcaling of the free energy
[33].

Remarkably, the N'= 3 U(N) circular quiver superconformal Chern-Simons theories we have
considered can be realized by particular D3-NS5-(1, k)5 brane setups in the type IIB string theory
[2, 3]. Here (1,k)5 is the bound state of one NS5 brane and k D5-branes. These systems can
be lifted up to the system of the M2-branes via appropriate duality transformations, where the
D3-branes turn into the M2-branes while the five branes become the geometry called Kaluza-Klein
monopole. Close to the core, the Kaluza-Klein monopole geometry is asymptotically an orbifolded
plane which precisely reproduce the orbifold action on the moduli space. This strongly supports

that the proposed theories are indeed the worldvolume theory of the M2-branes.

In terms of the gauge/gravity correspondence, in this part we have used the gravity side to
confirm the gauge theory. Once we accept the quiver superconformal Chern-Simons theory as the
worldvolume theory, however, we can provide new predictions to the gravity side from the gauge
side. Hopefully the exact analysis of the superconformal Chern-Simons theory beyond the large
N limit will give new predictions to the quantum effect of the gravity. In the next part we present

our recent works where we compute such corrections systematically.
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Part 11

Beyond large N limit

In this part we review our recent works on the exact computation of the partition function of the

N >3 U(N) superconformal Chern-Simons theories beyond the large N limit.

In section 4 we have reviewed that the partition function of the superconformal Chern-Simons
theory can be reduced to finite dimensional ordinary integrals, i.e. a matrix model, with the help
of the localization technique. In the large NV limit we can further evaluate the remaining integrals

and obtain the result consistent with the classical supergravity.

However, it is still non-trivial how to evaluate these integrals beyond the strict limit N — oo.
Generally, for small N, i.e. N =1,2, etc. it would be possible to evaluate the integrals exactly or
at least numerically. In the context of the AdS/CFT correspondence, however, such results are
quite difficult to translate in the language of gravity. To be successful, it will be more helpful to
express the deviation from the large N limit as the large N exzpansion, where the 1/N corrections

may be interpreted in the gravity side based on the language of classical geometry.

Though such computation is difficult due to the increasing number of integrations, there is
a powerful traditional technique in the matrix model, the 't Hooft expansion. In this method
we take the limit k&, N — oo while keeping the 't Hooft coupling A = N/k finite, and compute
the partition function in perturbation with respect to A. This method was indeed successful in
the case of the ABJM theory [34] so that the authors finally achieved to determine the all order
perturbative corrections to the partition function in 1/N. However, the computation heavily relies
on the non-trivial correspondence between the ABJM matrix model and the topological string
theory on the local P* x P! [35]. Also, as the dimension of the moduli space C*/Z, is reduced in the
limit £ — oo, it correspond to the ten dimensional ITA limit rather than the eleven dimensional
M-theoretical regime. Especially, the non-perturbative effects in 1/k would be invisible in the 't

Hooft expansion.

Recently, an alternative technique was proposed in [12], which is called the Fermi gas formal-
ism. We can compute the large N limit of the partition function and the leading coefficient for
general quivers far more easily even compared with the saddle point method in section 4. As we
will see below, this formalism also provide various systematic methods to compute the partition
function without taking the ITA limit k& — co. Interestingly, the computation simplifies in the
opposite limit & — 0.4 As a result we can obtain the all order perturbative corrections to the

partition function in 1/N and even the non-perturbative effects in NV like (’)(e_‘/ﬁ).

This part is organized as follows. In section 6 we first review the derivation of the Fermi gas

formalism itself for general U(N) N = 3 circular quiver superconformal Chern-Simons theories.

4Though the Chern-Simons levels must be integers in the original field theory, in the matrix model (4.1) we can

continue them to general irrational numbers.
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Using the Fermi gas formalism we also provide the all order perturbative corrections to the
partition function in 1/N, which sum up to an Airy function. In section 7 we analyze the
partition function in the small k expansion, and discover the non-perturbative contributions in
1/N. These effects are non-perturbative also in 1/k, hence invisible in the perturbative 't Hooft
expansion, and can be interpreted as the D-brane instantons [36]. After establishing another
method in section 8, in section 9 we determine the non-perturbative effects for finite k. We
finally reveal a beautiful structure of the whole non-perturbative effects: the coincidence with the

Gopakumar-Vafa formula [11] for the refined topological string theory.

6 Fermi gas formalism and all order perturbative corrections in
1/N

In this section we first introduce the Fermi gas formalism where the partition function Z(N) is
re-expressed as the partition function of the quantum statistical system of an ideal Fermi gas with
non-trivial one particle density matrix p (6.20). After that, in section 6.1 we reveal the general
structure of the large N expansion of the partition function. Surprisingly, we can show that the

all order perturbative corrections to the partition function sum up to an Airy function
ZP(N) = AC3 Ai[C3 (N — B)], (6.1)

where C, B and A are some constants depending on the detail of the theory, and the Airy function

is defined by the following integration expression

Ai(z) = / 47 155z (6.2)

Cioo 271

The large (N — B) expansion of the free energy log Z is obtained from the asymptotic behavior

of the Airy function as

N

2 3
logZ/ = ———~-(N—-B 3
©8 3\/0( )

The leading behavior in the limit N — oo is consistent with the results obtained from the classical

- ilog(N _B)+ A—logl2/7CH + O(N — By %), (6.3)

supergravity on AdSy x Y7 if C' = vol(Y7). We also obtain the explicit expression of C', which is
indeed consistent with the requirement. In this section 6.2 we determine the explicit expression

of the second coefficient B for a special class of the quivers.

Our starting point is the partition function of the N’ = 3 U(N) circular quiver superconformal
Chern-Simons theory, which is reduced to a matrix model after the application of the localization
technique [25, 26, 27, 31|

a i a Na,i"Na,j a+1, i_>\a+1 ,J
[[;c;2sinh [Tic; 251nh7

Z(N /DAM ! _ , (6.4)
N' H H” 2 cosh 7‘”_’\““]
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where

d)\az zka)\ai
27776 . (6.5)

DAa,i =

Notice that the 1-loop determinants are decomposed into the pieces each of which is in the form

of the Cauchy determinant formula

Hz<g( x])Hg<](y Y;)

= det 6.6
I (i +y;) i i+ Yj (6.6)
as
. Aai—Aa, i : Aa i—Aa j
[ic; 2sinh =522 TT; ;2 sinh =etegmetis — det 1 (6.7)
H 2 h Aa,i_/\a-o—l,j - % 2 h a 1_>\a+1,j ’ ’
i COS - 95 L COS 72

We shall also use the following formula (see appendix A in [37]) to swap the order of the integra-

tions and the determinant
1 N
Mq/dZi [0}3‘5 f(aci,zj)} [c%ejt g(zi,yj)} = c}gt/dzf(mi,z)g(z,yj). (6.8)

Applying these formulas repeatedly to (6.4) we finally obtain the following expression for the

partition function

N

O'ESN

with

dZ 11@1 2 1 iky 2 1 ik3 2 ka2 1
$ y H/ a 7_6?22 PR 3 ...e4n ZMi_. (610)
2 cosh ¥522 2 cosh #2578 2 cosh 24

The expression (6.9) is the same form as the partition function of N particle ideal Fermi gas in

the statistical system.

In the statistical system, it is often easier to study the grand potential J(u) defined by

introducing an auxiliary parameter p called the chemical potential as

e7 =N " eNez(N) (6.11)
N=0

rather than the partition function itself. Indeed the grand potential can be written compactly as

(see appendix A)

J (1) = Trlog(1 + e*po). (6.12)

This quantity is much easier to analyze than the partition function Z(N), as we will see in the

following sections.
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To take advantages of the techniques of the quantum statistical mechanics, it is useful to
rewrite the grand potential in the operator formalism. Since the Chern-Simons level k, sum up
to zero it is more reasonable to assign the numbers s, on the edges of the circular quiver to define

the levels as the differences

k(Sq — Sa—1)

ky = 5 (6.13)
In this notation the quantity pp (6.10) can be written as
dzg [ thers? 1 _iks173
= —_—€ 8m
o= H / [ 2 cosh #52 }
iksgz2 iksgz2 iksypz2 iks 2
i e PSS e —— ) (6.14)
2 cosh #2575 2 cosh =LY
Using the Fourier transformation formula
1 dp ipe 1
2cosh § 97° " 2cosh L (6.15)
each factor in the square bracket in (6.14) can be rewritten as
iksazg 1 iksazg ’LSa(E2 1 ’LSafIJ2
e f ——————e & = k<k:za e 8nk e~ 8w kza+1> (6.16)
2 cosh “—2+t 2cosh §

where we have introduced the canonical position/momentum operators (Z, p) and their eigenstates

(|x), |p)) normalized so that
[z,p] =ih, (h=27k)

]_ ipx

(xla') = 2m6(x — 2'),  (plp’) = 276(p — '), (xlp) = WA (6.17)

In the operator formalism, the (M — 1) integrals in pg (6.10) together with the k factored out in

(6.16) are interpreted as the insertion of unity

1:/d$|x>< l, (z=kz) (6.18)

27
hence the grand potential (6.12) can be rewritten as
J(p) = Trlog(1 + etp) (6.19)
with
dx
() = [ 5 tal- Ja)
™
5 ! ! ! (6.20)
P= 2cosh[$(p — %7)] 2 cosh[5(p — 27)] 2cosh[%(A— 7)) '
Here we have used (6.16) and the formula
eI f(p)e I = (5 + 7). (6.21)

Interestingly, the grand potential J(u) extremely simplifies in the limit & — 0, the opposite
to the ITA limit £ — oco. In this limit the statistical system can be treated classically.
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6.1 All order perturbative corrections in Airy function

In this section we show the Airy function structure (6.1) of the perturbative expansion of the
partition function Z(N) in 1/N. Though the structure looks complicated in the partition function,

this is equivalent to the following simple structure in the large p expansion of the grand potential
I (1)°

C
J(pu) = gﬂ?’ +Bu+ A+ 0O(e™"). (6.23)

Indeed the inverse transformation from the grand potential to the partition function follows from
(6.11) as®

100
Z(N) = / o s)-nn (6.25)

ioo 2T
which immediately produce the Airy function (6.1) after the substitution of (6.23).

In this section we shall derive the large p expansion of J(u) (6.23) with some simple ideas of
the statistical mechanics. First note that the large u expansion (6.23) for the grand potential is
equivalent to the following large E expansion for the “number of states” n(FE) with the energy
less than F, H <E,

2 m*C —-E
Here H = — log p is the one particle Hamiltonian of the statistical system. This can be seen as

follows. First, as we may often do in the statistical mechanics, we try to compute the trace in

(6.12) with the energy eigenstates

*©  dn(E
J(u):/ ™ )1og(1+eﬂ*E). (6.27)
0 dE
Integrating by parts we obtain
7 ~ dEn() 4" 6.28
(N)—/O n( )W7 (6.28)

Note that J(u) is slightly different, from 7 (1) defined by (6.11), which is periodic in p: e #+27) = ¢7 (W) The
original grand potential J(u) should be understood as a periodic superposition of the large p expansion J(u) as
(58]

e = N " I lutEmin), (6.22)

neN

5This inversion relation (6.25) follow from the following inversion relation for the original grand potential 7 (1)

Z(N) = / %eﬂ“)’” (6.24)

—i7

which follows from (6.11), and the relation between J(u) and J (i) (6.22).
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where we have assumed n(0) = 0. This integration convert a polynomial in £ in n(E) into
polylogarithm functions Li(—e*) in the grand potential J(u), which again produces a polynomial

in p in the large p expansion:

AEE®—C = _T(a+ 1) Lig.i(—c) = B =+ ", 2
[~ ra st DL = E B (L) voren, 629

where o € Z; and we have used the identity for the polylogarithm functions

Lip(2) + (—1)" Line) _ (QZ?”B”@ + log;?;z)) (6.30)

Here B, (z) are the Bernoulli polynomial, whose explicit expression for small n is

1 32
Bl(z)zz—§7 BQ(Z)ZZQ—Z-FE, Bg(z):z‘?—g_Fg’....

(6.31)
From these explicit expressions we can find that the large E expansion (6.26) is indeed converted
into the large p expansion (6.23). Hence we can determine the first two coefficients C' and B by

analyzing n(E).

Now let us compute the number of states n(E) in the semiclassical limit & — 0. In this limit,

the Hamiltonian is mere a c-numbered function on the (x, p)-phase space

M Sa
H(z,p) = Zlog (2 cosh 2 5 2 ), (6.32)
a=1

and n(E) is the phase space volume inside the Fermi surface F' = {(z,p) € R?|H = E} as

n(E) = / ‘;frdife(fl — E). (6.33)

The Fermi surface F' is plotted in figure 4. From the graph we can read off that F' approaches
a polygon. Indeed, assuming |p — s,z/2| > 1 for all a, each term in the Hamiltonian (6.32)

approaches a linear function and the Fermi surface can be approximated with a polygon

M
SqT
Fyol = {(x,p) €R P3| = 2E}. (6.34)
a=1

Hence we conclude that the leading term in n(FE) in the large E limit is given by the volume of

this approaching polygon as

M

TL(E)—E ‘Sfl-i—l_S:z’ E2+"‘ (6 35)
= = i .
mh o1 2= |Saa1 — Syl 2ocmy I8 — st
where s, are equal to s, but reordered so that s, <., fora=1,2,--- ,M — 1. Thus
M / /
4 s -5
C= [Sat1 ~ %l : (6.36)

" M M
mh a=1 Zb:l |5iz+1 - 32’ Zc:l |8, — st
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Figure 4: The solid red line is the classical Fermi surface for N/ = 3 circular quiver with three
vertices with {s,}3_; = {—2,—1,1} at energy E = 10. The dashed blue line is the approaching
polygon (6.34). We call the region located around the line p = s/, 2/2 (z > 0) and surrounded by

the lines connecting the midpoints of the edges of the polygon (solid black lines) as v,.

For {s,} = {(+1)%, (—1)P}, for example, we obtain

2

C=_°_
m2qpk’

(6.37)

which completely coincide with the volume of the radial section of (C?/Z, x C*/Z,)/Z. Though
being complicated, the general expression is also shown to coincide with the volume of the hy-
perKahler cone obtained from the moduli space of N/ = 3 superconformal quiver Chern-Simons

theory argued in section 3 [31].

Before closing this subsection, we shall estimate the possible small k& corrections in the semi-
classical expansion. Roughly speaking, the effects of the commutators can be included through
the derivatives of the c-numbered functions. Therefore the quantum corrections never grows as
fast as linear in (x,p) as we send z or p infinity. This implies the approaching polygon (6.34) in
the limit of £ — oo will not be modified by the quantum corrections and thus the expression of
the constant C' (6.37) is exact for finite k. On the other hand, the constant B, which is associated
with the deviation from the polygon, should be modified. This estimation is justified from the

explicit computation in the A/ = 4 cases in the next subsection.
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6.2 Semiclassically corrected Fermi surface and exact expression of B

In the last subsection we have found that the all order perturbative corrections to the Free
energy add up to an Airy function. This is powerful prediction to the quantum corrections to
the computation in supergravity. What we will encounter in an honest large N expansion of the
free energy, however, is not the asymptotic expansion of the Airy function but rather an O(N %)
correction due to the shift of the M2-brane charge N by a constant B in (6.1). Therefore it would

be important to determine the explicit expression of B.

As we have argued above, the analysis in the classical limit k¥ — 0 is not enough to determine
B. We need to extend our analysis to include the semiclassical corrections. Though this is difficult
for general cases, recently we successfully evaluated such corrections [8] for the special cases where

sq take only two kinds of values which can be chosen as s, = +1, that is,

S1 =89 = --- Sq1 = +1, 8q1+1 = Sq1+2 = Sq1+p1 = —1,
Sqi+p1+1 = " = Sqi+pitq = +1, Sqi+pi+qe+1 = " Squtpitgetp2 = -1,
Squpit-tpm_1 = = Sqi4pitpmottam = T1  Sqi4piteam = Sqipi+etgmtpm = —1

(6.38)

for some qa,pa € N (XM (¢a + pa) = M). From now on we shall abbreviate this choice as
{sa}M, = {(+1)@, (=1)PL, (+1)%, (=1)P2 ... (4+1)%" (—1)Pm}. This is known as the most gen-
eral choice for the supersymmetry enhancement from A" = 3 to N' = 4 [5]. Especially, we call the

cases of minimal separation between s, = +1

{sa}als = {(+1)7, (1"} (6.39)

as the “(¢,p)r minimal models”. In [8] we finally obtained the following expression for the coeffi-
cient B

q P 2qp > 24

(6.40)

|
‘l—\
A~
ES
|
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|
[s)
~__
_|_
PT‘
A/
el
<
=3
\.9
_|_

%(¢,p%)  E(g:p)*  2(g¢,p) qp)

where

13!
Q.0.
1<a<b<m

m m
1
0= Gm, P=Y _pm (¢ =—2 0. (6.41)
a=1 a=1

Remarkably, the semiclassical correction to B terminates at O(k), which implies that we have

obtained the non-perturbatively exact expression of B although we have used the perturbation in
k.

Below we first explain the derivation of (6.40). After that we try to determine B in more

general N' = 3 theories, which will be successful only in the classical limit k& — 0.
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Figure 5: The solid red line is the Fermi surface for N’ = 4 circular quiver with {s,}>_; =
{(+1)2,(=1)3} at energy E = 10. The dashed blue line is the approaching diamond (6.45). We
call the region located around the vertices (Q, P) = (£2E/q,0) as region LIII and that around
the vertices (@, P) = (0,£2E/p) as region I[,IV.

6.2.1 B for N =4 quivers

N|R)

Since there are only two kinds of arguments p £+ % in the density matrix (6.20), it is reasonable

to redefine these two as the canonical operators

~ X s~ T ~ o
Q:_p+ 57 P:p+ 57 ([Q:P]:Zh) (642)
and rewrite p as
b= e—q1U(@e—plT(ﬁ)e—fmU(@)e—pzT(ﬁ) . e—QmU(@)e—me(ﬁ) (6.43)
with
Q P
U(Q) =log 200sh§ , T(P)=log 2C08h§ . (6.44)
In this case the Fermi surface of energy F approaches in the limit F — oo to a diamond
P
Fpol = {(Q,P> € R? q’f‘ + 19‘2‘ = E} (6.45)

See figure 5.
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To compute the quantum corrections systematically, we shall introduce the notion of the
Wigner transformation [12, 38, 39, 40, 41] O — Oy,

_ [adQ’
OWZ/ZW

The non-commutativity of operators O are encoded in the following non-commutative *-product

(@+%|oje- )5 (6.46)

of the c-numbered functions Oy on the phase space
iR (4 —
* = exp [12 ( 0 Qgp -0 ngﬂ (6.47)
as
(A\B\)W = AW * Bw, (6.48)

which can be derived from the definition of the Wigner transformation (6.46). One can also easily
show that the trace of a operator becomes the phase space integral of its Wigner transformation

~ dQdP
TrA= / Q Aw, (6.49)
2mh

hence the number of states n(E) is given as”

n(E) = Tr0(H — E) ~ / dQdp

. 6.50
Hy<E 2mh ( )

As advertised at the end of the previous section, the Wigner transformation precisely convert
the commutators into the differentials. Now we can argue the (ir-)relevance of higher order
commutators to the 1/N perturbative computation more concretely. Note that both U(Q) and
T(P) in (6.44) satisfy

BUQ) =019, a2T(P)=0(e 1) (6.51)

for large arguments. Therefore, since we are concerned with the small deviation of the Fermi sur-
face from the diamond (6.45) where at least one of @ and P is of order O(E), we can neglect all the
terms proportional to U@ T®) with a, b > 2. According to the Baker-Campbell-Hausdorff formula,
the Hamiltonian operator H can be expanded with the commutators U, T, [U,T], [U, [U,T]],---.

Here we would like to choose the bases of higher commutators as

P <ﬁ1 ad Li> [U,T) (6.52)

with L = (L1, La, - - - Ly) any finite sequence of U and T,® such as

[Uv [Uv T]]v [Ua [Uv [Uv va [Uv [T’ [Uv va [T7 [T7 [U7 T]H» e (6'53)

"Precisely speaking, f(O)w does not necessarily coincide with f(Ow ). This deviation is treated in detail in the

next section, and indeed turns out to be irrelevant in the computation here.
8There are still some redundancy, e.g. [T, [U, [U,T]]] = [U, [T, [U, T]]]-
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Let us look at the terms with the fewest number of differential in each commutator. Due to the

definition of x-product, these are obtained by the following replacements

[U,T] — ihU'T’,
adU — ihU'dp,
ad T — —ihT'dg. (6.54)

From these rules we can see that the commutator contains U® with a > 2 if the sequence L in
(6.52) contains at least one U while the commutator contains 7® with a > 2 if L contains at

least one T'. Therefore we conclude that the only commutators relevant to our computation are

H = cyU +orT + cyr[U,T)+ Y cyerap[U, (U [+ U, [UT] -]
N—_——

£>1 7
+ZCTZUT[T>[Tv["'vTv[UvT]"']"i'"'v (6.55)
>1

14

where c... are constant coefficients depending on {qq,pa}i;. The relevant terms in the Wigner

Hamiltonian are

Hy = cyU + erT + iheyrU'T' + > (ih) epesap (U TED
>1

= (=i equp (T TUED 4 (6.56)
>1
Below we assume that the Hamiltonian is hermitian, i.e. cyr = 0. This is achieved by the

similarity transformation

p— eVUpe U (6.57)

with some constant z. The values of c... and x will be displayed at the end of this section.

Now let us evaluate the small deviation of n(E) from the result of diamond approximation
(6.45), which we shall call én. We divide the deviation into the contributions from the region
close to each vertex of the diamond as depicted in figure 5

on = —ﬁlh(vol(l) + vol(IT) + vol(ITT) + vol(IV))

— —%(VOI(I) + vol(II)). (6.58)

In the second line we have used the facts vol(III) = vol(I) and vol(IV) = vol(II) which are obvious
from the point symmetry of the Fermi surface. First we shall consider the volume of the region
I. Since @ is positive and of order O(F) in this region we can replace U — /2 and neglect the
higher derivatives of U, U®) with a > 2, to approximate the Fermi surface Hy = F as

qQ 1hN +1

o T+ ; Cue+1T(5) T — R, (6.59)

34



Denoting the points on this Fermi surface as (Qrs(P), P) while those on the diamond as (Qpo1(P), P)

the volume of region I can be written as

E

vol(I) = /_p dP(Qpo1(P) — Qrs(P))

=2 7 apfp(r - D) 43 v () ] (6.60)
- >1

where we have tentatively chosen the boundary of the integration domain as the midpoints of the

s |

s |

Slis!

edges. Since the integrand is exponentially suppressed for large P, we can push these boundaries
to oo without changing the perturbative result in 1/E. Using the explicit expression of T'(P)

(6.44) we can perform the integration over P € (—00,00) to obtain

27pr?  h?
il P P (6.61)

I(I) =
vol(I) G 1

Remarkably, the higher derivatives T+ with ¢ > 2 do not contribute. In the region II, on the
other hand, we replace T'— P/2 and neglect T@ with a > 2. By the similar manipulation as in
the case of region I, we finally find that only (7”)2U?) contributes among the terms from higher

commutators and

2rqm? | h?
vol(II) = » [qi + *CTUT]

T (6.62)

Putting these result together with the relation between n(E) and B (6.26), we obtain B as

1 /4
B:_<_P_Q)+k(cUUT_CTUT), (6.63)
6k\gp q p q D

where we have also used i = 27k.

Finally we shall display the explicit expression of the undetermined coefficients cyyr and

cryr- In appendix B we argue the expansion coefficients of

el = eUen T pa2U op2T | oamU opmT o@mi1 U (6.64)
From the results (B.13) therein with replacement

q1 — —((h - 90)7 qm+1 — —,
Qa_>_Q(l (a:2737”'7m)7
Pa— —Pa (a=1,2,---,m) (6.65)

together with the multiplication of overall (—1), the coefficients cyr, cyyr and cpyr can be

written as

ap
cur = zp — X(q,p) + o
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z2 >(q,
covr = L +x(@ - Z(q,p)> + (%, p) — E@.p)g + L2

2 2 2 12
(q, 2
crur = —S(g,p?) + ZLPP _ B (6.66)
2 12
Fixing the value of x from the condition ¢y = 0 as
Y(¢,p) ¢
_ _4 6.67
e -4, (6.67)
we obtain
2 2
q’r  X(q,p)
— Y2 p) — _ =Dl 6.68
cuuT (q ,P) 24 % ( )

Substituting the values of cypyr and cpyr into (6.63) we finally obtain the explicit expression of
B (6.40).

6.2.2 B for N = 3 quivers in classical limit

Before closing this section we shall introduce the similar determination of B in more general
N = 3 theories [8]. The semiclassical expansion of the Hamiltonian would be considered with
the help of the Wigner transformation. However, the hermiticity of leading Hamilto