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ABSTRACT

Tsunami motion covers a wide range of length scales and physical phenomena. It propagates
in the open ocean from its source towards the coastal zone where it interacts with the
complex geometries of bays and coastal structures before possibly inundating the coast;

damaging infrastructure, carrying debris, and causing erosion and deposition of sediment. To
overcome the physical and numerical constraints of the problem this study introduces a two-way
coupled multiscale tsunami model combining the shallow water equations with the Reynolds-
averaged Navier-Stokes equations. The shallow water model can simulate wide-scale tsunami
propagation and the basic inundation mechanism while the Navier-Stokes model is able to
consider complex hydrodynamics upon wave breaking and interaction with structures.

The model was verified for solitary wave transformation and breaking on a plane beach.
Various offshore wave heights and slopes were tested. The two-way coupling algorithm was found
to be sufficiently robust particularly if the local wave height and slope are sufficiently small, and
the coupling depths are sufficiently large. In contrast to the Navier-Stokes model the shallow
water model could not replicate the rapid rate of shoaling required late in the shoaling process.
An equation was derived to determine the location where the shallow water model breaks down
and thus the optimal depth for coupling to the Navier-Stokes model. The resulting transformation
and breaking characteristics described by the coupled model were compared with theoretical
reference shoaling rates, physical experiments and a fully nonlinear potential flow model. Good
overall agreement was found with possible improvements to the equations derived from the
potential model for certain conditions. In contrast to the potential flow model, a Navier-Stokes
model is able to simulate post-breaking turbulent behaviour such as touchdown of the plunging
jet and splashup which were qualitatively in good agreement with snapshots from experiments.

The coupled model was further investigated through an application to a real-scale tsunami
problem on Japan’s Tohoku coast. During the 2011 Tohoku-oki Earthquake Tsunami the 63
m deep Kamaishi Bay offshore tsunami breakwater was partially damaged, but the tsunami
height was still attenuated with estimates in the 40-50% range. The coupled model was used
to investigate the hydrodynamics around the submerged section of the breakwater during the
tsunami. Coupling was mostly robustly achieved due to the large Navier-Stokes domain. As a
result, it was found that inundation heights and volume fluxes through the submerged section
are not largely affected by the introduction of the Navier-Stokes model into the shallow water one.
However, pressures much different to hydrostatic ones develop over the submerged breakwater
caissons leading to a pressure force that reaches as low as a factor of safety of 0.77 which likely
led to the sliding of the caissons. Due to vertical accelerations over the submerged section, the
momentum jet angles downwards to the bed. The effect of this is to induce large horizontal
velocities found to be considerably greater than those calculated in the shallow water model in
an extended region up to 1.3 km from the breakwater. The resultant bed shear stresses have the
potential to cause substantial erosion and deposition of sediment in the bay.
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NOMENCLATURE

NOMENCLATURE

Symbol Description
a length of tsunami source

A wave amplitude from the initial undisturbed water level

(equal to the wave height for solitary waves)

A0 offshore wave height

Ab wave height at wave breaking

Ac coefficient of the Poisson pressure equation at cell, c

ADVφ advection term of k or ε

B width of caisson

c wave speed

ci truncation error correction coefficients in shallow water model

C f bed roughness coefficient

Cw weir discharge coefficient; = 0.35

Cµ empirical constant for turbulent viscosity in k−ε model; = 0.09

Cε1 empirical constant for production of ε in k−ε model; = 1.44

Cε2 empirical constant for dissipation of ε in k−ε model; = 1.92

C+ constant of integration in log-law (function of k+
s )

CIre maximum relative error around coupling interface during coupling

Cr overall Courant number of the grid; =√
ghmax∆t/∆x

Cr i local Courant number in the i direction; =√
gh∆t/∆xi

d free parameter of the plane equation

Dc correction coefficient to avoid negative depths in the shallow water model

D50 median sediment grain size

DIFFφ diffusion term of k or ε

Ere relative error of wave energy

g acceleration due to gravity in the negative z direction; ≈ 9.81 ms−2

g i the body force term in the i direction

f Darcy friction factor

f i finite-difference of the sum of the pressure gradient and nonlinear advection

terms in shallow water model for the i component of the volume flux

F volume fraction associated with the Volume-of-Fluid method

Fi discretization of the bottom friction terms in the shallow water model

FD drag force

FDcrit critical drag force for sliding

FL lift force
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Symbol Description
h initial undisturbed water depth

h0 offshore initial undisturbed water depth

hb initial undisturbed water depth at wave breaking

hc initial undisturbed water depth at coupling

hi ratio of the initial undisturbed water depth to the horizontal grid size; = h/∆xi

hmax maximum initial water depth in the grid

ho original undisturbed water depth before tsunami source is initiated

H total water depth; = h+η
i used to indicate cell number in the x direction

is2 first cell number inside fine grid layer in x direction

j used to indicate cell number in the y direction

js2 first cell number inside fine grid layer in y direction

k turbulent kinetic energy; ≡ 1
2 u′

iu
′
i

ks equivalent sand roughness height

k+
s non-dimensional boundary layer equivalent sand roughness height

ke total number of vertical cells

l turbulent length scale

L representative length scale

L0 offshore wavelength

Ls offshore wavelength between the maximum slope on the solitary wave

L# grid layer number #

L(r) limiter function of r

mc mass of concrete caisson

MD overturning moment

MDcrit critical overturning moment about caisson heel

n Manning’s roughness coefficient

~n outward unit normal vector of the free surface

~ntemp outward normal vector of the free surface

NF flag to indicate the cell type (boundary, fluid, air, or free surface)

NFB flag to indicate the orientation of free surface cells

p instantaneous pressure

p̄ Reynolds-averaged pressure

p̃ pseudo-pressure used as first guess in momentum equation

p arbitrary point on a plane

patm atmospheric pressure

pa frequency dispersion importance parameter for tsunamis

pd dynamic pressure

Pk turbulent production term
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NOMENCLATURE

Symbol Description
Q i horizontal volume flux in the i direction

Q̃ i horizontal volume flux in the i direction in the position

of the volume flux perpendicular to it

rd distance from centre of mass of caisson to its heel

re distance from resultant vertical force to caisson heel

r i ratio of time step to grid size in i direction; =∆t/∆xi

r+ ratio of the differences in advected quantities across cells

in direction of positive velocity

r− ratio of the differences in advected quantities across cells

in direction of negative velocity

R distance from tsunami source

Re Reynolds number; = V L
ν

s slope (rise over run)

S magnitude of the mean strain rate tensor

S0 dimensionless slope parameter

Si j mean strain rate tensor of the Reynold-averaged velocities

(SAob ject)i surface area of an object on a computational cell boundary perpendicular

to the i direction

t temporal dimension

T wave period

u horizontal velocity component (x direction)

ui instantaneous velocity component in the i direction

ūi Reynolds-averaged velocity component in the i direction

u′
i fluctuating velocity component from the Reynolds-averaged

one in the i direction

u∗
i intermediate velocity calculated from momentum equations in the i direction

ut representative turbulent velocity magnitude

uα horizontal velocity component in Nwogu (1993) type Boussinesq models

defined at arbitrary elevation

uτ magnitude of shear velocity

uτi shear velocity in the i direction

Ui depth-averaged velocity component in the i direction (horizontal only)

Umax maximum horizontal depth-averaged velocity magnitudes for simulation

(UF) volume flux at the cell boundary in the x direction

v horizontal velocity component (y direction)

V horizontal velocity magnitude

Vf luid volume of fluid within a computational cell

Vob ject volume of an object within a computational cell
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Symbol Description
(V F) volume flux at the cell boundary in the y direction

w vertical velocity component (z direction)

W x− z plane velocity magnitude

(WF) volume flux at the cell boundary in the z direction

x horizontal (left to right) Cartesian Coordinate axis

x# distance number # in the x direction used for interpolation

in multi-grid nesting

xi the ith Cartesian Coordinate axis

Xs initial position of the solitary wave offshore

y horizontal (top to bottom) Cartesian Coordinate axis

y# distance number # in the y direction used for interpolation

in multi-grid nesting

yk roughness length in log-law

yp distance from the boundary to the nearest computed velocity

y+p non-dimensional boundary layer distance from the boundary

to the nearest computed velocity

z vertical Cartesian Coordinate axis

zα arbitrary elevation of horizontal velocity component defined

in Nwogu (1993) type Boussinesq models

zwall elevation of a seawall, breakwater or levee crest

Greek Symbol Description
α multiplication coefficient for variable grid construction

γ linear dispersion tuning coefficient

γa
i aperture ratio at the cell boundary perpendicular to the i axis

γv void ratio of the computational cell

δ0 coefficient of initial turbulent kinetic energy

δv wall layer thickness

∆p change in pressure between the pseudo-pressure and correct pressure

due to the divergence free condition

∆t step size in the temporal direction

∆tratio time step size ratio between a coarse grid layer, k−1 and a

fine grid layer, k; =∆tk−1/∆k

∆x grid size in the x direction

∆xi grid size in the i direction

∆y grid size in the y direction

∆z grid size in the z direction

ε the turbulent kinetic energy dissipation rate; ≡ νu′
i ju

′
i j
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NOMENCLATURE

Greek Symbol Description

εi jk the Levi-Civita tensor; =


+1 if (i, j,k) is (1,2,3) or (2,3,1) or (3,1,2)

−1 if (i, j,k) is (3,2,1) or (1,3,2) or (2,1,3)

0 if i = j or i = k or j = k

εD error of continuity

εF error of volume fraction in plane equation iteration guess

ε nonlinearity ratio of wave in intermediate/shallow water; = A/h

ζ0 coefficient of initial turbulent viscosity

η free surface elevation

ηcg centre of gravity of the free surface

ηmax maximum free surface levels for simulation

Θi representation of advection and viscous terms for the momentum

equation in the i direction

κ wave number; = 2π/λ

κv von Kármán constant; = 0.41

λ wavelength

µ frequency dispersion parameter; = h/λ

µ0 offshore frequency dispersion parameter; = h0/L0

µs frequency dispersion parameter for use in slope parameter; = h0/Ls

ν kinematic viscosity; ≈ 1.00×10
−6 m2s−1 for water at 20◦C

ν f coefficient of friction

νn numerical viscosity

νt turbulent viscosity

π the ratio of circumference of a circle to its diameter; ' 22
7

ρ density (of a fluid); ≈ 1025 kgm−3 for standard sea water

ρs density of sediment; ≈ 2065 kgm−3 for standard sediment

σk turbulent Prandtl number in k−ε model; = 1.0

σε dissipative Prandtl number in k−ε model; = 1.3

τi j viscous stresses in the momentum equation

τbi bed stress in the i direction (only horizontal)

τ∗b dimensionless bed shear stress

φ velocity potential

φc dummy variable for any scalar quantity defined at the centre of cell, c

Φc value of k or ε interpolated onto the c cell boundary in an

upwind TVD sense

ψ dispersion potential function

ω angular frequency; = 2π/T, or vorticity
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INTRODUCTION

This study focusses on numerical modelling of tsunamis using a novel technique to couple

together models with different governing equations. Most readers will have a clear idea

of the devastation tsunamis can induce (see Figure 1.1), not least those in Japan where

I have spent my years on this study since the 2011 disaster. Tsunamis are characterised by

their large length scales in comparison to the water depth which can be true even at the deepest

parts of the ocean for large seismically induced ones. This allows for special considerations when

numerical modelling is performed. However, we will see that these considerations lose validity

when the waves start to interact with the very coastal structures and landforms that engineers

hope to analyse with numerical models.

Figure 1.1: Steel-framed building in Minami-Sanriku, Miyagi Prefecture, Japan ravaged by the

2011 Tohoku-oki Earthquake Tsunami and left as a memorial
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CHAPTER 1. INTRODUCTION

1.1 Background

This section begins by introducing the tsunamis and their related disasters in §1.1.1. Engineering

countermeasures for these are disasters described in §1.1.2. Finally, §1.1.3 discusses the numerical

analysis of tsunamis and how it may be used for hazard mitigation measures.

1.1.1 Tsunami Disasters

Tsunamis are superficially well known examples of extreme disasters throughout the world.

The word “tsunami” though is aptly borrowed from the Japanese term - a country more which

than any other knows the potential dangers of tsunamis - that literally translates to “harbour

wave”. It may at first appear a strange description however tsunamis are indeed commonly

enhanced due to resonance and other effects within bays causing disruption to harbours for

many hours after their generation. In fact, the influence from the continental shelf and coastal

topography are one of the most important factors that turn fascinating geophysical phenomena

into devastating disasters. But what initially makes the geophysics of the tsunami different from

“ordinary” waves? While, ordinary waves are generated by disturbances on or near the free surface

(e.g. wind and vessels), tsunamis are associated with a large displacement of water by some

external action. Thus, there are many potential sources of tsunamis such as: displacement of

the seabed due to seismic action, submarine landslides, submarine volcanic eruptions, subaerial

landslides, collapse of sectors of volcanic edifices, and falling extraterrestrial bodies. The huge

energy of the external action induces vertical displacement of the water. In other words, the

kinetic energy of the external motion has been converted into potential energy of the water

body. The pressure difference between vertical water columns due to the presence of the free

surface carry that energy in the form of a very long wave potentially over entire oceans. Hence, a

tsunami can be viewed simply as an energy transmitting mechanism. As a tsunami propagates,

the energy is dispersed so its potential for damage is much larger closer to its source, but may

still be significant for far-field locations if the initial energy of the source is sufficiently large.

In terms of the hydrodynamics, the length scales of tsunamis play an important role for

the propagation of tsunamis. Picture an undersea megathrust earthquake in a subduction zone

where vertical displacement of the seabed has occurred over a length scale on the order of ∼100

km. It is not hard to imagine the induced tsunami to be of a similar scale, i.e. the wavelength

of the tsunami. In comparison the water depths in deep ocean are better measured on orders

of ∼1 km, and those on the continental shelf of orders less. It is usually fair to assume that in

the case of some arbitrary wave that the influence of the wave on water particles will decay to

zero at depths on the order of the wavelength. However, for tsunamis the ratio of water depth to

the wavelength of tsunamis is relatively small, hence water particles in the entire water column

must “feel” the influence of the wave. Moreover, the horizontal motion of the particles will almost

be the same between the free surface and the seabed as there is relatively little water depth for
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1.1. BACKGROUND

decay to occur. It is easy to imagine how a phenomena that can induce the non-trivial motion of

entire water bodies (including oceans) may have such devastating effects. Additionally, the length

scales of tsunamis have important consequences in terms of the physics of fluid motion which

will be explained in more detail in Chapter 2. To summarise here, the wave speed of these long

waves becomes essentially independent of their wavelength and almost entirely dependent on

the water depth. Thus, the (simple) estimation of tsunami motion becomes fairly straightforward.

However, there are a number of other behaviours that need to be considered for tsunami motion

related to the local bathymetry and topography that generally exist for all water wave motion:

diffraction, refraction, shoaling, reflection, resonance, and trapping (Murata et al., 2009). Such

effects make tsunami behaviour far more complex in the coastal zone than in the open ocean.

Different combinations of these effects lead to either the amplification or attenuation of the

tsunami depending on the local topography.

Tsunamis become disasters when the height of the wave becomes large enough to inundate

the coast, and/or strong currents in harbours cause damage to vessels, and port infrastructure.

The former (and the latter) is most likely to occur from near-field or regional-field type tsunamis

(those where the source is fairly close to the coast) and are the most dangerous type of tsunami

disaster. Possible near-field/regional-field tsunami sources include large subduction zones of the

coasts of countries such as: the Japan trench off the northeast coast of Honshu Island, Japan,

the Cascadian subduction zone along the west coast of USA, Hikurangi-Kermadec trench off

the east coast of the North Island, New Zealand, the Chile-Peru trench along the west coast

of Peru and Chile, and the Sunda trench off the southwest coasts of the Indonesian Islands,

Sumatra and Java. In recent times, the latter and the former have been associated with two of the

largest natural disasters to have occurred in modern times: the 2004 Indian Ocean Tsunami, and

the 2011 Tohoku-oki Earthquake Tsunami respectively. These two examples will be explained

in more detail below. Numerous other near-field sources are possible: collapse of sections of

volcanic edifices into bays, landslides on steep slopes surrounding fjords or tidal inlets, submarine

landslides, and underwater volcanic eruptions. Notable examples of these include: the collapse of

the eastern flank due to the volcanic activities of Mt. Unzen in 1792 causing a large tsunami in

Shimabara Bay resulting in 15,000 fatalities (Ogawa, 1924), the 1998 tsunami in Papua New

Guinea generated by a submarine landslide due to seismic action with an average of 10 m wave

heights killing 2,100 people (Synolakis et al., 2002), and the 1958 Lituya Bay rockslide triggered

by an 8.3 magnitude earthquake that recorded an extraordinary maximum runup of 524 m (Fritz

et al., 2001). The major difference between these near-field sources and those generated by large

subduction zone fault-slips is that they tend to be very localised and extremely devastating in

the area close to the source but have relatively little effect outside the near-field region due to

their smaller length scales.

The 26th December 2004 Indian Ocean Tsunami was generated by the Sumatra-Andaman

earthquake, the largest to be recorded since 1964 with a seismic moment magnitude of Mw =

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Aftermath of the 2004 Indian Ocean Tsunami in Aceh, Indonesia 2005 (source: AusAID,

retrieved from; https://www.flickr.com/photos/dfataustralianaid/10730863873/)

9.1 - 9.3, and a so called tsunami moment magnitude of Mt = 9.1 (Kanamori, 2006; Lay et al.,

2005). The rupture occurred along 1,200 - 1,300 km of the fault boundary between the Indo-

Australian plate and the southeastern portion of the Eurasian plate, with peak slip displacements

of ∼15 m (Kanamori, 2006; Ammon et al., 2005; Lay et al., 2005). The tsunami resulting from

this earthquake had enormous effects in the near-field and regional-field, most significantly in:

Indonesia, Sri Lanka, India, and Thailand. The total number of fatalities is estimated at 227,000

while about 1.8 million people were displaced (Athukorala, 2012). Economic losses in those

countries have been estimated at US$9.4bn (Abe and Thangavelu, 2012). The largest destruction

by the tsunami occurred nearest to the epicentre in the Aceh region (see Figure 1.2) with a

maximum runup of 30 m and flow depths > 9 m (Borrero et al., 2006; Synolakis and Kong, 2006).

While the earthquake and tsunami were considerably large events, the extent of the humanitarian

crisis was particularly extreme due to: the high density of populations living near the coast,

the relative poverty of the affected areas, and the lack of tsunami education, preparedness and

disaster mitigation measures. A huge global humanitarian aid effort resulted with over US$14bn

pledged by the international community to help in the relief and reconstruction phases of the

recovery process (Athukorala, 2012).
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1.1. BACKGROUND

Figure 1.3: Surveyed inundation and runup heights along the Pacific coast of Japan resulting

from the 2011 Tohoku-oki Earthquake Tsunami (source: The 2011 Tohoku Earthquake Tsunami

Joint Survey (TTJS) Group, retrieved from; http://www.coastal.jp/tsunami2011/)

On March 11, 2011 a magnitude Mw = 9.0 earthquake occurred off the northeast coast

of Honshu Island, Japan. It was the most powerful earthquake recorded since the Sumatra-

Andaman earthquake one just over six years prior. The earthquake is assumed to have occurred

over a rupture area of 450 × 200 km (Mori et al., 2011) at a depth of 30 km (United States

Geological Survey, 2011). The uplift of the seabed has been estimated to be over 10 m near the

trench axis and ∼5 m near the epicentre with subsidence up to 2 m near the coastline (Fujii et al.,

2011). This dramatic change in the seabed induced the gigantic Tohoku-oki tsunami that reached

the nearest coastline in 20 min and affected over 2000 km of Japan’s pacific coast concentrated

in the Tohoku region (see Figure 1.3) (Mori et al., 2011). The tsunami caused 15,892 fatalities

with an additional 2,574 missing. In total, 124,663 buildings fully collapsed, 274,638 buildings

partially collapsed and 116 bridges were damaged as of July 10, 2015 (National Police Agency

of Japan, 2015). The direct economic damage has been estimated at US$183bn while costs for

recovery might reach US$122bn (Norio et al., 2011). However, the perceived risk for a tsunami in

the region was high (with the similarly large Meiji Sanriku earthquake tsunami (Mw = 8.2-8.5) in

1896 and smaller ones every 10-50 years (Mori et al., 2011)), the public were comparatively well

educated about tsunamis, and preparedness was high particularly in terms of hard (structural)

protection measures such as breakwaters, seawalls, tsunami gates, and forest barriers (Suppasri
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CHAPTER 1. INTRODUCTION

et al., 2013). This is in stark contrast to the conditions on the Sumatra coast during 2004 Indian

Ocean Tsunami. However, immense damages and casualties still resulted in the Tohoku region.

Suppasri et al. (2013) has commented on the performance of the hard protection measures and

warns of their overreliance in place of soft measures such as evacuation strategies, evacuation

shelters, warnings, and town planning.

Tsunamis may also affect places in the far-field in addition to the near-field and region-field.

For example the 2004 Indian Ocean tsunami travelled across the Indian Ocean affecting the

Arabian Peninsula and large portions of Africa’s east coast. Similarly, the 2011 Tohoku-oki

tsunami travelled across the Pacific Ocean affecting places as far away as Chile, California, and

New Zealand. In this case, inundation and destruction of towns is typically not as severe compared

with near-field tsunamis or often inundation does not occur at all. However, tsunami currents

may still be significant and can cause damage to vessels and port infrastructure, sediment erosion

and deposition, and disruption to port operations. For example in the Port of Salalah, Oman,

90 minutes after the arrival of the 2004 Indian Ocean tsunami strong currents broke all the

mooring lines of a large freighter that got caught up in system of eddies and could not be brought

under control (Lynett et al., 2014). During the 2011 Tohoku-oki tsunami significant damages

were recorded in California ports with over US$50mn of damage to two dozen harbours (Wilson

et al., 2012). Thus, tsunamis are significant events in particular for countries with coastlines

facing the Pacific and Indian Oceans. Even if the source of large tsunamis that occur are not

nearby, disruptions and damage can arise. It is important that suitable mitigation measures and

strategies are developed for these regions.

1.1.2 Countermeasures for Tsunami Disasters

A number of countermeasures are available for prevention and mitigation of tsunami disasters.

Some discussion has already been mentioned in the previous section on the division of hard

and soft measures. Hard measures are mainly structural ones where coastal structures such

as breakwater and seawalls are constructed in bays and on coastlines. Such measures have the

explicit goal of attenuating the wave energy in the bay and preferably preventing the wave from

inundating coastal cities. Other structural measures include tsunami gates at river mouths,

natural barriers such as forests and mangroves (which may be intentionally or unintentionally

adopted), and river banks.

The 2011 Tohoku-oki tsunami has allowed for the best case study on the performance of

various hard measures possible because the pacific coast of Japan is probably the most “protected”

coast against tsunamis in the entire world. For example, many large breakwaters are present

along the Sanriku coast including the deepest breakwater in the world (63 m) at the entrance to

Kamaishi bay, and another large breakwater at the entrance to Ofunato bay (38 m deep) (see

Figure 1.4). Unfortunately, despite their size the tsunami wave was even larger and overtopped

the structures, causing significant damage to them while attenuating some of the tsunami energy
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1.1. BACKGROUND

Figure 1.4: View of Kamaishi Bay (left) and Ofunato Bay (right), Iwate Prefecture, seen before

the 2011 Tohoku-oki tsunami. Note the large scale breakwaters at the bay mouths (source: Iwate

Prefecture Government, retrieved from; http://www.pref.iwate.jp/kouwankuukou/kouwan/)

before inundating the cities in behind. Moreover, seawalls are ubiquitous along the entire coast

of Japan. Many are designed simply for protection from large waves and storm surges, however

some were specifically designed against tsunamis (Suppasri et al., 2013). An example is Taro

town, that had ∼2.4 km of seawall length which had been successful against the 1960 Chilean

tsunami but was overtopped and damaged during the 2011 Tohoku-oki tsunami (Suppasri et al.,

2013). In addition forest barriers were present in Rikuzentaka City, Natori, and Ishinomaki with

indications of spectacular failure in the former cases (all the trees except one were left standing

and may have contributed to further damage on the city by debris impacts in Rikuzentaka City)

and success in the latter case (helped to reduce the damage to houses in behind). The reasons

for the difference in success is likely due to the relative size of the tsunami in the different

locations where the tsunami height was ∼6 m in Ishinomaki but > 10 m in the other two locations

(Suppasri et al., 2013).

Other measures available against tsunamis are soft ones that are important to consider even

for highly developed regions. For example, various stories of success (few) and failure (many)

of the hard structural measures exist in the 2011 Tohoku-oki tsunami case (see Suppasri et al.

(2013) for an in-depth review). It is clear that for an extremely large event it becomes essentially

impossible and disingenuous to design against the tsunami to achieve complete prevention of the

disaster under reasonable economical and social constraints. This has lead to the slight change

of tact in the Japanese case: design to prevent damage against frequent smaller, ∼10-100 year

events, termed Level 1 events (through hard measures), but only to mitigate the damage in the

case of very large ∼1000+ year events, termed Level 2 events (Shibayama et al., 2013). Soft

measures are a key component of disaster mitigation. The main goal of soft measures are to save

lives, which in terms of tsunamis generally revolve around evacuation strategies, shelters and
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CHAPTER 1. INTRODUCTION

warning systems. It is common not only in Japan, but for many towns with coasts on the pacific

to now have tsunami inundation hazard maps, evacuation routes, and designated evacuation

buildings. A large majority of consultancy and local government work on tsunami mitigation

deals with the development of these aspects. Furthermore, the Pacific Tsunami Warning Center

located in Hawaii was explicitly founded to forecast expected tsunamis heights and currents in

the Pacific Ocean after major earthquake events and issue warnings to the pertinent regions.

In general, these measures of course do not protect property and other damages, unless one

considers town planning and the movement of property and residents to higher ground a soft

measure. However, living and working near the coast can be extremely important for people’s

everyday lives (fishing, trade and recreation) and it is mostly undesirable to sacrifice this for

disaster prevention means.

1.1.3 Numerical Analysis for Tsunami Hazard Mitigation

In order to deduce the potential tsunami threat (forecasting), conduct a real-time assessment

of the tsunami magnitude (nowcasting), and to analyse past tsunami impacts (hindcasting),

numerical analyses are commonly performed. Numerical analysis is particularly important in the

field of tsunami hazard mitigation because: the true length and time scales of the phenomenon

are unattainable in the laboratory so that the Reynolds number will always be much smaller

than in real scale flows, i.e. dynamic similarity will be impossible to attain (Nokes, R., personal

communication, Nov 26, 2015), local topography and bathymetry are the most important para-

meters for consideration of the tsunami behaviour (also difficult to represent in the laboratory),

tsunami propagation in general is well predicted by simple analytical equations easy to imple-

ment in numerical models, significant events are rare which means that field data is relatively

scarce, and tsunamis affect particularly large areas resulting in sparse and costly field data.

However, experimental and field data are still extremely important in order to better understand

fundamental aspects, assess impacts, and verify numerical models. The post-event survey of the

2011 Tohoku-oki tsunami (Mori et al., 2012) has resulted in a large mass of data at more than

5,200 locations available for this purpose.

As mentioned, tsunami propagation can in general be adequately described by relatively

simple analytical equations. These are known as the (nonlinear) shallow water equations (NSWE)

that result from the consideration of the length scales of the phenomenon, which is described in

detail in §2.1.3. Thus, it is straightforward to describe tsunami motion from the source towards

the coast. Once the tsunami reaches the coastal zone, it transforms significantly where most

of these effects may also be accounted for by the NSWE. Technically, however the tsunami

becomes more flow-like as inundation occurs and the wave equations should break down. But

flood inundation analysis is often achieved using the NSWE (e.g. Liang, 2010) because the motion

is still mostly gravity and advection-driven. Indeed it has been shown that those equations can

also perform relatively well for tsunami runup and inundation analyses (e.g. Kanoglu, 2004;
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1.1. BACKGROUND

Titov and Synolakis, 1998; Shuto et al., 1986). Hence in general, for basic hazard assessments

of tsunamis, e.g. computing the tsunami from the source to the coast and predicting the likely

extent and depth of inundation, these equations are extremely useful and suitable. A large

proportion of numerical analyses of tsunamis do indeed conduct this type of simulation in order to

design tsunami hazard maps, and evacuation strategies. Moreover, the NSWE may also provide

information on the basic performance of hard measures such as breakwaters, seawalls, and river

banks.

However, there are many effects related to tsunami behaviour that may not be well captured by

the NSWE model such as: frequency dispersive effects that are important for tsunami propagation

over very long distances, landslide-induced tsunamis, and the formation of undular bores (e.g.

Løvholt et al., 2008; Lynett, 2005), detailed formation of jets and coherent turbulent structures

in harbours (e.g. Lynett et al., 2012), three-dimensional velocity structure and its relation to

sediment transport in the coastal zone (e.g. Kihara et al., 2012), macro-roughness effects during

inundation (Park et al., 2013), hydrodynamic response with coastal structures and infrastructure

on land (Lynett and Liu, 2011), and complex tsunami-driven debris motion (e.g. Yoneyama

et al., 2012). However, these effects are important for better tsunami hazard predictions and

evaluations. For example, when the Pacific Tsunami Warning Center issues warnings across

the Pacific Ocean, the arrival times are usually provided but these may not be accurate using

the non-dispersive NSWE model for far-field coastal regions. Furthermore, the tsunami current

hazard is significant even for ports in those far-field locations. The potential for damage to

vessels, piers, docks and costs related to tsunami induced erosion and deposition of sediment

should be considered by port operators. Moreover, during the tsunami decisions should be made

whether to temporally halt port operations, where to keep boats docked or whether or not to

take them offshore. In addition, the design of coastal structures, infrastructure, and buildings,

their locations and potential for damage is important knowledge for ports and coastal cities to

adequately prevent and mitigate the disaster. Knowledge of the detailed hydrodynamic response

of the structures with the tsunami, including the potential for impacts with tsunami-driven

debris, can be extremely helpful to achieve these means effectively. Hence, numerical analyses

are extremely useful for tsunami hazard mitigation means but it is also important to use the best

model to correctly describe the phenomena to the accuracy desired.
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1.2 Research Problem and Objectives

Tsunami disasters are real and significant hazards for many coastal communities. Evaluation

of the potential risks and impacts, and developing engineering countermeasures for disaster

prevention and mitigation is essential for these communities in order to properly manage the

hazard. One particularly important tool to achieve this is the numerical analysis of tsunami

behaviour as discussed in §1.1.3.

There are many relevant scales and physical processes involved in the entire description of

the tsunami lifecycle. However, it is unlikely that any one set of equations (numerical model) can

simulate the whole problem efficiently and accurately. For example, although the Navier-Stokes

(N-S) equations may be used to approximate any phenomena relating to incompressible fluid

flow (c.f. §2.1.1), they are impossible to actually physically apply over the full range of length

scales present due to computational constraints. Thus, certain assumptions and techniques are

required in order to reduce the problem to an accurately computable one.

This thesis introduces one possible technique to consider the efficient but potentially very

detailed and accurate computation of tsunami behaviour. The method revolves around two-way

multiscale coupling. This term refers to the coupling of different grid resolutions and equations

at specified regions in the flow domain where information is passed in both directions between

them. This technique enables the coupled model to potentially simulate the tsunami beginning

from the earthquake source, propagating towards the coastal zone before modelling the complex

hydrodynamics in a fine region of interest, for example around coastal structures, buildings and

infrastructure. The method assumes that each model is the most suitable (balance of efficiency

and accuracy) to that specific region, and at the point of coupling the physics may be equally

well described by both models. Hence, in addition to the development of the multiscale coupling

method it is also important to know the following, which may be considered to be the objectives of

this study in addition to the detailing of the adopted models, and multiscale coupling algorithms:

1. The most suitable boundary conditions for coupling

2. Range of applicability of the coupled model and robustness of the coupling

3. Location where each model should be defined and coupled together

4. Potential for application to real-scale tsunami problems
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1.3 Thesis Outline

This dissertation concerns the development, applicability assessment, and an example of the

real-world application of a numerical tool to allow for the in-depth calculation of tsunamis in

specified regions while still computing the general tsunami behaviour over a wide-scale. The

thesis is divided up into six chapters as follows:

Chapter 1 Presents background on tsunami disasters and countermeasures for disaster pre-

vention and mitigation. Introduces the use of numerical analysis for hazard assessments

and the design of suitable countermeasures. Outlines some of the problems encountered in

numerical modelling and the objectives of this thesis to address these issues.

Chapter 2 Introduces the basic range of theories available to model tsunami phenomena. Dis-

cusses previous studies and the chronological development of numerical modelling of

tsunami hydrodynamics. Outlines the current state-of-the-art and the probable direction of

research in the near future including the motivation for this thesis.

Chapter 3 Describes the numerical methods of the individual shallow water equation and

Reynolds-averaged Navier-Stokes equation models that are chosen to simulate the tsunami

behaviour. Details the adopted techniques for two-way multiscale coupling that includes:

nesting the horizontal grids, nesting in the temporal space, and converting depth-averaged

information to vertically varying quantities (and vice-versa).

Chapter 4 A study on solitary wave transformation and breaking on a plane beach used to

investigate: the basic performance of the two-way multiscale coupling technique, locations

where it is best to couple the models, the range of conditions where the coupled model

is expected to perform well, expected errors at the coupling interface, and ability of the

coupled model to describe physical processes that would otherwise be difficult without

coupling.

Chapter 5 Application of the coupled model to simulate the hydrodynamics around a breakwater

in a real-scale tsunami problem. Illustrates the ability of the model to be used in real-world

problems and discusses new findings that were made possible using the coupled model.

Chapter 6 Concludes the study highlighting the results of the study in addition to areas where

gaps still exist and hence possible future research directions.
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2
THEORY AND LITERATURE REVIEW

Numerical modelling of tsunami hydrodynamics covers a wide range of scales and physical

behaviour as will be discussed in this chapter. §2.1 starts by introducing the most basic

of equations for fluid flow before applying assumptions that simplify the theory for water

waves and eventually for very long water waves in particular, e.g. tsunamis. Lastly, the common

theory and numerical techniques used throughout the history of tsunami modelling is introduced

in §2.2, leading up to the present day and where this thesis fits into the scheme of things.

13



CHAPTER 2. THEORY AND LITERATURE REVIEW

2.1 Basic Equations and Theory

This section begins by introducing the governing equations and a short discussion of the relevant

theory for this thesis. §2.1.1 starts with the most complete set of equations for wave motion

and incompressible fluid flow in general - the incompressible Navier-Stokes (N-S) equations. A

special case of the N-S equations is the Reynolds-averaged Navier-Stokes (RANS) equations

and this is introduced in §2.1.1. By applying the inviscid and irrotational assumption to the

N-S equations we get the often used velocity potential formulation for wave motion in §2.1.2.

A further assumption to potential flow is that the water depth is very small compared to the

wave length - the long wave assumption. Taking the assumption to the first-order results in the

shallow water equations presented in §2.1.3. The shallow water equations are widely used in a

number of problems including open channel flow, tidal motion, inertial waves and gravity waves

including tsunami propagation and inundation as found in this thesis. Additionally, taking a

more general approach to the long wave assumption (to higher-order) results in the Boussinesq

equations which is briefly presented in §2.1.3. Note, that this section (§2.1) will be short on proofs

and will basically introduce the theory and equations as they can be found in a vast number

of textbook or lecture notes on the subject. On that note the author of this thesis would like to

acknowledge the following resources for the compilation of this section: Nokes (2008a) in §2.1.1

and §2.1.2; Nokes (2008b) in §2.1.1; Dawson and Mirabito (2008) and Chanson (1999) in §2.1.3;

and Wei et al. (1995); Nwogu (1993); Madsen et al. (1991); Peregrine (1967) for §2.1.3.

2.1.1 Incompressible Navier-Stokes Equations

Fluid motion is assumed be a continuum phenomenon, that is we can think of the fluid flowing in

and out of a control volume - that it completely occupies - without needing to model the individual

movement of molecules. Through this assumption governing equations for fluid motion can be

found by considering the conservation of certain universals in the control volume such as mass

and momentum. Furthermore, many environmental fluid problems that for example just involve

water and air, experience small changes in pressure in comparison to their bulk modulus of

elasticity. That means that the changes of density in time and space are negligible with pressure,

called the incompressible assumption. Note that technically this does not imply that the density

is necessarily constant as density indeed changes depending on temperature and salinity in the

ocean.

With these assumptions in mind, the conservation of mass or continuity equation can be

written simply as:
∂ui

∂xi
= 0 (2.1)

where ui is the velocity component in the i direction. xi indicates the ith Cartesian Coordinate

axis. Note that Einstein’s summation index notation is used in Eqn. (2.1) above and throughout

this thesis as it is a convenient way to write tensor equations. In three-dimensions, i can be chosen
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2.1. BASIC EQUATIONS AND THEORY

to be 1, 2, and 3 which in this thesis nominally refers to the x, y, and z Cartesian Coordinate

axes respectively.

The next and last governing equation for fluid flow is the conservation of momentum or in

fact the incompressible Navier-Stokes equations:

∂ui

∂t
+u j

∂ui

∂x j
=−1

ρ

∂p
∂xi

+ g i +ν ∂2ui

∂x j∂x j
(2.2)

where t is the time axis, ρ is the fluid density, p is the pressure, g i is the body force in the i

direction, and ν is the kinematic viscosity of the fluid. The entire body of incompressible fluid flow

is said to be governed by combination of Eqn. (2.1) and (2.2). It is useful to name each of the terms

in the Navier-Stokes equations to help understand their separate functions: the terms on the

left are inertial ones and they are called the local acceleration and advective acceleration terms

respectively. The first on the left is called the local acceleration term because it tells us how the

velocity of the fluid at a certain location is changing with time. The advective acceleration term

describes how fluid is moved from one point to another by the flow. The first term on the right

is the pressure gradient term, and the middle one is the body force term. These are dominant

forces for waves in the ocean, in particular long waves which are the focus of this thesis. The last

term on the right is the viscous term and corresponds to the dissipation of energy. For most of

the life of an ocean wave this is an almost negligible term which is useful for deriving simplified

governing equations as presented in the following sections.

Lastly, the only boundary condition that we can be guaranteed of in a real fluid flow is the

no-slip boundary condition which states that all fluid in contact with the solid boundary can only

move with the velocity of the boundary (which can usually be approximated to be zero for the

sea bed). However, we will find in §2.1.2 that through the inviscid assumption this boundary

condition will in fact disappear to be replaced by a different one.

Reynolds-Averaged Navier-Stokes Equations

In environmental fluid problems the flow often becomes turbulent. This happens when the

Reynolds number, Re = V L
ν

, a measure of the ratio of inertial to viscous forces becomes large.

Here, V and L are some representative velocity magnitude and length scale respectively of the

problem. In such a case, if one were to measure ui and p at a particular point in time one would

find a distribution similar to the solid line in Figure 2.1. The quantities essentially vary randomly

with time and the same is also true in space. Thus, it is very to difficult to make sense of the data

in its raw form. One method to simplify the analysis is to take an “average” of the quantities, ui

and p as first proposed by Reynolds (1895). The “average” technically should be achieved through

an ensemble average, i.e. by running many experiments and averaging the results from all of the

experiments. This may be quite difficult to fully achieve in practice hence the average can also

be estimated through time-averaging since turbulent fluctuations happen on small time scales

compared with the time scales of the effects we are usually interested in. A visual representation
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CHAPTER 2. THEORY AND LITERATURE REVIEW

of the time-average is shown by the dashed line in Figure 2.1. Note that the mean (time-averaged)

quantity may vary in time due to the previous argument.
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Figure 2.1: Visual representation of instantaneous quantities that exhibit turbulent fluctuations

and a corresponding time-averaged quantity at a certain location in space

To perform the analysis in the form of this averaged quantity, which we call the Reynolds-

average, we decompose ui and p into the mean (time-averaged) and fluctuating components:

ui = ūi +u′
i p = p̄+ p′ (2.3)

where¯ indicates the Reynolds-averaged quantity and ′ is the fluctuating component. We then use

this decomposed form from Eqn. (2.3) to re-evaluate the incompressible Navier-Stokes equations,

(2.1) and (2.2). Since that by definition the fluctuating component has zero mean Eqn.(2.1) simply

reduces to:
∂ūi

∂xi
= 0 (2.4)

This implies that the fluctuating components play no role in the conversation of mass. The

analysis is more complex for the conservation of momentum, Eqn. (2.2), but will reduce to:

∂ūi

∂t
+ ū j

∂ūi

∂x j
=−1

ρ

∂p̄
∂xi

+ g i + ∂

∂x j

(
ν
∂ūi

∂x j
−u′

iu
′
j

)
(2.5)
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2.1. BASIC EQUATIONS AND THEORY

where the extra term on the RHS, u′
iu

′
j is called the Reynolds-stress term (when multiplied by ρ)

and has arisen due to the averaging of the nonlinear advection term. It is the Reynolds-stress

terms which make turbulent flow complex since their effect can be significant even though the

viscous stresses, ν∂ūi
∂x j

in the high Re limit are negligible. In order to use the Reynolds-averaged

Navier-Stokes (RANS) equations given by Eqns. (2.4) and (2.5), one needs to introduce some

sort of model to approximate the Reynolds-stresses in order to “close” the equations. A common

approach is to relate the stresses to a turbulent viscosity through Boussinesq’s assumption. To

get a time and position dependent turbulent viscosity involves modelling the transport of other

time-averaged turbulent quantities such as turbulent kinetic energy and the the rate at which

that dissipates. One common form of this is the k−ε model which is adopted in this thesis and

introduced in §3.4.5. Assuming this turbulence closure model works well, the N-S equations are

now significantly simpler to model in the form of the RANS equations because the fluctuating

components that act on very small time and spatial scales may be ignored and only the transport

of the mean quantities need to be considered. In other words spatial grid and temporal step sizes

need not be prescribed at prohibitively small scales.

2.1.2 Potential Flow Theory

We begin with Eqns. (2.1) and (2.2) for incompressible flow introduced in §2.1.1. The first as-

sumption we can make due to a scale analysis is that waves can generally be assumed inviscid.

That is, the viscous stress term is assumed to be very small in comparison to all the other terms

and is neglected. The flow state where Re >> 1 indicates an inviscid assumption is a suitable

one. For a typical coastal engineering problem this is easily satisfied since the characteristic

length and velocity scales are far larger than the kinematic viscosity of water. Following from this

assumption for a fluid body initially at rest (no rotation), Kelvin’s circulation theorem guarantees

that the flow will be irrotational for all time. Irrotationality refers to the curl of the velocity vector

becoming zero:

εi jk
∂uk

∂x j
= 0 (2.6)

where εi jk is the Levi-Civita tensor. Since the curl of a scalar gradient is always zero, the

irrotational assumption of the flow mathematically leads to the convenient consequence that the

velocity field can be expressed as the gradient of a scalar field called the velocity potential, φ:

ui = ∂φ

∂xi
(2.7)

Expressing the continuity Eqn. (2.1) in terms of the velocity potential yields what is known as

Laplace’s equation:

∂2φ

∂xi∂xi
= 0 (2.8)
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CHAPTER 2. THEORY AND LITERATURE REVIEW

Laplace’s equation can be solved subject to appropriate boundary conditions to give the

velocity field. Furthermore, to find the pressure one can introduce the velocity potential into

the momentum Eqn. (2.2) - sans the viscous stress term - and integrate to obtain the Bernoulli

equation:
∂φ

∂t
+ 1

2

(
∂φ

∂xi

)2
+ p− patm

ρ
− g ixi = 0 (2.9)

where patm is the atmospheric pressure. To find solutions to Eqns. (2.8) and (2.9) boundary

conditions are required. Firstly, a suitable problem definition is required to simplify the problem.

In our case we can consider a body of water with some initial free surface level (M.S.L), above an

arbitrary sea bed so that the local water depth, h becomes a function of the horizontal dimensions

(assuming it does not change with time), disturbed so that waves form on the free surface,

with a local elevation, η above the initial free surface level, amplitude, A and wavelength, λ as

illustrated in Figure 2.2.

z = 0 M.S.L

z = −h
sea bed

λ

h
H

η
A

Figure 2.2: Problem definition sketch for a free surface wave above an arbitrary sea bed

Notice that the problem has been transformed so that obvious boundaries exist at the top and

bottom in the z direction but none exist at the horizontal boundaries, which is of course due to

the gravity force. This necessarily distinguishes the horizontal and vertical directions so that

hereafter in §2.1, z will be used independently and i in Einstein’s index notation will indicate

only 1 and 2 (the x and y directions). Furthermore, the body force term will be assumed only to

be that of the acceleration due to gravity in the negative z direction (ignoring Coriolis and other

effects), denoted g.

Considering the bottom boundary, since the flow is inviscid there is no viscosity to enforce the

no-slip boundary condition. However, flow is still not able to pass through normal to the boundary

which leads to the following kinematic boundary condition:

∂φ

∂z
=− ∂φ

∂xi

∂h
∂xi

on z =−h(xi) (2.10)
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2.1. BASIC EQUATIONS AND THEORY

For a flat sea bed this would mean that the vertical velocity, w = ∂φ
∂z is equal to zero here. At the

free surface there are two boundary conditions. The first is a dynamic one that simply says that

the pressure must be equal to the atmospheric pressure, patm at the free surface:

p = patm on z = η(xi, t) (2.11)

The second is a kinematic one which states that a fluid particle on the free surface moves with

the free surface. This is equivalent to the material derivative of the surface, z−η(xi, t)= 0 being

equal to zero and simplifies to:

∂φ

∂z
= ∂η

∂t
+ ∂φ

∂xi

∂η

∂xi
on z = η(xi, t) (2.12)

Finally, by differentiating Bernoulli’s Eqn. (2.9) with respect to t we can combine the two free

surface boundary conditions Eqn. (2.11) and (2.12) into one to obtain:

∂2φ

∂t2 + ∂φ

∂xi

∂2φ

∂xi∂t
+ g

(
∂φ

∂z
− ∂φ

∂xi

∂η

∂xi

)
= 0 on z = η(xi, t) (2.13)

In terms of an inviscid and irrotational flow for the problem definition in Figure 2.2, Eqns. (2.8),

Eqns. (2.9), (2.10), and (2.13) are exact equations without any assumptions as to the length scales

involved. However, the equations are very complicated to solve as is. A common assumption

applied is that the wave amplitude is much smaller than the water depth i.e. the nonlinearity

ratio, ε= A/h << 1. This simplifies Bernoullis equation and the boundary condition at the free

surface considerably. For a flat bed of constant depth it leads to what is known as Airy’s wave

theory (linear wave theory). Although simple, it is often surprisingly accurate and the first go to

tool for estimating a wave’s property. One of the main outcomes of Airy’s theory is the so called

linear dispersion relation:

ω2 = gκtanhκh (2.14)

which has been given in terms of the angular frequency, ω and wave number, κ. By definition the

wave speed is equal to, c =ω/κ. In terms of c the dispersion relationship may be written as:

c =
√

g tanhkh
k

(2.15)

which says that the wave speed depends on both κ (λ) and h. There are two limits which one

may consider. The first is the deep water limit where the water depth is much larger than the

wavelength i.e. κh >> 1, and thus the wave speed approaches, c =√
g/κ. Here, the wave speed

only depends on κ. The other is the shallow water limit, when the wavelength is much larger

than the depth i.e. κh → 0, and the wave speed approaches, c =√
gh. Here, the only parameter

that matters when determining the wave speed is the water depth, h!
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2.1.3 Long Wave Theory

In §2.1.2 the linear dispersion relation was introduced. For so called shallow water waves where

the frequency dispersion parameter, µ = h/λ << 1, the wave speed was shown to only depend

on the water depth. It is thus straightforward to make a back of the envelope calculation to

determine say a tsunami’s wave speed and to obtain a rough estimate of its arrival time. The

only problem of course is that the water depth is a function of the horizontal axes (a non-flat bed)

in a real geophysical problem which makes any accurate solution to the problem invariably more

difficult to obtain. Furthermore, as tsunamis approach the shoreline the depth decreases so that

ε may become significant reducing the accuracy of the linear assumption.

Thus, we seek a simplified version of the full potential theory shown in §2.1.2 applying the

long wave assumption - µ<< 1 plus the finite-amplitude assumption, ε∼O(1) - on an arbitrary

seabed. The first thing to do is to go back to the incompressible Navier-Stokes equations and

investigate the relative scales. For example the inviscid momentum equation in the z-direction is

(i = 1,2 only in Einstein’s index notation):

∂w
∂t

+ui
∂w
∂xi

+w
∂w
∂z

=−1
ρ

∂p
∂z

− g (2.16)

Suitable scales for each term are then listed below:

∂

∂t
∼ c
λ

∂

∂xi
∼ 1
λ

∂

∂z
∼ 1

h
w ∼ εµc ui ∼ εc p ∼ ρgh (2.17)

This leads to the following order of magnitude estimate:

O
εµc2

λ

µε2c2

λ

µ2ε2c2

h
∼ ρgh

ρh
g (2.18)

If the wave speed is then assumed to be proportional to the long wave one (c =√
gh), Eqn (2.18)

reduces to:

O µ2εg µ2ε2 g µ2ε2 g ∼ g g (2.19)

Thus, all terms on the left hand side are of order µ2, and since µ<< 1 they can be neglected which

leaves us with:
∂p
∂z

=−ρg (2.20)

which is just the hydrostatic pressure distribution that implies, p = ρg(η− z)+ patm. Differentiat-

ing this by the horizontal direction gives the following relation:

∂p
∂xi

= ρg
∂η

∂xi
(2.21)

Applying a similar scaling approach for the horizontal momentum equations in order to remove

the dependence on w and inserting Eqn. (2.21) yields:

∂ui

∂t
+u j

∂ui

∂x j
+ g

∂η

∂xi
= 0 (2.22)
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The second step is to integrate the continuity Eqn. (2.1) with respect to z from the seabed to

the free surface (−h to η). Note that since h and η depend on xi and t the Leibniz integral rule is

used:
∂

∂xi

∫ η

−h
uidz+ui(−h)

∂h
∂xi

−ui(η)
∂η

∂xi
+w(η)−w(−h)= 0 (2.23)

It so happens that the boundary conditions on the free surface and the seabed in Eqns. (2.12)

and (2.10) respectively simplify Eqn. (2.23) considerably to give:

∂η

∂t
+ ∂Q i

∂xi
= 0 (2.24)

where the horizontal volume flux, Q i ≡
∫ η
−h uidz has been introduced.

Since, Eqns. (2.22) and (2.24) are independent of the vertical direction those equations can be

integrated and depth-averaged so that one only needs to model a single layer of flow. The depth-

averaged velocity, Ui =Q i/H is introduced, where H ≡ η−h is the total depth. The equations then

become:
∂η

∂t
+ ∂(UiH)

∂xi
= 0 (2.25)

∂Ui

∂t
+U j

∂Ui

∂x j
+ g

∂η

∂xi
= 0 (2.26)

Eqns. (2.25) and (2.26) are the set of equations called the horizontal two-dimensional (nonlinear)

shallow water equations (2DH NSWE). The term “nonlinear” is often used particularly in the

tsunami community to differentiate from the linearised (assumes ε << 1) form since for the

propagation of tsunamis in the open ocean away from the coast the linearised equations may be

used to good effect. Hence the “N” in the NSWE abbreviation. Just to clarify, the linearised form

(LSWE), ignores the second term in Eqn. (2.26), the advection term, to give what is otherwise

known as the classic wave equation:

∂Ui

∂t
+ g

∂η

∂xi
= 0 (2.27)

A common addition to the NSWE are the consideration of the viscous effects from the sea bed.

Although, the inviscid assumption was made in our formulation of the equations which helped to

eliminate the z dependence on the flow, an averaged effect on the depth-averaged layer of fluid

can be helpful to approximate the real world conditions more accurately. This is often introduced

as a bed stress term and simply added onto the LHS of Eqn. (2.26):

∂Ui

∂t
+U j

∂Ui

∂x j
+ g

∂η

∂xi
+ τbi

ρH
= 0 (2.28)

where the bed stress, τbi can be given in the quadratic form:

τbi = ρC f
Ui

√
U jU j

2
(2.29)
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C f is a bed roughness or drag coefficient which can be approximated a number of ways. Perhaps

most accurately and satisfyingly for fluid mechanics scientists it can be related to the Darcy-

Weisbach friction factor, f which was originally developed for pipe flow:

C f =
f
4

(2.30)

The Colebrook-White formula which is valid for turbulent flows can then be used to determine f

based on Re, H and an equivalent bed roughness height, ks using an iterative process. Another

common method familiar with engineers but controversial among the fluid mechanics community

however, is the Gauckler-Manning approximation:

C f = 2
gn2

H1/3 (2.31)

where n is Gauckler-Manning’s roughness coefficient. Tabulated values of n are widely available

for different land uses and surfaces. This helps to explain its ubiquity particularly in tsunami

modelling despite that fact that it is empirical, n is not dimensionless, and the formula is only

valid for steady, uniform equilibrium or gradually varied, fully rough turbulent flows of clear

water (Chanson, 1999).

High-Order Long Wave Theory: Boussinesq Equations

All long wave theories are based on the assumption, µ<< 1. The literal application of this leads

to the shallow water equations as demonstrated in §2.1.3. The main idea of Boussinesq theory is

to set a perturbation from the literal long wave theory. For example, ui is expanded in terms of ε:

ui = ui0 +εui1 +ε2ui2 + ... (2.32)

p, η and Q i are also expanded in the same way. w is further multiplied by µ like in Eqn. (2.17):

w =µ(w0 +εw1 + ...) (2.33)

These are inserted into the governing equations (potential flow theory) to reduce the equations

to 2DH and obtain the Boussinesq equations to the desired order of accuracy. It is common to

first non-dimensionalize the potential flow equations so that terms of orders in µ and ε can be

appropriately dropped as desired. For example, in order to balance the linear frequency dispersive

effects, µ2 and the nonlinear amplitude dispersive effects, ε, the condition that, µ2 ∼ ε<< 1 should

be applied. This is the one used to derive the weakly nonlinear Boussinesq equations. In this case

terms higher than O(µ2) and terms of O(ε) in O(µ2) are neglected. If a fully nonlinear Boussinesq

formulation is required then terms like O(εµ2) and O(ε2µ2) are instead retained.

One important issue relates to the dispersive characteristics of the equations. One set of

equations derived by Peregrine (1967) known as the “standard” Boussinesq equations is defined

in terms of the depth-averaged velocity:

∂η

∂t
+ ∂(UiH)

∂xi
= 0 (2.34)
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∂Ui

∂t
+U j

∂Ui

∂x j
+ g

∂η

∂xi
= h

2
∂3(U jh)
∂xix j t

− h2

6
∂3U j

∂xix j t
(2.35)

One may notice that only the RHS of Eqn. (2.35) is different to the NSWE. However, the equations

have already become rather complicated including derivatives up to the third-order as shown.

Relative to the linear wave speed these equations are accurate up to µ ≈ 0.13 (Madsen et al.,

1991). This is in comparison to the NSWE which are often said to be practically suitable for

µ< 0.05. Additionally, it so happens that the dispersive characteristics of Boussinesq equations

are related to the elevation of the horizontal velocity that appears in the equations. Knowing

this, Nwogu (1993) derived the Boussinesq equations in terms of a horizontal velocity, uαi at an

arbitrary elevation, zα:

∂η

∂t
+ ∂(uαiH)

∂xi
+ ∂

∂x j

[(
z2
α

2
− h2

6

)
h
∂2uα j

∂xix j
+

(
zα+ h

2

)
h
∂2(uα jh)
∂xix j

]
= 0 (2.36)

∂uαi

∂t
+uα j

∂uαi

∂x j
+ g

∂η

∂xi
=−zα

∂3(uα jh)
∂xix j t

− z2
α

2
∂3uα j

∂xix j t
(2.37)

In this case, while Eqn. (2.37) is similar to Eqn. (2.35), a number of complicated terms have

appeared in the continuity Eqn. (2.36). The benefit from the additional terms is the improvement

in the linear dispersion relation. It turns out that by setting zα =−0.53h, the model matches the

linear wave speed up to approximately µ≈ 0.5 (Nwogu, 1993). Other methods of derivation such

as that by Madsen et al. (1991) have also been able to improve the linear dispersion relation up to

a similar level. Finally, it should be mentioned that the two sets of Boussinesq equations shown

here are both weakly nonlinear. A fully nonlinear version of the Nwogu (1993) type equations

was derived by Wei et al. (1995), that inevitably contains a few additional terms. Fully nonlinear

equation models will perform better when nonlinear effects which otherwise restrict the validity

of the frequency dispersion relation in the weakly nonlinear equations appear.
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2.2 Numerical Modelling of Tsunami Hydrodynamics

As §2.1 has shown, because of the length scales of tsunamis, governing equations for their flow

can often be greatly simplified in comparison to the full N-S and potential flow equations. Still,

a great variety of long wave theories and numerical techniques have been employed to solve

tsunami flow each with their own subtle or not so subtle differences. There is thus no real

global consensus on a “good” model but various benchmark tests and workshops (e.g. Synolakis

et al., 2009, 2007) have been created to ensure that they meet some standard, at least if they

are to be used for non-academic purposes. §2.2.1 first describes the development of tsunami

modelling towards theory and methods that are commonly used today. This is followed by a look

to the future, whereby new considerations in tsunami assessment are outlined in §2.2.2. Possible

numerical techniques and ideas to facilitate such considerations, and thus the motivation of this

dissertation are put forward.

2.2.1 Past and Present

Initially, analytical models for “tsunami” waves generated by a vertical dislocation of the ground

were widely investigated. The models mainly focussed on linear wave theory and could describe

the temporal and spatial evolution over uniform depth (e.g Hammack, 1973; Moimoi, 1964;

Kajiura, 1963; Ichiye, 1958). The results were useful to determine the behaviour of the waves

near the source region and the expected decay of leading waves. This lead Kajiura (1963) to

propose conditions when frequency dispersion effects would become important for propagation,

that is when, pa < 3:

pa =
(

6h
R

)1/3 a
h

(2.38)

where R is the distance from the source, a is the length of the tsunami source, and h is the water

depth. Additionally, Hammack (1973) investigated the importance of the nonlinear effects by

comparison of the linear solution with the KdV equation. It was found that assuming that the

linear solution was valid near the source, it would be reasonable for propagation only for some

finite distance (about 20 depths) before nonlinear effects become important. But there are severe

restrictions by assuming uniform depth. For example, the importance of nonlinear effects may

be eased if the depth is increased from the one at the source (e.g. from continental shelf to deep

ocean).

Numerical modelling thus became an important consideration in order to simulate tsunami

propagation with variable water depths. Despite the warning by Hammack (1973), the linear as-

sumption has been commonly adopted for tsunami propagation due to length scale considerations

for long waves in the open ocean. An early example was Aida (1969) who used a finite-difference

(FDM) form of the LSWE to compute the propagation of the 1964 Niigata Tsunami and the 1968

Tokachi-oki Tsunami with 10 km and 20 km grid spacing respectively. An initial free surface

displacement based on an estimation of the crustal movement and the origin of the tsunami was
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determined by an inverse refraction diagram. Similarly, Hwang and Divoky (1970) computed the

propagation of the 1964 Alaskan Good Friday tsunami using a FDM formulation of the NSWE

on a 16.1 km grid spacing and time steps of 100 s. The details of the spatial and temporal grid

spacings are important because one of the major differences in numerical modelling of tsunami

propagation today is simply our increase in computational power. Note that by using the LSWE

or NSWE with variable depth, the effects of frequency dispersion were lost, but as long as the

relative distances of travel were short, and source lengths large (Eqn. (2.38)), both LSWE and

NSWE could be considered suitable approximations to the problem. Following these studies

other early examples of tsunami propagation using similar FDM formulations of the LSWE

include; Chen (1986); Nakamura (1984, 1983); Hwang et al. (1972). Nakamura (1983) mentioned

that there was only a 1% difference in the height of the leading tsunami wave compared with a

NSWE model that included bottom friction and Coriolis effects. Later, Shuto (1991) was able to

summarise that the LSWE can give satisfactory results for tsunamis in water depths greater than

approximately 50 m. Accordingly the LSWE were shown to be useful for tsunami propagation

outside of the coastal zone.

The next step for researchers was to start looking at the evolution of tsunamis in the coastal

zone leading to runup and inundation. Prior, reflection conditions at the coastlines were used

which prevented runup calculations. Conveniently however, using Bessel functions as a solution

to the NSWE for a solitary waves on a plane beach, Synolakis (1987) found that the maximum

height at the shoreline from the LSWE solutions (that could not be solved for evolution beyond

the initial shoreline) actually equals the maximum runup from the NSWE solutions as long as

the linear assumption is valid offshore. This is despite different wave behaviours in the surf zone.

However, many unknowns still remained since two-dimensional effects, real bathymetries that

may be different from a plane beach, and bottom friction effects were not taken into account. This

is in addition to the question of the adequacy of solitary waves as an approximation of tsunami

waves (c.f. Madsen and Schaffer, 2010). One of the first major breakthroughs for numerically

computing the evolution of the shoreline was made by Hibberd and Peregrine (1979) with their

FDM formulation of the NSWE for runup of a bore on a plane beach by giving a provisional

water level estimated from the extrapolation of the free surface and calculating the flux based on

that water level and depth. Moreover, around the same time in Japan two other seminal studies

studies had successfully used an inundation algorithm for tsunamis (Iwasaki and Mano, 1979;

Aida, 1977) again for FDM formulations of the NSWE.

The studies of Shuto (1991); Shuto et al. (1986); Goto and Shuto (1983) which more carefully

analysed the different numerical techniques and effects on propagation and inundation, developed

into the widely used model now known as TUNAMI-N2 (Goto et al., 1997). It utilises the explicit

leap-frog scheme and was shown to have relatively small truncation errors in comparison to

other explicit schemes (Imamura and Goto, 1988). Zelt (1991) showed a different approach for

runup of calculations of solitary waves in 1DH. He used a Lagrangian Boussinesq finite-element
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(FEM) wave model to track the shoreline that was applicable for both non-breaking and breaking

waves, where the latter generally require frequency dispersion effects. The only major drawback

was the necessity to calibrate the bottom friction and artificial viscosity terms. The next major

breakthrough for inundation modelling was the VTCS-2 model used to analyse solitary wave

runup in 1DH (Titov and Synolakis, 1995). It reverted back to using a FDM approximation of the

NSWE but adopted a novel technique of a variable grid formulation that did not require bottom

friction or other ad-hoc effects to reproduce the wave runup. This developed into a 2DH model

called VTCS-3 (Titov and Synolakis, 1998; Titov and González, 1997) which became known as

MOST (Method of Splitting Tsunami), a model that is still widely used today. Around the same

time, another model similar to TUNAMI-N2 based on the explicit leap-frog scheme for the NSWE

was presented (Liu et al., 1995, 1998). It became known as COMCOT (Cornell Multi-grid Coupled

Tsunami Model).

What has not been yet mentioned is that the three models; TUNAMI-N2, MOST, and COM-

COT had developed into codes capable of multi-grid nesting. The techniques allowed for down-

scaling from a large grid that may cover an entire ocean basin on the order of kilometres,

gradually down to a fine resolution in the nearshore region. This technique became an important

consideration for computation from the tsunami source towards the coastal zone if one desired

high resolution in specific regions for inundation assessments (on the order of tens of metres

or even metres). High resolution in the coastal zone would still be a heavy burden to compute

even now if one had to use that high resolution everywhere in the geophysical domain. Fur-

thermore, although all three models are based on the NSWE, and dispersive effects had largely

been ignored in the modelling community after Kajiura (1963) identified his criteria for judging

their importance, Shuto (1991); Imamura et al. (1990) identified the possibility of utilising the

inherent numerical dispersion contained within the models. By equating the discretized form of

the LSWE with the linear Boussinesq equations one could match the numerical dispersion to

physical dispersion by correctly adjusting the cell size depending on the water depth. The method

was then improved to include propagation in the diagonal direction (Cho and Yoon, 1998) and

hence the propagation of tsunamis over long distances could now be more robustly considered

without resorting to a more computationally intensive model such as the Boussinesq equations.

However as long wave theory, numerical methods and computing power improved the use

of more computationally intensive models that could start to describe more complicated flow

conditions started to appear. In terms of the theory, although 25 years prior, Peregrine (1967)

had generalised the derivation of higher-order long wave equations based on the depth-averaged

velocity, dispersive characteristics were still limited to fairly small values of µ. Firstly, Madsen

et al. (1991); Madsen and Sorensen (1992) and then Nwogu (1993) suddenly introduced a new

paradigm to the Boussinesq equations by matching the wave speeds with the (2,2) Padé approxi-

mation of the linear wave speed (Witting, 1984) to improve performance up to µ≈ 0.5 (Madsen

and Sorensen, 1992). Sato (1996) was able to show that by using the Madsen and Sorensen (1992)
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model, improved runup heights could be obtained in particularly steep regions on the Okushiri

coastline during the 1993 Hokkaido Tsunami compared with the standard NSWE. Following this

the Nwogu (1993) type weakly nonlinear equations were further extended to a fully nonlinear

version in Wei et al. (1995). That is, whilst deriving the equations the terms of O(ε) in O(µ2) that

are ignored in the original Nwogu (1993) equations are instead retained. Greater accuracy in

the prediction of solitary wave shoaling on plane slopes was shown for a great range of offshore

wave heights (Wei et al., 1995). The derivation of even higher-order Boussinesq equations to any

desired accuracy was since generalised by Madsen and Schaffer (1998).

Regarding numerical methods, in order to robustly consider higher-order Boussinesq models,

state-of-the-art numerical integration techniques were required. Wei et al. (1995) introduced

a fourth-order Adams-Bashforth-Moulton predictor-corrector scheme, that would allow for the

numerical dispersion to be much smaller than the physical dispersion included in the theory,

and this was also adopted by Lynett et al. (2002) in an early version of his model COULWAVE

(Cornell University Long and Intermediate Wave Modeling Package), and was applied to simulate

a theoretical setup of landslide induced tsunamis (Lynett, 2005). Fuhrman and Madsen (2009)

similarly adopted a fourth-order Runge-Kutta integration scheme and successfully applied their

model to both earthquake and landslide induced tsunami verification experiments. Note that

all three of these high-order models still adopted FDMs. But due to the high-order derivatives

it became quite cumbersome to model runup and inundation, as ad-hoc techniques such as

extrapolation at the boundary to the shoreline (Fuhrman and Madsen, 2009; Lynett, 2005; Lynett

et al., 2002) or the “slot-technique” (Madsen, 1997) would be necessary. In addition to FEMs (e.g.

Zelt, 1991), a good alternative to FDMS are finite-volume (FVM) ones.

FVMs were already making much headway for discretization of the hyberbolic NSW equations

in general free surface flow problems. The idea was that shallow water equations actually allow for

discontinuities or shocks e.g. tsunami bores and wet/dry fronts (Toro, 2001). Shocks presented a

challenge for numerical modelling because unphysical spurious oscillations often develop in their

vicinity. In fact Godunov’s theorem (Godunov, 1959) guaranteed that oscillations would develop

if linear discretization methods are used with order of accuracy greater than one. Godunov’s

method (Godunov, 1959) was then applied to solve the Riemann problem at the interface of

two finite-volumes to resolve the shocks, by using the first-order upwind formulation. But the

inaccuracies of the first-order discretization were greater than desired and higher-orders methods

were developed. Sweby (1984); Harten (1983); Roe (1983) developed what is known as Total

Variation Diminishing (TVD) methods that allow for high-order discretizations over smooth

regions but tend to first-order ones in the shock region thus satisfying Godunov’s theorem -

termed shock capturing. Toro (2001) presented a seminal book on the subject of FVM, shock-

capturing, and TVD methods. The FVM-TVD schemes allowed for Boussinesq models to be more

easily and naturally applied to compute wave runup and model bore fronts. The techniques have

been included into a number of currently relevant models (e.g. Kazolea and Delis, 2013; Shi et al.,
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2012a; Roeber et al., 2010; Kim et al., 2009; Tonelli and Petti, 2009). Other more sophisticated

and less commonly adopted shock-capturing methods include the UNO (uniformly non-oscillatory)

(Harten and Osher, 1987), ENO (essentially non-oscillatory) (Harten et al., 1987) and WENO

(weighted essentially non-oscillatory) (Liu et al., 1994) schemes that retain the high-order of

accuracy even in shock regions. The WENO scheme was successfully used in Li and Raichlen

(2002) to accurately simulate non-breaking and breaking solitary wave runup.

Modern models based on Boussinesq equations commonly used in tsunami applications

include COULWAVE (Kim et al., 2009), FUNWAVE-TVD (Shi et al., 2012a) and BOSZ (Roeber

et al., 2010). For example, COULWAVE has been used in studies; Lynett et al. (2014); Park

et al. (2013); Lynett et al. (2012); Lynett and Liu (2011); Son et al. (2011) to consider tsunami

currents and eddy formation in harbours and ports, tsunami inundation and their velocities in

an idealized town with buildings, and has been nested with the COMCOT model to improve its

computational efficiency for tsunami simulation from the source to the coastal zone. FUNWAVE-

TVD was applied to investigate the sensitivity to a transient co-seismic source of the 2011

Tohoku-oki Earthquake Tsunami (Grilli et al., 2012) in comparison to the typical instantaneous

assumptions of source models. All three models appeared in the latest (2015) mapping and

modelling benchmark workshop of the National (United States of America) Tsunami Hazard

Mitigation Program on tsunami currents (National Tsunami Hazard Mitigation Program, 2015).

Since tsunami currents have rarely been touched on in past research efforts, it is not known

whether the common NSWE models can correctly reproduce their effects. This is one area where

Boussinesq models may have an advantage (Lynett et al., 2014).

In addition to Boussinesq models, there are a number of different wave theories and ap-

proaches beyond the basic depth-averaged NSWE that have also been applied to tsunami simula-

tions in recent times. One example is Yamazaki et al. (2011a, 2009) whose model NEOWAVE

(Non-Hydrostatic Evolution of Ocean WAVE) is a FDM “depth-integrated non-hydrostatic” model

that uniquely computes the bottom non-hydrostatic pressure to yield dispersive characteristics

slightly less accurate than the Madsen and Sorensen (1992) scheme but which it makes up for

through model stability, simple multi-grid nesting formulation, and accurate runup/inundation

performance. Another is SELFE (Zhang and Baptista, 2008) that computes the three-dimensional

NSWE on unstructured FEM grids. Although it cannot consider dispersive effects it can consider

vertical ones such as vertical mixing. The numerical method is especially suited to inundation

modelling due to the use of unstructured grids. Similarly the quasi-3D Regional Ocean Modelling

System (ROMS) in non-hydrostatic mode (NSWE) has also been used for tsunami inundation

analysis (Mori et al., 2015). Perhaps one of the most sophisticated models applied to real-scale

tsunami propagation according to the author’s knowledge is NHWAVE (Non-Hydrostatic WAVE

model) (Ma et al., 2012). It solves the N-S equations using free surface and terrain following

coordinates (i.e. it assumes a single free-surface and sea bed). A Godunov type FVM is employed

and a Smagorinsky turbulent viscosity model is adopted for turbulent closure. Its particular
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strength lies in its ability to accurately consider transient ground movements e.g. fault slips

(Grilli et al., 2012) and landslide induced tsunamis (Shi et al., 2012b; Tehranirad et al., 2012).

Thus, the nonlinear interaction of the ground motion and the full 3D nonlinear, dispersive wave

motion near the source can be accurately taken into account. Moreover, even more sophisticated

RANS models have been applied in a limited number of cases to simulate tsunami motion and

runup in detail. For example, Lin et al. (1999) simulated solitary wave runup and rundown on

plane slopes. Furthermore, locally high tsunami runup from 1993 Hokkaido Nansei-oki tsunami

was computed with good agreement to scaled experiments and field observations (Yoneyama et al.,

2002). A similar study was also conducted by Choi et al. (2007) for runup around an idealised

conical island verifiable with laboratory experiments. Moreover, Yoneyama et al. (2012) developed

a RANS model for simulating tsunami driftage that was tested against laboratory experiments

and found to roughly estimate the overall three-dimensional motion of the floating objects. The

use of RANS type models are however mostly restricted to use on laboratory scales or in very

small real-scale regions due to their numerical and computational restraints.

2.2.2 To the Future and Study Motivation

Over the years tsunami models have come a long way. Energized by the the exponential increase

of computing power, better numerical methods to more sophisticated wave theories have been

adopted. But the major focus has so often been simply a macro-assessment of tsunami runup and

inundation, and most models - even the simplest ones - are already rather adept at estimating

that. However, a new paradigm is evolving in the current environment; focus is slowly widening to

include consideration of tsunami currents and eddies (e.g. National Tsunami Hazard Mitigation

Program, 2015; Lynett et al., 2014; Fritz et al., 2012), hydrodynamic forces on structures (e.g.

Palermo et al., 2013; Fujima et al., 2009; Yeh, 2006), sophisticated transient fault models (e.g.

Grilli et al., 2012), sediment transport (e.g. Kihara et al., 2012; Wilson et al., 2012; Tonkin

et al., 2003), debris impacts (e.g. Rueben et al., 2014; Naito et al., 2014), and detailed inundation

behaviour (e.g. Park et al., 2013). In addition, this also crucially requires better field measure-

ments and experiments for verification of numerical models and a detailed understanding of the

underlying physics.

In order to facilitate the computation of these considerations listed above, it is often the

case that a single model cannot do everything required of it to the desired level of accuracy or

computational efficiency (which are often working against each other). For example, NHWAVE

can consider the nonlinear interaction between waves and the bed movement close to the source

and hence should be very accurate in comparison to most other models. But if one wanted to

compute wave propagation to the shoreline, it would be extremely computationally expensive.

Moreover, it has been shown that dispersive and nonlinear effects for tsunami propagation in

the open ocean are often very small, and a simple NSWE model could likely do the same job

in a fraction of the time. Extending that example, as the waves approach the coastal zone and
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interact with coastal structures, the NSWE models may start to underperform in their prediction

of tsunami currents, eddies, shear stresses for sediment transport, wave breaking processes and

most definitely hydrodynamic impacts on the structures. In these regions Bossinesq models, 3D

models, and particularly for hydrodynamic simulations with structures, N-S based models will do

better a job (Lynett and Liu, 2011).

One of the obvious solutions to this problem is to appreciate the individual strengths and

weaknesses of each model, and use them only in their regions of strength while avoiding their

weaknesses. In this case, to facilitate the seamless calculation of the entire problem requires

coupling the different models together. Model coupling is not a completely new idea and there are

examples of it already in tsunami modelling. For example, one of the earliest examples was in

the studies by Fujima et al. (2002); Fujima (2006) where a N-S model (similar to NHWAVE) was

coupled with the NSWE to model an experiment of tsunami flow through a breakwater. Later,

Sitanggang and Lynett (2010) extended that to couple the Boussinesq model, COULWAVE with a

(Reynolds-averaged Navier-Stokes) RANS model and validated it with theory and experiments

in 1DH/2DV (vertical 2D). Concerning applications to full scale scenarios, Son et al. (2011)

coupled COULWAVE with COMCOT in the nearshore area, and NHWAVE was coupled with

FUNWAVE-TVD beyond the source region (Grilli et al., 2012). However, model coupling for

tsunami applications is still in its infancy and various factors are still unknown. For example, it

is not clear where exactly the models are best coupled, the best choice of boundary conditions

e.g. vertical velocity distributions, when coupling will or will not perform well, or if the coupled

models can perform to the level it is conceptually designed to do at all.

The previously mentioned issues and incompleteness of the topic are the main motivation of

this dissertation to formally investigate model coupling - namely two-way multiscale coupling -

for tsunami applications. Multiscale refers to the inclusion of multiple physical behaviour that

occur at disparate scales. This requires the coupling of different resolutions and model equations.

Two-way coupling refers to the passing of information between models in both directions, for

example free surfaces and depth-averaged velocities in a NSWE model to a Boussinesq one as

well as the feedback from the Boussinesq back to the NSWE model. This is to avoid the situation

where the boundary conditions become too poorly matched after some length of calculation, in

addition to the obvious practical benefits of projecting better resolved results between models.
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3
NUMERICAL METHODOLOGY

The numerical techniques adopted and developed in this study are detailed in this chapter.

Following §2.2 it was identified that a possible approach to improve the overall ability

of tsunami models is to consider a multiscale coupling approach. As briefly mentioned in

Chapter 1, the type that is adopted in this study is one where a shallow water model propagates

the tsunami wave over a large region - which may include multiple nested grids of various

grid resolutions - towards a complex model defined in a comparatively extremely small region

with fine grid resolution. Thus, this chapter follows a similar direction to the coupled model

itself: §3.2 outlines the basic numerical scheme of the shallow water model; §3.3 details how

different length and temporal scales are nested together to form a cohesive model; §3.4 describes

the numerical method adopted in the RANS model; finally, §3.5 combines those models and

techniques to illustrate how the two-way coupled multiscale model is formed. The numerical

methods described in this chapter form an important part of the work of this thesis; the shallow

water model (numerical scheme is mainly borrowed from previous studies), multi-grid nesting (c.f.

Nagashima et al., 2015), and the two-way multiscale coupling (c.f. Pringle and Yoneyama, 2014,

2013; Pringle et al., submitted) have been almost entirely single-handedly coded and developed

by the author. The RANS model is based on that by Yoneyama and Moriya (1995); Yoneyama

et al. (2002, 2012). Improvements in the code and theory described in this chapter have been

achieved through collaboration and guidance of Nozomu Yoneyama.
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3.1 Introduction

There are a number of methods available to model tsunamis as outlined Chapter 2. The major

concern of this thesis is to develop a coupled model capable of: (1) simulating the propagation

of a tsunami wave from the source to the coastal zone, (2) simulating inundation and the basic

effects of friction, (3) considering the basic effects of seawalls and breakwaters on inundation, (4)

simulating the turbulent details of tsunamis including wave breaking, jets and coherent turbulent

structures, and (5) detailing the hydrodynamic response of coastal structures, infrastructure

and buildings. The first three points may be adequately described by a simpler wave equation

based model because the effects are generally horizontal two-dimensional (2DH) or quasi-three-

dimensional (Q3D) and are only very weakly affected by non-hydrostatic and turbulent aspects.

The last two points require a more complex flow solver to adequately perform the task where the

effects are generally highly three-dimensional, rotational and non-hydrostatic.

With regards to the wave equation based model, the exact choice of theory is the first step.

Traditionally, the 2DH shallow water equations (NSWE) have been widely used. Other choices

include higher-order long wave theories such as Boussinesq type equations or depth-integrated

non-hydrostatic models. All of these theories are 2DH where only one layer of fluid is modelled.

The difference being that the NSWE are hydrostatic and have no vertical variation of velocity

while high-order theories are weakly non-hydrostatic and may consider a prescribed vertical

profile of horizontal velocities. One may also consider Q3D variations of these theories where

an arbitrary number of layers in considered. Consideration of layers can improve dispersive

characteristics (e.g. Lynett, 2005), and vertical mixing aspects (e.g. Zhang and Baptista, 2008).

Firstly, considering the requirements, a Q3D model is probably unnecessary given the explicit

assumption that mixing aspects will be generally negligible in the calculation domain of the wave

based equation model. Furthermore, in this thesis the main applications will be to seismically

induced tsunamis where dispersive effects are generally very small (compared with landslide-

induced tsunamis) except for very long distances of propagation. Moreover, for long distances of

propagation a basic correction to the linear frequency dispersion characteristics (of the NSWE) is

generally only required rather than a complex high-order solution (Pedersen and Løvholt, 2008).

With these considerations in mind, a NSWE based model will generally be adequate for this

study. In case dispersive effects become slightly non-trivial the correction to the linear frequency

dispersion effects can be achieved numerically by matching numerical dispersion to physical

dispersion or by actually solving weakly nonlinear dispersive Boussinesq wave theories which

are generally just small modifications to the NSWE (c.f. §2.1.3).

The next step is to choose the numerical method for the NSWE based model. The evolution of

methods and the current state-of-the-art have been described in §2.2.1. Most models have been

based on finite-difference methods which have a long history of success in tsunami modelling.

More sophisticated modern methods generally look to employ finite-volume methods (FVMs)

for high-resolution of the advection term and shock-capturing, or finite-element (FEM) ones on
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unstructured grids. Both these methods are attractive ones but should be carefully designed. The

author in general would suggest the use of a FVM with some high-resolution scheme such as a

MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws) or WENO (Weighted

Essentially Non-Oscillatory) approach to accurately model: advection aspects to high-order,

shocks and inundation. In contrast, it may be difficult for finite-difference methods (FDMs) to

consider advection to high-order without instabilities particularly upon inundation and in the

regions of shocks. However, finite-difference methods are simple to construct, computationally

fast, and are generally appropriate to describe most of the tsunami behaviour even if advection is

not considered to high-order. Thus, for the purposes of this thesis a FDM approach is adopted for

simplicity since the multiscale coupling approach is the major focus. In the tsunami community

is has been common to use the leap-frog FDM, e.g. COMCOT (Liu et al., 1998) and TUNAMI-N2

(Imamura et al., 2006). The reason is that it is computationally extremely fast but second-order

accurate in time and space except for the advection term. Additionally, it has been straightforward

to match numerical dispersion to physical dispersion (Cho and Yoon, 1998) or to actually model

weakly nonlinear dispersive Boussinesq wave theories (Shigihara and Fujima, 2007) in the

leap-frog approach. Finally, the low-order finite-difference aspect of the model allows for the

simple consideration of inundation and multi-scale nesting. Thus, the leap-frog FDM is adopted

in this thesis given its ubiquity, versatility and simplicity. The model is developed and coded by

the author of this study for full control over the coupling aspects.

Within the NSWE based model, it is necessary to consider some method to simulate over a

range of grid scales. This is because as the tsunami approaches the coastal zone the details of the

local bathymetry and coastline become gradually more important to correctly consider various

physical behaviour at a specified bay and coastal community. However, those details are similarly

relatively unimportant further offshore. For efficiency it is best to have fairly coarse grids offshore

and fine grids near the coast and when the wave is present. There are a number of approaches

including unstructured grids, local/adaptive mesh refinement and multi-grid nesting to achieve

these means which are described in detail in §3.3. In short, the multi-grid nesting technique is

adopted in this thesis because: it is simple to formulate and implement, effective for zooming into

a specified region which is relevant for this study, and is still highly computationally efficient in

comparison to a system without nesting.

A choice of theory for the more complex flow solver is now required. A weakly rotational

and turbulent depth-integrated model such as a fully nonlinear Boussinesq model (FNBM)

(Kim et al., 2009) may be able to consider some of the effects that are required such as great

details of the horizontal aspects of tsunami currents and coherent turbulent structures in ports

and harbours. But it cannot simulate vertical acceleration effects, wave overturning, and the

hydrodynamic response of structures in any detail. To consider wave motion in general, with

full non-linearities, dispersive, and three-dimensional effects, potential flow theory is most

appropriate (c.f. §2.1.2). Unfortunately the model is inviscid and neglects rotational, turbulent
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effects. To consider rotational and turbulent effects, the Navier-Stokes equations should be

considered. However in general, the Navier-Stokes equations are unrealistic to directly simulate

(DNS) because of the tiny size of the Kolmogorov length scales in comparison to the overall

domain size. Thus, some variation on the Navier-Stokes equations should be considered. Two

main variations are the Reynolds-averaged Navier-Stokes (RANS) equations and Large-Eddy

Simulation (LES). The former has been introduced in §2.1.1. It can be considered the most

appropriate variation to simulate the range of effects required in this study without extremely

long computational times associated with LES due to the scale of problem.

A numerical method is now required to model the RANS equations. Similar to the NSWE

model, finite-difference methods have been commonly used (e.g Lara et al., 2010; Sitanggang and

Lynett, 2010; Yoneyama et al., 2002; Isobe et al., 1999; Lin et al., 1999; Lin and Liu, 1998). Other

more modern common choices include finite-volume methods (e.g. Higuera et al., 2013; del Jesus

et al., 2012; Versteeg and Malalasekera, 2007). In general much success has been achieved for

wave modelling by finite-difference means on staggered grids. Furthermore, since the NSWE

model also uses the finite-difference method on a staggered grid it makes sense to adopt the

same form for the RANS equations. In general, staggering is used to avoid issues associated

with the pressure-velocity coupling and for simplicity of the derivation of the finite-differences.

In addition, the temporal integration also requires a method to deal with the pressure-velocity

coupling issue. Various choices are available such as projection methods (Chorin, 1968), SMAC

(Amsden and Harlow, 1970), SIMPLE (Patankar and Spalding, 1972), and PISO (Issa, 1986).

The non-iterative projection and SMAC methods are typically regarded as being accurate for

unsteady flows (e.g. Kim and Benson, 1992), hence SMAC is adopted here. In order to model the

free surface - aside from the 2DH assumption of a single free surface - the most commonly used

and effective approach is the Volume-of-Fluid (VOF) method (Hirt and Nichols, 1981), because it

does not require much memory, is computationally efficient, and it can model the movement of

fluid volumes in order to describe almost any complex phenomenon such as wave overturning

and splash-up. Lastly, a method is required to estimate the Reynolds stresses resulting from the

Reynolds-averaging. The turbulent viscosity approach combined with the commonly used k−ε
method (Launder and Spalding, 1974) is adopted in this thesis.

Finally, the two-way multiscale coupling technique should be devised. Studies that are

closely related to the present one include; Son et al. (2011); Kim et al. (2010); Sitanggang and

Lynett (2010); Fujima (2006); Fujima et al. (2002), which have been mostly introduced in §2.2.2.

These studies may be used to help formulate the basic coupling technique. One of the most

similar coupled models is that by Fujima et al. (2002) where a NSWE model was coupled with

a single free surface RANS model. The major differences being that the RANS model in that

study could not model overturning effects and a simplified zero-equation turbulence model was

considered. Despite this, considering just the coupling aspects the similarities with this study are

large (NSWE coupled to RANS). However, the studies Fujima (2006); Fujima et al. (2002) only
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considered one application to an experimental study around a breakwater and it had yet to be

applied to the real-scale scenario. The study Son et al. (2011) coupled two wave models - NSWE

and FNBM (COULWAVE) - together in a real-scale scenario. Sitanggang and Lynett (2010) used

COULWAVE as the wave model and a RANS-VOF model to consider complex flow in vertical

two-dimensions. On that note it might in fact be superior to consider the coupling between more

than two models, e.g. NSWE → FNBM → RANS. In this scenario it may be easier to match the

physics between each model as there is a steady decrease from hydrostatic/irrotational → weakly

non-hydrostatic/rotational → fully non-hydrostatic/rotational. In this study the jump is from

hydrostatic/irrotational (NSWE) to fully non-hydrostatic/rotational (RANS). However, for this

thesis it is simpler to focus on the coupling of just two models, which if coupled correctly still has

the capability to adequately simulate a wide range of phenomena. Thus, one of the main issues

with the coupling in this thesis is dealing with the matching of the vastly different physical

assumptions of the models at the interface. It can be hypothesised that an appropriate location

for coupling is hence a large key to success.
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3.2 Shallow Water Model

3.2.1 Governing Equations

Governing equations to the 2DH NSWE were presented in §2.1.3 by Eqns. (2.25) and (2.28) in

terms of the depth-averaged velocity. The model used in this paper is a FDM one discretized

on an Arakawa C-grid - this will be explained in detail in §3.2.2. Unfortunately discretizing

Eqn. (2.25) in this way may be inaccurate at times since Ui and H are defined at different

locations (Goto et al., 1997). A better equation is actually the conservative form of the continuity

equation (Eqn. (2.24)) that is defined in terms of the volume flux per unit width, Q i ≡UiH, so

that discretization is only of a single variable. It is printed again here for completion:

∂η

∂t
+ ∂Q i

∂xi
= 0 (3.1)

In addition, primarily for the purposes of calculating solitary wave propagation in Chapter 4,

linear frequency dispersive effects are required to balance with the amplitude dispersion effects

already included. These come in the form of additional terms on the RHS of Eqn. (2.28) like

those found in the Peregrine (1967) standard Boussinesq equations shown in Eqn. (2.35). Finally,

Eqn. (2.28) with the frequency dispersion terms included is integrated over the depth to get it in

terms of Q i in order to be consistent with the continuity Eqn. (2.24):

∂Q i

∂t
+ ∂

∂x j

(Q jQ i

H

)
+ gH

∂η

∂xi
+ τbi

ρ
= h

∂ψ

∂xi
(3.2)

the additional term, ψ on the RHS is the dispersion potential function defined as:

ψ=
(
γ+ 1

3

)
h
∂2Q j

∂x j∂t
+γgh2 ∂2η

∂x jx j
(3.3)

the γ coefficient is a free value that can be tuned to improve linear dispersion characteristics

from the Peregrine (1967) version (which is equivalent to γ= 0). Following Shigihara and Fujima

(2007), γ= 1/15 corresponds to linear dispersion characteristics equivalent to the Madsen et al.

(1991) scheme (valid up to µ≈ 0.5), which we adopt here.

Different formulations of the bed stress term were introduced in §2.1.3, which can be related

to a Darcy-Weisbach friction factor or a Gauckler-Manning roughness coefficient among others.

Despite our arguments put forward there the Gauckler-Manning formulation is used in this

thesis since it is the common approach in tsunami modelling and roughness data is often provided

along with bathymetry data in terms of Gauckler-Manning roughness coefficients (however it

would be equally as straightforward to use a general drag coefficient if one desired). In terms of

Q i, the bed stress term becomes:

τbi = ρ
gn2

H7/3 Q i

√
Q jQ j (3.4)
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3.2.2 Discretization Scheme

The finite-difference staggered leap-frog scheme is used to discretize Eqns. (3.1) and (3.2). It is

the scheme adopted in the widely used tsunami models, TUNAMI-N2 (Goto et al., 1997) and

COMCOT (Liu et al., 1998). It is characterized by the “staggering” of the two main variables, η

and Q i in both space and time. The space staggering is achieved by placing the main variables

on an Arakawa C-grid. This entails defining Q i on the centres of the cell boundaries that are

perpendicular to the i direction, and the scalar variables, in particular η on cell centres. In the

temporal space, η and Q i are defined at different half time-steps. To illustrate this visually the

finite-difference stencils are shown in Figure 3.1.

Notice that the fluxes in the x direction, Qx are centred on the east-west cell boundaries and

those is the y direction, Q y are centred on the north-south boundaries. The Q̃ y, fluxes represent

an average of the surrounding Q y fluxes at the position of the Qx flux which will be required later.

The following two sections will present the discretized formulae and the procedures for solving

the explicit scheme and the implicit scheme (used when the linear frequency dispersion terms

are considered).

Explicit Procedure

The explicit leap-frog scheme is used to solve the traditional non-dispersive shallow water

equations given where the RHS of Eqn. (3.2) is zero. Initially say, at a time point in time, t = n,

the flux, Qn
i and the free surface, ηn−1/2 at every point on the grid is known. Through continuity

Eqn. (3.1), a new free surface, ηn+1/2 at the cell centre, (i, j), may be calculated by the following

operation:

ηn+1/2
(i, j) = ηn−1/2

(i, j) − rx

(
Qn

x(i+1/2, j) −Qn
x(i−1/2, j)

)
− r y

(
Qn

y(i, j+1/2) −Qn
y(i, j−1/2)

)
(3.5)

where rx = ∆t/∆x and r y = ∆t/∆y. This is a second-order accurate discretization based on the

Taylor expansion about the cell centre, (i, j) and time, t = n. This discretized form of the continuity

equations above is one of the strengths of this scheme due to its simplicity and accuracy. Figure 3.1

illustrates the continuity equation visually using dashed arrows in the x− t plane. To obtain

ηn+1/2
(i, j) , the variables ηn−1/2

(i, j) , Qn
x(i−1/2, j), and Qn

x(i+1/2, j) are required. A plot of the y− t plane would

also show something similar where the fluxes, Qn
y(i, j−1/2), and Qn

x(i, j+1/2) are required. The new

free surface, ηn+1/2 is used to evaluate the momentum equation to get a new flux, Qn+1
i . For

example to obtain the flux, Qn+1
x(i+1/2, j) the following operation is performed:

Qn+1
x(i+1/2, j) =

1
1+Fx∆t

[
(1−Fx∆t)Qn

x(i+1/2, j) − fx(i+1/2, j)

]
(3.6)
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Figure 3.1: Finite-difference stencil of the staggered leap-frog method, in the x− t (analogous to

y− t plane) and x− y planes. In the x− y plane the stencil is shown specifically for the calculation

of the flux, Qx(i+1/2, j)

where fx(i+1/2, j) is given as:

fx(i+1/2, j) = rx gHn+1/2
(i+1/2, j)

(
ηn+1/2

(i+1, j) −ηn+1/2
(i, j)

)
+ rx

λx1

(
Qn

x(i−1/2, j)

)2

Hn
(i−1/2, j)

+λx2

(
Qn

x(i+1/2, j)

)2

Hn
(i+1/2, j)

+λx3

(
Qn

x(i+3/2, j)

)2

Hn
(i+3/2, j)


+ r y

(
λ̃y1

(
QxQ̃ y

)n
(i+1/2, j−1)

Hn
(i+1/2, j−1)

+ λ̃y2

(
QxQ̃ y

)n
(i+1/2, j)

Hn
(i+1/2, j)

+ λ̃y3

(
QxQ̃ y

)n
(i+1/2, j+1)

Hn
(i+1/2, j+1)

) (3.7)
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Figure 3.1 also illustrates the x− t part of the momentum equation visually using dashed

arrows in the x− t plane. Eqn. (3.6) is a second-order accurate discretization based on the Taylor

expansion about (i+1/2, j) and time, t = n+1/2. Furthermore, in the evaluation of fx(i+1/2, j), the

first line in Eqn. (3.7) corresponding to the hydrostatic pressure gradient is also a second-order

accurate central difference discretization about (i+1/2, j). However, the last two lines correspond

to the discretization of the nonlinear advection terms and are only first-order accurate upwind

differences about (i+1/2, j). Thus, if they were ignored (LSWE), the entire scheme is second-order,

but with their addition the scheme is just first-order. The coefficients in the first-order upwind

scheme are given by:λx1 =−1, λx2 = 1, λx3 = 0, if Qn
x(i+1/2, j) ≥ 0,

λx1 = 0, λx2 =−1, λx3 = 1, if Qn
x(i+1/2, j) < 0

(3.8)

λ̃y1 =−1, λ̃y2 = 1, λ̃y3 = 0, if Q̃n
y(i+1/2, j) ≥ 0,

λ̃y1 = 0, λ̃y2 =−1, λ̃y3 = 1, if Q̃n
y(i+1/2, j) < 0

(3.9)

The term, Fx corresponds to the discretization of the bottom friction terms which are semi-

implicitly calculated:

τbx = Fx

(
Qn+1

x(i+1/2, j) +Qn
x(i+1/2, j)

)
(3.10)

where, Fx is defined as:

Fx = 1
2

gn2(
Hn

(i+1/2, j)

)7/3

√(
Qn

x(i+1/2, j)

)2 +
(
Q̃n

y(i+1/2, j)

)2
(3.11)

The last thing to consider is how to get the total water depths, H (that are defined at cell

centres and half time-steps like η) at the cell boundaries as well as Q̃ i from the surrounding

values. Given the order of the scheme in general they are just found from linear averages:

h(i+1/2, j) = 0.5
(
h(i+1, j) +h(i, j)

)
(3.12)

Hn+1/2
(i+1/2, j) = 0.5

(
ηn+1/2

(i+1, j) +ηn+1/2
(i, j)

)
+h(i+1/2, j) (3.13)

Hn
(i+1/2, j) = 0.25

(
ηn+1/2

(i+1, j) +ηn+1/2
(i, j) +ηn−1/2

(i+1, j) +ηn−1/2
(i, j)

)
+h(i+1/2, j) (3.14)

Q̃n
y(i+1/2, j) = 0.25

(
Qn

y(i+1, j−1/2) +Qn
y(i, j−1/2) +Qn

y(i+1, j+1/2) +Qn
y(i, j+1/2)

)
(3.15)

Note that the initial water depths, h are defined on the cell centres and are simply a function

of the bathymetry and topography, that is assumed to be steady in time. A positive h indicates

ocean, and a negative one indicates land.

A formulation for the calculation of the fluxes in the y direction, Q y(i, j+1/2) may also be

similarly derived by replacing i with j and x with y in the above equations.
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Implicit Dispersion Correction

In case the linear dispersion terms are considered - RHS of Eqn. (3.2) is non-zero - an implicit

scheme is required for stability. The dispersive characteristics of this scheme and its procedure

has been outlined precisely by Shigihara and Fujima (2007). The procedure basically ends up

working like a correction to the explicit scheme described in the previous section. In fact the

continuity equation is the same as before (Eqn. (3.5)), but the momentum equation now becomes:

Qn+1
x(i+1/2, j) =

1
1+Fx∆t

[
(1−Fx∆t)Qn

x(i+1/2, j) − fx(i+1/2, j) + rxh(i+1/2, j)

(
ψn+1/2

(i+1, j) −ψn+1/2
(i, j)

)]
(3.16)

The difficulty then arises from the determination of ψn+1/2. It must be found from the following

Poisson-type system of equations:(
γ+ 1

3

)[
h2

x

(
ψn+1/2

(i+1, j) +ψn+1/2
(i−1, j)

)
+h2

y

(
ψn+1/2

(i, j+1) +ψn+1/2
(i, j−1)

)]
−

[
1+2

(
γ+ 1

3

)(
h2

x +h2
y

)]
ψn+1/2

(i, j)

=
(
γ+ 1

3

)[
hx

(
fx(i+1/2, j) − fx(i−1/2, j)

)+hy
(
f y(i, j+1/2) − f y(i, j−1/2)

)]
−γg

[
h2

x

(
ηn+1/2

(i−1, j) −2ηn+1/2
(i, j) +ηn+1/2

(i+1, j)

)
+h2

y

(
ηn+1/2

(i, j−1) −2ηn+1/2
(i, j) +ηn+1/2

(i, j+1)

)] (3.17)

where hx = h(i, j)/∆x and hy = h(i, j)/∆y. Thus, the procedure is as follows:

1. fx and f y are evaluated as prescribed in the explicit procedure (Eqn. (3.7))

2. The system of equations, Eqn. (3.17) is solved for ψn+1/2 using a suitable matrix solver such

as the biconjugate gradient stabilized (BiCGSTAB) method that is adopted in this study

and suggested by Shigihara and Fujima (2007)

3. Qn+1
i is evaluated in Eqn. (3.16).

Note that the explicit procedure follows the same process except step 2) is ignored with ψn+1/2

zero everywhere. Unfortunately, step 2) is the most time consuming part of the scheme due to

the matrix inversion. For example, Shigihara and Fujima (2007) mentioned that the implicit

procedure would be take roughly 10 times as long to compute as the explicit procedure (using

the BiCGSTAB method). However, if the precise propagation of waves with non-trivial frequency

dispersion effects are required it is a useful scheme. For example, the scheme will be used to

accurately propagate solitary waves in Chapter 4. On the other hand, frequency dispersion for

tsunami waves in the regional and near field is generally negligible, hence the faster explicit

procedure will be adopted in Chapter 5.

3.2.3 Special Considerations

Various special considerations are necessary in order to consider for example inundation which

must employ some technique to deal with the wet/dry cell interface. Other techniques may also be

adopted to avoid negative depths, consider seawalls and breakwaters whose widths are sub-grid
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scales, and to avoid excessive numerical diffusion in the nonlinear advection scheme. These

techniques are described in this section.

Inundation Algorithm

The inundation algorithm refers to the method used to consider the wet/dry cell interface which

defines the shoreline. On land, h is negative, and if it is a dry cell, η is equal to −h so that the

total water depth, H = η+h is zero. If a flux, Q i calculated through the momentum equation,

becomes non-zero (directed into the cell) at one or any of the cell boundaries then through the

continuity equation η may become larger than −h so that, H is non-zero and hence it becomes

a wet cell. In practice a very small H in a wet cell can lead to numerical difficulties since the

nonlinear advection terms and the bottom friction terms include division by H which may lead

to unphysical fluxes. Thus, a cutoff depth, Hc is introduced to avoid this issue. Here, a cell is

considered dry until the depth H becomes larger than Hc. Note that η is conserved until this

happens, i.e. η is not reset to −h each time step if 0< H < Hc. Using this method, only one cell

may become inundated in series each time step.

The question then becomes, under what conditions does the flux at the cell boundary become

non-zero, and when will it stay zero. Essentially, by assuming that the bathymetry is composed

of discrete values of h - like a staircase - then the following conditions are set (c.f. Figure 3.2):Hshore = 0 if ηwet +hdry ≤ Hc,

Hshore = ηwet +hdry if ηwet +hdry > Hc

(3.18)

where wet and dry subscripts refer to the wet and dry cell centres respectively, and shore refers to

the shoreline, i.e. at the cell boundary between wet and dry cells. Notice that it is different to

the usual formulation that uses an average of the adjacent cell depths to get the depth at the

boundary. When Hshore = 0 then in the momentum equation everything becomes zero so that

Qshore also remains zero. On the other hand, when Hshore > 0, this depth is used to evaluate the

momentum flux as usual to obtain a non-zero flux at the shoreline. The dry cell may then become

flooded through the continuity equation.

Avoiding Negative Depths

Sometimes due to unavoidable numerical errors such as discretization ones, η may become less

than −h when a wet cell is emptied indicating a negative depth. This doesn’t necessarily pose

us many issues as it can simply be classed as a dry cell and the value of η can be preserved to

conserve mass. But in the momentum equation the gradient of η is required and physically the

value of η in the dry cell should be equal to −h (rather than <−h). Moreover, the negative depth

represents a mistake in the calculation of the flux, hence if the flux was adjusted to give zero

depth rather than a negative one the flow overall may be improved. A method to do just that has
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Figure 3.2: Illustration of the situation at the shoreline (interface between wet and dry cells)

when considering inundation

been outlined in Fukazawa and Tosaka (2014). It involves a calculation of a correction coefficient,

Dc as:

Dc = Hn∆x∆y+Q in∆t
Qout∆t

for cell where Hn+1 < 0 (3.19)

where Qout and Q in are the sum of the outgoing and ingoing volume fluxes (the usual values of Q i

need to be multiplied by the grid width tangential to its direction) respectively. Each individual

outgoing flux is multiplied by Dc and continuity is recalculated so that η is guaranteed to become

equal to −h as the cell empties.

Sub-grid Scale Walls

Walls such as seawalls, breakwaters and river banks are important structures that can help to

prevent or mitigate inundation. When tsunami modelling is conducted, for a realistic calculation

their presence should be taken into account. Additionally, it is useful to know what the effect

would be with and without those structures (in case of failure or removal). Usually bathymetric

42



3.2. SHALLOW WATER MODEL

and topographic data is provided such that buildings and infrastructure are absent. However,

crest heights of walls may be included in separate files. This is because the widths of the walls

are usually of sub-grid scales so they may not be easily included in the raw ground level data.

In such a case, a special method is required to consider the presence of these walls. A common

approach is to define the wall data on the cell boundaries so that the general bathymetric data is

unaffected and a special equation that replaces the usual momentum one is then specified when

calculating the flux, Qwall at this cell boundary. One such equation is Honma’s empirical weir

overflow equation (Honma, 1940) which may be written as (c.f. Figure 3.3):

Qwall =


0 if HL ≤ 0

CwHL
√

2gHL if HL ≤ 2/3HR

3/2CwHR
√

6g(HL −HR) if HL > 2/3HR

(3.20)

where, HL(= ηL − zwall) and HR(= ηR − zwall) are equal to the equivalent water depths left and

right of the wall on the cell boundary respectively (HL > HR), zwall is the elevation of the wall

crest, and Cw(= 0.35) is the weir discharge coefficient. The three cases in Eqn. (3.20) refer to:

no overtopping, complete overtopping, and submerged overtopping respectively as illustrated in

Figure 3.3.

Nonlinear Advection Truncation Error Correction

One of the main weaknesses of the staggered leapfrog scheme is the fact that the nonlinear

advection terms must be specified by a first-order upwind method, thus introducing considerable

numerical diffusion. This is related to the truncation error of the discretization (for Qc < 0):

∂

∂x

(
Q2

c

H

)
= (Q2/H)c − (Q2/H)u

∆x
+0.5(1−Cr)∆x

∂2

∂x2

(
Q2

c

H

)
(3.21)

where the subscript c and u represent the centre and upwind cell boundaries respectively, and

Cr is equal to the local Courant number which may be defined in terms of the wave speed as,

Cr =√
ghc∆t/∆x. The truncation error which is the last term on the RHS of Eqn. (3.21) will be

small in the case where Cr → 1 and/or the second-order derivative of Q2
c /H approaches zero. In

general, with variable depths it is not possible to have Cr close to 1 for every cell and furthermore

in the two-dimensional case Cr is theoretically limited to Cr =p
2/2 for stability. On the other

hand, for very long waves the curvature of Q2
c /H may approach zero. Thus, typically for tsunami

propagation in the ocean, the truncation error may not be significant. However, if the wave

becomes shorter and curvature increases the numerical diffusion may become non-trivial. One

example is solitary wave propagation where it is important that linear frequency dispersion

effects are balanced with the amplitude dispersion ones. In the case that solitary waves become

short so that µ> 0.05, linear frequency dispersion should be included using the implicit dispersion

correction procedure. However, at the same time the curvature of the wave becomes large so
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Figure 3.3: Illustration of the consideration of thin seawalls, breakwaters or river banks that are

defined on cell boundaries

that the nonlinear advection terms are poorly evaluated by the upwind scheme and the wave

will rapidly decay with distance. In order to account for this one can simply discretize and

back-substitute the truncation errors in when evaluating the first-order upwind difference. This

can be achieved by a second-order central-difference to evaluate the curvature of Q2
c /H. Note that
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since this is a central-difference it is really only stable for the implicit scheme. In the code, if

the implicit scheme is chosen, back-substitution of the truncation errors will automatically take

place. In the case of the explicit scheme it is assumed that the curvature of Q2
c /H is small and the

truncation errors are ignored. In equation form, when back-substitution of the truncation errors

are considered, the coefficients in the upwind scheme become:λx1 =−1+ cx, λx2 = 1−2cx, λx3 = cx, if Qn
x(i+1/2, j) ≥ 0,

λx1 =−cx, λx2 =−1+2cx, λx3 = 1− cx, if Qn
x(i+1/2, j) < 0

(3.22)

λ̃y1 =−1+ cy, λ̃y2 = 1−2cy, λ̃y3 = cy, if Q̃n
y(i+1/2, j) ≥ 0,

λ̃y1 =−cy, λ̃y2 =−1+2cy, λ̃y3 = 1− cy, if Q̃n
y(i+1/2, j) < 0

(3.23)

where cx = 0.5(1−Crx), and cy = 0.5(1−Cr y) are the contributions in the truncation error in

terms of the Courant number in the x and y directions respectively. Crx = √
gh(i+1/2, j)∆t/∆x,

and Cr y =
√

gh(i+1/2, j)∆t/∆y. This technique is adopted in Chapter 4 which demonstrates its

effectiveness.

3.2.4 Lateral Boundary Conditions

Boundary conditions are an important part of any numerical model. In fact, without appropriate

boundary conditions nothing of any importance would ever be calculated. Note that the seabed

and free surface boundary conditions are already included in the governing equations. Thus,

this section refers to the lateral boundary conditions that surround the domain in the horizontal

plane. There are two main types of lateral boundary conditions. One is termed an active boundary

condition. These are responsible for creating input flow conditions, for example, propagating

waves from the boundary. In this section, the propagation of solitary waves, and an arbitrary wave

shape is described. The other type is a passive boundary condition. These boundary conditions

just respond to what is happening in the calculation domain. One obvious example of this is a

wall type boundary which just reflects the information at the boundary. A contrasting example is

an open boundary which allows the information from the domain to propagate freely out without

(or with minimal) reflections. These two types are also described in this section.

In order to implement the lateral boundary conditions in the model, the normal flux at

the actual boundary, Qn(b, j), the tangential flux at the cell boundary adjacent to the last cal-

culation cell (a ghost cell), Qt(b−1/2, j−1/2), and the free surface at the cell centre adjacent to the

last calculation cell (a ghost cell), η(b−1/2, j) are prescribed. This configuration is illustrated in

Figure 3.4. In all our lateral boundary conditions in this model the tangential flux in the ghost

cell is set equal to the tangential flux in the last calculation cell on the boundary (no gradient),

i.e. Qt(b−1/2, j−1/2) =Qt(b+1/2, j−1/2). This corresponds to a frictionless lateral boundary. The other

two boundary variables are prescribed differently depending on the case.
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∆x

b

∆y

ηb−1/2,j ηb+1/2,j

Qt(b−1/2,j−1/2) Qt(b+1/2,j−1/2)

Qn(b,j)

y

x
lateral boundary

Figure 3.4: Illustration of the prescribed variables at the lateral boundaries

Solitary Wave

There are numerous solitary wave theories available. However, since the numerical model

is of low-order, a low-order theory is reasonable. One such first approximation is based on the

expansion of the velocity potential in a power series and retaining the first two terms, as described

in Munk (1949). The solitary wave shape resulting from this theory known as Boussinesq’s first

approximation is equal to:

η(x, t)= Asech2 (κ(x− ct)) (3.24)

where A is the amplitude of the wave, κ(=
p

3A/4h3) is the wavenumber and c(=√
g(A+h)) is

the wave speed. Furthermore, the depth-averaged velocity, U can be found from the following

equation:

U(x, t)= c
η(x, t)

η(x, t)+h
(3.25)

In order to use these equations as boundary conditions in the model, Qn(b, j) and η(b−1/2, j)

are prescribed. Firstly, η(b−1/2, j)(t+1/2) is set to equal to η(−∆x/2, t+1/2) in Eqn. (3.24) at time,

t+1/2 and a fixed x position of −∆x/2 (the distance from the actual boundary to the cell centre).

Secondly, Qn(b, j) is set equal to:

Qn(b, j)(t)=U(0, t)(η(0, t)+h(b, j)) (3.26)
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where U(0, t) is found from Eqn. (3.25) and η(0, t) is found from Eqn. (3.24), with x = 0 at time, t.

Arbitrary Wave Shape

Sometimes from experiments or field data, the time series of a measured wave profile is available.

In such a case it is useful to be able to input this wave profile on the lateral boundary. To do this,

firstly the time series of the wave profile, η(t) is input at the ghost cell: η(b−1/2, j)(t+1/2)= η(t+1/2).

Secondly, the flux data must be inserted. In some fortunate cases the time series of the depth-

averaged velocities, U(t) may also have been measured. In such a case one can input the normal

flux on the boundary as:

Qn(b, j)(t)=U(t)
(
η(t)+h(b, j)

)
(3.27)

assuming that the distance ∆x/2 is trivial in comparison to the measurement correlation errors

between U(t) and η(t). In many situations however, the velocity data is not available. To get the

flux on the boundary requires assuming a wave theory. This simplest one that is compatible with

the governing equations is LSWE theory. Using this theory the new normal flux on the boundary

is calculated as:

Qn+1
n(b, j) =Qn

n(b, j) − rx gHn+1/2
n(b, j)

(
ηn+1/2

(b+1/2, j) −η(t+1/2)
)

(3.28)

Wall Boundaries

It is often necessary in experimental situations and otherwise for simplicity to specify a wall

lateral boundary condition. What this physically entails is that the flux normal to the boundary

is zero:

Qn(b, j) = 0 (3.29)

In addition the no gradient condition on the free surface, η(b−1/2, j) = η(b+1/2, j) may be employed in

case it is required. However this is not normally the case since the term, Q(b, j)2/H(b, j) needed in

the nonlinear advection difference will always be zero independent of H(b, j) (which is found from

η(b−1/2, j) and η(b+1/2, j)).

Open Boundaries

When a tsunami simulation is conducted under real conditions, unless the lateral boundary is

consumed by land, open boundaries that allow the flow conditions to freely leave the domain (out

into the open ocean) should be set. By a method of characteristics it is possible to determine the

free surface on the boundary as (Bradford, 2005; Sanders, 2002):

η(b−1/2, j) =
1

16g

(
4
√

g
(
η(t+1/2)+h(b, j)

)−2
√

gh(b, j) +2
√

gHn+1/2
(b+1/2, j) −

Qn
n(b, j)

Hn
(b, j)

)2

−h(b, j) (3.30)

where Qn
n(b, j) is positive for the direction towards the boundary. η(t+1/2) is the free surface that

is given by one of our forced boundary conditions, e.g. the solitary wave or arbitrary wave shape
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described in the previous sections. In this case reflections can pass out through the domain as

well as become prescribed at the boundary. Therefore, Eqn.(3.30) works like a correction to the

initially prescribed free surface on the boundary. In the case where we have just a passive open

boundary, η(t+1/2)=−h(b, j) is set in Eqn.(3.30) so that the first term on the left in the parenthesis

vanishes. Following the calculation of η(b−1/2, j), the flux normal to the boundary may be found by

the LSWE assumption presented in Eqn.(3.28) in the case of either of the forced open or passive

open boundary situations.

3.2.5 Initial Conditions

Initial conditions particularly for tsunami calculations are important. Such initial conditions can

include tide levels and the water level on land. These two conditions are often coupled together

since if the tide level is increased then more land may be flooded at the initial stage. In addition,

land elevation may be defined below the tide level but is not flooded in reality because it is

surrounded by walls or land elevations that are greater than the tide level in between that

location and the coast. In the numerical code a user may specify an initial tide level, which is

followed by a special algorithm that ensures than only cells that have an elevation lower than

the tide level and have a flooded connection to the coast are flooded. The initial free surface in a

dry land cell is set equal to −h of that cell. Other initial conditions concern the shape of the free

surface and velocities used to initiate, for example, a solitary wave or tsunami wave train. Both

of these cases are described in this section.

Solitary Wave

The forcing of a solitary wave through a lateral boundary has been described in §3.2.4. Another

method for creating solitary waves is to define it as an initial condition within the computational

domain. For example, the wave shape and velocities as defined by the first approximation of

solitary wave in §3.2.4 can be prescribed as a function of x at t = 0. However, in the case that

the linear frequency dispersion terms are included then the model satisfies weakly nonlinear

dispersive theory. An exact solitary wave (permanent form) solution of this theory in terms of the

depth-averaged velocity was proposed by Schember (1982). In this theory the wave speed is the

same as the first approximation, that is:

c =
√

g(A+h) (3.31)

However, the wave profile becomes slightly more complicated:

η(x)= 1
g

(
Au(c− Au)sech2 (κ(x− x0))+ A2

usech4 (κ(x− x0))
)

(3.32)

where, κ, is a measure of the wavenumber defined as:

κ2 = 3Au

4ch2 (3.33)
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in which Au is an amplitude variable equal to:

Au = c
(
1− gh

c2

)
(3.34)

As an initial condition the wave profile from Eqn. (3.32) may set centred around the location,

x = x0. If no initial velocities are specified then the soliton will split into two solitons travelling

in opposite directions of roughly half the specified wave height as the calculation is commenced.

However usually only one soliton travelling in a specified direction direction is desired. To achieve

this the depth-averaged velocities must also be defined as:

U(x)= Ausech2 (κ(x− x0)) (3.35)

In order to get the flux as necessary for the numerical model, U(x) and η(x) are combined:

Q(x)=U(x)
(
η(x)+h(x)

)
(3.36)

The values of η(x) in Eqn. (3.32) and Q(x) in Eqn. (3.36) may be specified on every cell in the

computational domain as an initial condition. Practically, it is useful to employ a cutoff distance

from x = x0 where η(x) and Q(x) are set to zero to avoid very small values. In the current model,

η(x) and Q(x) are limited to 1×10−10 m so any value below this is ignored and set to zero.

Tsunami Source

For real applications the tsunami source is an integral part of the simulation that directly affects

the overall accuracy. A number of models termed “fault models” exist that provide information

on the time evolution of the ground elevation as a function of a number of earthquake fault

parameters, such as strike, dip, rake angle, fault area, depth of source, and slip. The most common

of such models is based on the idealised formulation by Okada (1985); Mansinha and Smylie

(1971) which assume that the Earth’s crust is a homogeneous elastic material (Behrens and

Dias, 2015). On the other hand, a more sophisticated version based on a FEM model that may

account for inhomogeneous material properties in the subduction zone has been used in Grilli

et al. (2012) to better approximate the transient source of the 2011 Tohoku-oki earthquake

tsunami. Furthermore, in hindcast simulations the slip distribution of the earthquake may found

by inverting measured waveform data (e.g. Fujii et al., 2011). However, it is not the purpose of

the thesis to deal with the source characteristics. Often, source data may be obtained from third-

parties. The data should contain the change in seabed elevation over the computational domain

(final or transient evolution) which may be used for the hydrodynamic tsunami simulations. This

is the case in Chapter 5 where the data has been provided by an outside source.

In the hydrodynamics tsunami simulation, a common assumption made is that the maximum

ground movement occurs instantaneously over the source area. This is especially true if the

source area is relatively small and the earthquake event is short since the transient effects would
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be unlikely to have a significant effect on the tsunami waveform in this case. This assumption

will be made here since it becomes much easier to implement the source as an initial condition

before commencing the tsunami simulation with a now rigid bed. Studies like those by Grilli

et al. (2012) that consider the transient movement may provide more accurate descriptions of the

source, but as long the simulated waveform near our region of interest is within fair agreement

to the measured one we can be generally satisfied with the setup.

Under the instantaneous maximum ground movement assumption, data for the maximum

change in initial water depth, ∆h (from the original bathymetry data) at each computational

cell should be collated. As the calculation is initiated, h in each computational cell is suddenly

changed to ho +∆h, where ho is the original initial water depth. Due to the conservation of

mass, the free surface level becomes, −∆h (assuming that the initial free surface level is zero

everywhere). Initial conditions for the horizontal velocities are assumed to be zero. Due to the

new free surface distribution, the calculation may proceed like dam-break flow and the tsunami

propagates out in the ocean and its energy is dispersed.
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3.3 Two-way Multi-grid Nesting

Conducting a tsunami simulation from the source region to a specific location in the coastal zone

requires that various spatial and temporal scales are navigated. For example, as the tsunami

wave propagates in the open ocean it covers an extremely large area while in comparison to

its size, small perturbations in the seabed are unimportant. In this case it is often sufficient

to use grids on the order of ∼1 km. However, as the tsunami crosses over the continental shelf

where the depth becomes smaller and nonlinear effects play a role, the details of the seabed

become increasingly important perhaps on the order of ∼100 m. When the tsunami makes it

way to the nearshore area, with respect to the harbour or bay, details on the order of ∼10 m

may be important. Finally, for detailed inundation of a town or even the performance of a single

coastal structure, then the geometries of infrastructure, buildings, the coastal structure may

be significant down to the order of metres. Thus, in order to navigate these scales efficiently a

tsunami model that can seamlessly couple grids of different scales together is required.

unstructured grid LMR multi-grid nesting

Figure 3.5: Different gridding approaches to deal with the change in spatial scales as a tsunami

propagates towards the coastal zone

There are three main approaches to do this, as illustrated in Figure 3.5. One approach is to use

unstructured grids (e.g. Zhang and Baptista, 2008). Unstructured grids do not have to conform

to a regular grid pattern and thus can be fitted to follow the coastline and bathymetric effects

accurately. Furthermore, they may be easily fitted to a range of grid sizes. A second example is

local mesh refinement (LMR) where the mesh may be refined to a smaller size (e.g. 1/2) anywhere

on the the larger grid. This refined mesh can be further refined itself and so on. Local mesh

refinement is often extended to adaptive mesh refinement (AMR) (e.g. LeVeque et al., 2011; Liang

and Borthwick, 2009) where the local refinement is not necessarily set a priori. Instead the local

refinement depends on the location of the tsunami and other local flow conditions in addition to
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the regions of interest. The third and traditionally most common approach is multi-grid nesting

(e.g. Liu et al., 1998; Titov and González, 1997; Goto et al., 1997). In some ways it is similar to

LMR, however the best way to visualize multi-grid nesting is that multiple grids with gradually

smaller sizes and finer scales are layered on top of each other zooming into the region of interest.

The simulation can almost proceed independently in each layer however information between

grids are exchanged at the boundaries. The information may be only in one-direction (from coarse

grid to fine grid) or in both directions (two-way nesting). Additionally, the approaches described

may be combined. For example, multi-grid nesting for unstructured grids. This may be adopted

because it is more practical to consider a minimum grid size so that the grids are efficiently

arranged.

In this thesis a FDM model on structured grids is used so only LMR, AMR and multi-grid

nesting methods are available to us. Although LMR and AMR are attractive options if one is

interested mainly in near-field simulations and there is an obvious region of interest they will not

likely have much advantages over traditional multi-grid nesting (e.g. in terms of computational

load, and a posteriori determination of refined regions). In general, the simplest method available

is the multi-grid nesting one and it will be adopted in this thesis since the main application

in Chapter 4 is for a near-field tsunami towards a specified region of interest. The method and

procedure for multi-grid nesting is described in this section. It can be split into two parts: how

to nest the regions in terms of the spatial setup, and how to nest the regions considering the

temporal setup. These are described in §3.3.1 and §3.3.2 respectively. In addition, the form

of multi-grid nesting is two-way in this thesis therefore the descriptions for exchange in both

directions are described. Two-way nesting allows the finer details of the bathymetry to influence

the wave field in the coarse grid which may be significant after reflections at the coast and with

coastal structures take place.

3.3.1 Spatial Nesting

Multi-grid nesting couples together grids of different resolutions, and exchanges information at

the interface where the grids. The simplest way to visualise the setup is the existence of multiple

independent grids that have different sizes and resolutions. The grids are stacked on top of each

other in an organised manner like layers. Hereafter, the different grids are referred to as layers

to maintain the concept. Imagine now just two layers, a coarse grid which is referred to as, L1,

and a fine grid, L2. A visualization of this from above is provided in Figure 3.6 where L2 has

been placed in the middle of L1 where the edges of L2 line up with the grid lines of L1. This is

an assumption that must be met for the numerical code to work correctly. Once this has been

satisfied the first job of the program is find the cell numbers of L1 that correspond to the edges

of L2. For example, the first (bottom-left) cell of L1 that is covered by L2 has the coordinates,

(is2L1, js2L1). These cell numbers are used to map between the layers so that the correct location

of the information is found.
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Note that in Figure 3.6 the resolution of L2 is (1/3) × (1/3) that of L2 however this is arbitrary

and just an illustration of a common setup. In fact, by the method of interpolation and averaging

introduced there is no requirement on the ratio of the grid sizes between layers including

non-integer ratios. The interpolating and averaging is required to transfer information from

coarse grids to fine grids and from fine grids to coarse grids respectively. A description of the

interpolating and averaging that takes place, in addition to what information and where it is

exchanged is included in this section.

L1

L2

is2L1

js2L1

isL2

jsL2

y

x

∆yL1

∆xL1

∆yL2

∆xL2

Figure 3.6: Example schematic of multi-grid nesting where a fine grid (layer), L2 has been placed

in the centre of a coarse grid (layer), L1

Coarse Grid to Fine Grid Exchange

Information in multi-grid nesting must be passed from the coarse grid (L1) to the fine grid (L2)

when either one-way and two-way nesting takes place. The information passed through in this
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case is just the volume flux, Q. This should include both the normal flux at the actual boundary to

L2 and the tangential flux adjacent to calculation domain in a ghost cell. Essentially the situation

is the same as providing lateral boundary conditions (c.f. §3.2.4). To get the fluxes as boundary

conditions for L2, interpolation of the fluxes from L1 is necessary as illustrated in Figure 3.7.

Interpolation is achieved by linear means given the low-order of the numerical scheme.

L1

L2

QL1
x(is2−1/2,js2+1)

QL1
x(is2−1/2,js2)

QL2
x(is−1/2,js+2)

QL1
x(is2+1/2,js2) QL1

x(is2+3/2,js2)

QL1
x(is2+1/2,js2−1)

QL1
x(is2+3/2,js2−1)

QL2
x(is+7/2,js−1)

y1

y2

y1

y2

x1 x2

is2L1

js2L1

isL2

jsL2

y

x

∆yL1

∆xL1

∆yL2

∆xL2

Figure 3.7: Illustration of the exchange of volume fluxes from the coarse grid, L1, to the fine grid,

L2

To obtain the normal fluxes at the boundary only requires interpolation in the tangential

direction since the boundary of L2 matches with the L1 grid. For example, the calculation of

one of the normal fluxes on the west boundary, QL2
x(is−1/2, js+2) (c.f. Figure 3.7) is achieved by the

following:

QL2
x(is−1/2, js+2) =

1
∆yL1

(
QL1

x(is2−1/2, js2)

(
∆yL1 − y1

)
+QL1

x(is2−1/2, js2+1) y1
)

(3.37)

where y1 is the distance along the y axis from js2L1 to jsL2 +2. Note that y2 in Figure 3.7 has
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been replaced with ∆yL1 − y1, which is a general statement. In the case that the distance y1 is

between QL2
x(is−1/2, js+2) and QL1

x(is2−1/2, js2) as shown, y1=∆yL2. However, this is not true for any

arbitrary position (e.g. distance between QL2
x(is−1/2, js+3) and QL1

x(is2−1/2, js2) is y1= 2∆yL2), thus an

algorithm is used to find this exact distance. Normal fluxes on the north-south boundaries, QL1
y

are also interpolated in a similar fashion.

On the other hand, to obtain the tangential fluxes in a ghost cell for L2 requires interpola-

tion in both the normal and tangential directions as depicted in Figure 3.7. For example, the

calculation of one of the tangential fluxes adjacent to the south boundary, QL2
x(is+7/2, js−1) (c.f.

Figure 3.7):

QL2
x(is+7/2, js−1) =

1
∆yL1∆xL1

[
QL1

x(is2+1/2, js2−1)

(
∆yL1 − y1

)(
∆xL1 − x1

)
+QL1

x(is2+3/2, js2) y1x1

+QL1
x(is2+3/2, js2−1)

(
∆yL1 − y1

)
x1+QL1

x(is2+1/2, js2) y1
(
∆xL1 − x1

)] (3.38)

where x1 is the distance along x axis from is2L1+1/2 to isL2+7/2. Note that x2 in Figure 3.7 has

been replaced with ∆xL1 − x1, which is a general statement.

Fine Grid to Coarse Grid Exchange

If two-way nesting is invoked, information must also be passed through from the fine grid (L2) to

the coarse grid (L1) in addition to the other direction. Essentially what this information must

contain are values that affect the calculation of the fluxes in L1 that are interpolated and passed

through to L2 as discussed in the previous section. Since we are dealing with shallow water flow

and the pressure gradient dominates, the most important piece of information to pass through to

L1 is the free surface. In order to influence the calculation of the normal or tangential fluxes then

the free surfaces from L2 are averaged onto the L1 grid and passed through everywhere within

the L2 boundary. Of course values of the free surface well within the L2 domain will not affect

the calculation of the fluxes from L1 on the boundary, however for visualization purposes it is

useful to gather the data from the region with the highest resolution everywhere and transform

it onto the coarse grid.

As an example calculation, in order to get ηL1
(is2, js2) from L2, the following operation is per-

formed:

ηL1
(is2, js2) =

∑
j

∑
i
ηL2

(i, j)∑
j

∑
i

1
with

x(i) ∈ (
x(is2)−∆xL1/2, x(is2)+∆xL1/2

)
y( j) ∈ (

y( js2)−∆yL1/2, y( js2)+∆yL1/2
) (3.39)

This equation may be visualised in Figure 3.8. The first step is to draw a bounding box (indicated

by the dashed rectangle) just smaller than the size of a L1 grid around the centre point of the

required quantity. All the quantities in L2 that fall within this bounding box are summed and

divided by their number. Note that sometimes a few cells in L2 that are contained within the

bounding box may have zero water depths often due to a sudden change in the bathymetry

whereas the rest of the cells in the bounding box are wet cells. Including the free surface in these
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Figure 3.8: Illustration of the exchange of the free surface volume fluxes from the fine grid, L2 to

the coarse grid, L1

cells (corresponding to the level of the seabed) can often upset the average for L1 which only

knows of the average seabed elevation in that bounding box. Thus, when cells of zero water depth

are detected they are excluded from the averaging calculation.

The other quantity to pass through to L1 are the volume fluxes which are required in the

nonlinear advection difference when calculating the volume fluxes in L1 on the boundary to L2

(note that the free surfaces passed through are used to get the water depth also required in the

nonlinear advection difference). Firstly, recall that the volume fluxes in L1 along the first row

and columns within the L2 boundary (c.f. Figure 3.7) are required for interpolation to determine

the tangential fluxes as a boundary condition for L2. Thus, we require boundary conditions for

these fluxes rather than passing them through from L2. It has been found that this technicality is

important to obtain smooth nesting in the tangential direction. Instead these fluxes on the outer

ring of cells within L2 are calculated normally in the L1 momentum equation with boundary
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conditions provided from L2. Thus, the fluxes that must be passed from L2 to L1 fall within

or on the boundaries of the red shaded box in Figure 3.8. They are found from averages in the

same way as Eqn. (3.39). Note of course that in the usual case the size of the domain of L2 and

hence the red shaded box is much larger and many fluxes and free surfaces are required to be

passed from L2 to L1 as either boundary conditions and/or visualization purposes. On that note,

to save computational time, during calculation of the momentum equation for L1, the loop is

cycled inside or on the boundary of the red shaded box.

3.3.2 Temporal Nesting

The nesting of grids of different spatial scales has been described in §3.3.1. Since the numerical

method is based on an explicit method, its Courant number must be bounded. By a stability

analysis the Courant number is limited to
p

2/2 in the 2DH case (and to 1 in the 1DH case). The

Courant number for the grid is defined as, Cr =√
ghmax∆t/∆x, where hmax is the largest depth

in the grid. This implies that if ∆xL1/∆xL2 = 3 as in our example figures (Figure 3.6 - Figure 3.8),

to have equal Cr with equal hmax, ∆tL1/∆tL2 must also equal three. In practice though hmax

is often smaller in fine grids since they are placed closer to the coastal zone. This reduces the

dependence of ∆x on ∆t and if only two layers with ∆xL1/∆xL2 = 3 is used then the same ∆t

in both layers may be reasonable. However, if many layers are used and ∆t is required to be

the same in all layers then this could become quite restrictive on the time step in the coarse

grids. Often the outer layers contain many grids for computation over a large area so a small

∆t, hence Cr, may make the computational load unnecessarily large. In order to increase the

efficiency of the scheme one can compute each layer with Cr that approaches the stability limit

and interpolate in the temporal direction. This process is termed “temporal nesting” in this thesis.

Table 3.1: Example setup with three nested layers and their attributes

Layer No. ∆x (m) hmax (m) ∆t (s) Cr

1 1350 9900 3.03 0.70

2 450 3050 1.52 0.58

3 150 570 0.76 0.38

Practically in the numerical code this is achieved by looping over the calculation of each

time step in L2, ∆tratio number of times for each time step of L1, where ∆tratio is equal to the

ratio of ∆t between L2 and L1. In order to achieve this in the numerical code, a data structure

for each layer was created so that all the data at the current time for a certain layer is input

into a subroutine that performs the calculation for the arbitrary layer before outputting the

updated values of that layer. As a new example to explain the calculation process, lets assume

that there are three layers, L1, L2 and L3. The values of ∆x =∆y, hmax, ∆t and Cr are presented

in Table 3.1 for each layer. Note, that ∆t and Cr are determined by a certain calculation process

given ∆x, and hmax for each layer, and the condition that ∆tratio must be an integer one (since
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performing a loop, say 5.33 times makes no sense). The algorithm starts by setting ∆t in each

layer so that Cr becomes close to the theoretical limit, e.g. 0.7, or any smaller desired value, Crset

by the following operation:

∆t = Crset∆x√
ghmax

(3.40)

The second process is to adjust ∆t so that the ratio between each adjacent layer is an integer

ratio and Cr does not exceed Crset. Assuming that ∆tL1 remains unchanged, the following loop

is performed to update ∆t in the remaining layers:

for k = 2, LN

∆tratio = ceiling
(
∆tL(k−1)/∆tL(k)

)
∆tL(k) =∆tL(k−1)/∆tratio

end

(3.41)

where LN is the total number of layers. The “ceiling” operation ensures that ∆tratio is both an

integer ratio and rounds up towards infinity so that Cr will always be less than Crset. Due to this

process Cr may become significantly smaller than the theoretical limit for the fine grid layers as

highlighted in Table 3.1. However this can be beneficial since these layers are where nonlinear

effects and inundation occur where smaller Cr values are generally desirable. On the other hand

in the coarse grids, such effects are less important and the numerical scheme can safely run very

close to the theoretical limit.

Table 3.1 demonstrates that ∆tratio = 2 between each adjacent layer. This means that for

one loop of L1 to go from t → t+∆tL1 requires two time steps of L2 and four time steps of L3.

Additionally, information is passed between the layers in both directions as discussed in §3.3.1.

The information must be passed through in a certain order so that the situation where not yet

known data is required for a layer does not arise. Specifically, exchanging flux data from the

coarse grid to the fine grid requires that the momentum equation of the coarse grid is calculated

first. This ensures for example, that the flux between t and t+∆tL1 may be interpolated to get

Qn+1/2 which corresponds to the momentum flux at the boundary of L2 after one time step (which

is half of one time step in L1). Additionally, volume fluxes and free surfaces must be passed back

from the fine grid to the coarse grid when the absolute times in the layers align. An example

flowchart for the three layers with ∆tratio = 2 between each layer is shown in Figure 3.9. It is

firstly assumed that flux data in each layer is known at time t = n, and free surface data is known

at time, t = n−∆tLk/(2∆tL1) for layer k.

The procedure starts by calculating continuity in each layer once starting from the finest

grid, in this case, L3 moving through to L1. This reason for this order of calculation is due to

the existence of the arrows between each calculation step of continuity: the free surface from

the fine grid layer is exchanged to the coarse grid layer at the boundaries (c.f. (3.8)). The caveat
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t = nt = n− 1/2

t = n− 1/2

t = n+ 1t = n+ 1/2

t = n+ 1t = n t = n+ 1/2

L3
Continuity:
ηL3(n−1/8)

↓
ηL3(n+1/8)

L2 Continuity:
ηL2(n−1/4) → ηL2(n+1/4)

L1 Continuity: ηL1(n−1/2) → ηL1(n+1/2)

L1 Momentum: QL1(n) → QL1(n+1)

L2 Momentum:
QL2(n) → QL2(n+1/2)

L3 Mo-
mentum:
QL3(n) →
QL3(n+1/4)

L3
Continuity:
ηL3(n+1/8)

↓
ηL3(n+3/8)

L3 Mo-
mentum:
QL3(n+1/4)

↓
QL3(n+1/2)

L3
Continuity:
ηL3(n+3/8)

↓
ηL3(n+5/8)

L2 Continuity:
ηL2(n+1/4) → ηL2(n+3/4)

L2 Momentum:
QL2(n+1/2) → QL2(n+1)

L3 Mo-
mentum:
QL3(n+1/2)

↓
QL3(n+3/4)

L3
Continuity:
ηL3(n+1/8)

↓
ηL3(n+3/8)

L3 Mo-
mentum:
QL3(n+3/4)

↓
QL3(n+1)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Figure 3.9: Example flowchart of the calculation order for temporal nesting of three layers where

∆tratio = 2 between two adjacent layers. The arrows show the exchange of information where the

horizontal position of the ends of the arrows indicate the time step of the exchanged data
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is that for example when exchanging the free surface from L3 to L2 after step 1, only the free

surface at t = n+1/8 is known in L3 and can be passed to L2 as indicated by the arrow. However,

after continuity in L2, the free surface at t = n+1/4 is required. This means that for the free

surfaces exchanged from the fine grid model to the coarse grid, a fractional time step of continuity

is required:

ηn+1/2
(i, j) = ηn+1/(2∆tratio)

(i, j) − 1
2

(
1− 1

∆tratio

)[
rx

(
Qn

x(i+1/2, j) −Qn
x(i−1/2, j)

)
+ r y

(
Qn

y(i, j+1/2) −Qn
y(i, j−1/2)

)]
(3.42)

this is a general equation for any ∆tratio between any two adjacent layers. The fine grid can only

provide information to the coarse grid at t = n+1/(2∆tratio) and so continuity using a multiple of

1/2(1−1/∆tratio) (goes to zero if ∆tratio = 1) is conducted to ensure that the free surface boundary

condition is at the correct time for the coarse grid. Note that the fluxes at t = n have already been

exchanged from the fine grid to the coarse grid so that this step of continuity may be achieved.

For example, in Figure 3.9 at t = n+1, fluxes are exchanged in both directions between all the

layers indicated by the double-headed arrows. The extra fractional step of continuity contains a

small amount of numerical error associated with the indirect transfer of the free surface through

the flux gradient. However, this error is non-accumulative since it is corrected by the direct

transfer of the free surface beforehand, and it is not found to have a noticeable effect on the

nesting performance.

After the calculation of continuity in each layer, the momentum equation in all layers may

proceed one time step. The loop starts from the coarsest grid, L1 moving through to the finest

grid, L3. This is because the fluxes are exchanged from the coarse grid to the fine grids (opposite

to the free surface exchange explained above). In this case the information of the flux in the

coarse grid is known in advance of the time step of the fine grid so interpolation is required

e.g. QL1(n) and QL1(n+1) is linearly interpolated to get QL1(n+1/2) and is passed to L2 after step 4.

Hereafter, continuity and momentum is conducted once each in L3 at steps 7 and 8 to update L3

by one time step. Flux from L2 is exchanged (without need for interpolation) at t = n+1/2 in both

directions. Finally, Steps 9 to 14 are actually the same as Steps 1 to 8 sans the calculation of L1.

It is this fact that allows a pattern of the calculation order to be recognised. In the numerical

code a recursive subroutine has been written to achieve the calculation procedure illustrated in

Figure 3.9. The recursive subroutine is able to calculate any arbitrary number of layers with

arbitrary ∆tratio between any two adjacent layers. Due to its usefulness, the FORTRAN code is

included in Appendix A. Note that as the subroutine is written, Steps 4 to 14 are calculated first,

before calculating Steps 1 to 3 (e.g. ηL1(n+1/2) → ηL1(n+3/2)), however the concept is the same.
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3.4 Reynolds-Averaged Navier-Stokes Equations Model

The RANS model used in this thesis is based on the model created by Professor Yoneyama and

first presented in Yoneyama and Moriya (1995). Its major focus was on the accurate modelling of

the free surface. It has been used in tsunami studies to accurately compute the locally runup

during 1993 Hokkaido Tsunami in Okushiri (Yoneyama et al., 2002), and even to predict the

movement of driftage by tsunamis (Yoneyama et al., 2012). A number of developments have been

made in this research but its strength still lies in the accurate free surface representation which

itself has been vastly improved.

3.4.1 Governing Equations

The governing Reynolds-averaged Navier-Stokes (RANS) equations and its conceptual basis

was introduced in §2.1.1. For the model, a couple of additional parameters are inserted into

the equations to consider Fractional Area/Volume Obstacle Representation (FAVOR) (Hirt and

Sicilian, 1985). They are the void ratio, γv and the aperture ratio, γa
i . The void ratio refers to the

volume fraction of a computational cell that does not contain an object:

γv = 1− Vob ject

∆x∆y∆z
(3.43)

where Vob ject is the volume of the object in the cell. The aperture ratio refers to the fraction of

the surface area of a computational cell boundary perpendicular to the i axis that is void (does

not contain an object):

γa
x = 1− (SAob ject)x

∆y∆z
(3.44)

where (SAob ject)x is the surface area of the cell boundary that is occupied by an object perpendic-

ular to the x axis. Similar equations are available for γa
y and γa

z . The introduction of the FAVOR

parameters allow us to consider cells that are partially occupied by an object in order to describe

geometries more accurately without resorting to restrictively small grid sizes. The governing

equations with their addition become:
∂γa

i ūi

∂xi
= 0 (3.45)

∂ūi

∂t
+ 1
γv

∂γa
j ū j ūi

∂x j
= g i − 1

ρ

∂p̄
∂xi

+ 1
γv

∂

∂x j

[
γa

j

(
ν
∂ūi

∂x j
−u′

iu
′
j

)]
(3.46)

The Reynolds stresses, −u′
iu

′
j must be modelled by a turbulent closure scheme. A common

approach is the eddy viscosity concept. This approach assumes that the Reynolds stresses should

be proportional to the local mean strain rate of the fluid, similar to molecular viscosity. The

simplest approach, called the Boussinesq approximation gives the following representation for

the Reynolds stress:

−u′
iu

′
j = νt

(
∂ūi

∂x j
+ ∂ū j

∂xi

)
− 2

3
kδi j (3.47)
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where νt is the eddy viscosity. Note that νt is represented here is a scalar quantity, which implies

isotropy of the turbulent flow. In reality this is generally not the case but it is typically assumed

to be so in most models. νt however is a property of the flow rather than the fluid which indicates

it will vary in time and space as the flow evolves. The other term introduced here is the turbulent

kinetic energy, k(≡ 1
2 u′

iu
′
i). Additionally, δi j is the Kronecker delta which just indicates that k is

only present when i = j. If Eqn. (3.47) is substituted into Eqn. (3.46) and the bars are dropped on

the averaged variables for convenience the momentum equation becomes:

∂ui

∂t
+ 1
γv

∂γa
j u jui

∂x j
= g i − 1

ρ

∂p
∂xi

+ 1
γv

∂

∂x j

[
γa

j (ν+νt)
(
∂ui

∂x j
+ ∂u j

∂xi

)]
(3.48)

Note that the kδi j term has been absorbed into the pressure term, i.e:

∂p
∂xi

= ∂

∂xi

(
p+ 2

3
k
)

(3.49)

Eqn. (3.48) represents the correct momentum equation including the FAVOR parameters (γa
i and

γv). It is written here for consistency since the continuity equation includes γa
i . Moreover, the

Poisson Pressure equation, advection of the fluid volume fraction and the turbulent transport

equations that are introduced in §3.4.2, §3.4.4 and §3.4.5 respectively also include the fractional

area parameters. However, it is considerably more difficult to include these parameters in the

momentum equation robustly because of the staggering of ui and the scalar quantities. Moreover,

for the application of the model in thesis it is expected that the effect of these parameters at the

seabed is small (in the momentum equation). Hence, the actual momentum equation solved in

this thesis is the following (sans FAVOR parameters):

∂ui

∂t
+u j

∂ui

∂x j
= g i − 1

ρ

∂p
∂xi

+ ∂

∂x j

(
(ν+νt)

∂ui

∂x j

)
(3.50)

The ∂u j
∂xi

term in Eqn. (3.48) has disappeared upon application of continuity. In both Eqns. (3.48)

and (3.50), −u′
iu

′
j has been replaced by νt, thus the problem now becomes one of modelling νt

instead. Fortunately, there are a number of methods for doing so. One of those - the standard

k−ε model - is adopted in this thesis and described in §3.4.5.

3.4.2 Numerical Procedure

In order to solve Eqns. (3.45) and (3.50) a pressure-velocity coupling technique is required.

The main issue with the solution of RANS or N-S equations in general is the decoupled form

of the momentum equations and the divergence free condition of continuity. The momentum

equations may be solved to give a velocity field without a pressure gradient but in order to

get the correct pressure field, the divergence free condition must be satisfied. However, since

p is not explicitly included in the continuity equations the divergence-free condition must be

somehow enforced onto the momentum equations in order to solve for p. This process is called
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pressure-velocity coupling. There are a number of techniques available to this end, including

PISO (Pressure-Implicit Separation of Operators) (Issa, 1986), SIMPLE (Semi-Implicit Method

for Pressure-Linked Equations) (Patankar and Spalding, 1972) and its variants, SMAC (Simplied

Marker and Cell) (Amsden and Harlow, 1970), and projection methods (Chorin, 1968) among

others. SIMPLE methods have been found to be effective for steady/quasi-steady problems,

or unsteady ones with coarse step sizes because of the iterative requirement to satisfy both

momentum and mass after each time step. However, in a highly unsteady problem that usually

requires small time steps the SMAC method is more appropriate because of if its non-iterative

nature. Under such situations the SMAC method has been shown to efficiently yield accurate

results in comparison with other more computationally intensive methods such as SIMPLE and

PISO (Saito et al., 2012; Kim and Benson, 1992). Given that wave computations and interactions

with structures are highly unsteady by nature the SMAC method is adopted in this thesis.

The SMAC method along with projection methods, PISO and SIMPLE revolve around solving

the solution to a Poisson Pressure equation to obtain the pressure-velocity coupling. For the

SMAC method the solution procedure is as follows:

1. Solve Eqn. (3.50) using a forward Euler time integration to obtain an intermediate velocity

field, u∗
i in the following form (where a pseudo-pressure, p̃ should satisfy the normal stress

condition (c.f. §3.4.7) on the free surface):

u∗
i = un

i −∆t
[

g i + 1
ρ

∂p̃
∂x

+Θn
i

]
(3.51)

where Θn
i is a representation of the advection and viscous stress terms using un

i . p̃ is

arbitrary and may be set to zero everywhere (except at the free surface), or the previous

value of the pressure, pn may be used. u∗
i satisfies the vorticity field but it does not yet

satisfy the divergence free condition.

2. If un+1
i is the updated Solenoidal velocity field that we want to obtain then a similar

equation is available using the updated corrected pressure field, pn+1:

un+1
i = un

i −∆t
[

g i + 1
ρ

∂pn+1

∂xi
+Θn

i

]
(3.52)

3. Subtracting Eqn. (3.51) from Eqn. (3.52) gives:

un+1
i −u∗

i =−∆t
ρ

∂pn+1 − p̃
∂xi

(3.53)

4. If the divergence of Eqn. (3.53) is taken and the divergence free condition of un+1
i is enforced

the following Poisson Pressure equation results (with the addition of γa
i for the FAVOR

method):
∂γa

i u∗
i

∂xi
=∆t

∂

∂xi

(
γa

i

ρ

∂∆P
∂xi

)
(3.54)

where ∆P = pn+1 − pn
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5. Solve the Poisson Pressure equation using an appropriate matrix solver to get ∆P. Pre-

conditioned conjugate gradient methods are usually adopted.

6. The corrected pressure becomes:

pn+1 = pn +∆P (3.55)

Furthermore, Eqn. (3.53) may be rearranged to get the Solenoidal velocity field, un+1
i :

un+1
i = u∗

i −
∆t
ρ

∂∆P
∂xi

(3.56)

The SMAC solution method ensures that the conservation of mass is strongly satisfied but

the conservation of momentum may only be weakly satisfied (Kim and Benson, 1992). However,

if the time step is sufficiently small then accurate solutions can be obtained (Saito et al., 2012).

SMAC is similar to projection methods introduced by Chorin (1968) around the same time which

ignores the pressure gradient in the momentum equations before projecting the divergence free

condition onto the velocity field.

3.4.3 Discretization Scheme

Eqns. (3.51) and (3.54) are discretized in a finite-difference manner onto a staggered Arakawa C-

grid as illustrated in Figure 3.10. The velocities ui are placed on the cell boundaries perpendicular

to the i axis and all the other variables (the scalar ones) such as p and k are placed on cell centres.

This helps to easily create second-order central finite-differences about ui in the momentum

equation and∆p in the Poisson Pressure equation. Doing so prevents issues like “checkerboarding”

where a central difference approximation of both u∗
i and ∆p in Eqn. (3.54) at the same location

may permit independent sets of solutions at alternating cells.

The discretized form of the equations are shown below for the solution to uc as shown in

Figure 3.10. Firstly, Eqn. (3.51) is discretized as follows:

u∗
c = un

c −∆t
[

gx +
pn

e − pn
c

ρ∆xc
+Θn

c

]
(3.57)

where Θn
c is given as:

Θn
c =−

(
u
∂u
∂x

)n

c
−

(
v
∂u
∂y

)n

c
−

(
w
∂u
∂z

)n

c

+
(
ν+ νn

tc +νn
te

2

)[(
∂2u
∂x2

)n

c
+

(
∂2u
∂y2

)n

c
+

(
∂2u
∂z2

)n

c

] (3.58)

The nonlinear advection terms are usually solved using the third-order upwind method (QUICK)

and the viscous terms have been solved through the central order difference method. The actual

finite difference formulae can be found in Appendix B.
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φ = p, γv, F, k, ε, νt

Figure 3.10: Finite-difference stencil of the RANS method in the x− y/z plane, shown specifically

for the calculation of uc with positive velocity. Analogous stencils exist for finding vc and wc

Once u∗
i is found,

γa
i ∂u∗

i
∂xi

is checked to give an “error of continuity”, εD by the following

discretization:
γa

xcu∗
c −γa

xwu∗
w

∆xc
+
γa

ynv∗n −γa
ysv∗s

∆yc
+
γa

ztw
∗
t −γa

zbw∗
b

∆zc
= εDc (3.59)

If the maximum absolute value of the error of continuity, |εD | within the entire computational

region is smaller than some prescribed value (usually set to 1×10−5 in the current model), then

u∗
i , is already said to be divergence-free and becomes un+1

i indicating the end of the time step.
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Otherwise, the Poisson Pressure equation is solved. It is discretized as:

Ae∆pe + Aw∆pw + An∆pn + As∆ps + At∆pt + Ab∆pb + Ac∆pc = εDc

∆t
(3.60)

with,

Ae =
2γa

xc

∆xc(∆xc +∆xe)
Aw = 2γa

xw

∆xc(∆xc +∆xw)

An =
2γa

yn

∆yc(∆yc +∆yn)
As =

2γa
ys

∆yc(∆yc +∆ys)

At =
2γa

zt

∆zc(∆zc +∆zt)
Ab =

2γa
zb

∆zc(∆zc +∆zb)

Ac =−(Ae + Aw + An + As + At + Ab)

(3.61)

Eqn. (3.60) is solved using the BiCGSTAB matrix solving algorithm in this study. ∆p is then used

to update the velocities and pressure as follows:

un+1
c = u∗

c −
∆t
ρ

∆pe −∆pc

(∆xc +∆xe)/2
(3.62)

vn+1
n = v∗n −

∆t
ρ

∆pn −∆ps

(∆yc +∆yn)/2
(3.63)

wn+1
t = w∗

t −
∆t
ρ

∆pt −∆pb

(∆zc +∆zt)/2
(3.64)

pn+1
c = pn

c +∆pc (3.65)

3.4.4 Free Surface Model

When free surfaces are present in the RANS model a method is required to consider the evolution

of the free surface. One simple option is to assume a single free surface and integrate continuity

over the depth while applying the boundary conditions on the free surface to get the 2DH

continuity Eqn. (2.24). While this “height function” approach is a simple and accurate solution,

it limits the model to only quasi-three dimensional behaviour. For example, wave overturning,

and any other situations where multiple free surfaces in a vertical column may arise cannot be

simulated. In fact, since our aim in this thesis is to only make use of the RANS model in regions

where the physics is complicated i.e. where typical long wave models are insufficient, it is not a

desirable solution. However, other methods must model the free surface indirectly which can be

complicated and less accurate under simple conditions.

Indeed, the original focus of our pressure-velocity coupling solution method, SMAC (original

is Marker and Cell (MAC) (Harlow and Welch, 1965)) was its novel approach to modelling the

free surface. It uses markers placed on the free surface and in the fluid, then follows their

Lagrangian motion with the velocities calculated on the Eulerian grid. Since the method simply

moves markers arbitrarily anywhere it places no limit on the number of free surfaces in a

vertical column like the height function approach. Drawbacks of this method include a large
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computational memory required to store all the markers (requires many more markers than

cells to work well), a long computational time to compute their movements, and can perform

poorly in regions of converging/diverging flows. It was about 15 years layer that another method

known as the Volume-of-Fluid (VOF) method (Hirt and Nichols, 1981) came into existence for

modelling the free surface on Eulerian grids. As it name suggests it tracks the movement of

fluid volumes or rather volume fractions that can be used to describe the free surface. Since it

only tracks a single volume fraction in each cell it has much lower memory requirements and

computational costs than the MAC approach. Furthermore, the volume fraction is a continuous

function while markers are discrete and therefore only have finite accuracy based on the density

of the markers. Given these benefits of the VOF method, it is now ubiquitous in free surface

modelling on Eulerian grids except where the height function is physically acceptable.

The VOF method fits with our requirements to model wave overturning and other three-

dimensional effects on the free surface and it is adopted in this study. As mentioned, it tracks

volume fractions in the computational cells to describe the free surface. The volume fraction, F is

defined as:

F = Vf luid

∆x∆y∆z
(3.66)

where Vf luid is the volume of fluid in a computational cell. A straightforward visualization of

how the distribution of F can be used to describe the free surface is illustrated in Figure 3.11.
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0.0 0.0

0.00.00.00.00.0

seabed
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z

Figure 3.11: Illustration of fluid volume fractions (shown by the numbers) used to describe the

free surface (drawn by the black line) which is of bore-like behaviour in this figure

Constructing Free Surface and Cell Flagging

As shown in Figure 3.11 the distribution of F may be used to construct the free surface, however it

is not entirely obvious initially how it should actually appear. For example, in both the second cell

from the top on the left and the second cell from the right and third up from the bottom, F = 0.7.
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However, the orientations of F differ. The numerical code therefore requires some algorithm

to determine which cells are indeed free surfaces and what is their orientation. The cells are

appropriately flagged to indicate their status. Additionally the flagging of full fluid cells (F = 1),

air cells (F = 0), and boundary cells is conducted. The flagged integers in the numerical code are

as follows:

NF =−1 boundary cell

NF = 0 air cell

NF = 1 fluid cell

NF = 2 surface cell

⇒ NFB = i orientation of surface cell

(3.67)

where i is an integer corresponding to the direction of the inward normal vector to the surface.

For example, the top left fluid cell in Figure 3.11 would have NFB =−3 since the inward normal

vector points downwards in the z direction.

The algorithm that is used to determine the status of each computational cell and the

allocation of the flags, NF and NFB is as follows:

1. Boundary cells never change and may be flagged at the start of the program to be NF =−1

2. For the computational cells, the status may change at each time step. The algorithm begins

by dividing between air cells, F ≤ 1×10−10 and fluid cells, F > 1×10−10, allocating NF = 0

and NF = 1 respectively

3. For those cells where NF = 1, if there is an adjacent cell where NF = 0, then they may be

flagged as surface cells, NF = 2

4. For cells where NF = 2, if they do not have an adjacent cell where NF = 1 or NF =−1, they

are reclassified as air cells, i.e. NF = 0, since the model cannot perform calculations for

detached fluid of only a single cell size

5. For cells where NF = 2, if they are not sandwiched between both a NF = 1 or NF =−1, and

a NF = 0 cell they are reclassified as air cells, i.e. NF = 0

6. Repeat Steps 3 to 5 until no reclassification of NF = 2 cells to NF = 0 cells occur

7. The orientation for the surface cells may now be determined by the direction in which it is

sandwiched between a fluid cell and an air cell, or alternatively by a boundary cell and an

air cell. For example, the top left surface cell in Figure 3.11 has NFB =−3 since there is a

fluid cell below it and an air cell above it (in the z direction). For those cells at the bore face,

there is a fluid cell to the left and an air cell to the right indicating NFB =−1. Additionally,

for the bottom right surface cell, it is flanked by a boundary cell below and an air cell above

therefore NFB =−3
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8. In the case where the sandwiching occurs in more than one direction then priority is given

to the direction that contains more fluid in behind it

The original example in Figure 3.11 would end up with the following flags as illustrated in

Figure 3.12.

1 1 1 1 2,-3

1 1 1 2,-1 0

1 1 1 2,-1 0

2,-3 2,-3 2,-3
0 0

00000

-1-1-1-1-1

x

z

Figure 3.12: Illustration of the cell flags NF used to indicate their status and construct the free

surface correctly. The surface orientation, NFB is also included for free surface cells (where

NF = 2)

Free Surface Normal

Although the free surface may be constructed by the method outlined in the previous section,

it is a crude discrete description, where the normal vector to the free surface is assumed to be

entirely parallel to its axis of orientation. The construction can be improved by assuming a planar

free surface so that the free surface normal vector can point in any direction. This improvement

can help to track the fluid volume fraction more accurately as described in the following section.

Note that the discrete flagged orientation NFB integers are still useful when constructing our

boundary conditions (c.f. §3.4.7) on the free surface so the improvement described here does not

replace NFB and the algorithm used to determine it - in fact, it makes use of it. The free surface

unit normal vector, ~n can be determined by the following:

~n =− ∇F
||∇F|| (3.68)

Discretization of Eqn. (3.68) requires averaging of the F value at the corners of the cells. Another

approach though is to find ~n by geometric means which could be considered to give a result

closer to the exact solution and thus it is adopted in this model. Since NFB can be obtained

from the algorithm described in the previous section then the main orientation of ~n is already
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known aposteriori. For example, imagine a free surface cell where NFB =−3. It is thus already

known that above it is an air cell where F = 0 and below is a fluid cell where F = 1. Therefore, the

gradient of F that is important is only in the x and y directions. Suppose that the location of the

centre of gravity of the free surfaces, ηcg in each cell is known (calculated from the value of F

and the previous estimate of the normal vector as described in following section) and we want to

find ~n at cell, c as illustrated in Figure 3.13.

It can be assumed that the free surface in the adjacent cells is nearby cell c so the cells

directly across (e and w) are searched to find ηcg. In the case that there is no free surface (e.g.

cell e in Figure 3.13) then one cell above and below e and w are also searched. The same process

is performed in the y− z plane for cells n and s. The vectors pointing from η
cg
c to neighbouring

ηcg points are calculated by (c.f. Figure 3.13):

~CE =ηcg
be −η

cg
c (3.69)

~CW =ηcg
w −ηcg

c (3.70)

~CN =ηcg
n −ηcg

c (3.71)

~CS =ηcg
s −ηcg

c (3.72)

To get the outward pointing free surface normal vector, ~ntemp cross-products of the vectors is

performed clockwise about cell c in both x and y directions as shown in Figure 3.13. This can be

expressed as:

~ntemp =
(
~CE× ~CN + ~CN × ~CW + ~CW × ~CS+ ~CS× ~CE

)
/4 (3.73)

Finally, ~nc the unit free surface normal at cell c is equal to:

~nc =
~ntemp

||~ntemp||
(3.74)

~CE

~CW
~nc

bw be

w c
e

tetw

seabed

: ηcg

x

z

c
e(be)w

s

n

~CE

~CW

~CN

~CS

~nc

x

y

Figure 3.13: Illustration of the centre of gravity of the free surfaces and the vectors between the

adjacent cells used to find the free surface normal vector at cell c, ~nc

70



3.4. REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS MODEL

Note that when the free surface normal at cell, be is calculated, since NFB =−1, the x direction

of F is unimportant and the vectors between the centre of gravity of the free surfaces in the y and

z directions are found instead. The improved reconstruction of the free surface in our example

with free surface normal vectors that may point in any direction ends up like that illustrated in

Figure 3.14.

seabed

: ηcg

x

z

Figure 3.14: Illustration of the reconstructed free surface using an arbitrary free surface normal

Notice that the cell second from the top right now has fluid volume inside and it is completely

triangular shaped (rather than a trapezium like the other cells) connecting the upwards orientated

free surface and the rightwards orientated free surface cells. However, it is actually classified as

an air cell since it is not flanked by both a full fluid cell, NF = 1 and a NF = 0 cell in any single

direction. Thus, a special countermeasure is required in the model to get the free surface normal

of air cells where F is larger than some trivially small value (e.g. when F > 0.02) such as this

case. This helps to improve the tracking of the fluid volume fraction and the construction of free

surface as shown in Figure 3.14. Additionally, the same countermeasure can be used to get the

free surface normal of fluid cells, NF = 1 where F is non-trivially smaller than 1 (e.g. F < 0.98).

Since NF 6= 2, NFB is not available. Thus, after ~n is found in all NF = 2 cells, ~n can be found by

averaging the surface normal of the surrounding cells where NF = 2. For example, in this case

referring to Figure 3.13:

~ne = (~nc +~nbe +~nn +~ns)/4
||(~nc +~nbe +~nn +~ns)/4||

(3.75)

If no surrounding cells have NF = 2 then the cell must be a lone air cell or fluid cell and calculation

of the surface normal is unnecessary.

Evaluating the Plane Equation of the Free Surface

Using the calculated value of ~n, the plane equation of the free surface can be solved so that the

volume fluid in the cell defined by the plane gives the correct value of F. Additionally for added

71



CHAPTER 3. NUMERICAL METHODOLOGY

complexity, in this model the FAVOR method is used to describe the fractional volume of an object

within a computational cell. It is possible that the free surface plane cuts through the object

represented as a fraction of the cell, as illustrated in Figure 3.15. The current model can properly

account for this occurrence to get the plane equation considering the presence of the object and

hence we consider this to be an “improved” FAVOR method.

The solution to the plane equation considering the presence of an object can be found by a

trial and error method where the volume of fluid is checked at each iteration to see whether it

matches the required value F. The volume may be checked by geometrical methods however this

thesis will not go into those details. Rather the iteration method co-introduced by the author

(along with Nozomu Yoneyama and Yutaka Tanaka) will be described. The plane equation is

given by:

~n ·p= d (3.76)

where p is an arbitrary point on the plane, and d is the free parameter to be solved. The first

initial guesses for d are found by substituting in the known vertices of the cell and object, which

are plotted as points p1 to p4 in Figure 3.16. In this example the plane through p4 does not

give a solution in the computational cell and is disregarded. While p2 gives a solution in the

computational cell but with zero fluid volume since it only crosses through the object. p1 and p3

however do give solutions of some finite fluid volume indicated by the dashed lines through those

points (with some slope given by ~n of the free surface. The volume fraction is calculated from

those initial guesses, Fguess and compared to the actual value of F, i.e.:

εF = Fguess −F (3.77)

εF is the error of the guess compared with the real F value. Clearly p1 gives the smallest value

of positive εF and it is assigned as the initial “positive” solution, dpos. The solution of p2 is

assigned as the initial “negative” solution, dneg that gives εF =−F since Fguess = 0. From here

the double-false position algorithm may be used to iteratively approach the true solution. In this

algorithm a new guess, dsec calculated using the secant method is found at each iteration using

Object

Fluid∆z

∆y ∆x

z

x

y

Figure 3.15: Illustration of both an object and fluid within a computational cell which may

accounted for by the improved FAVOR method used in this study
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object

fluid

p1

p2

p3p4

x

z

Figure 3.16: Illustration of the fluid surface cutting through the object. The bold line indicates

the actual free surface plane to be solved and the dashed lines indicates the initial guesses

the equation:

dsec = dpos −εF
pos

dpos −dneg

εF
pos −εF

neg
(3.78)

dsec is used to get a new estimated of εF . In the case that the new εF is negative, dsec becomes the

new dneg. Similarly, if εF is positive dsec becomes the new dpos. The iterations for a new dsec in

Eqn. (3.78) and hence new dneg or dpos is repeated until εF becomes small enough within desired

accuracy that is currently set to 1×10−9 in this model. A caveat of the double-false position method

is that it is possible that at consecutive iterations only one side (positive or negative solution)

is updated implying only linear (slow) convergence of the width of the solution bracket. Ideally

at consecutive iterations one of each of the positive and negative solutions should be updated

for faster convergence. To force this to happen, when the same side is updated consecutively the

new value of εF
pos or εF

neg is multiplied by 0.5. This is known as the Illinois algorithm (Dowell and

Jarratt, 1971) which guarantees faster convergence than the unmodified double-false position

method.

Once d in the plane equation has been found it can used to determine the vertices of the free

surface that intersect with the cell and object boundaries. The centre of gravity (centroid) of the

free surface, ηcg is thus given by:

ηcg =

n−2∑
k=1

(p1 +pk+1 +pk+2) || (pk+1 −p1)× (pk+2 −p1) ||

3
n−2∑
k=1

|| (pk+1 −p1)× (pk+2 −p1) ||
(3.79)

where pk is the kth vertex of the fluid volume in the cell with total number of vertices n.
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Tracking the Fluid Volume Fraction

Tracking the evolution of the fluid volume fraction is achieved through discretization of the

following equation:
∂γvF
∂t

+ ∂γa
i Fui

∂xi
= 0 (3.80)

It is equivalent to stating that the material derivative of F is equal to zero which is true for

any quantity on the free surface. Eqn. (3.80) is simple, but a straightforward finite-difference

form would lead to the smearing of the F function (Hirt and Nichols, 1981) despite the fact that

F should give a sharp interface and is bounded between 0 and 1. In the case that free surface

normals may only be parallel to the axes a common method is the donor-acceptor one to discretize

Eqn. (3.80). It introduces flux limiters to ensure the the correct advection of F across cells to

preserve the sharp interface. In this model, the arbitrary free surface normal is available which

can be used to advect the F fraction in a precise manner. This method is known as Piecewise

Linear Interface Calculation (PLIC) (Youngs, 1982). For example, imagine that we know all

values of F and ~n at time n. We now want to find the new F value in cell c, Fn+1
c (c.f. Figure 3.17)

after getting the Solenoidal velocities, un+1
i as described in §3.4.3.

Ve

Vw

Vs / Vb

Fc

uw
ue

vs / wb

vn / wt

x

y/z
uw∆t

wb∆t
vs∆t /

ue∆t

Figure 3.17: Illustration of the fluxes on the boundary to cell c that are calculated using the PLIC

method when updating Fc

If the fluxes at every cell boundary are correctly calculated, Eqn. (3.80) can be discretized as

follows:

Fn+1
c = Fn

c − ∆t
γv

c

(
γa

xe(UF)e −γa
xw(UF)w

∆xc
+
γa

yn(V F)n −γa
ys(V F)s

∆yc
+
γa

zt(WF)t −γa
zb(WF)b

∆zc

)
(3.81)

where (UF), (V F) and (WF) are the fluxes at the cell boundaries that are determined by the

PLIC method from the new velocities, un+1
i and previous values of the volume fraction, Fn and

surface normal, ~nn (to get the plane equation of the free surface). The calculation of the fluxes
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is illustrated in Figure 3.17. Firstly, similar to the donor-acceptor method, the upwind value of

F is used. Secondly, the volume of fluid in the upwind cell, V that has width in the direction of

the velocity normal to the boundary equal to ui∆t is determined by geometric methods given the

known plane equation of the surface. Clearly if the slope of the free surface is considerable this

volume will be different to V calculated by the traditional donor-acceptor method. Lastly, the flux

(e.g. (UF)w) is found by:

(UF)w = sign(uw)
Vw

γa
xw∆yc∆zc∆t

(3.82)

3.4.5 Turbulence Model

The eddy viscosity approach has been assumed in the current RANS model. As mentioned in

§3.4.1 the challenge now becomes one to model the eddy viscosity. Recall that the turbulent

kinetic energy, k(≡ 1
2 u′

iu
′
i) was introduced in §3.4.1. Therefore, the transport of this energy must

also be important to determine the eddy viscosity. The transport equation for k can be found by

subtracting the RANS equations from the N-S equations to obtain an equation for u′
i. Multiplying

this by u′
i , averaging and simplifying gives:

∂k
∂t

+u j
∂k
∂x j

= ∂

∂x j

[(
ν+ νt

σk

)
∂k
∂x j

]
−u′

iu
′
j
∂ui

∂x j
−ε (3.83)

where σk is the turbulent Prandtl number which correlates the turbulent momentum diffusivity

to heat diffusivity. Note, that the gradient of k is assumed to approximate the turbulent diffusion.

The turbulent kinetic energy dissipation rate, ε has also been introduced defined by:

ε≡ ν∂u′
i

∂x j

∂u′
i

∂x j
(3.84)

Since ε is also a scalar that varies with time and space like k, an extra consideration or equation

is required to close the system. Firstly, consider the relative length scales of the turbulence,

l: νt ∝ k1/2l and ε∝ k3/2/l. If l is known apriori then the system can be closed by setting,

νt = C1/4
µ k1/2l and, ε = C3/4

µ k3/2/l (Cox et al., 1994) in Eqn. (3.83), where Cµ is some empirical

constant. However, it is usually non-trivial to evaluate l in real applications so another approach

is typically required. The above expressions can also be arranged to eliminate the dependence on

l, which give, νt ∝ k2/ε. The combination of these two parameters is reasonable since it can be

expected that the turbulent energy and its dissipation rate is related. The relationship may be

more formally defined as:

νt = Cµk2/ε (3.85)

If an extra transport equation is introduced for ε then the system will close since νt can be

found from just k and ε in Eqn. (3.85), the only two turbulent scaling parameters. This approach

is known as a two-equation model. Specifically it is the standard k−ε model first introduced by

Launder and Spalding (1974). Where standard refers to its application to high Reynolds numbers
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and the linear constant relationship between νt, k and ε. The transport equation for ε can be

written as:
∂ε

∂t
+u j

∂ε

∂x j
= ∂

∂x j

[(
ν+ νt

σε

)
∂ε

∂x j

]
−Cε1

ε

k
u′

iu
′
j
∂ui

∂x j
−Cε2

ε2

k
(3.86)

where σε, Cε1 and Cε2 are extra constants to be determined empirically. A total of five constants

appear in the standard k−ε model (Eqns. (3.83), (3.85) and (3.86)). After a number of extensive

investigations based on plane jets and mixing layers Launder and Spalding (1974) has suggested

that those constants should be equal to:

Cµ = 0.09 Cε1 = 1.44 Cε2 = 1.92 σk = 1.0 σε = 1.3 (3.87)

Note that σk, the turbulent Prandtl number, can be approximated as 1 through Reynolds analogy.

The values of these constants are however based on steady flow. For example, Cox et al. (1994) has

shown that Cµ should vary for spilling waves in the cross-shore and vertical directions. Cµ was

found to be generally less than 0.09 over the entire domain, with Cµ ≈ 0.03 in the transition zone

and Cµ ≈ 0.05 in the inner surf zone. Hence, care must be taken when applying such theoretical

turbulent models. This thesis does however, due to limited alternative knowledge apply the

constants of Launder and Spalding (1974) shown here.

Governing Equations

The governing equations of the k−ε model with the addition of the fractional volume parameters

and the introduction of a turbulent production term, Pk

(
≡−u′

iu
′
j
∂ui
∂x j

)
, the equations become:

∂k
∂t

+ 1
γv

∂(γa
j u jk)

∂x j
= 1
γv

∂

∂x j

[
γa

j

(
ν+ νt

σk

)
∂k
∂x j

]
+Pk −ε (3.88)

∂ε

∂t
+ 1
γv

∂(γa
j u jε)

∂x j
= 1
γv

∂

∂x j

[
γa

j

(
ν+ νt

σε

)
∂ε

∂x j

]
+Cε1

ε

k
Pk −Cε2

ε2

k
(3.89)

where Pk is equal to:

Pk = 2νtS2 (3.90)

where S2 ≡ Si jSi j and Si j is the mean strain rate tensor:

Si j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(3.91)

The relationship, νt = Cµk2/ε and the constants introduced in the previous section remain the

same.

Discretization and Solution Scheme

The k−ε model is discretized onto the same staggered grid used for continuity and momentum,

which is illustrated in Figure 3.10. The scalars k, νt and ε are defined on cell centres. Once the
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new Solenoidal velocities, un+1
i are found by the SMAC solution scheme new values of k, ε and

hence νt are updated from the old ones using a first-order explicit Euler forward-difference. This

firstly requires an estimate of the turbulent production term, Pk using νn
t and un+1

i :

Pkc = νn
tc

[(
∂u
∂z

+ ∂w
∂x

)2
+

(
∂u
∂y

+ ∂v
∂x

)2
+

(
∂v
∂z

+ ∂w
∂y

)2
+2

(
∂u
∂x

2
+ ∂v
∂y

2
+ ∂w
∂z

2)]n+1

c
(3.92)

where the derivatives can be easily found from central differences about the cell centre, c, which

are explicitly shown in Appendix B.

After finding Pk, the transport equations for k and ε are solved. Eqn. (3.88) for k and

Eqn. (3.89) for ε are solved through the following operations:

kn+1
c = kn

c −
∆t
γv

c

[
(ADVk)c − (DIFFk)c

]+∆t
(
Pck −εn

c
)

(3.93)

εn+1
c = εn

c −
∆t
γv

c

[
(ADVε)c − (DIFFε)c

]+∆t

(
Cε1

εn
c

kn
c

Pck −Cε2

(
εn

c
)2

kn
c

)
(3.94)

where ADVφ is the advection and DIFFφ is the diffusion of some scalar φ (either k or ε). In

Eqns. (3.88) and (3.89), ADVφ corresponds to the last term on the right of the LHS, and DIFFφ

the first term on the left of the RHS. ADVφ is discretized using a second-order Total Variation

Diminishing (TVD) upwind difference (c.f. Versteeg and Malalasekera, 2007):

(ADVφ)c =
γa

xcun+1
c Φc −γa

xwun+1
w Φw

∆xc
+
γa

ynvn+1
n Φn −γa

ysvn+1
s Φs

∆yc
+
γa

ztw
n+1
t Φt −γa

zbwn+1
b Φb

∆zc
(3.95)

in which Φc is the value of φ interpolated onto the east cell boundary (where un+1
c is defined -

see Figure 3.10) in an upwind TVD sense. Φw is the value of φ interpolated onto the west cell

boundary, and so on. For example, Φc is found by:Φc =φc + ∆xc
∆xe+∆xc

L(r+)
(
φe −φc

)
if un+1

c ≥ 0

Φc =φe + ∆xc
∆xe+∆xc

L(r−)
(
φc −φe

)
if un+1

c < 0
(3.96)

L(r) is an appropriate TVD limiter function with

r+= φc −φw

φe −φc

∆xc +∆xe

∆xc +∆xw
(3.97)

r−= φE −φe

φe −φc

∆xe +∆xc

∆xE +∆xe
(3.98)

In the current model the Van Leer limiter function (van Leer, 1974) is adopted:

L(r)= r+|r|
1+ r

(3.99)

The other values of Φ on the remaining cell boundaries may be found in a similar manner. Finally,

DIFFφ is discretized using a straightforward second-order central difference (which is explicitly

written in Appendix B):

(DIFFφ)c =
(
∂

∂x

[
γa

x

(
ν+ νt

σφ

)
∂φ

∂x

])
c
+

(
∂

∂y

[
γa

y

(
ν+ νt

σφ

)
∂φ

∂y

])
c
+

(
∂

∂z

[
γa

z

(
ν+ νt

σφ

)
∂φ

∂z

])
c

(3.100)
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Note that σφ here refers to either constants, σk or σε. Once kn+1 and εn+1 have been found, νn+1
t

is evaluated through the following operation:

νn+1
t = Cµ

(kn+1)2

εn+1 (3.101)

3.4.6 Temporal Stability

The current model is based upon explicit differencing in the momentum equation, turbulent

transport equations and the advection of F. Because of this the stability is mainly controlled by

the Courant-Friedrichs-Lewy (CFL) condition which states that the fluid cannot travel more than

one fluid cell in a time step, i.e.:

Cr f =max
(

ui∆t
∆xi

)
< 1 (3.102)

the “max” condition indicates the maximum value in the computational domain over all the

dimensions (i = 1,2,3). Cr f is the Courant number based on the fluid velocity. Furthermore, a

Courant number should also be defined based on the wave speed so that the wave will not travel

more than one fluid cell in a time step:

Crw =max

(√
gh∆t
∆xi

)
< 1 (3.103)

here the dimensions are limited to the horizontal ones (i = 1,2). It has been found that the CFL

condition based on the wave speed does not need to be as restrictive as that based on the fluid

velocity. So within the numerical code a multiple αc > 1 is introduced so that an overall Courant

number, Cr can be defined by:

Cr =max
[
αcCr f ,Crw

]< 1 (3.104)

αc > 3.33 has been set in the computational code at present following Bakhtyar et al. (2009). The

value of this constant should depend on the temporal integration and the advection discretization

scheme so it may be defined larger or smaller than this (a detailed investigation of an optimum

value for the current model has not been conducted). Usually Cr is restricted to less than 0.33 for

extra stability. This implies that Cr f is in fact restricted to less than 0.10. Such a condition has

been found to be necessary for stability upon violent processes such as wave breaking. Fortunately,

Cr f is generally small for a wave offshore where Crw dominates. Hence, during wave propagation

and shoaling larger time steps are used in the model which gradually transition to the smaller

time steps required during wave breaking where the flow becomes momentum-driven.

Although the flows here are generally advection dominated (rather than diffusion dominated)

for completeness the Von Neumann stability condition for diffusion is included:

Crd =max
(

2(ν+νt)∆xi∆xi∆xi∆xi∆t
(∆x1)2(∆x2)2(∆x3)2

)
< 1 (3.105)

where Crd is the dimensionless stability number for diffusion and must be less than unity. Note

that if νt is large due to a very turbulent flow, Crd may also become non-trivial. On that note,
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a final stability condition for the turbulent quantities, k and ε are required. The ratio k/ε is

equivalent to a turbulent time scale, which represents the time scale that the eddies decay (the

eddy turnover time). The time step should be smaller than this time scale for stability of the

k−ε model. Also, in the ε equation the term Cε2ε
2/k represents the destruction of ε based on the

turbulent time scale. Hence if Cε2 > 1, ε will actually be destroyed faster than k and this constant

should also be included in the stability condition:

Cr t =max
(

max[Cε2,1.0]ε∆t
k

)
< 1 (3.106)

where Cr t is the dimensionless stability number for the turbulence quantities and must be less

than unity.

An overall stability condition a hence the determination of a suitable ∆t is possible by finding

the maximum value of Cr, Crd, and Cr t. Usually the limit of this value is set to 0.33 as discussed

for Cr above. ∆t is allowed to vary with each time step in order to satisfy the stability criterion

and to maximise computational efficiency.

3.4.7 Boundary Conditions

In all the previous discussion on the SMAC solution scheme, VOF free surface modelling, and k−ε
turbulence modelling, the boundary conditions that need to be applied for each method have been

ignored. This is partly because boundary conditions for one method are often slightly connected

with other methods so it makes the discussion easier to include everything already introduced

into a single section. This section is split into free surface boundary conditions, and boundary

conditions with object cells (NF =−1). Boundary conditions are required for the Poisson Pressure

equation, velocities, pressure and the turbulent quantities. It is worth mentioning that the lateral

boundary conditions in this study are provided by the two-way multiscale coupling procedure

described in §3.5.

Free Surface Boundary Conditions

(i) Poisson Pressure Equation
Continuity can only be applied through the Poisson Pressure equation onto full fluid

cells (NF = 1). But, the pressure on free surface cell centres is found by linear interpola-

tion/extrapolation between the pressure on the adjacent fluid cell centre (in the direction

of NFB) and the pressure on the surface as illustrated in Figure 3.18 for the case where

NFB =−3.

The interpolation/extrapolation can be achieved in the Poisson Pressure equation in order

to get the change in pressure at a free surface cell, ∆pc based on the change in the fluid

cell, ∆pb through the following:

Ac∆pc +∆pb = 0 (3.107)
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Figure 3.18: Linear interpolation/extrapolation of the pressure from the fluid cell to the centre of

the surface cell. The case where NFB =−3 is drawn.

with,

Ac =− zs − zb

zs − zc
(3.108)

and zs is the z coordinate of the centre of gravity of the free surface, ηcg
c . Ac can be

constructed in a similar way by linear interpolation/extrapolation for different orientations

of the free surface.

seabed

Pc

zc

zs
ηcg
c , Ps

x

z

Figure 3.19: Pressure in a surface cell centre with |NFB| = 3 when it is directly above an object

cell

(ii) Pressure
The pressure boundary condition at the free surface cell centre is not only required within

the Poisson Pressure equation to get ∆p. Additionally, the pressure at the free surface cell
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centre should be interpolated/extrapolated directly before calculating u∗
i in the momentum

equation, i.e (c.f. Figure 3.18):

Pc = Pb
zs − zc

zs − zb
+Ps

zc − zb

zs − zb
(3.109)

where Ps is the pressure on the free surface. Including the viscous stresses on the free

surface Ps is equal to:

Ps = 2ρ (ν+νt) (nc)i
∂ui

∂xi
(3.110)

where (nc)i is the ith component of~nc. Moreover, in the case of a free surface above an object

cell, pressure is assumed hydrostatic as illustrated in Figure 3.19 (this is only available for

|NFB| = 3 since it is orientated in the direction of gravity assumed to be the z axis):

Pc = Ps + gρ(zs − zc) (3.111)

(iii) Velocities
Velocities need to be evaluated at cell boundaries which separate a surface cell and an air

cell for the finite-difference approximations. In order to get this velocity the tangential

stress boundary condition is used. It states that the tangential stresses vanish at the free

surface implying:
∂ui

∂n j
(1−δi j)= 0 (3.112)

where n j is the major direction of the free surface normal. Within the model we make

use of the value of NFB of the free surface cell to determine its orientation in order

to apply zero gradient of the velocity in the tangential direction as required. Once the

tangential velocities have been found, the remaining normal velocities can be evaluated

from continuity. A problem example is illustrated in Figure 3.20.

For the free surfaces in Figure 3.20 lets say they all have NFB =−3. In this case the no

gradient condition for the velocities tangential to the z direction is applied
(
∂u
∂z , ∂v

∂z = 0
)
, e.g.:

uwt = uw ue = ueb vst = vs vn = vnb (3.113)

Once the tangential stress condition has been applied, the remaining velocities normal to

the z direction can be found from continuity, e.g:

wt = wb −∆zc

(
ue −uw

∆xc
+ vn −vs

∆yc

)
(3.114)

(iv) Turbulent Quantities
Values inside air cells adjacent to free surface cells are required for the finite-volume

approximations of the transport equations for k and ε. In this study the no gradient

condition is applied for ε while k is 80% of the value of the free surface, i.e.:

ka = 0.8ks εa = εs (3.115)

where a indicates the value of the turbulent quantity defined in the air cell and s is that in

the free surface cell.
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Figure 3.20: Velocities that need to be determined at the interface between fluid cells and air

cells (shown by the white arrows) via the tangential stress boundary condition and continuity.

Black arrows indicate velocities that are calculated normally through momentum and the Poisson

Pressure equation

Boundary Conditions with Object Cells

(i) Poisson Pressure Equation
If an object cell, b is adjacent to the centre cell c where ∆pc is to be evaluated, then the

coefficient, Ab is simply set to zero. This is equivalent to a no gradient condition of ∆p

across the cells.

(ii) Velocities
The normal velocities at the interface between a boundary cell and non-boundary cell are

always zero since flow cannot pass through the boundary. Note, that since this is the case a

condition for pressure on the boundary is not required because the pressure gradient term

no longer appears in any of the equations here.

The boundary conditions for the tangential velocities may however be somewhat more

complicated depending on the choice. The tangential velocity boundary conditions are

important to correctly evaluate the viscous stresses arising from the influence of the

boundary. We know that physically the no-slip boundary condition should be applied.

Unfortunately however, in the sort of modelling performed in this thesis the cell size will

to be too coarse to capture the boundary layer. This means that the simple application of

the no-slip boundary condition will instead introduce unphysical numerical viscosity onto

the system. This is also a result of the staggering of the velocities which means that the

velocity tangential to the boundary can never be defined explicitly on the boundary. Instead

we should provide a velocity inside the boundary as a ghost cell for the finite-difference
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as shown in Figure 3.21. The simplest method to avoid the problems associated with

evaluating the shears stresses is to avoid calculating them, i.e. to just apply the inviscid

slip boundary condition:

log-law region
(70 < y+p < 500)

buffer/viscous
sub-layer (y+p < 70)

kc, εc

kb, εb

uc
yp

ub

ut

x

z

Figure 3.21: Velocity ub tangential to and within the boundary, and the turbulent quantities, kb

and εb that may be applied as ghost cell values when evaluating the finite-difference approxima-

tion of the bed shear stress. However, if the wall function approximation is adopted, the shear

stress on the boundary is directly calculated based on the value of uc to get uτ. Similarly, kc and

εc are directly inserted based on this calculation. The wall function approach assumes that uc, kc

and εc fall within the log-law region

ub = Fcuc (3.116)

where Fc = 1. As has been introduced in §2.1.2, an inviscid solution is often a fairly good

approximation of surface waves in general so for the most part the slip condition is a

reasonable one. However, in the surf zone, for breaking waves, runup and the like, the

viscous effects on the seabed are likely to become more important. Note that setting, Fc =−1

in Eqn. (3.116) corresponds to the no-slip boundary condition since the interpolation of uc

and ub will give zero tangential velocity on the boundary in this case. In fact, any value

of, −1 < Fc < 1 can be applied to simulate some viscous boundary condition that may be

calibrated with data for the specific problem at hand if it is available.

However, data is not often available, it is difficult to calibrate since it can depend on the

cell resolution, and scientifically it is a lousy solution. To estimate the viscous stresses on

the bed another approach is more attractive. Firstly, we rewrite the momentum equations

in the following form:

∂ui

∂t
+u j

∂ui

∂x j
= g i − 1

ρ

(
∂p
∂xi

+ ∂τi j

∂x j

)
(3.117)
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where the viscous stresses, τi j are equal to:

τi j = ρ(ν+νt)
∂ui

∂x j
(3.118)

To evaluate the viscous stress at the boundary, τi j

∣∣∣
b
≡ τbi the following equation may be

used:

τbi = ρu2
τi (3.119)

where uτi is the shear velocity (in the i direction which can only be perpendicular to the

boundary). If the assumption is made that the velocity in the last cell at a distance, yp

from the boundary, uc (see Figure 3.21) falls within the so called log-law region (70< y+p =
yp/δv < 500 (Versteeg and Malalasekera, 2007; Schlichting and Gersten, 2000)), then it is

possible to evaluate uτ from uc which can then be used to evaluate the bed shear stress on

the boundary to insert into Eqn. (3.117). Note that the log-law is defined as:

uc = uτ
κv

ln
yp

yk
(3.120)

where κv (= 0.41) is the von Kármán constant, and yk is the roughness length that depends

on the equivalent sand roughness of the bed, ks. From Schlichting and Gersten (2000), yk

is equal to:

yk =


δv exp(−5.0κv) if 0≥ k+

s ≤ 5

δv exp(−C+(k+
s )κv) if 5< k+

s < 70

ks exp(−8.0κv) if 70≤ k+
s

(3.121)

where y+p = yp/δv, k+
s = ks/δv, and δv = ν/uτ is the wall layer thickness. The three sets of

cases in Eqn. (3.121) are known as the hydraulically smooth, transition, and fully rough

regions, top to bottom respectively. In the case of the transition region, the solution for

some “constant” of integration, C+(k+
s ) which is a function of k+

s is however, not constant.

Referring to Figure 17.8 in Schlichting and Gersten (2000), C+(k+
s ) is assumed to follow a

linear relationship between 5< k+
s < 70 from 5.0 to -2.5 for use in this study. The log-law

relationship is used to find uτi, perhaps by iterative means in the case of the hydraulically

smooth or transition region, which is then used to evaluate τbi and is directly inserted into

the momentum equation at the seabed (or any other solid boundary).

(iii) Turbulent Quantities
Just like the velocities, in reality the turbulent quantities vary rapidly near the wall.

However, in general our grids are too coarse to capture this variation hence a method is

required to to deal with this. Just like the case of the velocities, the simplest solution is

to assume an inviscid slip condition at the bed. In this case a no gradient or a percentage

gradient condition for the values of the turbulent quantities between computational cells

and object cells is applied. For the most part it is not particularly important since within
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the finite-volume discretization presented in Eqn. (3.93) and (3.94) γa
i will always been

zero on the boundary between object cells and computational cells. It is possible however

that the the second-order TVD limiter function will use the value specified in the ghost cell

(object cell) so it is included for completeness, i.e. (c.f. Figure 3.21):

kb = 0.8kc εb = εc (3.122)

Similar to the free surface, kb on the boundary is set to 80% of kc.

Additionally, in the event a viscous solution is defined at the bed another approach is

required. This is a wall function approach based on the same assumption in the momentum

equations to get the bed stress. Strictly speaking the wall function approach requires that

the near-bed tangential velocity is within the log-law region (70< y+ < 500), since it is based

on measurements which show that the production and dissipation rate of the turbulent

kinetic energy are approximately equal (Versteeg and Malalasekera, 2007; Schlichting and

Gersten, 2000; Sondak, 1992) in this region:

Pk = ε (3.123)

Since the turbulent bed shear stress multiplied by the tangential velocity gradient is equal

to Pk one can equate the values of k and ε at the near-bed cell centre to the turbulent bed

shear stress. Furthermore, taking the log-law assumption (Eqn. (3.120)) it is possible to

derive the equations for kc and εc as (Sondak, 1992):

kc =
u2
τ√
Cµ

(3.124)

εc =
u3
τ

κv yp
(3.125)

where uτ is found from uc which in this case should be the vector sum of the tangential

velocities.

3.4.8 Initial Conditions

Initial conditions include those for pressure, velocity and the turbulent quantities. In the majority

of cases a still water solution is taken as an initial condition. Here the pressure is set to hydrostatic

and the velocities are set to zero. In the case of a real tsunami simulation like that presented

in Chapter 5, the free surface may be arbitrarily defined as an initial condition according to the

instantaneous movement of the seabed. However, the pressure is still assumed hydrostatic and

velocities are set to zero. Additionally, for the turbulent quantities it is necessary to “seed” the

domain with initial non-zero values of k, ε, and νt, as will be explained below.

85



CHAPTER 3. NUMERICAL METHODOLOGY

Seeding of Turbulent Quantities

The seeding of the turbulent quantities, k, ε and νt is required since if there is no initial value of

νt, turbulence can never be produced. Furthermore, the determination of νt relies on the division

of k2 by ε, hence if k or ε is equal to zero problems arise. The study of Lin and Liu (1998) is one

the seminal studies of breaking waves using the VOF method for free surface modelling and the

k−ε turbulence closure scheme. They suggest that the initial value of k to be seeded should be

equal to:

k = 1
2

u2
t (3.126)

where ut = cδ0 is some representative of the size of the fluctuations of the velocity about the

mean. c is the wave speed which for long waves (tsunamis) can be estimated as
√

gh. The choice

of δ0 is arbitrary where Lin and Liu (1998) found that it is relatively unimportant in the surf zone

but if the initial seeding of the turbulence quantities is too low the initiation of wave breaking

may be delayed. Lin and Liu (1998) suggests δ0 = 2.5×10
−3 is a good choice. Moreover the initial

value of νt may be set equal to:

νt = ζ0ν (3.127)

where ζ0 is a constant that is also arbitrary and relatively unimportant in the surf zone. A

value of ζ0 = 0.1 has been suggested as a suitable solution (Lin and Liu, 1998). Finally ε can be

determined by:

ε= Cµ
k2

νt
(3.128)

3.4.9 Variable Grid Construction

In the RANS model, in order to reduce computational time a variable grid is often employed. For

example, ∆x may be made gradually smaller from the surf zone to the swash zone, and similarly

∆z gradually smaller from the seabed to the free surface region. This can avoid unnecessarily

fine grids in regions where the flow is fairly simple while employing fine grids in complicated

regions of the flow. Still, ∆z must be the same value near the free surface in both the surf zone

and the swash zone, i.e. ∆z cannot be a function of horizontal distance (nor can ∆x be a function

of vertical distance). This is one of the major drawbacks of the RANS model that can be avoided

by using the coupled model presented in §3.5. In any case, when varying say ∆x from the surf

zone to the swash zone, it is desirable that two adjacent values of ∆x be some multiple close to 1,

α of each other to avoid errors in the finite-difference formulae associated with large changes

between adjacent cell sizes. Thus, one can assume a power law relationship of the form:

∆x0α
n =∆xn (3.129)
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where ∆x0 is the initial cell size in the surf zone at x0. ∆xn is the nth cell from x0 at xn as shown

in Figure 3.22. Thus, the following geometric series follows:

n−1∑
i=0
∆x0α

i ≡∆x0
1−αn

1−α = xn − x0 (3.130)

Note that, α< 1 in the case sketched in Figure 3.22 but we may also adopt the reverse of this

case so that α> 1.

x0

i = 0 1 n − 1

xn

n

∆x0 ∆xn

Figure 3.22: Sketch of the power law variation in cell size between two prescribed locations

Solving Eqns. (3.129) and (3.130) simultaneously gives the following equations for α and n

respectively:

α= 1+ ∆xn −∆x0

xn − x0
(3.131)

n = log∆xn − log∆x0

logα
(3.132)

The number of cells, n must be an integer and if this requirement is met the problem is solved.

However Eqn. (3.132) does not guarantee that n is an integer. In such a case we take, n = floor(n)

and re-calculate α to satisfy Eqn. (3.130) using the floored integer, n. To perform this operation

Newton-Raphson iterations are adopted:

αi+1 =αi −
∆x0(1−αn

i )+ (1−αi)(x0 − xn)

xn − x0 −∆x0nαn−1
i

(3.133)

The corrected solution of α to within some desired accuracy is found in just a few iterations

because the initial guess of α from Eqn. (3.131) is already close to the final solution. Furthermore,

the algorithm guarantees that ∆xi+1 <∆xi (or ∆xi+1 >∆xi for α> 1) is always satisfied thus it is

judged to be effective. This method allows for the automated calculation of variable grid sizes

by specifying only the beginning and end coordinates and the grid cells at those coordinates.

One should take care that α after calculation is in fact close to 1. The author recommends that

0.95<α< 1.05.
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3.5 Two-way Multiscale Coupling

Multiscale coupling consists of combining two or more models together that assume different

governing equations for the wave motion due to scaling disparities. The two-way aspect refers

to the transfer of information in both directions between two models that are coupled at some

spatial location. In this thesis the use of just two models overall is adopted for simplicity. However,

for possibly even better performance it may be useful to consider coupling multiple models in the

future. Those two models, a 2DH NSWE one and a 3D RANS one, have been described in detail in

§3.2 and §3.4 respectively. The NSWE model has been shown to be especially adept at modelling

long waves like tsunamis over large areas with accuracy and computational efficiency. A method

for two-way nesting has been described in §3.3 that allows the NSWE model to simulate the

tsunami from the source down to fairly fine grids in a region of interest. The idea when combining

this with the RANS model is that one extra, further refined and smaller layer is simply added to

the multi-grid nested NSWE setup except that the governing equations in this layer becomes

the RANS equations. This implies that the same spatial nesting and temporal nesting scheme

used in the multi-grid nesting is valid for the two-way multiscale coupling scheme when different

horizontal grid sizes and time steps are used.

Thus, almost half of the two-way multiscale coupling technique has already been introduced

in §3.3 that described the two-way multi-grid nesting scheme. The trick simply becomes one

where the depth-averaged information in the NSWE model must be transferred somehow to

include a vertical profile, described in §3.5.1. For the transfer of information back in the other

direction, the velocities are integrated to get the volume flux and a single free surface must be

assumed near the boundary to be able to pass that information back to the depth-averaged model.

This is explained in §3.5.2. Note, that since the explanation of interpolation, summation and

averaging on different horizontal spatial scales has already discussed in §3.3.1, this section will

avoid much description about those horizontal effects. Instead, the focus will be on the vertical

effects. In reality the two-way multiscale coupling adopts the multi-grid nesting techniques.

With regards to coupling in the temporal direction, a few differences exist compared with the

NSWE-NSWE multi-grid nesting procedure. These are highlighted in §3.5.3 along with a detailed

description of the overall procedure.

Figure 3.23 illustrates the basic setup of the two-way coupling of the models which the reader

can refer to when reading through the equations presented. Lastly, the two-way coupled model

used in this thesis has been given a name. It is “2CLOWNS-3D” (2-way Coupled Long Wave to

Reynolds-Averaged Navier-Stokes 3D). In the 1DH to 2DV dimensional case (c.f. Chapter 4) the

“-3D” part is omitted. The 2CLOWNS(-3D) abbreviation will be used in this thesis hereafter.
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NSWE domain

RANS domain

Qxc QxEQxw

wc,k we,k

uc,k ue,k uE,k

ηw ηc ηe

Fc,k FeL,k FeR,k FEL,k

η
cg
eL η

cg
eR

x

z

∆xNSWE

∆xRANS

∆z

Coupling
Two-way

RANS
domain

NSW domain

Two-way
Coupling

Vn

Vc
Uc Ue UEUw

ηt

ηtLD

ηtLU

ηtRD

ηtRU

x

y
∆yNSWE

∆yRANS

Figure 3.23: Interface region between the 2DH NSWE and 3D RANS models in the x− z plane

(above) and x− y plane (below). The necessary variables required for two-way coupling are

indicated. Some arrows and cell centre circles have been omitted for legibility
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3.5.1 Shallow Water to RANS Exchange

The boundary condition for the RANS domain most importantly requires knowledge of the vertical

distribution of the horizontal velocities, uc,k and vc,k, and the vertical velocity, wc,k at the domain

interface, where the k refers to a cell number in the vertical direction. This profile must be

obtained from the volume fluxes, Q in the NSWE model. Furthermore, values of the fluid volume

fraction, Fc,k as well as the turbulent quantities kc,k and εc,k are also required. A description of

these boundary conditions and how to obtain them is described in this section.

Horizontal Velocities

In the 3D case, two horizontal velocity distributions are required. One is the normal velocity and

the other is the tangential velocity to the boundary. Similar to multi-grid nesting, the normal

velocity (e.g. uc,k in Figure 3.23) must be defined directly on the interface so no interpolation

of the volume flux in the normal direction is required. Interpolation may be required in the

tangential direction, as detailed in §3.3.1. This normal velocity is a driving boundary condition

to the RANS model since it is responsible for the correction of the pressure through continuity

on the water column adjacent to the boundary. Thus, it is inserted as un+1
c,k and u∗

c,k, i.e. it is

the correct Solenoidal velocity after the time step and it is used as the “guessed” velocity in the

Poisson Pressure equation. The previous value may be used to evaluate the momentum equation

as normal. Contrastingly, the tangential velocity, denoted vc,k, exists inside the boundary and

thus plays no role in the Poisson Pressure calculation. It is used only to update the momentum

equation. Interpolation of the flux in the normal and tangential directions may be required which

is again detailed in §3.3.1.

Lets assume that the flux Qxc refers to the interpolated normal flux, and hxc is the interpo-

lated initial water depth, both in the position of uc,k. ηc and ηe are the water levels that align in

the tangential direction with uc,k. The depth-averaged normal velocity, Uc can thus be found by:

Uc = Qxc

(ηc +ηe)/2+hxc
(3.134)

The problem now becomes how to transform Uc onto some vertical profile for uc,k to use as a

boundary condition for the RANS model. The simplest choice is the shallow water assumption

that the horizontal velocities are uniform over the depth:

uc,k =Uc (3.135)

In order for this assumption to be valid the flow in the RANS model should obey the true long

wave assumptions so that the vertical profile of the horizontal velocities become close to uniform

at the boundary. This may require the domain of the RANS model to be very large so that

reflections with rotations and non-hydrostatic effects inside the RANS domain do not return to

the boundary to complicate things. Sometimes this may be quite a restriction. One method to
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Figure 3.24: Illustration of the arbitrary velocity profile based on no-gradient of the fluctuation,

u′′ from the depth-averaged component, U

alleviate this strictness at the boundary is to introduce an arbitrary velocity distribution so that

vortices rotating in the vertical plane may freely cross the boundary in the form:

uc,k =Uc +u′′
c,k (3.136)

where u′′
c,k is the fluctuation from the depth-averaged velocity as illustrated in Figure 3.24.

Following Fujima et al. (2002), a suitable boundary condition is obtained by setting the

difference in u′′ across the boundary to zero. When referring to Figure 3.23, this means equating

u′′
c,k to u′′

e,k. Finally, the equation for uc,k can be written as:

uc,k =Uc +
γa

xe,k(FeL,k +FeR,k)

γa
xc,k(Fc,k +FeL,k)

(
ue,k −Ue

)
(3.137)

The ratio of the F volume fractions and aperture ratios, γa
x exists to ensure that the volume

flux, Qc is conserved. This equation is correct for any cell sizes as long as Uc and Ue have been

correctly determined from interpolation. It is easy to extend this idea to the tangential fluxes,

vc,k as well but generally more interpolation is required to get the depth-averaged velocities in

the correct locations.

Vertical Velocities

The shallow water profile for the vertical velocities, w(z), is found by integrating the continuity

equation assuming uniform horizontal velocity profiles, and applying the kinematic boundary

conditions at the sea bed and free surface. This results in a linear profile (i = 1,2):

w(z)=−∂Ui

∂xi
(z+h) (3.138)
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where z is the elevation from the initial undisturbed free surface. Note that even assuming a

Boussinesq type profile of the horizontal velocities (quadratic) would result in a linear profile for

the vertical velocities after ignoring terms of O(µ4) (Sitanggang and Lynett, 2010). Eqn. (3.138)

implies that the vertical velocities depend on the gradient of the depth-averaged velocities

which are found from the volume fluxes and the water depths. In our example (Figure 3.23),

a combination of Uw, Uc, and UE must be considered in order to compute ∂Uc
∂xc

. Similarly, a

combination of Vc, and Vn, must be considered in order to compute ∂Vc
∂yc

. After those depth-

averaged velocities have been found via the appropriate interpolation, wc,k can be determined

by:

wc,k =−(zk +hc)
[

1
(∆xNSWE)2 (∆xRANSUc + (∆xNSWE −∆xRANS)UE/2

−(∆xNSWE +∆xRANS)Uw/2)+ Vn −Vc

∆yRANS

] (3.139)

where zk is the elevation from the initial free surface at the vertical cell integer k, and hc is

the initial water depth of the water column where wc,k is defined (cell centre in terms of the

horizontal plane). However, it may be that if an arbitrary profile of the horizontal velocities is

specified (Eq. (3.137)) to account for the reflected waves with some rotation, the simple linear

profile of the vertical velocities could become a poor approximation to the RANS profile near the

boundary. In this case, simply a no gradient boundary condition for wc,k may be more appropriate:

wc,k = we,k (3.140)

Scalars

The free surface level is defined inside the boundary in terms of the cell volume fraction, Fc,k.

This ensures that the correct volume flux is transported into the domain via the VOF method

(Eqn. (3.81)). Fc,k is determined from the interpolation of ηc and ηe in the NSWE model:

Fc,k =


0, if zk ≥ η∗c ,

1, if zk+1 ≤ η∗c ,

(η∗c − zk)/∆z, otherwise

(3.141)

η∗c =
(
∆xNSWE +∆xRANS

2∆xNSWE

)
ηc +

(
∆xNSWE −∆xRANS

2∆xNSWE

)
ηe

Finally, the remaining scalars that must be defined inside the boundary are the turbulent

ones, kc and εc. Unfortunately the NSWE model provides no information on these parameters.

Furthermore, the NSWE model has been derived from inviscid and irrotational assumptions

which implies no turbulent energy. For lack of a better method, no gradient conditions are set for

k and ε across the boundary:

kc,k = ke,k εc,k = εe,k (3.142)
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Our real hope is that the turbulent energy remains small at the boundary in the RANS model so

that the turbulent boundary conditions are unimportant on the flow. This in turn would validate

the main assumption implied when coupling the two models together: that the physics of the flow

must be a good approximation of the weakest link (the model with the most assumptions) in the

coupling region.

3.5.2 RANS to Shallow Water Exchange

The boundary conditions for NSWE model in the two-way coupling procedure are identical to those

for the multi-grid nesting: the free surface and the volume flux. They are summed and averaged in

the case of different spatial resolutions between the NSWE and RANS layers as described in §3.3.1.

Thus, a large proportion of the RANS to shallow water exchange algorithm has already been

introduced implicitly by the explanation of multi-grid nesting technique. The major difference is

that a couple of basic calculations are required to convert the three-dimensional values within

the RANS layer into these 2DH type quantities. This conversion takes place throughout the

entire RANS domain since it is convenient to use the 2DH type data for visualization purposes

and analysis.

Firstly, in order to get the free surface from the RANS model a simple procedure is followed. A

loop is conducted over all the vertical cell numbers, k from the top down. When a cell is found to

be a free surface one (NF = 2), the vertical component of the centre of gravity of the free surface,

(ηcg)z is taken to be the free surface elevation in that vertical column and the loop is exited.

For example, (ηcg
eL)z and (ηcg

eR)z (c.f. Figure 3.23 (x− z plane)) represent the free surfaces ηeL and

ηeR respectively. Once the free surfaces in the RANS domain are found they are summed and

averaged onto the NSWE grid. To get ηt from the RANS in the example illustrated in Figure 3.23

(x− y plane) requires the following calculation:

ηt =
(
ηtLD +ηtRD +ηtLU +ηtRU

)
/4 (3.143)

Note that this procedure assumes that only one free surface exists in a vertical column. This is

reasonable because if more than one free surface has arisen in the RANS model at the boundary,

then it is unlikely to be a good position to couple the models since one of the main assumptions of

the NSWE model has been violated.

The volume fluxes are found by integration of the velocity multiplied by the fluid height at

each cell boundary over the water depth. For example, to get QxE (c.f. Figure 3.23 (x− z plane))

the following operation is conducted:

QxE =∆z
ke∑

k=1

[
γa

xE,kuE,k(FeR,k +FEL,k)/2
]

(3.144)

in which k ∈ [1,ke] is the vertical cell number and ke is the total number of vertical cells. Note

that the two values of F are used to get the average of F across the cell boundary.
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3.5.3 Temporal Coupling

Just like temporal nesting described in §3.3.2, when the time step is different between the last

NSWE layer and the RANS domain, interpolation of the values in time is required. Moreover,

a specific order of calculation of the models is necessary so that all known values are used at

the correct time when passing information from one model to another. This is termed “temporal

coupling” in this thesis. Different time steps arise firstly, because the solution algorithms and

governing equations are different in the models. While the NSWE layer can run at Courant

numbers close to
p

2/2, due to the explicit SMAC algorithm of the RANS model, generally smaller

Courant numbers are required. It has been found by the author that Courant numbers for the

wave speed around 0.3 is usually suitable, but smaller values < 0.1, based on the flow velocity

may be required during highly unsteady and turbulent flows like wave breaking. Additionally,

the horizontal spatial grids scales are typically finer in the RANS model, further increasing the

ratio of ∆t between the coupled models, ∆tratio.

The major difference between temporal coupling (between a RANS layer and a NSWE layer),

and temporal nesting between two NSWE layers is that there is no staggering of the variables

in time in the RANS model. In other words, the scalar variables defined at the cell centres are

defined at the same time as the velocity vectors on the cell boundary. One time step in the RANS

model updates everything from time, t = n, to t = n+1. In contrast one time step in the NSWE

model updates the volumes fluxes from t = n, to t = n+1, but the free surfaces from t = n−1/2, to

t = n+1/2. Hence, the temporal nesting algorithm splits up the calculation of momentum and

continuity into two separate steps, while for the RANS model no splitting of calculation steps is

required (or possible).

The temporal coupling procedure begins just like temporal nesting where the ∆t in each

layer is determined from the desired Courant number and the requirement of an integer value of

∆tratio between two adjacent layers (Eqns. (3.40) and (3.41)). Lets consider an example similar

to the one described in §3.3.2 where there are three layers, L1, L2, and L3. The difference in this

section is that the last layer is a RANS model one (while the first two layers are NSWE ones).

Due to the considerations of the spatial grid resolutions and different Courant numbers between

models, imagine that ∆tratio = 2 between any two adjacent layers.

The three layers can be summarised as: L1 (NSWE coarse grid), L2 (NSWE fine grid) and

L3 (RANS). A flowchart of the calculation procedure is illustrated in Figure 3.25 which the

reader can refer to. The following explanation will focus on the L2 to L3 exchange. Firstly, the

continuity equation in L2 is performed: ηn−1/4 → ηn+1/4. At this point the free surface from the

RANS layer is exchanged to L2. However, the RANS model has no knowledge of ηn+1/4 because it

is not staggered in time. In fact it only knows ηn independent of the time step in the RANS model.

This is different to temporal nesting for the NSWE model which encounters a similar problem

for different time steps between layers but due to the time staggering a value at a time closer

to n+1/4 is available after one calculation of continuity. In fact, if ∆ratio = 1 between NSWE
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layers an extra loop of continuity is unnecessary. However, for any ∆ratio between the coupled

the NSWE and RANS layers (including ∆ratio = 1), a half time step of continuity is required to

account for the unmatched values in time:

ηn+1/4
(i, j) = ηn

(i, j) −
∆tL2

2

[
rx

(
Qn

x(i+1/2, j) −Qn
x(i−1/2, j)

)
+ r y

(
Qn

y(i, j+1/2) −Qn
y(i, j−1/2)

)]
(3.145)

Although this may introduce a small error through the indirect determination of the free surface

by the continuity equation, since the free surface itself is directly passed through at t = n, the

error cannot accumulate. Thus, the overall effect on the calculation can be considered small.

The next step is to update the volume flux in L2 through the momentum equation: Qn →
Qn+1/2. The value of the flux at the two time steps is interpolated to get Qn+1/4 as required for

the RANS model. Qn+1/4 is converted to the horizontal and vertical velocities as explained in

§3.5.1. The normal velocities at t = n+1/4 are used in the Poisson Pressure equations to get the

Solenoidal velocity field in the next time step of the RANS model. All the velocities (normal,

tangential and vertical ones) from the previous time step (t = n) are used in the forward Euler

step of the momentum equation.

Moreover, to get the depth-averaged velocities (requires division of the volume flux by the

water depth) and the values of F on the boundary (based on free surface level), values of the free

surface are required from the NSWE model at t = n+1/4. In this case, ηn+1/4 is actually already

available and can be directly used. If ∆tratio > 2 then interpolation of ηn−1/4 and ηn+1/4 would be

required at this step. Since all the boundary conditions may now be applied for the RANS model,

one time step is performed updating all the values from t = n → n+1/4. Furthermore, because

Qn+1/2 is available in L2, one extra time step of the RANS model may now be instantly performed.

However, the free surfaces in L2 are only available at t = n+1/4, but those at t = n+1/2 are

required to get the depth-averaged velocities. Although, it is possible to update the continuity

equation locally on the boundary to the RANS layer and outside of it, it cannot be updated inside

the RANS layer since Qn+1/2 is not yet known here. Note that the average of the values of ηn+1/2

inside and outside of the RANS layer is required to get the depth on the boundary for division.

Thus, extrapolation is our only option and the values of ηn+1/2 are obtained by:

ηn+1/2 = 2ηn+1/4 −ηn−1/4 (3.146)

Fortunately since the values of η are only used to get the water depth and η is generally small

in comparison to h, the error associated with the extrapolation step is expected to be small.

The next time step of the RANS model can be now be performed, updating all values from

t = n+1/4 → n+1/2. At this stage the fluxes at t = n+1/2 may be passed from the RANS layer

to L2. Hereafter, Steps 8 to 11 (c.f. Figure 3.25) are actually the same as Steps 1 to 7 sans the

calculation for L1, so their explanation will not be repeated. Finally, when everything is updated

to t = n+1 after Step 11, flux data can be exchanged between all layers (L1, L2, L3) in both

directions (although the volume flux has already been passed from L2 to L3 before Step 11). This

marks the end of a time step.
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t = nt = n− 1/2

t = n− 1/2

t = n+ 1t = n+ 1/2

t = n+ 1t = n t = n+ 1/2

L3
(RANS):
Pass

through
ηL3(n)

L2 Continuity:
ηL2(n−1/4) → ηL2(n+1/4)

L1 Continuity: ηL1(n−1/2) → ηL1(n+1/2)

L1 Momentum: QL1(n) → QL1(n+1)

L2 Momentum:
QL2(n) → QL2(n+1/2)

L3 All:
φL3(n)

↓
φL3(n+1/4)

L3 All:
φL3(n+1/4)

↓
φL3(n+1/2)

L2 Continuity:
ηL2(n+1/4) → ηL2(n+3/4)

L2 Momentum:
QL2(n+1/2) → QL2(n+1)

L3 All:
φL3(n+1/2)

↓
φL3(n+3/4)

L3 All:
φL3(n+3/4)

↓
φL3(n+1)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Figure 3.25: Example flowchart of the calculation order for temporal coupling with three layers

(L3 is a RANS model layer) where ∆tratio = 2 between two adjacent layers. The arrows show the

exchange of information where the horizontal position of the ends of the arrows indicate the

time step of the exchanged data. φ in the L3 block is a dummy variable to indicate all scalar and

vector quantities in the RANS model
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Similar to temporal nesting, to achieve the coupling calculation procedure illustrated in

Figure 3.25 a recursive subroutine is adopted. It is able to calculate any arbitrary number of

layers with arbitrary ∆tratio between any two adjacent layers. It is almost identical to Appendix A

except that it calls the RANS model solver in place of the NSWE momentum equations for

calculation in the RANS layer. No continuity equation is calculated in this layer.
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SOLITARY WAVE TRANSFORMATION AND

BREAKING ON A PLANE BEACH

In order to verify and identify a suitable range of application of the 2CLOWNS (1DH-2DV

dimensions) model that was described in detail in Chapter 3, a study on the shoaling

and breaking of solitary waves on a plane beach was conducted. The study investigated

a range of offshore wave heights of solitary waves on three different slopes ranging from fairly

steep to mild as described in §4.2. By comparing the shoaling capabilities of the individual

NSWE (nonlinear shallow water equations), FNBM (fully nonlinear Boussineaq model) and

RANS (Reynolds-averaged Navier-Stokes) models in §4.3.1 plus the coupled 2CLOWNS model

in §4.4.1 two outcomes were achieved: Firstly, the effects of beach slope, offshore wave height,

and boundary conditions related to the two-way coupling were highlighted. As a result, a suit-

able range of allowable solitary waves and slopes according to some dimensionless parameter

was identified. Secondly, local depths on the slope where two-way coupling takes place that

maximises performance and minimises computational load was expressed as a function of a

related dimensionless parameter as demonstrated in §4.3.2. Interestingly this location appeared

to correspond to the transition from the zone of gradual shoaling to the zone of rapid shoaling.

Following this, the performance in terms of the physics of shoaling and prediction of the breaking

point was compared with experiments and other numerical analyses as found in §4.4. As a result

new empirical expressions were proposed for the breaking index and the depth at breaking to

complement existing ones as shown in §4.4.3. A qualitative evaluation of the capabilities of the

model to predict post-breaking behaviour such as touchdown of the plunging jet was conducted

and is presented in §4.4.4. Lastly, a comparison of the velocity profiles at different stages of trans-

formation between the three models NSWE, FNBM and RANS is shown in §4.4.5 to highlight

their disparities.
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4.1 Introduction

In long wave modelling it is important to obtain good estimations of wave shoaling and breaking

in the nearshore area. These phenomena can affect sediment transport, hydrodynamic forces on

coastal structures and transport of driftage significant during tsunami and storm disasters. As

a representation of tsunamis and other long waves a significant amount of attention has been

paid to the evolution of solitary waves. Synolakis (1987) derived an analytical solution to the

nonlinear shallow water equations valid for non-breaking solitary waves. These solutions has

since been often used in tsunami benchmarking (Synolakis et al., 2009). Additionally, Synolakis

and Skjelbreia (1993) provided a semi-quantitative description of the evolution of breaking waves

where dispersion and nonlinearity become important so that the Synolakis (1987) solutions

breakdown. Four distinct regions of solitary wave transformation were identified where the

rate of shoaling could be approximated according to a power law equivalent to Green’s law and

Boussinesq’s law in the two shoaling stages respectively, followed by two zones of decay after

wave breaking. Both Hsiao et al. (2008) and Hwang et al. (2007) presented experimental studies

investigating breaking solitary waves on a 1/60 (mild) slope. Hsiao et al. (2008) confirmed the

analysis of Synolakis and Skjelbreia (1993) and further identified a fifth region, that of post-

breaking bore propagation. Grilli et al. (1994, 1997) developed a fully nonlinear potential flow

(FNPF) model that was applied to the transformation of solitary waves on plane slopes and was

shown to be in excellent agreement with experiments performed on a 1/35 slope. They proposed

empirical formulae for breaking characteristics based on a nondimensional slope parameter.

Hsiao et al. (2008) also shows that the formulae were in excellent agreement on the mild slope.

However, Grilli et al. (1994, 1997) note that on the steeper slopes (> 1/35) Green’s law and

Boussinesq’s law are not very good descriptors of solitary wave evolution and in fact on very steep

slopes the solitary wave height essentially does not change in height at all.

To model the propagation of solitary waves and other long waves from far offshore towards the

coastal zone depth-integrated two dimensional wave equations (2DH) have been typically utilized,

in particular the shallow water equations (NSWE) for tsunami modelling. Simple finite-difference

approximations of the NSWE have been widely used in models such as TUNAMI (Imamura

et al., 2006) and COMCOT (Liu et al., 1998) with reasonable success. Moreover, such models

are well adapted to computing over large scales with various spatial resolutions (grid nesting).

When linear dispersive effects are important for long distance propagation, numerical dispersion

inherent in the model can be utilized in TUNAMI and COMCOT to match those of the linear

Boussinesq equations (Cho et al., 2007). However, for more local dispersive effects Boussinesq

models are better suited. Both weakly nonlinear (Wei and Kirby, 1995; Nwogu, 1993; Madsen

and Sorensen, 1992) and fully nonlinear Boussinesq models (FNBM) exist. COULWAVE (Kim

et al., 2009) and FUNWAVE (Shi et al., 2012a) are examples of the latter which has been shown

to demonstrate excellent performance for shoaling on slopes over a wide range of nonlinearity

ratios (Wei et al., 1995). COULWAVE is also formally ‘weakly-rotational’, a rare divergence from
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the typical irrotational assumption of most long wave models that otherwise have ad hoc or no

consideration of mixing effects aside from numerical manifestations.

Depth-integrated models are not exact forms of the governing equations of fluid motion and

contain theoretically a truncation error of some order (Wei et al., 1995). They also lose the ability

to model wave-overturning and other three-dimensional effects. However, some models have been

developed to solve the original fully nonlinear potential flow (FNPF) equations, in particular

a boundary element method (BEM) (Grilli et al., 1994, 1997). Such inviscid models however

break down on the touchdown of the overturning jet before turbulent effects become significant.

To simulate the physics hereafter and provide detailed information on turbulence and bottom

stresses as well as interaction with irregularly shaped structures Navier-Stokes (N-S) based

solvers are required. Such solvers however suffer from very high computational costs, require a

fine resolution in space and time to model the physics of the problem to greater accuracy than

its depth-integrated counterpart, and are often susceptible to numerical dissipation over long

distances due to the indirect modelling of the free surface and thus are not suitable for calculation

over wide areas.

Typically the advantages of N-S models may only encompass a relatively small area around

a structure or region of interest particularly around the time when wave breaking would occur.

This realization has encouraged modellers to investigate coupling of depth-integrated and N-S

models in space to obtain the advantages and reduce the disadvantages of both models. Fujima

et al. (2002) and Fujima (2006) first demonstrated this type of hybrid model using the shallow

water equations combined with a N-S model where the free surface was approximated by the

height function approach. Sitanggang and Lynett (2010) presented and validated a scheme that

coupled a FNBM (COULWAVE) model and a vertical two-dimensional (2DV) Reynolds-averaged

Navier-Stokes (RANS) model using the Volume-of-fluid (VOF) method for free surface modelling.

Further, Pringle and Yoneyama (2013) applied a coupled model combining the 2DH shallow

water equations with a fully three-dimensional RANS model to the 2011 Tohoku Tsunami in

Kamaishi Bay, Iwate Prefecture with reasonable success. However, little comprehensive research

on the validation of the coupling of depth-integrated wave equations and N-S equations has been

conducted. Moreover, it is required to evaluate errors when matching the solutions of the two

models at the interface and optimise locations of that interface.

In this study a two-way coupled NSWE (in 1DH mode) to RANS (in 2DV mode) model, called

2CLOWNS that has been described in detail in Chapter 3 is applied. To evaluate the capabilities

of 2CLOWNS and its constituent models, solitary wave shoaling and breaking characteristics on

a plane beach are analysed in detail for a range of slopes and offshore wave heights. Water depths

on the beach slope where the NSWE model cannot reproduce the required shoaling characteristics

in comparison with a FNBM (COULWAVE) are identified to determine optimal coupling positions

to the RANS model in 2CLOWNS. Furthermore, the effect of beach slope, offshore wave height

and boundary conditions related to the two-way coupling are investigated. Prediction of the
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wave breaking characteristics such as the water depth at breaking and the breaker index by

2CLOWNS are compared with experiments and the FNPF model. A new empirical equation is

proposed to complement existing ones for the prediction of these characteristics. Furthermore,

the post-breaking wave behaviour and wave shape in 2CLOWNS is compared qualitatively with

expected behaviours to demonstrate its ability to model the entire wave transformation and

breaking process. Finally, velocity profiles of 2CLOWNS and depth-integrated models are shown

for comparison, and their disparities are discussed.
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4.2 Problem Setup and Model Conditions

This section begins by outlining the definition of the canonical problem for solitary wave propa-

gation, transformation and breaking on a plane beach in §4.2.1. The models used for analysis,

boundary/initial conditions, permanent wave forms, grid sizes, and assumptions for wave breaking

are introduced in §4.2.2. Finally, the combination of slopes and offshore wave heights investigated

in this study are outlined in §4.2.4.

4.2.1 Canonical Problem Definition and Dimensionless Variables

bed

c

x = −Xs

h0

A0η

u

w

A

hb

s

1

x

z

Figure 4.1: Sketch of the canonical problem definition for solitary wave propagation, transforma-

tion and breaking on a plane beach

The canonical problem definition is sketched in Figure 4.1. There exists a plane beach with

slope s, where the origin of the x coordinate begins at the toe of the slope with x positive onshore

of it. The offshore initial undisturbed water depth, h0 is constant in the negative x direction of

the toe of the slope. Thus, the initial undisturbed water depth, h is described by the following

function:

h = h0 if x ≤ 0

h = h0(1− xs) if x > 0
(4.1)

Centred at a distance Xs from the toe of the slope there exists a permanent form solitary

wave at t = 0 with offshore wave height, A0. The free surface of the solitary wave is described

by η, it is moving with wave speed, c and has horizontal and vertical orbital velocities, u and

w respectively. Additionally, as the wave transforms over the slope the local wave height, A is

constantly increasing until it breaks with a wave breaking height, Ab in an initial undisturbed
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water depth, hb. It is customary to introduce dimensionless variables based on h0 and g:

x′ = x
h0

h′ = h
h0

A′
0 =

A0

h0
A′ = A

h0
η′ = η

h0

u′ = u√
gh0

w′ = w√
gh0

t′ = t√
h0/g

(4.2)

where ′ indicates a dimensionless variable. The dimensionless variables will be used hereafter

in the analysis. Using Boussinesq’s first approximation for a solitary wave gives the following

offshore free surface profile and wave speed respectively:

η′ = A′
0sech2

√
3A′

0

4
x′

 (4.3)

c =
√

gh0(1+ A′
0) (4.4)

For consistency between numerical experiments we can define the distance X ′
s to be equal to

half a measure of the wavelength, L0 of a solitary wave which is defined as containing 97.5% of

the fluid volume according to Boussinesq’s approximation (this is within 0.3% agreement to the

length defined in Synolakis (1987)):

L0 = 4h0√
3A′

0

arctanh(0.975) (4.5)

X ′
s =

L0

2h0
= 2√

3A′
0

arctanh(0.975) (4.6)

This ensures that waves go through the same distance before transformation up the slope.

Additionally, in this study we wish to investigate a number of slopes and offshore wave heights

in order to identify a range of application of the 2CLOWNS model. A surf-similarity parameter

is commonly used to collapse the beach slope and offshore wavelength (uniquely tied to a wave

height for solitary waves) variables into one for analysis. In this study the slope parameter

introduced by Grilli et al. (1997) is adopted. It is defined as:

S0 = s
µs

(4.7)

where µs(= h0/Ls) is the inverse of the characteristic dimensionless length of the wave offshore

for use in the slope parameter based on Ls instead of L0 defined in Eqn. (4.5). Grilli et al. (1997)

suggests that it is more appropriate to use the following definition for solitary waves for use in

the slope parameter:

Ls = 4h0√
3A′

0

arctanh

(p
3

3

)
(4.8)

which is equivalent to the length between the locations of maximum slope on the solitary wave.

Thus, S0 can be reduced to following expression for solitary waves:
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S0 = 1.5207
s√
A′

0

(4.9)

Furthermore, the non-dimensional initial water depth at breaking, h′
b and wave breaking

index, Ab/hb are important parameters to compare with experiments and theory to verify the

2CLOWNS model for wave breaking prediction. This study will derive expressions for these in

terms of S0 to compare with existing ones.

4.2.2 Model Conditions

In this study a total of four models are employed: the NSWE model, the RANS model, 2CLOWNS

(combination of the previous two), and a FNBM (COULWAVE). Firstly, comparison of the individ-

ual constituent models of 2CLOWNS with each other is important to show where the strengths

and weaknesses of each model lie. Secondly, their comparison with 2CLOWNS is important to

see whether 2CLOWNS can do a good job of combining the best attributes of the NSWE model

and the RANS model together. Thirdly, FNBMs have been shown to give good approximations of

solitary wave shoaling in comparison with a FNPF model (Wei et al., 1995) and are very reliable

for solitary wave propagation offshore. For shoaling before breaking starts to take place these

models can be expected to give accurate solutions that may be taken to be the correct ones and

plays the role of a “control model”. Moreover, since the full RANS model takes a long time to

compute, and is not so accurate for stable waveform propagation from far offshore, it is useful

to compare the NSWE and 2CLOWNS solutions with the FNBM instead for the majority of the

analysis. This section will describe the relevant model conditions, boundary/initial conditions,

and grid sizes used for each model in this study.

NSWE Model

For this study the NSWE model is run in 1DH mode. Since solitary wave propagation is conducted

and a range of offshore wave heights will be used where µ0 = h0/L0 often exceeds 0.05, the implicit

dispersion correction procedure is required to ensure that the wave speed is correctly calculated

and that the wave keeps it shape offshore. This procedure invokes the nonlinear advection

truncation error correction so that the amplitude dispersion terms are correctly balanced with

the frequency dispersion ones. Additionally, since only wave transformation (and breaking) is

analysed in this study the bottom friction terms are set to zero as it can be expected that they will

not play an important role. With regards to wave breaking, the (depth-averaged) NSWE model

cannot approximate it in any rigorous manner, and a simple ad-hoc method is adopted. This

approach relies on the deactivation of dispersion terms when wave breaking is detected to prevent

the anomaly of balancing amplitude dispersion with frequency dispersion in flux-dominated

regions of flow (Roeber and Cheung, 2012). In this case, an empirical criterion to determine

deactivation is required. For example, Tonelli and Petti (2009) suggests wave breaking can be
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detected where η/h > 0.80. This is suitable for breaking waves on a flat bed or very mild slope

although this can be far exceeded on steep slopes (Grilli et al., 1994). For this study a better

approximation would incorporate the local surface gradient, s. Camfield and Street (1969) devised

such an empirical formula for solitary waves on plane slopes to give the following criterion:

η/h > max[0.75+25s−112s2 +3780s3,0.8]. If the criterion is not used the wave will continue

shoaling unbounded until it reaches the shoreline where the dispersion terms are ignored by

default in the model. It is implemented in the NSWE model by switching off the dispersive terms

in cells where η/h exceeds the criterion.

For solitary wave propagation an initial condition is set following the Schember (1982) method

that is described in §3.2.5. The offshore lateral boundary is set to an open condition to allow

some remnants of the wave to flow out. The grid size is set equal to ∆x′µ= 1/200 for this study,

where µ0 = h0/L0 is a measure of the offshore dispersion parameter with L0 defined in Eqn. (4.5).

Negligible difference has been found for smaller mesh sizes. The Courant number is set to

Cr = 0.35 for stability.

FNBM (COULWAVE)

The FNBM - COULWAVE - is run in 1DH mode. It uses a high-order finite-volume scheme

to fourth-order in space and time. More details of the computational scheme can be found in

Kim et al. (2009). For discretization of the numerical fluxes no limiter is used. Similar to the

NSWE model, bottom friction terms are ignored in this analysis. Wave breaking in the FNBM is

achieved including some dissipative effect into the governing equations. An eddy viscosity model

(Kennedy et al., 2000) is adopted that is activated when the the gradient of the flux exceeds some

threshold value. The FNBM is formally weakly rotational, dispersive and turbulent (although the

rotational and turbulent parts are not activated when friction terms are zero) and represents the

state-of-the-art for Boussinesq modelling.

For solitary wave propagation an initial condition is set using the weakly nonlinear dispersive

solution for Nwogu (1993) type Boussinesq models (Wei and Kirby, 1995). A sponge layer may be

set at the offshore lateral boundary to remove small perturbations from the domain. The grid

sizes are usually specified in terms of some ratio of the wave length automatically in COULWAVE,

i.e. ∆x′µ0. ∆x′µ0 was set equal to 1/250 in this study to get converged shoaling performance. A

Courant number of Cr = 0.20 was found to give a stable calculation.

RANS

For this study the RANS model is run in 2DV mode. Since mainly wave transformation and

breaking will be analysed by the RANS model, the slip condition is employed at the bottom

boundary. However, we would like to demonstrate some of the capabilities of the RANS model

so the k− ε model is indeed utilised where it should influence the mixing in the wave during

post-breaking. Furthermore, the RANS model is able to simulate the overturning of the wave
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Figure 4.2: Illustration of suitable grid setup for the RANS model. The gradual shoaling and

rapid shoaling interface may be estimated from Eqn.(4.12). The variation in grid sizes can be

achieved using the power law technique described in §3.4.9

through the VOF method hence wave breaking is naturally modelled without any ad-hoc additions

that are required for the 1DH models (NSWE and FNBM) in this study.

The computation takes a long time in the RANS model, and throughout most of this study the

solitary wave into the domain will be specified via the boundary condition with the NSWE model

in 2CLOWNS. For these reasons, a lateral boundary condition type input of the solitary wave

is used to send a solitary wave into the domain where the boundary is set at x′ =−X ′
s for the

preliminary analysis here. The wave theory employed is McCowan’s (McCowan, 1891) high-order

approximation that has been detailed in Munk (1949). This theory is able to give an accurate

specification of the orbital velocities important as a boundary condition in the RANS model. For

the grid sizes a choice of ∆x′ and ∆z′ is required. The RANS model may be quite sensitive to

this choice. It was found though that for most of the transformation (gradual shoaling), ∆x′ and

∆z′ is not particularly important. Here, ∆x′µ0 < 1/200 is suitable (∆x′ may be allowed to vary).

But when the shoaling becomes more rapid (an equation to estimate this location is presented

in §4.3.2), ∆x′µ0 < 1/800 and ∆z′ =∆x′ is more appropriate (∆x′ should be kept constant). The

fact that ∆z′ =∆x′ from above the initial free surface is found to be important. Below the initial

free surface, ∆z′ may be gradually increased as desired and this was not found to have any effect.

Additionally, it was found that to correctly model wave breaking effects such as the overturning

wave shape, irrespective of the offshore wave height, ∆x′ = 1/80 was more suitable than scaling by

µ0 which is really only valid offshore before breaking. Because of this we instead adopt ∆x′ = 1/20

offshore and ∆x′ =∆z′ = 1/80 in the rapid shoaling region for all wave heights. Figure 4.2 gives

an illustration of the grid setup, and a demonstration of the grid size convergence and accuracy

is presented in Appendix C. A Courant number for the SMAC scheme is set equal to, Cr = 0.33

(based on the wave speed; this is further multiplied by 0.3 to get the corresponding Cr based on

the fluid velocity; Cr < 0.1).
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4.2.3 Permanent Form Solutions

Initial conditions using the weakly nonlinear dispersive solitary wave solutions for the FNBM

and NSWE models have been used. However, there is a sudden initial decrease in the peak height

before stabilizing off as the wave propagates up the slope. If the waves are initialised further

offshore and allowed to propagate for a long enough simulation time a permanent waveform

results with little or no further decrease in the local wave height with propagation distance. This

is the actual initial condition that should be used at x′ =−X ′
s for the remainder of the study. Here,

back substitution of the truncation terms in the upwind scheme of the NSWE model is important

to mitigate dissipation errors.Due to the initial decrease of wave profile in both models, the

initial wave height was tuned to give the desired permanent wave height. By running numerous

simulations in each model and assessing the wave height after travelling 250 water depths, a

quadratic function was found to transform the desired stable wave height, A′
0 into a suitable

wave height on input, A′
i:

A′
i = a(A′

0)2 +b(A′
0)+ c (4.10)

where the coefficients, a, b, c for each model are presented in Table 4.1, valid at least on the

interval, A′
i ∈ [0.02,0.34] and when no bottom friction is included. The resulting permanent

waveforms of the FNBM and NSWE models for the range of A′
0 are plotted in Figure 4.3 for

comparison. Although little difference is noticeable for small values of A′
0, the wave profile is

considerably narrower in the FNBM model as A′
0 increases. Since FNBM models have been

shown to accurately reproduce waveforms (c.f Wei and Kirby, 1995) it must be concluded that the

NSWE model loses accuracy in terms of reproducing the solitary waveform for larger values of

A′
0. The potential wave energy from the plots in Figure 4.3 were calculated and it was found that

the relative excessive error of potential wave energy in the NSWE model compared with FNBM,

Ere could be approximated by:

Ere = 0.342A′
0 −0.007 (4.11)

This means that for A′
0 = 0.05 the error is close to 1.0% but for A′

0 = 0.30 the error becomes 9.6%.

Hence it can be already recommended here that large values of A′
0 should be avoided when using

the current 2CLOWNS model.

Concerning the RANS model, a permanent form solution is not pursued since it requires

huge computational effort to simulate the wave offshore with sufficient resolution. In fact of

Table 4.1: Coefficients to transfer desired solitary wave height into required input wave height

and the average number of wavelengths of propagation to obtain the permanent waveform

Model Coefficients

a b c

NSWE 0.2821 1.0147 -0.0003

FNBM 0.0564 1.0102 -0.0002
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Figure 4.3: Comparison of the offshore permanent waveform centred at x′ =−X ′
s between the

NSWE and FNBM models for the full range of offshore wave heights (0.05≤ A′
0 ≤ 0.30) investi-

gated in this study

course, this is one of the main drivers behind using the coupled 2CLOWNS model where it is

computationally far more efficient and often more accurate to use the NSWE model offshore.

Instead, the target wave height at the lateral boundary condition is adjusted so that the wave

height at x′ =−X ′
s is equal to the desired one. This adjustment depends on how far the lateral

boundary is from x′ =−X ′
s so the coefficients to transform the input wave height to the desired

one is not included here as they are far from universal.

4.2.4 Range of Variables Investigated

As mentioned in §4.1, the shoaling of solitary waves on plane beaches has been extensively

studied and is particularly useful for tsunami research and as a representation of short waves

near breaking. Using 2CLOWNS, Pringle and Yoneyama (2014) showed a preliminary study

for non-breaking solitary waves on a 1/20 slope. The model appeared to perform very well in

terms of both the coupling and the prediction of free surface profiles, depth-averaged velocities

and maximum runup for both the individual NSWE model and the coupled 2CLOWNS model

simulating runup in the 2DV RANS domain. Furthermore, it was found that the results were

not sensitive to the coupling position since the long wave assumptions are reasonable anywhere

in the non-breaking tests. In this study we would like to investigate breaking solitary waves
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Table 4.2: Matrix of slopes and offshore wave heights investigated in this study. The values in the

cells indicate the value of S0 and hence breaker types as written underneath

Slope Offshore wave height (A′
0)

(s) 0.05 0.10 0.15 0.20 0.25 0.30

1/20 N/A 0.24 0.20 0.17 0.15 0.14

1/35 0.19 0.14 0.11 0.097 0.087 0.079

1/60 0.11 0.08 0.065 0.057 0.051 0.046

1/100 0.068 0.048 0.039 0.034 0.030 0.028
Note: s = 1/20, A′

0 = 0.05 case rejected
Breakers types (Grilli et al., 1997):
0.30< S0 < 0.37: Surging breaker
0.025< S0 < 0.30: Plunging breaker
S0 < 0.025: Spilling breaker

to determine the limit of applicability and to see if the coupled model can correctly reproduce

breaking wave phenomena that is otherwise difficult or impossible for NSWE model to reproduce.

Table 4.2 presents the matrix of offshore wave heights and slopes with their corresponding

value of S0, and hence breaking type according to Grilli et al. (1997). The waves are all plunging

breakers which are the most interesting type to test complex breaking behaviour in the RANS

model such as wave overturning, touchdown of the plunging jet, and splashup. The slopes from

fairly steep to mild have been chosen because experimental and FNPF results are available for

a comparison. For example, Hsiao et al. (2008) and Hwang et al. (2007) conducted experiments

on the fairly mild 1/60 slope, Grilli et al. (1994, 1997) presents the most detailed data from the

FNPF model on the intermediate 1/35 slope (since experiments were also conducted on this slope),

and the Synolakis (1986) experiments were conducted on the fairly steep 1/20 slope. The mild

1/100 slope is also chosen because such slopes are common in tsunami cases although limited

comparative data is available aside from experimental (Camfield and Street, 1969) and FNPF

results for A′
0 = 0.20.
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4.3 Comparisons of Solitary Wave Shoaling on a Plane Beach
for Individual Models

Comparisons between NSWE, full RANS, and FNBM (COULWAVE (Kim et al., 2009)) are

investigated in this section to determine the applicable range of each model. The results of the

comparison will be a guide to the limitations of each individual model and to determine the

optimisation of coupling positions.

4.3.1 Basic Model Comparisons

This section compares solitary wave shoaling up to just beyond the point of decay (usually around

the breaking point that can be defined as the point where the vertical tangent develops at the

wave front) between the NSWE, FNBM and RANS models for five selected cases to show their

individual strengths and weaknesses. The computation for the RANS model begins at the lateral

boundary from x′ =−X ′
s (see Figure 4.1). In terms of computational time, for example on the fairly

mild slope, s = 1/60 that should take quite long to compute in comparison to the steeper slopes,

with A′
0 = 0.10 the calculation took 423 minutes on an Intel®Xeon®3.33GHz dual processor

with six parallel threads (OpenMP) for 25 s simulation time. It should be kept in mind that the

NSWE or even FNBM model can compute such calculations within a minute even from very

far offshore (to allow for the permanent form solution to be obtained, c.f. §4.2.3). Additionally,

significant numerical dissipation in the RANS model may occur just after the lateral boundary

and when propagating from offshore for larger wave heights. These two points are the main

disadvantages of the RANS model for wave application that the 2CLOWNS model can ease.

Moreover, such factors will of course be much greater in real tsunami applications which are

calculated in 2DH/3D, and over much larger scales.

Figure 4.4 plots the local wave height, A′ versus the inverse of the dimensionless water depth,

h0/h for the five selected cases which are: (a) A′
0 = 0.05 on s = 1/100 (b) A′

0 = 0.10 on s = 1/60, (c)

A′
0 = 0.15 on s = 1/35, (d) A′

0 = 0.20 on s = 1/35, and (e) A′
0 = 0.30 on s = 1/20. For the mild slope

cases shown in (a) and (b), all models demonstrate identical shoaling rates early on in the region

known as the zone of gradual shoaling (Synolakis and Skjelbreia, 1993) that correspond well

with Green’s law (∼ h−1/4). The FNBM and RANS model results start to diverge from those of

the NSWE model where the deviation from Green’s law is accentuated and the regime enters

the zone of rapid shoaling (Synolakis and Skjelbreia, 1993), which is beyond h0/h ≈ 3.5 in (a)

and h0/h ≈ 2.3 in (b). The behaviour of the NSWE model diverging as the regime in the FNBM

model changes to rapid shoaling is noted for all the cases. It is in fact clear the the RANS model

accurately calculates this rapid shoaling rate as well which is in good agreement with the FNBM

until these two models themselves diverge further along the slope. The divergence between the

FNBM and RANS models are quite different depending on the slope. For the mild slopes s = 1/100

and s = 1/60, the RANS model will shoal far more rapidly in the final moments before breaking
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Figure 4.4: Selected solitary wave transformation of the local wave height, A′ versus h0/h

comparing: NSWE, FNBM, RANS models, Green’s law and Synolakis (1986) experiments in (e).

(a) A′
0 = 0.05, s = 1/100, (b) A′

0 = 0.10, s = 1/60, (c) A′
0 = 0.15, s = 1/35, (d) A′

0 = 0.20, s = 1/35, (e)

A′
0 = 0.30, s = 1/20
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than the FNBM and break in similar water depths but with very different breaking wave heights.

In contrast, as s is steepened, the FNBM model will start to shoal at similar rates on s = 1/35 and

even more steeply on s = 1/20 just before breaking. In these cases, FNBM will predict breaking in

much larger water depths than the RANS model in addition to smaller wave heights at breaking.

Additionally, it is noted that as s is steepened, the rate of shoaling predicted by all three models is

less steep than Green’s law in the gradual shoaling region, which agrees well with the Synolakis

(1986) experiments as can be seen on the steep slope (e), and as noted by Grilli et al. (1994).

Overall, the initial shoaling characteristics of FNBM and the RANS model are shown to be

comparable at least before the final transformation before wave breaking and decay of the waves

deep inside the zone of rapid shoaling. Conversely, after the transition from the zone of gradual

shoaling to the zone of rapid shoaling, the NSWE model cannot reproduce the required shoaling

steepness that is shown by the FNBM and RANS models. It can be hypothesised that this is

because of the low-order consideration of the nonlinear terms both analytically and numerically

in the NSWE model. It would make physical sense that shoaling suddenly becomes rapid as

nonlinear effects exceed some critical amount as the wave becomes gradually narrower. Beyond

this critical location the nonlinear effects reinforce each other making the wave rapidly steeper

and narrower until it destabilises and breaks.

4.3.2 Optimisation of the Coupling Position

This section investigates the shoaling disparities between the NSWE model and FNBM for

the various wave heights and slopes to find a relationship between calculation conditions and

an optimal coupling position. As demonstrated in §4.3.1, FNBM showed similar pre-breaking

shoaling characteristics to the RANS model. In addition, Wei et al. (1995) also presents excellent

agreement of a FNBM with a FNPF model. Thus, FNBM is taken as a proxy for the correct

pre-breaking shoaling characteristics to determine suitable coupling positions between the RANS

and NSWE models since computations are much faster and generally more reliable (until close to

the breaking point) in the FNBM compared to the full RANS simulation. The idea is to identify

the position on the slope where the solutions diverge indicating optimal positions for coupling in

the 2CLOWNS model.

Plots of A′ versus h0/h are found in Figure 4.5 for the entire range of variables shown in

Table 4.2. In all cases it is observable that at some point along the slope the two numerical

solutions diverge. This location is at larger values of h0/h for lower values of A′
0 and larger s. To

obtain an empirical equation that describes the location where the two solutions diverge and

hence a suitable coupling position, the absolute relative errors in A′ between the two models were

analysed versus h′. Since the solutions diverge in larger water depths for larger A′
0 and milder

slopes, the slope parameter, S0 combining the two parameters is suitable that will convert the

data into a function only of this variable. Through some combination of S0 and A′
0 (S0 A′−0.5

0 ), a

logarithmic function was found to approximate the local water depth where the solutions diverge,
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Figure 4.5: Solitary wave transformation of the local wave height, A′ versus h0/h until breaking

on various slopes for A′
0 = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 using NSWE and FNBM models.

(a) s = 1/20, (b) s = 1/35, (c) s = 1/60, (d) s = 1/100. Filled triangles indicate the water depth, h′
c

where divergence of the NSWE and FNBM models is estimated through Eqn. (4.12)
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h′
c. To get the exact equation an arbitrary cutoff of the relative error in local wave height between

the models, (A′
FNBM − A′

NSWE)/A′
0, was varied up to 7.5% to find best fits (least squares error).

In general, the greater the cutoff of the error the better the fit which approached R2 = 0.995.

Cutoff errors smaller than 1% did not provide reliable equations. However, it is optimal to obtain

an equation based on the position where the cutoff error approaches zero. To achieve this the

coefficients in each reliable best fit equation (R2 > 0.98) were extrapolated towards a cutoff error

of zero. As a result the following equation was approximated:

h′
c = 0.16−0.25ln(S0 A′−0.5

0 ) (4.12)

The resulting estimates of h′
c in Eqn. (4.12) are included in Figure 4.5 to indicate its effective-

ness at estimating the divergence depth for each case. Taking the limits of h′
c to be 1 and 0, it is

possible to determine lower and upper bounds of S0 A′−0.5
0 to be 0.035 and 1.9 respectively. For

large incident wave heights and/or mild slopes with S0 A′−0.5
0 < 0.035 coupling anywhere on the

slope is unlikely to be accurate. While S0 A′−0.5
0 > 1.9 means that coupling at any position on the

slope is possible. In general, S0 A′−0.5
0 > 1.9 corresponds to non-breaking or surging breakers so

such a conclusion would appear valid. An additional note about Eqn. (4.12) is that the deviation

of the NSWE and FNBM models has been demonstrated to correspond to the transition from

the zone of gradual shoaling to the zone of the rapid shoaling (e.g. Figure 4.4(a),(b) deviation of

FNBM from Green’s law and NSWE both occur at similar locations). Thus, it may be possible to

use Eqn. (4.12) to estimate the location of the edge of the gradual shoaling zone as it transitions

to the rapid shoaling region. However, further research into the validity of this claim is required.
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4.4 Solitary Wave Shoaling and Breaking on a Plane Beach
using 2CLOWNS

§4.3.2 demonstrated that the NSWE model was reasonable up to a certain point along the slope

before it diverged from the fully nonlinear Boussinesq model, FNBM. Eqn. (4.12) was derived

to give a suitable water depth for coupling in 2CLOWNS based on a surf-similarity parameter

so that shoaling errors are minimised while keeping the RANS domain as small as possible.

This setup is illustrated in Figure 4.6 with appropriate grid sizes also indicated. In this section,

initially the basic performance of the 2CLOWNS coupling for selected wave cases is shown in

detail in §4.4.1. Here the sensitivity to: two-way coupling versus one-way coupling, the velocity

boundary condition for the RANS model, coupling depth, slope and offshore wave height on the

performance of coupling is investigated. Following this 2CLOWNS was used to model all the

solitary wave cases shown in Table 4.2 and the overall performance for pre-breaking shoaling is

summarised.

Furthermore, one of the major advantages of using the RANS model contained within

2CLOWNS compared with a depth-integrated model is that it can simulate wave breaking

without ad-hoc dissipaters as well as the overturning wave shape. Moreover, it has advantages

over FNFP flow models since it includes viscosity which may be significant for smaller scale

waves, and it can model the post-breaking turbulent flow induced during the touchdown of the

plunging jet, wave splash-up, bore propagation and resulting runup. With this in mind, this sec-

tion demonstrates the ability of the 2CLOWNS model not only to reproduce rapid shoaling, but to

also predict the wave breaking characteristics and the overturning wave shape. Comparisons are

made against FNBM and FNFP flow models plus experimental observations where possible. In

addition, vertical profiles of the velocities at selected locations are compared between NSWE and

FNBM models to help explain the differences between the models. Analysis of the post-breaking

turbulent flow and runup will be left to future studies.

4.4.1 Basic Evaluation of 2CLOWNS Coupled Model

This section summarises the basic performance of the coupling between the NSWE and RANS

models. Three different aspects are investigated: a test of the two-way coupling and velocity

boundary conditions, how the position (water depth) of coupling will affect the solution, and how

the slope and offshore wave height can impact on the performance at the coupling interface.

Examples of the difference in calculation time between the singular RANS and 2CLOWNS

simulations are summarised in Table 4.3. The major contributor to the difference in the computa-

tional times is the reduction in the number of cells by coupling far up the slope reducing both

horizontal and vertical cell numbers. Calculation times are shown for the time it takes for the

wave to travel from x′ =−X ′
s to far up the slope in small water depths (h′ = 0.10). Hence this is a

conservative comparison of the difference in calculation times expected during realistic scenarios
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Figure 4.6: Illustration of the usual setup of the 2CLOWNS model with appropriate grid sizes

indicated. The suitable location for coupling (approximation of interface between gradual and

rapid shoaling) may be estimated from Eqn.(4.12)

Table 4.3: Computational time taken for wave to travel from x′ =−X ′
s to h′ = 0.10 depending on

RANS or 2CLOWNS simulations each conducted using six OpenMP threads

Conditions Simulation time (min) Comparison (%)

s A′
0 RANS 2CLOWNS 2CLOWNS/RANS

1/100 0.05 931 58 6.2

1/60 0.10 423 44 10

1/35 0.15 64 12 19

1/35 0.20 92 20 22

1/20 0.30 44 5 11

when a wave may be propagated from far offshore. In such a case an even larger proportion of the

calculation time will be reduced because during the initial propagation from offshore towards the

slope only the NSWE model would be utilised until the wave reaches the RANS domain and the

RANS model is switched on. For real tsunami simulations conducted in 2DH the potential for

time reduction will be much greater given the size of the overall calculation domain beginning

from possibly the tsunami source.

In addition, the ratio of spatial and temporal resolution between the NSWE and RANS

models was, ∆x′NSWE/∆x′RANS = 4 and 1 < ∆tNSWE/∆tRANS < 21 respectively for all simula-

tions. ∆tNSWE/∆tRANS may be initially equal to 1 because of the smaller depth in the RANS

domain compared with the NSWE one balancing the difference in cell resolution. However,

∆tNSWE/∆tRANS, became as large as 21 during violent wave breaking. It did not appear that

the difference in model resolutions, particularly the temporal ones, had any negative effect on

the coupling performance. Additional simulations however did hint that overly large ratios of

∆x′NSWE/∆x′RANS would lead to poor performance at the coupling interface identified through
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Table 4.4: Test combinations used to investigate two-way coupling and the effects of the RANS

velocity boundary condition

Case Name 1-way 2-way uniform u no gradient on u′′ linear w no gradient on w

1CLOWN UL ◦ ◦ ◦
1CLOWN UN ◦ ◦ ◦
2CLOWNS UL ◦ ◦ ◦
2CLOWNS UN ◦ ◦ ◦
2CLOWNS NN ◦ ◦ ◦

animations of the waveform. Hence it is recommended here that ∆x′NSWE/∆x′RANS is limited to

no more than 4 or 5.

Two-way Coupling and Boundary Condition Test

A test of the two-way coupling scheme and the differences due to the boundary condition for the

RANS model i.e. the assumption on the velocity profile specified is investigated in this section.

The different combinations of one-way or two-way coupling and the type of velocity profiles tested

are defined in Table 4.4. Here, 1-way and 2-way refer to one-way and two-way coupling. Uniform

u and no gradient on u′′ refer to the vertical distribution of the horizontal velocity as a boundary

condition to the RANS model. Uniform means that the shallow water assumption is applied

and u is constant over the depth (Eqn. (3.135)). No gradient on u′′ is the condition where the

difference from the depth-averaged velocity is set to zero across the interface, i.e. the velocity

profile of the RANS model itself in the cell column adjacent to the coupling interface is used to

form the vertical distribution (Eqn. (3.136)). Linear w and no gradient on w refer to the vertical

distribution on the vertical velocity as a boundary condition to the RANS model. Linear is the

shallow water assumption that the vertical velocities follow a linear distribution from zero at

the seabed to a maximum at the free surface (Eqn. (3.138)). No gradient uses the velocity profile

of the RANS model in the cell column adjacent to the coupling interface to set a no gradient

condition on w (Eqn. (3.140)).

Firstly, primarily the efficacy of the two-way coupling scheme is investigated. For this test

incident solitary waves of A′
0 = 0.05 and A′

0 = 0.15 are reflected off a vertical wall using both

the singular RANS and two-way coupled 2CLOWNS models. The coupling in the 2CLOWNS

model takes place a distance x′ = 5 from the vertical wall. Two versions of 2CLOWNS are run

(2CLOWNS NN and 2CLOWNS UL) to compare results based on the velocity boundary condition.

Snapshots of both the incident wave profiles and reflected wave profiles are plotted in Figure 4.7.

In both tests it is demonstrated that the incident waves travel through from the NSWE domain

into the RANS domain and that the reflected waves also freely travel back from the RANS domain

into the NSWE domain. In the case of A′
0 = 0.05, no particular disparities are apparent between

both 2CLOWNS simulations and the RANS one. However, as A′
0 is increased to A′

0 = 0.15 the
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Figure 4.7: Snapshots of the wave profile of incident waves and waves reflected off the vertical

wall on the right, comparing the singular RANS simulation with 2CLOWNS ones (coupling takes

place at x′ = 5) where two types of coupling boundary conditions for the velocity profiles are used.

(a) A′
0 = 0.05, (b) A′

0 = 0.15, (i) incident waves, (ii) reflected waves.

profile of the incident wave in the NSWE model is slightly wider than the RANS one. This fact

has already been discussed in §4.2.3 comparing the NSWE and FNBM solutions, where it was

shown that the potential energy of the wave is greater in the NSWE model. Apparently, due to

this extra energy the incident wave travelling from the NSWE domain into the RANS domain

becomes larger close to the vertical wall than recorded in the RANS simulation. Finally, after the

wave is reflected back out from the RANS domain into the NSWE one the wave height has indeed

become slightly larger even in the NSWE domain. In both tests the results were not demonstrably

sensitive to the velocity profile boundary condition to the RANS model. One noticeable difference

appears for the reflected wave in the NSWE domain in the A′
0 = 0.15 case where the 2CLOWNS

NN simulation gives a smaller wave height that is closer to the RANS result.

Secondly, the effect of one-way or two-way coupling and the different combinations of the

velocity profiles are investigated. In the first test coupling takes place on a flat bed and little

difference arises between the 2CLOWNS NN and 2CLOWNS UL simulations. However, if

coupling takes place on a steep slope differences arising from the assumption of the velocity
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Figure 4.8: Testing of one-way and two-way coupling (at h0/hc = 3.03), and the velocity boundary

condition type for A′
0 = 0.15 on s = 1/20 as summarised in Table 4.4. Plots show differences

between 2CLOWNS simulations and the singular RANS one; (a) difference in the local wave

height, A′ normalised by A′
0 versus h0/h, (b) difference in the potential energy of the entire

computational domain, Ep′ versus t′, (c) difference in the the free surface level, η′ at the coupling

interface (h0/hc = 3.03) versus t′, (d) difference in the the volume fluxes, Q′ at the coupling

interface (h0/hc = 3.03) versus t′
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profile is likely to become more apparent. In this step the slope is chosen to be s = 1/20 and the

offshore wave height A′
0 = 0.15 is selected. A singular RANS simulation and all five combinations

of 2CLOWNS simulations as specified in Table 4.4 is conducted for comparison. Eqn. (4.12) is

used to determine the coupling location, h′
c = 0.33 (h0/hc = 3.03).

Figure 4.8(a) plots the difference in the local wave height around the coupling location between

the 2CLOWNS and singular RANS simulations normalised by A′
0, i.e. (A′

2CLOWNS − A′
RANS)/A′

0.

The target wave height of the RANS solution was adjusted so that there is almost zero difference

offshore. At the interface where coupling occurs, (A′
2CLOWNS − A′

RANS)/A′
0 rises and falls to

different degrees depending on the boundary condition. For both 1CLOWN cases the effects are

only noticeable after the coupling interface in the RANS domain. A large drop in the wave height

takes place just inside the RANS domain equivalent to a maximum of 4.0% before recovering

some small distance further onshore for 1CLOWN UL. In comparison, a rise smaller in magnitude

(0.9%) occurs for 1CLOWNS UN. When two-way coupling is used the transfer of the information

from the RANS domains affects the local wave height inside the NSWE domain as well. For the

2CLOWNS UL simulation the drop in the wave height around the coupling interface becomes

even greater than 1CLOWN UL (maximum of 4.8%). Thereafter, the wave height actually becomes

larger than the RANS simulation up to a maximum of 2.2%. The 2CLOWNS UN simulation

results in a slight rise in the wave height around the coupling interface equal to a maximum of

1.1%.

Figure 4.8(b) plots the difference in the potential energy of the wave over the entire computa-

tional domain, Ep′ between the 2CLOWNS and NSWE simulations, i.e. Ep′
2CLOWNS −Ep′

NSWE
versus t′. Ep′ is defined here as:

Ep′ =
∫ s−1

x′0

[
(η′+h′)

η′+h′

2
−h′ h′

2

]
dx′ (4.13)

where x′0 indicates the ordinate of the offshore lateral boundary and s−1 indicates the position of

the shoreline which does not change in the time interval shown. Figure 4.8(b) indicates whether

the potential energy is conserved during coupling (the peak of the wave passes the coupling

position at t′ ≈ 19.5). For t′ < 19.5, in both 1CLOWN simulations Ep′
2CLOWNS drops slightly

in comparison to Ep′
NSWE while the potential energy of the 2CLOWNS simulations remain

roughly the same. This indicates that two-way coupling allows the potential energy to be correctly

conserved across the boundary while one-way coupling cannot achieve this balancing effect.

For t′ > 19.5 after the peak of the wave has passed the coupling position, Ep′
2CLOWNS starts

to increase relative to Ep′
NSWE for all cases except 2CLOWNS UL. The increase of A′

2CLOWNS
for 2CLOWNS UL as plotted in Figure 4.8(a) appears to correspond to a smaller value of the

potential energy where it is converted into kinetic energy more quickly.

Figure 4.8(c) and Figure 4.8(d) plot the difference in the free surface level, η′ and the volumes

fluxes, Q′ at the coupling interface (h0/hc = 3.03) respectively between the 2CLOWNS simulations

and the singular RANS one, i.e. η′2CLOWNS−η′RANS and Q′
2CLOWNS−Q′

RANS. Initially, for t′ < 19.5
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both η′2CLOWNS and Q′
2CLOWNS are larger than those in the RANS model because of the increase

in the width of the wave as plotted in Figure 4.7(b-i). But at the time of the wave peak at t′ ≈ 19.5

the differences between the simulations become relatively small except for the 2CLOWNS UL

case which is vastly different to the other cases and can be ignored. For t′ > 19.5 the differences

in η′ and Q′ increase again but to a smaller extent than t′ < 19.5. Comparing the 2CLOWNS

UN and NN simulations with the 1CLOWN simulations shows how the interaction between the

RANS and NSWE models affect the input into the RANS domain itself. Q′ into the RANS domain

was reduced in the 2CLOWNS UN and NN simulations between 19< t′ < 21 presumably because

of the higher free surface level inside the RANS domain in comparison to the NSWE one in this

time frame. The effect of this was to keep η′2CLOWNS slightly above and steady against η′RANS.

In comparison the 1CLOWN simulations show a dip and rise of η′2CLOWNS in this time frame.

The 1CLOWN UN result for η′2CLOWNS shows numerous spikes against η′RANS for t′ > 20. This

is likely related to the reflections resulting from the differences between the RANS and NSWE

models that are otherwise allowed to escape back into the NSWE model when two-way coupling

is invoked. On inspection of the model, small humps in the free surface near the boundary could

be clearly seen in both 1CLOWN simulations. For what appears simply by chance these did

not affect the free surface right at the coupling interface in the 1CLOWN UL simulation. The

existence of small humps in the free surface were not present in the two-way simulations.

Overall, the best condition in Figure 4.8 is found to be 2CLOWNS NN which best conserves

the potential energy across the boundary and produces a relatively small change in the local

wave height. Furthermore, the difference in η′ is relatively small and steady after the wave

peak passes through the coupling interface. This was achieved by adjustment in Q′ through the

boundary to account for reflections from the RANS domain. It also noted that the 2CLOWNS

NN and 2CLOWNS UN results are almost identical indicating that the change in wave height is

primarily sensitive to the distribution of the vertical velocity rather than the horizontal velocity.

On inspection of the horizontal velocity profiles, u′ shown in Figure 4.9, clear disparity between

the 2CLOWNS UN and 2CLOWNS NN simulations are shown. At t′ = 17.6 profiles of u′ in both

simulations are quite different from those of the RANS simulation because of the greater volume

flux entering the domain at this point in time (see Figure 4.8(d)). At t′ = 19.6 where the volume

fluxes are in good agreement with the RANS simulation, there is a large curvature in u′ that

the 2CLOWNS NN simulation can partially replicate. The velocity near the bed and the free

surfaces in 2CLOWNS NN are in particularly good agreement with the RANS simulation but

some disparity is demonstrated at mid-depths. By t′ = 21.6 the non-uniformity of u′ is small in

the RANS simulation except near the sea bed which the 2CLOWNS NN model also predicts.

However, in other areas the 2CLOWNS NN velocity profile is quite different from the singular

RANS one where 2CLOWNS UN gives a better estimate. This may be especially evident in this

simulation in relatively small depths on the steep slope where coupling is not easily achieved. On

milder slopes and in greater coupling depths better agreement should be more likely.
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Figure 4.9: Velocity profiles (u′ on the left and w′ on the right) measured at the coupling interface

(h0/hc = 3.03) at three snapshots in time for the A′
0 = 0.15 on s = 1/20 case comparing the singular

RANS simulation result with 2CLOWNS simulations

Whether conducting either one-way or two-way coupling the no gradient condition on w′ gen-

erally gives better results than the linear distribution on w′. For example, Figure 4.9 illustrates

that early on the linear profile of w′ derived from the NSWE equations gives a suitable boundary

condition at t′ = 17.6. However, at later times the boundary condition cannot be an accurate one

since the profile of w′ in the first column of the RANS domain (as plotted) becomes curved and

very different from the no gradient conditions which largely agree with those in the singular

RANS simulation.
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Sensitivity to Coupling Depth

In this section the effect of coupling at different positions or local water depths, h′
c is assessed.

The offshore wave height, A′
0 = 0.15 is chosen and simulated on three of the slopes, s = 1/20,

1/35, and 1/60. Comparisons are made between coupling in 2CLOWNS NN at three different

values of h′
c. Eqn. (4.12) is used to get the “optimal” h′

c for each slope. Two other test depths are

used; 1) in between the toe of the slope and the optimal h′
c, and 2) in between the estimate of

the breaking point and the optimal h′
c. Figure 4.10 plots the difference in the local wave height

normalised by A′
0 between the 2CLOWNS and singular RANS simulations during shoaling, i.e.

(A′
2CLOWNS − A′

RANS)/A′
0.

The idea of Figure 4.10 is to show that if coupling takes place in small depths further from

the optimal h′
c then A′

2CLOWNS will diverge far from A′
RANS. On the other hand, coupling in

depths larger than the optimal h′
c may produce similarly accurate results but the size of the

RANS domain and hence calculation time will be unnecessarily extended. Indeed if coupling

takes place in small depths on each slope, initially the NSWE solution diverges from the RANS

one even before coupling as expected. At the coupling interface a hump-like increase and decrease

in A′
2CLOWNS occurs before extremely rapid shoaling takes place where, for example, the wave

height almost returns to the RANS one on s = 1/60 in Figure 4.10(c). The magnitude of the

increase and decrease of A′
2CLOWNS around the coupling location is larger for smaller coupling

depths. Comparing coupling in larger depths than coupling at the optimal h′
c, the general trend is

that A′
2CLOWNS will end up being greater in the former situation. The accuracy of either solution

in comparison to A′
RANS is dependent on the slope. On s = 1/20 the best result in terms of the final

A′
2CLOWNS near breaking point is the case where coupling takes place in large depths (h′

c = 0.50)

rather than the optimal (h′
c = 0.33). On the other hand, the best results for s = 1/35 and s = 1/60

occur when coupling takes place at the optimal depth.

Hence, Eqn. (4.12) may not be particularly accurate on s = 1/20 where it would be better

to couple in even larger depths. However, the fact that coupling in larger depths on s = 1/35

and s = 1/60 induces over-shoaling means that the wave in the 2CLOWNS model with offshore

wave height, A′
0 = 0.15 has the propensity to shoal at greater rates than the singular RANS

model. This presumably is due to greater volume flux entering the domain from the NSWE model

into the RANS model as plotted in Figure 4.8(d). This is related to the extra potential energy

of the waveform in the NSWE model which can be estimated as being ≈ 4.4% larger offshore

according to Eqn. (4.11). In other words, the issue is related to the NSWE solution rather than

the coupling scheme itself. To confirm this Figure 4.10(d) plots examples of similar set-ups to

(a)-(c) for A′
0 = 0.05 (≈ 1.0% error of potential energy) on s = 1/100. Here, when coupling at large

depths or the optimal one (h′
c = 0.63 or h′

c = 0.46 respectively) the final wave height at breaking

is essentially identical. A slight decrease in A′ occurs after coupling at the optimal location while

this is not evident when coupling in the deeper location on the slope. This small decrease is offset

by a faster computational time and the ability to estimate breaking at the same location in the
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Figure 4.10: Difference in the local wave height, A′ normalised by A′
0 between 2CLOWNS NN

and singular RANS simulations until wave breaking. Coupling at three different depths for each

slope (positions indicated by the vertical lines) are conducted where the middle depth is derived

from Eqn. (4.12) and the other two coupling depths are in between this location and; the toe of

the slope and breaking point respectively. (a) A′
0 = 0.15 on s = 1/20, (b) A′

0 = 0.15 on s = 1/35, (c)

A′
0 = 0.15 on s = 1/60, (d) (c) A′

0 = 0.05 on s = 1/100
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end. However, when coupling takes place in very shallow depths (h′
c = 0.22) the solution diverges

far from the RANS one similar to in Figure 4.10(a)-(c).

The optimal location is hence shown to be fairly effective in order to mimic rapid shoaling

and breaking wave heights computed in a singular RANS simulation. In one case, (A′
0 = 0.15 on

s = 1/20) the optimal location produced noticeably worse results than coupling in greater depths.

Hence, Eqn. (4.12) perhaps should be re-evaluated separately on steep slopes. However, for

tsunami-like problems with mild slopes and small wave heights coupling at the depths predicted

by Eqn. (4.12) appears reasonable.

Sensitivity to Slope and Offshore Wave Height

To get a brief idea of the performance of 2CLOWNS with different slopes and offshore wave

weights, snapshots of the waveform where the peak is centred on the coupling position (calculated

using Eqn. (4.12)) are shown in Figure 4.11 and Figure 4.12 comparing NSWE, RANS and

2CLOWNS NN simulations.

Figure 4.11 plots A′
0 = 0.05, 0.15, and 0.30 on s = 1/35. The waveforms of all the models

conform best for A′
0 = 0.05 which has been shown to be true even offshore in Figure 4.3 where the

NSWE permanent waveform is wider than that in the FNBM and RANS models. For A′
0 = 0.15

and 0.30 it is even noticeable that the 2CLOWNS waveform slightly deviates from the NSWE

one due to the influence of the RANS calculation. Inside the RANS domain the 2CLOWNS NN

waveform tends to be closer to that of the NSWE model so that the wave front is further onshore

than the RANS one. This is because the NSWE model is used to generate the wave inside the

RANS domain. For A′
0 = 0.30 in particular the wave front is even further onshore than the NSWE

waveform and a small hump in the waveform at the coupling interface is noticeable.

Figure 4.12 plots A′
0 = 0.15 and s = 1/20, 1/60, and 1/100. The major differences between

the waveforms are that the 2CLOWNS results diverges further from the NSWE one on the

steeper slopes. The waveform is also more asymmetric and a greater hump exists at the coupling

interface for the 2CLOWNS simulation on the steeper slope where coupling occurs in smaller

depths than on mild slopes. Figure 4.10 also demonstrates how the steeper slope can increase the

hump in A′ at the coupling interface. Furthermore, it was shown that coupling in greater depths

on s = 1/20 would give a better result. An improved version of Eqn. (4.12) could take into account

the difficulty of coupling at small depths on steep slopes even though divergence of A′ between

NSWE and FNBM (or RANS) is still small.

All the experimental cases were simulated using 2CLOWNS NN. The results of wave trans-

formation until breaking is plotted in Figure 4.13. It is shown that in all cases there is a small

decrease in A′
2CLOWNS near the coupling interface inside the NSWE domain and a larger in-

crease in A′
2CLOWNS just inside the RANS domain. To better quantify this effect when adopting

the optimised coupling location (Eqn. (4.12)) for different slopes and offshore wave heights, the

relative error of the local wave height in 2CLOWNS NN simulations against FNBM ones in
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Figure 4.11: Snapshots of selected solitary waves on s = 1/35 centred on the 2CLOWNS cou-

pling position calculated using Eqn. (4.12). Shaded area indicates RANS domain in 2CLOWNS

simulation. (a) A′
0 = 0.05, (b) A′

0 = 0.15, (c) A′
0 = 0.30

the vicinity of the coupling interface, i.e (A′
2CLOWNS − A′

FNBM)/A′
FNBM , was calculated for all

experimental combinations. The difference between these two local maximum and minimums of

(A′
2CLOWNS−A′

FNBM)/A′
FNBM , denoted ARE was calculated and the following empirical equation

(R2 = 0.994) was derived based on some combination of S0 and s (S0s−1.095):

ARE = 0.132exp(−0.410S0s−1.095) (4.14)

The data points along with the best fit line (Eqn. (4.14)) is plotted in Figure 4.14 for reference.

The negative exponential function of the parameter S0s−1.095 in Eqn. (4.14) implies that errors

at the coupling interface increase with both s and A′
0. The effect of A′

0 on ARE is significantly

stronger than the effect of the slope (ARE ∼ A′−0.5
0 , s−0.095). It is probable that the dependency

of Eqn. (4.14) on s could in fact be removed by improving Eqn. (4.12) to take into account the
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Figure 4.12: Snapshots of solitary waves with A′
0 = 0.15 on various slopes centred on the

2CLOWNS coupling position calculated using Eqn. (4.12). Shaded area indicates RANS domain

in 2CLOWNS simulation. (a) s = 1/20, (b) s = 1/60, (c) s = 1/100

increased difficulty of coupling in the shallower depths that Eqn. (4.12) prescribes on steeper

slopes. Thus, the major errors associated with coupling are mostly due to the difference in the

permanent waveforms between the governing equations. If high-order models such as the FNBM

one is used instead of the NSWE model to couple with the RANS model (c.f. Sitanggang and

Lynett, 2010) the coupling will most likely improve. However, it is stressed that for large values

S0s−1.095 the use of the NSWE model is highly recommended given its efficiency in computation

over wide areas and simplicity in grid nesting. This condition is also likely to be satisfied in most

cases of tsunami and other long wave problems. For example, the minimum value of ARE = 0.0018

occurs at the maximum value of S0s−1.095 = 10.5 (A′
0 = 0.05 and s = 1/100). Setting an arbitrary

allowable limit on ARE to 1% for example would require S0s−1.095 > 6.3. This limits the offshore

wave height to, A′
0 ≤ 0.103 on the steepest slope (s = 1/20) and to, A′

0 ≤ 0.140 on the mildest slope

(s = 1/100) investigated in this study.
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Figure 4.13: Solitary wave transformation of the local wave height, A′ versus h0/h until breaking

on various slopes for A′
0 = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 comparing 2CLOWNS NN with

FNBM simulations. (a) s = 1/20, (b) s = 1/35, (c) s = 1/60, (d) s = 1/100. Filled triangles indicate

the water depth, h′
c where coupling in 2CLOWNS occurs calculated using Eqn. (4.12)
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interface for all 2CLOWNS NN simulations with best fit line (Eqn. (4.14)) included

4.4.2 Pre-breaking shoaling performance

In this section the accuracy of the wave transformation prior to breaking is discussed. As an

initial example the entire shoaling transformation plus post-breaking decay (covered in §4.4.4) of

the 2CLOWNS NN simulation compared with the NSWE and FNBM models for the case with

A′
0 = 0.05 and s = 1/60 is plotted in Figure 4.15. The axes have been nondimensionlised by the

water depth at breaking, hb recorded in the 2CLOWNS model and a discussion of its estimation

will take place in §4.4.3. Normalisation with hb is to allow for easy comparison with the plot

presented in Hsiao et al. (2008) for A′
0 ≈ 0.05 on the same slope. Expected shoaling rates from

Synolakis and Skjelbreia (1993) are also plotted for reference (note that these are not best fit

lines). In the zone of gradual shoaling the 2CLOWNS model utilizes the efficient NSWE model

and no major differences between any of the models is evident. Thereafter, in the transition region

coupling takes place (h′
c = 0.33→ h/hb = 3.22) and the zone of rapid shoaling is modelled through

the RANS calculation. The shoaling rate described by 2CLOWNS NN in this zone is shown to

follow approximately that of FNBM both agreeing with Boussinesq’s theoretical shoaling law

(∼ h−1.0). Agreement between the models continues up until h/hb ≈ 1.1 where wave breaking

occurs in the FNBM prematurely according to the 2CLOWNS NN simulation. The rate of rapid

shoaling in the NSWE model is slow in comparison to Boussinesq’s law (∼ h−0.7 instead).

Figure 4.13 plots the transformation of A′ for all the experimental conditions. It is demon-
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Figure 4.15: Evolution of the local wave height of a solitary wave (A′
0 = 0.05) on a 1/60 slope

comparing 2CLOWNS NN, FNBM, NSWE models with theoretical reference shoaling rates

(Synolakis and Skjelbreia, 1993) included

strated how the shoaling rate in 2CLOWNS NN generally increases against the FNBM result

as the slope becomes milder and also as A′
0 increases. In particular, as s is steepened a larger

dip in A′ occurs that does not easily recover versus FNBM in comparison to mild slopes. This

may simply be because of inherent disparities in shoaling rates between the RANS and FNBM

models themselves rather than a coupling issue as Eqn. (4.14), a function only weakly dependent

on s, suggests. To demonstrate the effect of the two-way coupling process on the shoaling rate

rather than the effect of the difference simply between the RANS and FNBM models, Figure 4.16

plots a comparison of the wave transformation for 2CLOWNS NN, singular RANS and FNBM

model simulations for those same cases in Figure 4.4. Particularly in plots (c) - (e) a dip in

A′
2CLOWNS around the coupling interface is noticeable. Despite this the solution is able to recover

and excellent agreement between the singular RANS and 2CLOWNS NN simulations is shown

close to the breaking point in all cases implying that the effect of coupling on the final solution (at

breaking/post breaking which in this study only the RANS/2CLOWNS NN model can rigorously

simulate) is minimal. Hence it is conjectured that most of the differences shown between FNBM

and 2CLOWNS in Figure 4.13 is simply due to actual difference between the RANS and FNBM

models rather than the coupling process. Of course the 2CLOWNS solution does diverge from

the correct one around the coupling interface to various degrees which itself may be undesirable.
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Figure 4.16: Selected solitary wave transformation of the local wave height, A′ versus h0/h
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0 = 0.10, s = 1/60, (c) A′
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However, given sufficient room to recover, the final solution is considerably accurate.

4.4.3 Wave Breaking Characteristics

Prediction of the wave breaking characteristics is important to show the improved performance

of the 2CLOWNS NN model over long wave models including higher-order ones such as FNBM.

The breaking point is usually defined as the location where the wave front has a vertical tangent

(Grilli et al., 1997). This can be accurately determined in the 2CLOWNS (RANS) model since

the free surface normal in each computational grid is explicitly determined. Wave breaking is

said to have occurred in the 2CLOWNS simulations once the x component of the free surface

normal vector in any cell around the wave face is larger than 0.999. The resulting values of the

water depth at breaking, h′
b and the wave height at breaking, A′

b is then determined from the

free surface profile at that exact snapshot in time.

Firstly, the example shown in Figure 4.15 for A′
0 = 0.05 and s = 1/60 is analysed in detail. The

value of h′
b in the 2CLOWNS NN simulation was found to be equal to h′

b = 0.103. To make a

comparison the empirical formula for plunging breakers presented in Grilli et al. (1997) based on

their FNFP flow simulations is introduced:

h′
b =

0.149
(S0/A′

0)0.523 , S0 < 0.3 (4.15)

Eqn. (4.15) gives h′
b = 0.097 for A′

0 = 0.05 and s = 1/60. The experiments of Hsiao et al. (2008) on

s = 1/60 were also found to be within good agreement to this equation particularly for S0/A′
0 > 2

which is the case here (Eqn. (4.15) slightly underestimates h′
b otherwise). 2CLOWNS gives

a prediction of h′
b in this example to within 6.2% of Eqn. (4.15). In comparison h′

b in FNBM

can be estimated as h′
b = 0.111 based on the location of the maximum value of A′ which is an

overestimation of approximately 14%.

The other wave breaking characteristic of concern is the wave breaking index, Ab/hb. In

the 2CLOWNS NN simulation for A′
0 = 0.05 and s = 1/60 the local wave height at breaking

is, A′
b = 0.141 (in comparison A′

b = 0.126 in FNBM). This is equivalent to a breaking index of

Ab/hb = 1.37. Again for a comparison, the Grilli et al. (1997) empirical formula for the breaking

index is as follows:
Ab

hb
= 0.841exp(6.421S0) (4.16)

Eqn. (4.16) gives Ab/hb = 1.74 for A′
0 = 0.05 and s = 1/60. However, Hsiao et al. (2008) note that

for S0 > 0.10 Eqn. (4.16) may tend to overestimate Ab/hb, and they found little deviation from

Ab/hb = 1.1 in all of their experimental cases. This is because h′
b is very small here and a slight

variation will affect the Ab/hb ratio significantly. Taking into account both Eqn. (4.16) and the

experimental results of Hsiao et al. (2008) the “middle ground” estimation of Ab/hb = 1.37 can be

considered a reasonable result.

Based on all the experimental cases simulated by the 2CLOWNS model in this study, empirical

equations are derived for the prediction of h′
b (R2 = 0.944) and Ab/hb (R2 = 0.964) in a similar
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Figure 4.17: Breaking criteria calculated in 2CLOWNS NN for all wave cases in this study with

best fit curves compared to those calculated in Grilli et al. (1997): (a) water depth at breaking, h′
b

versus S0/A′
0 with Eqn. (4.17) - this study and Eqn. (4.15) - (Grilli et al., 1997); (b) wave breaking

index, Ab/hb versus S0 with Eqn. (4.18) - this study and Eqn. (4.16) - (Grilli et al., 1997)

form to Eqns. (4.15) and (4.16):

h′
b =

0.138
(S0/A′

0)0.664 , S0/A′
0 < 4 (4.17)

Ab

hb
= 0.872exp(5.258S0), S0 < 0.25 (4.18)

where the upper limits of the data included in derivation of Eqns. (4.17) and (4.18) are shown. The

data points are plotted in Figure 4.17 along with the best fit (least-squares) curves corresponding

to Eqns. (4.17) and (4.18). The curves corresponding to Eqns. (4.15) and (4.16) found in Grilli

et al. (1997) are also drawn for comparison.

Concerning the calculation of h′
b in Figure 4.17(a), Eqn. (4.17) is shown to match Eqn. (4.15)

fairly well overall particularly for S0/A′
0 < 1. It is worth mentioning that Eqn. (4.15) from Grilli

et al. (1997) was derived with only one data point for S0/A′
0 > 1. In this study six cases of S0/A′

0 > 1

(which corresponds to combinations of smaller wave heights and steeper slopes) is included which

mostly likely accounts for the differences between Eqns. (4.17) and (4.15). It is noted that the

values for larger S0/A′
0 > 1 are more scattered than those in the S0/A′

0 < 1 bracket. For example,
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Eqn. (4.17) is largely affected by the results of the two cases A′
0 = 0.05 on s = 1/35 (S0/A′

0 = 3.89)

and A′
0 = 0.10 on s = 1/20 (S0/A′

0 = 2.40).

The breaking index Ab/hb is plotted in Figure 4.17(b). Eqn. (4.18) derived in this study is

in good agreement with Eqn. (4.16) from Grilli et al. (1997) for small values of S0 < 0.1. For

S0 > 0.1, Ab/hb in this study is somewhat smaller than that described by Eqn. (4.16). This may

be because S0 > 0.3 in Grilli et al. (1997) corresponds to surging breakers which could have

affected the slope of Eqn. (4.16) over the interval 0.10< S0 < 0.25 for plunging breakers where

comparatively little data was available. In contrast all the wave types were plunging breakers in

this study. As mentioned earlier, Hsiao et al. (2008) indeed noted that Eqn. (4.16) had a tendency

to overestimate values of S0 within this range because the ratio Ab/hb is extremely sensitive to

h′
b here since wave breaking occurs near the initial shoreline.

4.4.4 Post-breaking Behaviour and Wave Shape

As described in Synolakis and Skjelbreia (1993), after wave breaking the local wave height

undergoes transformation according to a zone of rapid decay on the order of ∼ h4, followed by a

zone of gradual decay ∼ h. Hsiao et al. (2008) also postulated that on their mild slope, s = 1/60 a

fifth region corresponding to bore front propagation exists, where decay follows ∼ h1/4. Figure 4.15

for A′
0 = 0.05 and s = 1/60 plots the 2CLOWNS NN data alongside expected shoaling rates. The

rate of rapid decay is demonstrably in close agreement to the theretical ∼ h4 rate. The rate

of gradual decay appears slightly steeper than theoretically suggested but the data is quite

scattered due to the overturning wave shape. The final bore front propagation region on average

appears to follow the rate (∼ h1/4) suggested by Hsiao et al. (2008).

To give the readers an idea of the performance of the RANS model in terms of its ability to

model the overturning wave shape, touchdown of the plunging jet and wave splashup, Figure 4.18

shows snapshots of the breaking wave with A′
0 = 0.20 on s = 1/35. This case was chosen because

illustrations are also found in Grilli et al. (1997) for the exact same case that readers may refer

to. Figure 4.18 (a) - (e) plots snapshots of the wave shape at five different stages in the breaking

phase along with velocity vectors and greyscale intensities of the normalised velocity magnitude,

u′. The five different stages in order are; (a) wave shape prior to breaking, (b) at the onset of

breaking, (c) the formation of the plunging jet, (d) touchdown of the plunging jet and, (e) wave

splashup. Figure 4.18 demonstrates that the RANS model in 2CLOWNS has the ability to at

least qualitatively model the full process of wave breaking. The accuracy of the jet profile is

strongly linked to the cell resolution and it is very difficult for the VOF model to get a beautifully

smooth jet profile similar to those generated by the FNPF model as shown in Grilli et al. (1997)

without resorting to very fine grid sizes. Nevertheless, the RANS model appears to give a fair

representation of the jet shape and it has the distinct advantage of modelling the touchdown of

the plunging jet and wave splashup as shown in Figure 4.18 (d), (e).

The normalised turbulent kinetic energy, k′ is also shown for the same snapshots in Fig-
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Figure 4.18: Breaking wave shape and kinematic quantities (velocity magnitude, u′ and turbulent

kinetic energy, k′) for A′
0 = 0.20 on s = 1/35: (a) prior to breaking (u′), (b) at the onset of wave

breaking (u′), (c) formation of the plunging jet (u′), (d) touchdown of the plunging jet (u′), (e)

wave splashup (u′), (f) touchdown of the plunging jet (k′), (g) wave splashup (k′)

ure 4.18(f), (g) demonstrating the onset of the turbulent flow that a FNPF model and in general

depth-integrated models cannot simulate. The wave splashup in Figure 4.18(e), (g) is shown to

contain three distinct regions of air (although the air flow itself is not computed) and counterro-

tating vortices as illustrated through sketches and high quality photographs in Li and Raichlen

(2003). Hence the model is shown to possess qualitative predictive ability to describe the full

wave breaking process. Full quantitative analysis of the breaking process plus that of bore front

propagation and wave runup will be undertaken in future studies.

4.4.5 Velocity profiles

In order to provide some explanation for the disparate wave transformation and breaking

behaviour of 2CLOWNS, FNBM, and NSWE models, velocity profiles for both u′ and w′ are

plotted at four separate locations for A0 = 0.05 on s = 1/60, in Figure 4.19. The locations
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Figure 4.19: Velocity profiles ((i) u′ on left, (ii) w′ on right) under the wave crest of a solitary wave

(A0 = 0.05) on a 1/60 slope at four separate locations comparing 2CLOWNS NN, NSWE, and

FNBM simulations; (a) h/hb = 2.1, (b) h/hb = 1.2, (c) h/hb = 0.93, (d) h/hb = 0.68

correspond to the four zones of shoaling and decay introduced in Synolakis and Skjelbreia (1993).

The vertical velocity profiles for u′ and w′ in NSWE are found from the following equations based

on the weakly nonlinear Boussinesq assumption using the depth-averaged velocity:

u(z)=U +
(

1
6

h2 −0.5(z+h)2
)
∂2U
∂x2 (4.19)

w(z)=−∂U
∂x

(z+h) (4.20)

Velocity profiles for FNBM are found from the equations based on a fully nonlinear Boussinesq

assumption using the velocity at an arbitrary depth, zα (Sitanggang and Lynett, 2010):

u(z)= uα+ 1
2

(
z2
α− z2) ∂2uα

∂x2 + (zα− z)
∂2(huα)
∂x2 (4.21)

w(z)=−∂uα
∂x

z− ∂(huα)
∂x

(4.22)

The 2CLOWNS velocity profiles are taken directly from the RANS model.
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Firstly, at h/hb = 2.1, Figure 4.19 (a) confirms that all three models have good agreement for

both u′ and w′ even at the edge of the zone of gradual shoaling where h/hb = 2.1→ h′ = 0.22 is

located. The magnitude of w′ is small and the profile of u′ has small curvature where u′ at the

free surface is only slightly larger than at the bed. It is these reasons that help explain why the

NSWE model is just as accurate at predicting shoaling as the FNBM and RANS model in this

zone, since the assumptions of the NSWE model are still valid.

However, in the zone of rapid shoaling at h/hb = 1.2 (Figure 4.19 (b)), significant discrepancies

of both u′ and w′ are shown between all three models. The curvature of the u′ profile between

FNBM and 2CLOWNS are similar but the magnitude is larger in FNBM. This could explain why

wave breaking occurs earlier in FNBM as the speed of the fluid near the wave crest approaches

that of the wave celerity quickly. Although the magnitude of u′ is more agreeable between

2CLOWNS and NSWE, the curvature is underestimated implying smaller steepness of the wave

shape. The profile of w′ in NSWE is negative over the entire depth in contrast to FNBM which

is small and positive everywhere indicating little asymmetry of the wave shape. However the

2CLOWNS velocity profile is also negative near the free surface but positive in the lower half of

the depth. A nonlinear profile of w′ such as that present in the 2CLOWNS simulations cannot be

replicated by NSWE and FNBM models.

Similarly, in the zone of rapid decay at h/hb = 0.93 (Figure 4.19 (c)), the profiles of u′ and w′

in 2CLOWNS are highly nonlinear. Although the prediction of u′ and w′ in FNBM at the seabed

is in good agreement with 2CLOWNS, both u′ and w′ at the the free surface are underestimated.

The NSWE u′ and w′ profiles are very different from either of the FNBM or 2CLOWNS ones.

These observations may be expected since at this point rapid decay (∼ h4) occurs in 2CLOWNS

but the same degree of decay does not occur for either of the NSWE or FNBM models as plotted

in Figure 4.15. In fact, NSWE does not have a region where rapid decay is evident and appears to

only mimic gradual decay. Hence, it is unsurprising that the velocity profiles are not in agreement.

Finally, the velocity profiles in the zone of gradual decay at h/hb = 0.68 where bore propagation

has begun to form are plotted in Figure 4.19 (d). Notably the magnitude of u′ near the free surface

is much larger than that u′ in the lower half depth in 2CLOWNS which may be expected in bore

formation. FNBM appears to do a good job in approximating the average magnitude of u′ and w′

but the velocities particularly at the free surface are significantly different. It is this irregularity

of the velocity profiles and the addition of turbulence that makes modelling through traditional

wave equations very challenging after wave breaking, even for fairly small wave heights as

shown in this example. This is one of the main advantages of using the RANS model in these

regions over depth-integrated ones. In addition, although here only solitary wave transformation

is analysed, major differences of the vertical velocity profile between RANS, NSWE and FNBM

will induce significant differences in the undertow flow for ordinary periodic waves.
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4.5 Conclusions

This study applied the two-way coupled long wave to Reynolds-averaged Navier-stokes (2CLOWNS)

model to shoaling and breaking of solitary waves on a plane beach. Validation of the two-way

coupling scheme and its sensitivity to the vertical distribution of the velocities as an input to the

RANS model, the coupling depth, and the slope and wave height was shown. Optimal coupling

depths depending on the offshore wave height and slope were determined, and a demonstration

of the ability of 2CLOWNS to model the entire wave transformation and breaking process was

carried out.

Shoaling characteristics of the individual NSWE and RANS models were analysed in compari-

son with theoretical reference shoaling rates and a FNBM. It was found that the RANS model and

FNBM models could predict shoaling rates similarly until close to the breaking point. However,

RANS models are computationally expensive, may suffer from significant numerical dissipation

when propagating from offshore and are highly sensitive to the grid resolution. Conversely, the

NSWE model was reliable and efficient in calculating wave propagation from far offshore however

it could not match the required shoaling rate of the FNBM and RANS models in the zone of

rapid shoaling. By measuring the location (depth) where the NSWE model diverges from FNBM,

Eqn. (4.12) was derived based on a nondimensional slope parameter. Eqn. (4.12) was used to

compute the “optimal” coupling depth for the 2CLOWNS model in order to maximise accuracy

and efficiency.

A basic evaluation of the 2CLOWNS model was performed to investigate the the two-way

coupling algorithm and sensitivity to the; 1) assumption of the velocity profile used as a boundary

condition to the RANS model during coupling, 2) coupling depth, 3) beach slope and offshore wave

height. Incident and reflected waves off a vertical wall could seamlessly pass through the NSWE

and RANS domains in both directions using the two-way coupling algorithm. Two-way coupling

was found to affect the computation of the volume fluxes entering the RANS domain that occurs

in order to balance the wave energy during solitary wave shoaling on a steep slope. This balancing

effect is not possible in one-way coupling simulations. Regarding the velocity boundary conditions,

the sensitivity to the assumption of the vertical velocity profile was large in comparison to the

horizontal velocities. A no gradient condition on both the vertical velocity and the difference in

the depth-averaged horizontal velocities was found to give the best results. If coupling occurs

in depths much smaller than that prescribed by Eqn. (4.12) the NSWE model has diverged

too far from the RANS model and accurate wave transformation could not be achieved. The

differences between coupling at the optimal depth and a larger one was relatively small but better

performance was generally achieved when coupling in larger depths. However, computational

time rapidly increases as the coupling depth increases which must be offset against small changes

in accuracy. As the slope and offshore wave height increased the relative errors in the form of

a deviation in the local wave height at the coupling interface compared with the FNBM model

approached approximately 3% at the maximum values of slope and wave height. An equation
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was derived to describe the deviation in the local wave height as a function of S0s−1.095. This

indicates that the coupling performance is far more sensitive to the offshore wave height in

comparison to the slope. Deviations at the coupling interface are smaller than 1% for any offshore

wave height, A′
0 ≤ 0.10. For example, on the slope, s = 1/60 with A′

0 = 0.05, the 2CLOWNS model

could model the entire wave shoaling and breaking process remarkably well in accordance with

theoretical expectations and experimental observations. Moreover, the computational time of

2CLOWNS simulations was between 6.2% and 22% that of the computational time using the

singular RANS model under the same conditions. In real 2DH/3D large-scale simulations the

effect on computational time will be even more dramatic and important.

The ability of 2CLOWNS to predict wave breaking characteristics was analysed and found

to give reasonable approximations overall when compared with experimental observations and

empirical equations based on results from a FNPF model (Grilli et al., 1997). Eqns. (4.17) and

(4.18) were derived to determine the water depth at breaking and wave breaking index based on

the results of the the 2CLOWNS simulations. The new equations may be a useful complement

to the existing ones presented in Grilli et al. (1997) particularly for 0.10< S0 < 0.25, S0/A′
0 > 1.

Moreover, the post-breaking behaviour and overturning wave shape was presented. The three

zones of decay in the local wave height were approximated well overall following estimated rates

of decay. Furthermore, the wave shape upon breaking, the formation of the plunging jet, the

touchdown of the plunging jet, and wave splashup were all captured in the wave breaking process.

Based on plots from FNPF simulations (Grilli et al., 1997) and experimental photographs (Li and

Raichlen, 2003) qualitative agreement was found.

Finally, velocity profiles under the wave crest at different locations were compared between

NSWE, FNBM and 2CLOWNS simulations for the case A′
0 = 0.05 on s = 1/60. Good agreement

was shown between all three models for both horizontal and vertical velocities near the edge of

the zone of gradual shoaling. However, in the zone of rapid shoaling, nonlinear profiles of both u′

and w′ develop in 2CLOWNS that could not be predicted by NSWE. After breaking, in the zone

of gradual decay highly irregular profiles of u′ in particular are found in 2CLOWNS which were

not possible for NSWE and FNBM to replicate.

Overall it can be concluded that the 2CLOWNS model may prove to be a powerful tool in

long wave modelling. This is particularly true for relatively large values of S0s−1.095 (A′
0 ≤ 0.10

on mild slopes) as suggested, corresponding to the majority of tsunami situations . For wider

applicability to wave problems with larger nonlinearities the use of a higher-order long wave

model such as a FNBM instead of a NSWE model to couple to the RANS one should be adopted.

Future studies should focus on extending the model and relations presented in this paper in

order to apply them robustly to real situations such as computation around offshore and onshore

structures of engineering interest. In addition, detailed analysis of the post-breaking physics

such as wave splash-up, bore propagation and wave runup will be undertaken in subsequent

studies.
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5
FLOW HYDRODYNAMICS NEAR THE

KAMAISHI BAY OFFSHORE TSUNAMI BREAKWATER DURING

THE 2011 TOHOKU-OKI EARTHQUAKE TSUNAMI

The extension of 2CLOWNS analysed in Chapter 4 for solitary waves to 2DH-3D (2CLOWNS-

3D) is required in order to verify the model’s ability to simulate real-world scenarios and

thus demonstrate its usefulness. A study was conducted that analysed the effects and

forces on an offshore tsunami breakwater in Kamaishi Bay on the 2011 Tohoku-oki Earthquake

Tsunami (see §5.2 for the setup and model conditions). The results of this study are presented

in this chapter. Firstly, the model setup and accuracy of the source conditions are verified via

the maximum inundation heights recorded around Kamaishi Bay during the 2011 Tohoku-oki

Earthquake Tsunami in §5.3. Following this, two main themes were investigated. Firstly, the

offshore breakwater creates a very large jet-like structure and vortex onshore of it as the tsunami

flows through the submerged section constructed for traversing vessels. §5.4 analyses the major

flow hydrodynamics of this jet-like structure onshore of the breakwater and comparisons of the

2CLOWNS-3D results are made with those of the 2DH NSW model. The second major focus of

the study was to quantify the hydrodynamic forces and stresses on the breakwater, particularly

through the opening which is presented in §5.5. The simulated values are compared with the

critical ones for sliding of the caissons as punching failure of the rubble mound foundation.
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5.1 Introduction

The March 2011 Tohoku-oki Earthquake Tsunami event in northeastern Japan caused catas-

trophic widespread damage resulting in 15,892 fatalities with an additional 2,574 missing. In

total, 124,663 buildings fully collapsed, 274 638 buildings partially collapsed and 116 bridges

were damaged as of July 10, 2015 (National Police Agency of Japan, 2015). The direct economic

damage has been estimated at US$183bn while costs for recovery might reach US$122bn (Norio

et al., 2011).

Due to its long history of tsunami disasters, Japan may have been one of the most prepared

nations with regard to its construction of coastal protection structures e.g. seawalls, gates, offshore

tsunami breakwaters and planted trees to act as natural tsunami barriers. Suppasri et al. (2013)

demonstrates examples where each of such coastal protection structures were significantly

damaged during the 2011 tsunami event. For example, the construction of a pair of offshore

tsunami breakwaters with lengths of 990 m and 670 m connected by a 300 m long submerged

section in a water depth of 63 m in Kamaishi Bay, Iwate Prefecture located on the Sanriku ria

coast was completed in 2008 making it the deepest caisson breakwater in the world (Tanimoto

and Takahashi, 1994). Nevertheless, even this breakwater succumbed to the force of the tsunami

where many caissons either completely slid out or leaned out of position (Arikawa et al., 2012).

Previous studies have investigated the influence of the Kamaishi Bay offshore tsunami

breakwater on inundation heights along the Kamaishi Bay coast (Mori et al., 2015; Pringle and

Yoneyama, 2013; Port and Airport Research Institute of Japan, 2011b) using various numerical

techniques including both three-dimensional (3D) and horizontal two-dimensional (2DH) shallow

water equation (NSWE) based models, and a two-way coupled 2DH NSWE to 3D Reynolds-

averaged Navier-Stokes (3D RANS) model. The differences in tsunami heights into the bay with

and without the breakwater have been shown to be approximately 25 - 40% different (Mori et al.,

2015). Comparisons with survey measurements (Mori et al., 2011, 2012) have verified that the

two simulation cases provide upper and lower bounds for the actual event which is a combination

of the two (the breakwater was partially damaged). For investigating possible failure modes

of the breakwater, Arikawa et al. (2012) conducted hydraulic model tests while Bricker (2013)

utilized a vertical two-dimensional (2DV) RANS model of the overtopping flow. Their conclusions

attribute water level difference, scour and punching failure of the rubble mound foundation to

be major causes of breakwater failure. However, an estimation on the hydrodynamic forces that

the breakwater was subjected to in different regions, particularly through the middle submerged

section has not been investigated in any detail.

In addition to the large scale impacts of coastal structures on inundation heights, it is

also intriguing to analyse the effect on tsunami currents and their distribution into the bay.

Maritime damage due to tsunami currents and drag forces such as destroying boats and docks,

ripping vessels from moorings and impacts from floating debris may be significant even in

otherwise largely unaffected regions (Lynett et al., 2014). Furthermore, tsunamis can induce
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severe topographical changes and sediment depositions that may provide geological evidence

from past tsunami events as well as erosion around coastal structures that can negatively affect

their performance (Kihara et al., 2012). In addition, excess deposition of sediment can also affect

the movement of vessels in and out of harbours and other harbour operations. This may result

in dredging costs, or in some cases erosion may even save dredging costs, e.g. the February 27,

2010 Chile tsunami saved US$100,000 in such costs for Ventura Harbor, California (Wilson et al.,

2012).

In order to detail the tsunami currents as well as the hydrodynamic effects on the breakwater

a suitable numerical technique is required that can generate and propagate a realistic tsunami

forcing as well as compute both horizontal and vertical distributions of current velocities and

small scale hydrodynamics. Boussinesq type models (e.g. Roeber and Cheung, 2012; Shi et al.,

2012a; Kim et al., 2009) and other depth-integrated non-hydrostatic models (e.g. Yamazaki et al.,

2011a) may approximate horizontal and less so vertical distributions satisfactorily in many areas

although they are bounded by underlying assumptions. While models such as SELFE (Zhang

and Baptista, 2008), a 3D NSWE based one solved on unstructured grids provide an elegant and

seamless solution to consider both inundation and 3D distributions of the flow, thus are well

suited to complex bathymetry. However, in order to simulate full non-hydrostatic behaviour, small

scale turbulence, and hydrodynamic effects on structures, RANS or other similar Navier-Stokes

based models may be preferred. Recently, a number of RANS models have become popular as

numerical wave tanks (e.g Kim et al., 2010; del Jesus et al., 2012; Higuera et al., 2014), but

these are unreasonable for simulation over entire bays, let alone further offshore. In Kim et al.

(2010) two-way coupling of the RANS model with a fully nonlinear potential theory boundary

element method (BEM) model takes place that can help to reduce some of the computational cost.

Even so, this is generally still limited to application in numerical wave tanks. In order to enable

application of RANS models to real large scale scenarios, coupling with computationally efficient

2DH models (Pringle and Yoneyama, 2015, 2013; Sitanggang and Lynett, 2010; Fujima et al.,

2002) is required. The 2DH model provides realistic wave forcings that have propagated from far

field towards the small region of interest where the RANS model takes over.

This study details and applies the two-way coupled 2DH NSWE to 3D RANS model referred

to as 2CLOWNS-3D that has been described in detail in Chapter 3. The aim is to use the model

to 1) analyse the velocities of the tsunami flow and their three-dimensional distribution onshore

of the Kamaishi Bay offshore tsunami breakwater, and 2) quantify the hydrodynamic forces

on the submerged section of the breakwater during the 2011 Tohoku-oki Earthquake Tsunami.

Calculation in the 3D RANS model is set around the breakwater opening while the 2DH NSWE

model is adopted elsewhere from the tsunami source in the open ocean to the coast also modelling

inundation. For verification of the real scale application to Kamaishi Bay, comparisons with

offshore wave buoy data and 2011 Tohoku Earthquake Tsunami Joint Survey Group (TTJS)

(Mori et al., 2012) survey measurements of the maximum inundation heights are shown. When
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analysing the hydrodynamics of the flow, comparisons are commonly made with simulation

results that utilise only the 2DH NSWE model in order to highlight areas where 2CLOWNS-3D

can be advantageous for use.
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5.2 Model Conditions and Setup for Application

§4 shows that within a suitable range of offshore wave parameters and beach slopes, 2CLOWNS

can reproduce shoaling and breaking characteristics of solitary waves. It is expected that the long

length scales of tsunamis in comparison to solitary waves will make 2CLOWNS-3D at least as

effective in a real-scale scenario. However, different problems arise due to the interaction with

coastal structures that cause the wave to develop turbulent eddies and strongly non-hydrostatic

conditions that may propagate to the multiscale coupling interface.

5.2.1 Kamaishi Bay and Offshore Tsunami Breakwater

Kamaishi Bay is located in Iwate Prefecture, on the Sanriku ria coastal area of Japan. Kamaishi

Bay is separated from Ryoishi Bay in the north by a short peninsula and Toni Bay in the south by

a longer peninsula. At the mouth of Kamaishi Bay existed the deepest offshore caisson breakwater

in the world extending to a maximum depth of 63 m and spanning a total of almost 2 km in

length (Arikawa et al., 2012). It was constructed for the purpose of protecting Kamaishi City from

tsunami attacks. The breakwater’s crest height sits at 6 m above average low tide level in the bay

(L.W.L), and is formed from up to 36,000 ton trapezoidal and rectangular caissons sitting on a

layer of armour rock and rubble mound with a 2:1 slope. The offshore tsunami breakwater has

two main sections, north and south that span 990 m and 670 m respectively. They are connected

by a submerged section where the crest height is -19.0 m L.W.L allowing vessels to traverse

through.

During the 2011 Tohoku-oki Earthquake Tsunami the wave motion on and over the structure

induced failure of the breakwater caissons, causing them to either slide out or lean out of position.

A schematic of the breakwater is shown in Figure 5.1 where caissons are marked red indicating

failure as shown in Arikawa et al. (2012). Despite its failure, survey results of water marks

by TTJS (Mori et al., 2012) indicate that the inundation levels were considerably lower within

Kamaishi Bay, compared to levels at adjacent Ryoishi Bay where an offshore tsunami breakwater

was not present. Previous numerical studies have also indicated that the breakwater likely

reduced the tsunami into the bay by 25-40% (Mori et al., 2015).

5.2.2 Bathymetry/Tsunami Source Data and Computational Grids

This section summarises the bathymetry data, tsunami source data and computational grids for

both the 2DH NSWE and 3D RANS models.

2DH NSWE Data and Grid

In all the simulations, bathymetry and topography data from Kotani et al. (1998) with five

levels of resolution; 1350 m, 450 m, 150 m, 50 m and 10 m (see Figure 5.2) are used. The data

from the first four layers were created in the old Tokyo datum geodetic system with the origin
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Figure 5.1: Sketch of Kamaishi Bay breakwater with the damaged caissons shaded red and yellow.

Front on view and cross-section of the submerged section; adapted from: Arikawa et al. (2012);

Port and Airport Research Institute of Japan (2011b)

point at UTM 143◦ longitude and 0◦ latitude. 500 km was added onto the easting coordinate to

avoid negative numbers. To generate the 10 m mesh, bathymetry from the 50 m dataset was

combined with 0.2 arcsecond (≈ 5 m) mesh Digital Elevation Measurement (DEM) topography

data (Geospatial Information Authority of Japan, 2009). All ground levels are given in T.P (=

L.W.L+0.86 m), the mean sea level in Tokyo Bay. Initially, three simulations are conducted using

only the 2DH NSWE model to test the sensitivity to the offshore breakwater. The three different

cases are: no offshore breakwater, post-tsunami partially damaged breakwater, and pre-tsunami

undamaged breakwater. The latter condition is the one conducted using 2CLOWNS-3D. Colour

plots of the 10 m mesh layer for the three offshore breakwater conditions are shown in Figure 5.3.

Furthermore, roughness data in the form of Manning’s n friction coefficients are included in

the dataset that vary throughout the domain depending on the land use. Manning’s n is equal

to 0.025 in offshore areas, 0.020 over plain fields, 0.030 over forestland and 0.040 in areas of

population. Finally, seawall and harbour breakwater crest heights are also contained in the

dataset and these are set on the cell boundaries using Eq. (3.20) to calculate the volume fluxes

here.
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Figure 5.2: Contour plot of the bathymetry (water depth from T.P. (m)) data (Kotani et al., 1998)

in five layers of resolution and the position of the Port and Airport Research Institute of Japan

(2011a) GPS wave buoys (#801 - #807). Dashed rectangle indicates the location of the next layer.

(a) 1350 m resolution, (b) 450 m resolution, (c) 150 m resolution with contours omitted below -100

m depth, (d) 50 m resolution with contours omitted below -100 m depth, (e) 10 m resolution (no

offshore breakwater) with contours omitted below -100 m depth
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Figure 5.3: Colour plots of the 10 m mesh later for the three offshore breakwater conditions. (a) no

offshore breakwater, (b) post-tsunami partially damaged breakwater, (c) pre-tsunami undamaged

breakwater
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The tsunami source model used in this study is based on the Tohoku University version1.2

(TUv1.2) (Imamura et al., 2012). The source is activated in the 2DH model by sudden deformation

of the seabed and consequential deformation of the free-surface. TUv1.2 is created using the

Okada (1985) method with 10 segments each of 100 km2, with strike equal to 193◦, dip equal to

14◦ and rake equal to 81◦ everywhere. Depth is either 1 km or 24.2 km and slip varies from 2 m

to 35 m.

3D RANS Grid

The same bathymetry from the 2DH NSWE 10 m mesh (Figure 5.2(e)) is further refined onto the

3D RANS grid and combined with a polygon representation of the breakwater. The north-south

grid size (∆y) and the east-west grid size (∆x) remain at 10 m near the lateral boundaries but are

equal to 5 m around the submerged section of the breakwater. There is a small zone connecting

the two grid sizes where there is a gradual increase or decrease in the grid size. The vertical

grid size (∆z) also gradually reduces according to a power law from 2.5 m at the greatest depth

to 1.25 m near the top of the rubble mound (-32.0 m T.P). It remains at 1.25 m hereafter until

the arbitrary vertical extent of the mesh (+13.0 m T.P). A schematic of the mesh showing the

landform and breakwater is found in Figure 5.4.

The position and length of the 3D RANS grid was chosen so that the boundaries are far

enough from the breakwater so that the horizontal velocity distribution and pressure can be

almost assumed uniform and hydrostatic respectively for the most part, as required by our

assumptions for the 2CLOWNS-3D model. The simulations using just the 2DH NSWE model

were used to get an estimate of the extent of possible complex flow. In particular, the length

of the large jet-like structure towards the shoreline forces the calculation domain to become

considerably long in the east-west direction extending the calculation time. Even so, there are

still times when the velocity distribution becomes non-uniform at the boundary which motivated

the arbitrary velocity distribution formulation in Eqn. (3.137). This aspect will be discussed

further in §5.4.

To justify that coupling for this specific scenario is reasonable, appropriate dimensionless

variables introduced in Chapter 4 can be calculated and compared with the suggested applicable

range. Following Chan and Liu (2012), a crude estimate of the slope from wave buoy #802 (South

Iwate) closest to Kamaishi Bay, into Kamaishi is given as s = 1/70, where the buoy is at an offshore

depth of h0 = 204 m. The peak wave amplitude was recorded to be A0 = 6.7 m (A′
0 = 0.033) at

this location, and Chan and Liu (2012) approximate the effective wave length to be L0 = 45 km.

This results in the the dimensionless slope parameter, S0 = sL0/h0 = 3.15. Using Eqn. (4.12),

a minimum water depth for reliable coupling can be determined from the value of S0 A′−0.5
0

which in this case is S0 A′−0.5
0 = 1.22. h′

c = 0.11 hence a minimum water depth for coupling can

be estimated to be 22 m. Since most of the coupling occurs in depths larger than 50 m for the

current grid we can be confident that the NSWE model is correctly computing the wave at the
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Figure 5.4: Schematic of the 3D RANS mesh with range of grid sizes indicated. (a) Plane view

of the mesh where the shading indicates initial water depths (T.P.), (b) x− z cross-section of the

mesh along the y= 4,345,150 m northing

interface. Furthermore, coupling errors decrease with large values of S0s−2 which is equal to

S0s−2 = 15,435 in this case, an extremely large value. Thus coupling errors at the interface are

expected to be almost negligible for this scenario.

5.2.3 Model Conditions

The initial water level in all the simulations is set at +0.0 m T.P., and the tsunami is simulated

for a total of 90 minutes from the earthquake rupture. Open boundary conditions are employed in

the outermost 2DH NSWE layer to reduce reflections of the tsunami wave. The nesting algorithm

of 2CLOWNS-3D is used to simulate the tsunami from the source towards to Kamaishi Bay

with increasing resolution. Different time steps, ∆t are utilized so that the C.F.L condition is

satisfied (Cr <p
2/2) in each nested layer. However, ∆t between two connecting layers must be

some integer multiple of each other, so the Courant number, Cr will be slightly lower or higher in

some regions than in others. ∆t ranges between 0.13 s in the innermost 10 m 2DH NSWE layer

and 3.1 s in the outermost 1350 m 2DH NSWE layer so that the ratio of ∆t is 2:1 between each
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set of consecutive layers except for a 3:1 ratio between the 50 m and 10 m layers.

Additionally, an extra measure was introduced for the simulation using the pre-tsunami

breakwater condition in the innermost 10 m 2DH NSWE layer. Usually small scale breakwaters

and seawalls are represented at the cell boundary by the countermeasure introduced in §3.2.3.

For the large-scale offshore tsunami breakwater the bathymetry itself must be used to describe

the breakwater. However, the depth at the cell boundary is found by the average of the adjacent

cell centre depths. When the change in bathymetry actually represents a vertical wall rather

than a slope, averaging the cell depths will produce a water depth at the cell boundary greater

than the actual depth. Therefore, in this scenario the water depth at the cell boundary is set

equal to the minimum of the adjacent cell centre depths to correctly account for the presence of

the vertical wall.

The time step in the 3D RANS layer ranges from ∆t = 0.014 - 0.043 s depending on the

instantaneous Cr which is kept at around 0.33 for stability of the SMAC algorithm (see §3.4.6).

Hence the ratio of ∆t becomes up to 9:1 between the 10m 2DH NSWE layer and the 3D RANS one.

Interestingly this does not appear to result in any adverse effects on the simulation. Concerning

friction effects, a wall function is used to approximate the bed shear stress with an appropriate

roughness height specified (1 mm is used in this study).

151



CHAPTER 5. FLOW HYDRODYNAMICS NEAR KAMAISHI BAY TSUNAMI BREAKWATER

5.3 Validation of Tsunami Height and Inundation
Measurements

This section gives an overview of the simulation results that are measured in the 2DH NSWE

layers. This is to verify that the incoming tsunami wave, and maximum inundation measurements

are comparable to reality so that we have confidence in the wave forcings into the 3D RANS

model as well as the coupling scheme between layers and both models in 2CLOWNS-3D.

5.3.1 Wave Buoy Measurements

Temporal variation in the water level is shown at positions corresponding to three of the GPS

wave buoys closest to Kamaishi Bay in Fig. 5.5. In particular, the large tsunami peak equal to 6.7

m was almost reproduced at wave buoy #802 (South Iwate), the closest to Kamaishi Bay. The

time series after the wave peaks at all the locations shown are also generally in good agreement

and is within similar error to the preferred fault model in Yamazaki et al. (2011b). The main

apparent weakness of the TUv1.2 source model is that it overestimates the initial wave trough at

all locations and overestimates the wave peak for buoy #803 (North Miyagi).

5.3.2 Maximum Inundation Heights and Inundation Area

In this section the maximum recorded free surface level, ηmax, and the inundation area is plotted

and compared for the various cases. ηmax is equivalent to the maximum inundation height on

land and hence comparisons are made with TTJS survey measurements tide-corrected survey

measurements (Mori et al., 2012). An estimation of the inundation area in the greater Kamaishi

City region has also been made by Geospatial Information Authority of Japan (GSI) (2011) for

comparison.

2DH NSWE Model Simulations

Simulations using the 2DH NSWE model were conducted for the three offshore tsunami break-

water conditions to quantify the effects of the breakwater. This is firstly quite useful to know

from an engineering point of view, although a couple of previous studies have already looked into

this effect (Mori et al., 2015; Port and Airport Research Institute of Japan, 2011b). Thus, this

exercise simply serves the purpose of confirming those results in addition to an illustration of the

sensitivity of the inundation results to the breakwater condition. For this reason it is difficult to

accurately reproduce the actual survey measurements in this particular bay. Figure 5.6 firstly

shows a colour plot of the maximum recorded free surfaces, ηmax in the three simulations. The

TTJS survey measurements are included as filled circles with their colour representing the

maximum inundation height.
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Figure 5.5: Water level time series at three Port and Airport Research Institute of Japan (2011a)

GPS wave buoys closest to Kamaishi Bay, comparing simulation results in this study using the

Tohoku University version1.2 source (Imamura et al., 2012) with the measured water levels

The tsunami height for the no breakwater case in Figure 5.6(a) ranges from 14 m at the

bay mouth to 20 m at the back of the V-shaped bays. The inundation extends very far inland

via the river. The inundation heights are much larger than any of the survey measurements

(this is quantified in more detail below). When the post-tsunami damaged offshore breakwater

condition is set (Figure 5.6(b)) the tsunami heights in the bay reduced by approximately 4 m

so that at the back of the bays the heights is near 16 m while at the bay mouth the tsunami

height is 10 m. Still in this case the survey inundation heights are significantly larger than

those of the simulation. This can be attributed to the fact that the breakwater was destroyed

at some point during the event, probably during the largest wave, but not immediately. Thus

the breakwater could still offer more protection that its post-tsunami state. In comparison, the

pre-tsunami undamaged breakwater condition reduces the tsunami height considerably inside

of the Kamaishi bay. Offshore of the breakwater the tsunami height climbs to 12 m while just

onshore of the breakwater the tsunami height is less than 6 m. At the back of the bays the
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Figure 5.6: Colour plots of the maximum recorded free surfaces, ηmax using the NSWE model

for three conditions of the offshore tsunami breakwater, with a comparison to TTJS survey

measurements (Mori et al., 2012) (indicated by filled circles). (a) No offshore breakwater, (b)

Post-tsunami damaged breakwater, (c) Pre-tsunami undamaged breakwater
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Figure 5.7: Effect of the offshore tsunami breakwater on inundation heights and area for 2 hours

of simulation with the NSWE model. (a) Difference in maximum inundation heights between

TTJS survey measurements and simulated ones at locations ordered in a clockwise direction

around the coast with least-squares lines of regression (lsline) also plotted, (b) Time series of the

inundation area with estimate of actual maximum area (in the greater Kamaishi City region

larger than our computational domain) shown for comparison

tsunami height reaches approximately 8 m. This is a substantial difference to the no breakwater

case. In general this case indeed matches the survey measurements to the best accuracy overall

although slight underestimation of the inundation heights is apparent.

In order to quantify the the comparison of the three cases and with survey measurements

more precisely, Figure 5.7 plots the difference of ηmax with the TTJS survey measurements
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for inundation heights in (a) and the inundation area in (b). Least-squares lines in (a) are also

included. A trend that is immediately apparent is that the inundation heights were predicted to be

larger in the northern region than in the southern region. This could be attributed to the fact that

the northern region mainly corresponds to the major Kamaishi City center thus in reality many

buildings and infrastructure were present that could have reduced the inundation heights. The

current simulation only approximates such effects through a larger Gauckler-Manning coefficient

(that is also derived from coarse 50 m mesh data) which may be inadequate. In other areas

along the coast the presence of buildings and infrastructure is scarce so the simulation results

will be more reliable here. For all cases the slope of the trend lines are almost identical. This

indicates that the breakwater has an influence over the entire bay as to be expected because it is

placed at the bay mouth, which is one major advantage of the large-scale tsunami breakwater in

comparison with smaller breakwaters or seawalls near the coastline that may only have very local

effects. On average the pre-tsunami breakwater condition underestimates the inundations height

by 1.7 m (2.1 m), whereas the post-tsunami breakwater overestimates the tsunami inundation

heights by 5.9 m (1.9 m). Without a breakwater the inundation heights are on average 8.7 m (2.1

m) larger than the TTJS survey measurements. This is considerable, equivalent to on average a

51% reduction. Other studies has suggested the reduction is on the order of 20-40% (Mori et al.,

2015) which according to this study may in fact be a lower bound estimate. It should be noted that

the estimate in Mori et al. (2015) was only based on the reduction either side of the breakwater

and not the actual reduction between a no breakwater case and the measured inundation heights.

However, for the pre-tsunami undamaged tsunami breakwater case in this study the reduction

can also be estimated to be at least 50% based on the tsunami height either side of the breakwater

although this should indeed be an upper bound estimate given the damage to the breakwater.

Similarly, concerning the inundation area in (b), the three breakwater conditions result in

different magnitudes of the inundation area. The maximum inundation area generally occurs

due to the peak positive wave at approximately 35 minutes after the earthquake rupture. The

difference between the no breakwater case and the pre-tsunami breakwater case is approximately

3 km2 which is equivalent to a 36% reduction in the inundation area due to the presence of

the breakwater. For validation, a comparison can be made with an approximation of the actual

measured inundation area for the greater Kamaishi City region. It has been estimated to be 7

km2 (Geospatial Information Authority of Japan (GSI), 2011), but this includes areas outside of

the computational domain so the actual measured inundation area in the computational domain

is likely to be closer to the maximum predicted by the pre-tsunami breakwater condition case.

In summary, the range of inundation heights and areas for the three breakwater conditions

provide upper and lower bounds of the actual recorded ones. This gives us confidence that the

NSWE numerical model and the tsunami source model is reasonable because the actual case can

be assumed to be a combination of the pre-tsunami and post-tsunami breakwater conditions due

to the damage of the breakwater during the event.
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Figure 5.8: Time series of the measured volume flux per unit width, Q (averaged in the north-

south direction) for 90 minutes of simulation comparing the 2DH NSWE and 2CLOWNS-3D

simulations. Positive indicates flow in the onshore direction (east to west). (a) east boundary of

the RANS domain, (b) submerged section of the breakwater

2CLOWNS-3D Simulation

One simulation using the 2CLOWNS-3D model was conducted for the pre-tsunami breakwater

case. The 2CLOWNS-3D model allows for the full scale tsunami computed from the source to be

conducted with a detailing of the 3D hydrodynamics on the offshore tsunami breakwater. This is

usually unobtainable because of the computational load required for full 3D simulations over

an entire domain. Furthermore, 3D simulations of this type where multiple free surfaces are

possible (VOF method employed) and the k−ε turbulence model is used are generally numerically

inaccurate over very large scales compared with long wave models.

Firstly, it is important to test whether the flow rates between the 2CLOWNS-3D model and

the 2DH NSWE model are correctly comparable at certain cross-sections to show the boundary

conditions into the RANS model from the NSWE model, and the RANS calculation itself are

reasonable. Figure 5.8 plots the time series of the volume flux, Q (per unit width averaged in

the north-south direction) at: (a) the east boundary of the RANS model where coupling takes

place with the 2DH NSWE model, and (b) over the submerged breakwater section. Also included
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for interest is Q from the 2DH NSWE simulation without the adjustment for depth at the cell

boundaries to represent the vertical walls of the breakwater as described in §5.2.3, denoted “2DH

NSWE NA”. Initially over the first 15 minutes all the models are the same predicting almost zero

volume flux. Following this the initial drawback takes place where flow is sucked through the

breakwater from the onshore side to offshore. Here, the 2DH NSWE and 2CLOWNS-3D models

are in good agreement while the flow rate at the submerged breakwater in the 2DH NSWE

NA case is greater. Similarly when the tsunami peak arrives after approximately 30 minutes

the corrected 2DH NSWE and 2CLOWNS-3D models are in good agreement (the flow rate in

2CLOWNS-3D is 4.5% greater at the time of the peak flow rate at the submerged breawkwater

section) while the 2DH NSWE NA case overestimates the flow rate by 15%. This trend continues

for most of calculation. As time proceeds the differences between the 2CLOWNS-3D and corrected

2DH NSWE model simulations slightly increase probably as the flow structure produced by the

RANS model such as turbulent structures and vorticities become pronounced. Two conclusions

can be drawn from this figure: First, the similarities of the flow rate between the 2DH NSWE

and 2CLOWNS-3D simulations suggest that the two-way coupling scheme is robust in terms of

the boundary conditions and the ability of the RANS model to correctly simulate the flow. Second,

when using NSWE models in the vicinity of structures such as a breakwater with a vertical wall

it is important to take care about how the depth is being approximated across the cell boundary so

that the volume flux is correctly simulated (to avoid the demonstrated simulation result denoted

by “2DH NSWE NA”).

The difference in maximum recorded free surfaces, ηmax between the 2CLOWNS-3D and

2DH NSWE simulation - (ηmax)2CLOWNS − (ηmax)NSWE - is plotted in Figure 5.9 on the 2DH

NSWE 10 m mesh. Offshore of the breakwater almost no difference is generated between the

simulations but over the breakwater and onshore of it differences become evident. Onshore of

the breakwater, ηmax is larger in the 2CLOWNS simulation by up to 2 m and is highly location

dependent. For example, north in Kamaishi City Main, and in the two southernmost bays, ηmax

is approximately 0.5 - 1 m greater in the 2CLOWNS simulations. In contrast very little difference

is found in Heita between the two simulations. The directional dependence on ηmax could be

due to the difference in the structure of the jet that forms through the submerged breakwater

section as well as vorticity formation. Similarly, the general increase in magnitude of ηmax in

2CLOWNS-3D is likely to do with the slight increase of Q through the submerged breakwater

section (Figure 5.8) followed by the differing hydrodynamics of the flow over the caissons and the

resulting jet. These hydrodynamic aspects will be addressed in more detail in the §5.4.

Another major difference of ηmax between the models emerges just offshore and over the

breakwater section. In 2CLOWNS-3D, over the breakwater section (on top of the caissons during

overtopping flow) ηmax is larger while ηmax is smaller just offshore compared with the 2DH NSWE

simulation. These differences arise because of the differing mechanism during overtopping flow

and as the tsunami flows over the submerged caissons between the models. For example, the flow
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Figure 5.9: Difference in maximum recorded free surfaces, ηmax between the 2CLOWNS-3D and

2DH NSWE simulation - (ηmax)2CLOWNS − (ηmax)NSWE - for 2 hours of simulation. Dashed black

rectangle indicates the location of the 3D RANS domain

is allowed to become non-hydrostatic in the RANS model which as will be shown later can vastly

change the structure of the flow over the submerged caissons compared with the hydrostatic

NSWE model. Secondly, for overtopping the NSWE makes use of the overtopping weir formula

introduced in §3.2.3, whereas the RANS model calculates the overtopping flow rate via the normal

governing equations. It should be noted however that due to the coarseness in the horizontal

resolution, accurate overtopping calculations should not be expected in either model. In this study,

the overtopping is not the main target, so the accuracies and model differences in overtopping

will not be pursued in detail here but are suggested for future studies.

Figure 5.10 provides a concrete comparison of the difference in inundation estimations

between the 2DH NSWE and 2CLOWNS-3D simulations. In general the inundation heights

and area are slightly greater when using the 2CLOWNS-3D model perhaps due to the 4.5%

increase in the peak flow rate through the breakwater section. As demonstrated in Figure 5.9

this is also location dependent. However, since there are some locations where the 2CLOWNS-

3D simulation predicts a marginally smaller inundation height, e.g. in the Heita area which

corresponds to the 10 locations to the right of the “South of Breakwater” tick in Figure 5.10. The
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Figure 5.10: Difference in inundation between the 2CLOWNS-3D and 2DH NSWE model simula-

tions. (a) Difference in maximum inundation heights between TTJS survey measurements and

simulated ones at locations ordered in a clockwise direction around the coast with least-squares

lines of regression (lsline) also plotted, (b) Time series of the inundation area with estimate

of actual maximum area (in the greater Kamaishi City region larger than our computational

domain) shown for comparison
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RMSE (Root Mean Squared Error) between survey measurements was 2.7 m for the 2DH NSWE

pre-tsunami breakwater simulation compared with 2.5 m for the 2CLOWNS-3D one. On average

the 2CLOWNS-3D simulation underestimated by the survey measurements by 1.5 m (2.0 m).

Recall that the 2DH NSWE underestimated measurements by 1.7 m (2.1 m). Furthermore, the

maximum inudation area is 1.6% greater in the 2CLOWNS-3D simulation. Hence, using the

2CLOWNS-3D simulation results in inundation heights and areas slightly closer to the measured

ones. However, it cannot be said that using the 2CLOWNS-3D model can give improved prediction

of the inundation (the actual situation of the breakwater such as the evolution of the damage is

unknown). The main conclusion to be drawn is that overall using a RANS model in the vicinity of

the breakwater to potentially more correctly model the hydrodynamics of the flow does not result

in vast differences in the final inundation heights. This is good news because; it demonstrates the

robustness of the 2CLOWNS-3D model and, if inundation is the only concern in a study then 2DH

NSWE is probably sufficient even though in some regions (e.g. over a submerged breakwater) the

model cannot be expected to give an accurate description of the flow.
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5.4 Flow Hydrodynamics Onshore of Breakwater

This section quantifies the hydrodynamics of the flow onshore of the submerged section of the

offshore breakwater. Firstly, an overview of the depth-averaged velocity distribution is shown

including a comparison of the 2CLOWNS-3D results with those of the 2DH NSWE simulation.

Secondly, the horizontal and vertical distribution of the flow hydrodynamics in the 3D RANS

domain is discussed. Finally, an estimation of the maximum shear stresses in the vicinity of the

breakwater is shown.

5.4.1 Velocity Comparisons with 2DH NSWE Simulation

The maximum recorded magnitudes of the depth-averaged velocities, Umax on the 2DH NSWE

10 m grid are shown in Figure 5.11. Furthermore, a snapshot of the depth-averaged velocity field

at t = 1740 s after the earthquake rupture (time of peak incoming tsunami wave) is illustrated in

Figure 5.12. Both figures compare the 2CLOWNS-3D and 2DH NSWE simulation. In addition,

snapshots of the depth-averaged velocity field with flow vectors at a number of selected instances

for the 2CLOWNS-3D simulation are shown in Figure D.1 - D.3 located in Appendix D. These

figures illustrate how rotational structures and jets can pass freely through the NSWE-RANS

interface thanks to the robust two-way coupling algorithm in 2CLOWNS-3D.

Outside of the RANS domain no noticeable difference in the velocities arise from its insertion

around the breakwater opening. Inside of the RANS domain two major differences are shown.

The first difference is the magnitude of the velocity over the submerged caissons. Umax in the

2DH NSWE simulation is shown to reach 20 ms−1 which is considerably large. In comparison

the 2CLOWNS-3D simulation shows that Umax is on the order of 13 ms−1. U at t = 1740 s is

approximately equal as to be expected since that is the time of the peak incoming tsunami wave.

The second major difference is the horizontal structure and magnitude of the velocities in the jet

emanating from the submerged breakwater section towards the coast. Here, Umax in the middle

of jet in 2CLOWNS-3D is on the order of 14 ms−1 whereas they are on the order of 11 ms−1 in the

2DH NSWE simulation. Reasons for these effects will be illuminated in §5.4.5 after the vertical

effects of the flow in the 3D RANS domain are highlighted. In addition, the jet in 2CLOWNS-3D

becomes quite pronounced towards the north direction (in the direction of Kamaishi City Main).

In 2DH NSWE the jet remains fairly straight and lacks north-south direction. This can help

to explain the directional dependency on the maximum inundation heights in 2CLOWNS-3D

compared with 2DH NSWE such as larger heights in Kamaishi City Main up to ∼1 m and slightly

smaller heights in Heita. The difference in the horizontal jet structure and direction can at least

partially be attributed to the absence of horizontal mixing in the NSWE model. In the 3D RANS

model the effect of turbulent mixing is accounted for in a complex fashion through the modelling

of the eddy viscosity. It may be possible to improve the approximation of the jet structure in the

NSWE model by including an approximation of the horizontal mixing. However, it will be shown
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Figure 5.11: Map of the maximum recorded magnitudes of the depth-averaged velocities, Umax

during the 2DH NSWE and 2CLOWNS-3D model simulations for 2 hours of simulation on the 10

m 2DH NSWE mesh. (a) 2DH NSWE simulation, (b) 2CLOWNS-3D simulation - dashed black

rectangle indicates the location of the 3D RANS domain
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Figure 5.12: Colourplot of the magnitudes of the depth-averaged velocities, U during the 2DH

NSWE and 2CLOWNS-3D model simulations on the 10 m 2DH NSWE mesh at t = 1740 s after

the earthquake rupture. (a) 2DH NSWE simulation, (b) 2CLOWNS-3D simulation - dashed white

rectangle indicates the location of the 3D RANS domain
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that vertical effects are also non-trivial in §5.4.3.

One minor issue that was found with the two-way coupling in this study was on the north and

south boundaries over the breakwater. For example, at the south boundary over the breakwater

in Figure 5.12(b) there is a streak of fast flow that has arisen when water overtopping the

breakwater in the 3D domain on the boundary induces overtopping into the 2DH NSWE domain

perpendicular to the main flow direction. This occurs because the breakwater is at an angle to

the Cartesian grids, calculation is conducted on a coarse grid relative to the breakwater width,

and due to the slight difference in overtopping behaviours between the models. Furthermore, it

has already been shown in Figure 5.9 that the maximum tsunami height becomes quite different

over the overtopped partially submerged caissons. Since the current problem was found to have a

trivial effect on most of the flow in general and the main objectives of this study does not concern

overtopping, this issue was ignored in this study. However, it may be of interest to look at the

overtopping problem in future work.

5.4.2 Horizontal Distribution of the Hydrodynamics

In this section the horizontal distribution of the velocities (with magnitude, V =
p

u2 +v2),

horizontal vorticity, ω and the turbulent kinetic energy, k at snapshots in time are shown to

get a better understanding of the flow. Figure 5.13 and Figure 5.14 plot, V , ω and k on the

z =−20.8 m contour at t = 1740 s and 2340 s after the earthquake rupture respectively. These

two times correspond to that of the peak positive incoming wave and peak drawback respectively

(c.f. Figure 5.8). The z =−20.8 m contour is at the level just above the submerged caisson. Similar

plots at different times (including ones for νt) may be found in Figure D.4 - Figure D.7 located in

Appendix D for further reference.

During the time of the onshore directed peak positive wave (t = 1740 s) plotted in Figure 5.13,

the jet-like structure onshore extends for roughly 1 km onshore of the breakwater. V is as large as

15 ms−1 near the submerged caissons. Further onshore near the end of the jet, V in the centreline

of the jet is approximately equal to 12 ms−1. The major magnitude of vorticities generated are

related to the eddies that spin off the edges of the north and south breakwater section. The

size of these vorticities are shown to go beyond 0.30 s−1 in magnitude. To give an idea of the

relative magnitude, the large vortex filmed in Oarai Port, Japan resulting from the 2011 Tohoku-

oki Earthquake Tsunami has been simulated seemingly accurately in comparison with actual

snapshots and predicted to have a maximum vorticity of approximately 0.15 s−1 in its center

(Lynett et al., 2012) which is less than half the magnitude shown here. The vorticities spinning

off the breakwater are however small in scale and quickly lose their magnitude. They generate

into larger rotating currents centred at approximately the 4.074×105 m easting coordinate that

are almost symmetrical in the north and south direction. Here, the vorticities are shown to be

on the order of 0.1 s−1 rotating clockwise on the north side and anticlockwise on the south side.

Figure D.1 illustrates that the velocity vectors are undisturbed across the boundaries even in
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Figure 5.13: Horizontal distribution of the velocity and colour plots of various scalar indicators of

the hydrodynamics on the z =−20.8 m contour within the 3D RANS domain for the 2CLOWNS-

3D model simulation at t = 1740 s after the earthquake rupture: (a) horizontal velocity magnitude,

V , (b) horizontal vorticities, ω, and (c) turbulent kinetic energy, k
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Figure 5.14: Horizontal distribution of the velocity and colour plots of various scalar indicators of

the hydrodynamics on the z =−20.8 m contour within the 3D RANS domain for the 2CLOWNS-

3D model simulation at t = 2340 s after the earthquake rupture: (a) horizontal velocity magnitude,

V , (b) horizontal vorticities, ω, and (c) turbulent kinetic energy, k
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the presence of the rotating flow. However, it is not clear that the vorticities themselves can be

correctly passed through undisturbed since vorticities of opposite signs to the major rotation

are generated near the boundaries. Almost all of the turbulent energy is located onshore of the

breakwater due to the squeezing of the flow through the submerged section. k is shown to be

largest at the edges of the jet structure and smallest in the centreline. At the edges production of

k is large due to the shear with the slower moving flow outside of the jet. The magnitude of k

is as large as k = 5 m2s−2 in these regions. Figure D.7 also shows that the turbulent viscosity,

νt is highly correlated with k except close to the submerged breakwater with magnitude as

large as νt = 13 m2s−1. The turbulent energy is allowed to dissipate to almost zero at the west

boundary indicating that the length of the boundary in this direction is adequate. Some of the

turbulent energy (k ≈ 2 m2s−2) makes it way to the north boundary. In an ideal simulation the

north boundary would be extended to avoid this situation, although numerical issues at this

boundary were not encountered.

During the peak drawback phase (t = 2340 s) shown in Figure 5.14, on the onshore side of the

breakwater elongated rotating currents are present that are transported through the northwest

boundary. Between the 4.07 ×105 m and 4.075 ×105 m easting coordinates the flow is almost

completely north to south. Judging from the flow patterns between t = 2004 s and t = 2412 s in

Figure D.2, the large rotating current is in the process of transforming from the predominantly

east-west flow to a fully circular one. At t = 2412 s a large coherent vortex structure is formed

similar to the one filmed in Oarai Port. The coherent vortex structure remains thereafter at

least up to t = 4500 s and beyond (c.f. Figure D.3). In Figure 5.14, on the offshore side of the

breakwater the jet structure extends to the eastern edge of the RANS domain. The magnitudes

of the velocities reach up to 15 ms−1 near the submerged caissons at this time similar to the

peak positive wave. Large vorticities spin off the ends of the partially submerged caissons. The

turbulent energy is very large and concentrated close to the breakwater on the offshore side. This

may be because existing energy has been transported from the onshore side to the offshore in

addition to the production at the edges of the jet. Conversely νt is not large here (c.f. Figure D.7),

presumably because large ε is also transported from the onshore region and cancels out the

turbulent energy. In other words, the size of the eddies here are small and dissipative, thus the

effect on the mean flow is also small. At this point in time k does not quite reach the edge of

the domain in large quantities. However, it does in later times as the drawback flow becomes

more developed (c.f. Figure D.6) and this has been found to lead to numerical instabilities in the

simulation. It will be briefly mentioned here that the east boundary of the RANS domain is not

as far offshore as would be optimal given the fact that the jet, vorticities and turbulent energy

reach the edge of the domain (the same is true for the north boundary in particular as well as

the south boundary at certain times, e.g Figure D.6 at t = 2004 s). This is in contrast to the west

boundary where no numerical issues (in addition to breaches of the physical assumptions) were

encountered since it is located far onshore of the breakwater.
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Figure 5.15: Vertical distribution of the velocity and colour plots of various scalar indicators of

the hydrodynamics along the y = 4,345,175 m northing cross-section of the 3D RANS domain

for the 2CLOWNS-3D model simulation at t = 1740 s after the earthquake rupture: (a) velocity

magnitude in x− z plane, W , (b) vertical vorticities, ω, and (c) turbulent kinetic energy, k

5.4.3 Vertical Distribution of the Hydrodynamics

This section investigates the vertical distribution of the velocities (with magnitude, W =
p

u2 +w2),

vertical vorticity, ω, the turbulent kinetic energy, k (and νt) and the dynamic pressure at a nominal

cross-section. The cross-section is taken to be in the east-west direction at the y= 4,345,175 m

northing coordinate which is approximately along the centreline of the submerged breakwater

section. The times chosen for presentation here are t = 1740 s and 2340 s after the earthquake

rupture to be consistent with §5.4.2. Plots at other times may be found in Appendix D.

Colour plots of W, ω, and k are shown in Figure 5.15 and Figure 5.16 (t = 1740 s and
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Figure 5.16: Vertical distribution of the velocity and colour plots of various scalar indicators of

the hydrodynamics along the y = 4,345,175 m northing cross-section of the 3D RANS domain

for the 2CLOWNS-3D model simulation at t = 2340 s after the earthquake rupture: (a) velocity

magnitude in x− z plane, W , (b) vertical vorticities, ω, and (c) turbulent kinetic energy, k

2340 s respectively). Velocity vectors are also included. Plots at other times may be found in

Figure D.8 - Figure D.11 (including νt). Furthermore, precise plots of the vertical distribution of

the dynamic pressure, pd (difference from the hydrostatic pressure) plus the horizontal, u and

vertical velocities, w are shown in Figure 5.17 (t = 1744 s) and Figure 5.18 (t = 2260 s).

Firstly, during the peak positive wave (t = 1740 s), the vertical profiles at the east and west

boundaries both exhibit similar characteristics. u has a fairly uniform value of approximately

2 ms−1 in the onshore direction while w, ω, k and pd are very small. Near the submerged

breakwater section the velocity vectors indicate how the flow dramatically changes in the vertical
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Figure 5.17: Vertical profiles of, (a) the horizontal velocity, u, (b) vertical velocity, w and, (c) the

dynamic pressure (difference from hydrostatic), pd along the y= 4,345,175 m northing coordinate

within the 3D RANS domain for the 2CLOWNS-3D model simulation at t = 1740 s after the

earthquake rupture. The direction of u is given by its position from the dotted line that indicates

the location of the profile measurement. For w and pd a positive value is right (east) of the dotted

line

and horizontal directions. Just offshore of the breakwater the flow is accelerated upwards from

below the submerged caissons. Flow near the free surface on the other hand is acting downwards

following the drop in the free surface. Over the submerged caissons the magnitude of the velocity

becomes very large, equal to approximately 15 ms−1 over most of the depth, although both u

and w are smaller near the free surface. The vorticities are also very large (> 0.5 s−1) over the

submerged section especially near the free surface. k also becomes large (> 10 m2s−2) near the free

surface due to the formation of the hydraulic jump. The dynamic pressure becomes negative close

to the submerged caisson - as low as pd = -110 kPa. This is the main location where distribution

of pd deviates considerably from zero. The jet that is formed onshore of the breakwater due to the

sudden contraction and reduction in depth is acting on an angle down towards the sea bed. The
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Figure 5.18: Vertical profiles of, (a) the horizontal velocity, u, (b) vertical velocity, w and, (c) the

dynamic pressure (difference from hydrostatic), pd along the y= 4,345,175 m northing coordinate

within the 3D RANS domain for the 2CLOWNS-3D model simulation at t = 2340 s after the

earthquake rupture. The direction of u is given by its position from the dotted line that indicates

the location of the profile measurement. For w and pd a positive value is right (east) of the dotted

line

jet touches down at the sea bed at approximately x = 4.08×105 m. In between the breakwater

and the jet large negative vorticities and turbulent energy is produced due to the shear of the jet

and the slow flow in this pocket. Onshore of the location of the touchdown of the jet with the sea

bed the jet has fully spread out so that the velocities are largest around mid-depth and slightly

smaller at both the free surface and sea bed. The jet extends one kilometre to x = 4.07×105 m. At

the edge of the jet the velocities are larger near the sea bed that at the free surface. Turbulent

energy and positive vorticities are formed at the jet edge as the vertical velocities suddenly

become very large in the positive direction (≈ 2 ms−1) around mid-depth.

In the peak drawback phase (t = 2340 s), u and w near the east boundary deviates slightly

from a uniform distribution and small value respectively. This is because the distance from the
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submerged breakwater to the east boundary is rather short and the flow does not quite have the

chance to return to a normal uniform distribution. The non-uniformity of u that is generated

here is an example of the benefit of introducing the arbitrary velocity distribution in this study

(c.f. Eqn. (3.137)). This avoids introducing unwanted effects near the boundary in the 3D RANS

model associated with forcing the flow to become uniform at the boundary. Note that introducing

this velocity profile does not greatly affect the coupling performance since the 2DH NSWE model

has no knowledge of this distribution. As long as the pressure is largely hydrostatic at the

boundaries as is shown to be the case here, the two-way coupling process can in general succeed.

The distribution of the u, w and pd is very similar over the submerged breakwater during the

drawback phase compared with the peak peak positive wave. However, the distribution of the

vortcities and turbulent energy is quite different. In the case of the jet during drawback, the flow

does not angle downwards and reach the sea bed with same velocity compared with the peak

positive wave. Rather, the jet quickly becomes almost horizontal in direction followed by gradual

spreading out over the depth. The velocities are generally faster near the free surface than in the

lower depths. Hence, the shear of the jet structure and a region of slow ambient flow just offshore

of the submerged caisson causes the small pocket of vorticity and turbulent energy to form here.

k is quickly dissipated and is almost zero offshore of x ≈ 4.086×105 m. It is notable however, that

the turbulent viscosity is not small in this region (c.f. Figure D.11). In fact νt is quite uniform

over the entire offshore side of the breakwater. Furthermore, νt is very large just onshore of the

submerged section.

5.4.4 Bed Shear Stresses

The fast flow onshore of the breakwater can cause large bed shear stresses leading to significant

sediment transport in the harbour. This could induce unwanted erosion and deposition of sediment

which if in the vicinity of coastal structures can lead to their instability.

The bed shear stress, τb has been automatically calculated by the RANS model through

the wall function approach (c.f. §3.4.7). For a comparison the bed shear stress is also calculated

from the depth-averaged velocity in the 2DH NSWE model simulation and the 2CLOWNS-3D

simulation. τb is calculated from the depth-averaged velocity through the quadratic form using a

drag coefficient (Eqn. (2.29)). For consistency with τb calculated by the wall function approach,

the drag coefficient is estimated by the Darcy coefficient, f (Eqn. (2.30)) which makes use of

the value of the equivalent sand roughness, ks also used in wall function formula (Eqn. (3.120)).

Fully rough turbulent flow is assumed where, f can be estimated through (Chanson, 1999):

1√
f
= 2.0log10

(
H
ks

)
+1.14 (5.1)

ks is taken to be equal to the median grain size, D50 which is assumed to be 1 mm here for

simplicity. From the bed shear stress, τb, the dimensionless bed shear stress can be determined
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Figure 5.19: Colour plot of the maximum dimensionless bed shear stress, τ∗b within the 3D

RANS domain comparing the 2DH NSWE and 2CLOWNS-3D simulations. A uniform grain size,

D50 = 1 mm is assumed. (a) 2DH NSWE simulation, shear stress calculated from depth-averaged

velocity, (b) 2CLOWNS-3D simulation, shear stress calculated from depth-averaged velocity, (c)

2CLOWNS-3D simulation, shear stress calculated through wall function based on the velocity

just above the sea bed
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by the following:

τ∗b = τb

(ρs −ρ)gD50
(5.2)

where ρs is the density of the sediment and is taken to be 2650 kg/m3. The density of the sea

water, ρ is assumed to be 1025 kg/m3. The dimensionless shear stress indicates how easy it will

be to disturb particles that have resistance to movement at least equal to their weight.

Figure 5.19 shows the resulting plot of the maximum dimensionless shear stress. The spatial

distribution and magnitude of the shear stress is vastly different between 2CLOWNS-3D and 2DH

NSWE simulations and the two calculation calculation methods. Firstly, the shear stress based

on the depth-averaged velocity in the 2DH NSWE is mainly large over the submerged caissons

because the depth-average velocity became very large here exceeding 20 ms−1. In comparison the

shear stress based on the depth-averaged velocity in the 2CLOWNS-3D simulation is smaller

over the submerged caissons but much larger in the jet section onshore and offshore of the

breakwater. The comparison of shear stress distribution based on the depth-averaged velocity will

follow the distribution of the depth-averaged velocity itself which is shown in Figure 5.11. More

interesting then is the comparison with the shear stress calculated from the bed velocity through

the wall function approach. The magnitude and distribution of the shear stress resulting from

the jets travelling in both the onshore and offshore directions is significantly larger than that

estimated through the depth-averaged velocity. Significant shear stresses are present in a large

area onshore of the breakwater roughly 1300 m × 400 m in size. Here, τ∗b becomes as large as τ∗b
= 17 in a central band which is ≈20% larger than that based on the depth-averaged velocity, and

≈110% larger than the maximum in the 2DH NSWE simulation (in the onshore section under the

jet). This area thus would have been highly susceptible to erosion and a large volume of sediment

may have transported towards the harbour and spread around the bay. Unless the sediment is

dredged and replenished the topography is likely to remain this way after the tsunami if the

everyday ocean wave influence is comparatively weak (Kihara et al., 2012).

Also interesting is that the shear stress on the submerged caisson becomes very large in

exceedance of τ∗b = 20. Figure 5.17 does show that the velocity is significantly larger near

the caisson than over the rest of the depth. However, the dimensionless shear stress loses its

meaning over the rigid concrete structure since it is no longer a sediment transport issue. Lastly,

there exists a couple of isolated streaks of large bed shear stresses near the north boundary in

Figure 5.19(c) which in the opinion of the author are unlikely to be realistic. It is thought that

during the calculation at some time the turbulence near the boundary became very large near

the bed causing instability in the velocity which may itself induce more turbulence in a feedback

loop process. Such numerical issues still require further inspection to rectify.
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5.4.5 Summary

It is now possible to grasp the 3D distribution and dynamics of the flow calculated by the

2CLOWNS-3D model. As the flow approaches the breakwater it is accelerated up the slope of the

rubble mound and finally up over the submerged caisson. Because of this a significant proportion

of the accelerations are occurring in the vertical direction. Significant vertical acceleration

implies that the pressure distribution will become considerably different from the hydrostatic

one. Indeed, Figure 5.17 clearly demonstrates how the dynamic pressure, pd becomes large

(in the negative direction) over the submerged caisson up to pd = −110 kPa very close to the

caisson. Further, consider a control volume encompassing a region just offshore of the submerged

caisson and over the submerged caissons. The flow over the caisson becomes much faster at

the edge of the control volume over the submerged caissons than that just offshore due to the

conservation of mass as the depth rapidly decreases. While the free surface may also decrease at

the same time the momentum flux which is proportional to the square of the velocity will rapidly

increase. Considering the steady-state balance of momentum flux and pressure force imbalance

implies that the pressure force must rapidly decrease over the submerged caisson. But in the 3D

RANS model the pressure is already much less than the hydrostatic pressure due to the vertical

accelerations thus the pressure force imbalance may only require a small change in free surface

level to match the momentum flux imbalance. Figure 5.15 shows how the change in free-surface

level is on the order of 4 m (and Figure 5.20 plots this in more detail). However, consider what

will occur in the 2DH NSWE model: the only way to match the momentum flux imbalance with

the pressure force imbalance is through a large change in free surface (equivalent to the change

in pressure force because of the hydrostatic assumption). It is because of this massive change

in free surface (illustrated in Figure 5.20) that the depth-averaged velocity over the submerged

caissons in the 2DH NSWE model becomes much larger than that in the 3D RANS model since

the depth becomes so small in the former. This result appears to be consistent with Fujima et al.

(2002) which shows that the 2DH NSWE model consistently overestimated the velocities over

the submerged caisson in comparison to experimental and 3D simulations. The fact that the

hydrostatic pressure assumption is the reason for the disparity also implies that consideration of

frequency dispersion in the 2DH model can likely improve the result. However, many Boussinesq

type models are based on the assumption of slowly varying topography so it is should still be

difficult to fully represent the problem even using higher-order long wave models.

The next aspect is the jet structure formed onshore or offshore of the submerged caisson

depending on the direction of flow. Let’s consider the peak onshore flow in particular. As pd

becomes negatively larger near the submerged caisson, the flow becomes accelerated in the

downwards direction due to the dynamic pressure gradient. Thus, the jet is accelerated at an

angle towards the sea bed. Due to the effect of the rubble mound and the sea bed the vertical

momentum is transferred to horizontal momentum. Hence it is the fact that the RANS model

calculates the full vertical momentum equation that the jet can be correctly calculated and the
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horizontal velocities become much larger in the jet than in the 2DH NSWE model that ignores

any vertical effects. The other significant effect present in the RANS model is diffusion which

becomes particularly important at the edges of the jet due to the shear with the surrounding

comparatively ambient flow. The RANS model can consider full diffusion processes by modelling

the turbulent viscosity which may vary in time and space. νt is shown to become large in the jet

region in Figure D.7. In contrast, the present 2DH NSWE model ignores any mixing processes.

Horizontal mixing may be included to improve its performance in these regions however vertical

mixing is also non-trivial in this example. On that note it is mentioned here that the Boussinesq

assumption made to relate the Reynolds stresses with νt in the RANS model assumes that the

mixing is isotropic (same in the horizontal and vertical direction). This is generally not considered

to be physically correct in many real geophysical problems and is thus a potential weakness of

this type of turbulence modelling. Careful validation with experiments are required to investigate

this issue in future work.

The comparison of the bed stresses shown in Figure 5.19 highlights how 2DH NSWE models

may under or overestimate the bed stresses depending on the location. This may be because of its

poor estimation even of the depth-averaged velocities (comparing Figure 5.19(a) and (b)). The

difference is further exaggerated due to the vertical variation of the velocities and the difference

in estimating the bed stresses from the near bed velocity compared with the depth-averaged

velocity (comparing Figure 5.19(a) and (c)). Sediment transport processes are highly sensitive

to the approximations of the shear stress and the vertical distribution of the velocities so are

important to get right in this context. Three-dimensional models provide a clear advantage over

2DH ones when it comes to modelling sediment transport problems.
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5.5 Hydrodynamic Forces on the Submerged Breakwater
Section

During the 2011 Tohoku-oki Earthquake tsunami all but one of the submerged caissons were

washed out (the other tilted) indicating excessive hydrodynamic forces. This section evaluates the

velocities, forces and moments on the concrete caissons resulting from the 2CLOWNS-3D model

simulation and tests them against the 2DH NSWE simulation and critical values of failure for

the breakwater.

5.5.1 Comparisons with 2DH NSWE Simulation

§5.4 has highlighted the importance of vertical accelerations to correctly model the flow over

the submerged section. Hence, the flow in the vicinity becomes quite different between the 2DH

NSWE and 2CLOWNS-3D model simulations. The forces on the submerged breakwater estimated

by models should be strongly linked with the general hydrodynamics of the flow. One of the most

important bulk forces on the breakwater is that due to the difference in water level across it

since in the hydrostatic limit this is equivalent to the drag force on the caissons that can induce

sliding (i.e. the 2DH NSWE model estimates that the drag force is equivalent to the free surface

difference multiplied by ρg).

Figure 5.20 plots a comparison of the envelopes of the free surface differences, ∆η over the

length of the submerged caissons. While the timing of the variation in ∆η is similar between the

simulations, the magnitude is vastly different. According to the 2CLOWNS-3D model the free

surface difference only reaches a maximum of ∆η≈ 4.5 m indicated by the black shaded region.

In comparison, the 2DH NSWE simulation indicated by the red shaded region reaches a free

surface difference of ∆η= 23.2 m at its peak! This is equivalent to a 415% increase. Furthermore,

the 2DH NSWE simulation predicts a large range of ∆η predicted over the length. For example,

the minimum estimate at the time of the peak gradient is ∆η = 10.1 m which is just 44% of

the maximum. The 3D RANS on the other hand indicates much less variation over the length

which is far more useful for engineering design purposes since large variation indicates great

uncertainty in the estimate. For the interval shown in Figure 5.20 the standard deviation of ∆η

over the length of the section has a mean of 0.41 m and maximum value of 0.80 m in the 3D

RANS simulation. In contrast the mean of the standard deviation is 1.1 m with a maximum value

of 3.4 m in the 2DH NSWE model.

Lastly, another shaded region is indicated in blue in Figure 5.20. It is the actual pressure

difference recorded in the 3D RANS simulation converted to ∆η by dividing by ρg. It is notice-

able that the red curve indicating ∆η or pressure difference in the 2DH NSWE simulation is

on average similar in magnitude to the 3D RANS simulation. This suggests that despite the

hydrostatic assumption in the NSWE model, the free surface will adjust so that it may reasonably

approximate the actual pressure difference on average in order to conserve momentum. However,
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Figure 5.20: Time series of the envelopes of the free surface/pressure difference over the sub-

merged caissons in the 2CLOWNS-3D and 2DH NSWE model simulations due to the incoming

tsunami - blue shaded region: 2CLOWNS-3D pressure difference converted to equivalent hydro-

static free surface difference, black shaded region: 2CLOWNS-3D free surface difference, red

shaded region: 2DH NSWE free surface difference

as just explained, the uncertainty is very large and the pressure difference at the time of the

peak gradient is overestimated. Moreover, from a physical perspective, a free surface gradient of

24 m over a horizontal distance of roughly 20 m is unreasonable, and a non-hydrostatic pressure

distribution is required to correctly simulate the flow conditions.

5.5.2 Comparisons with Critical Values

In order to evaluate the hydrodynamic forces on the caissons to indicate probable modes of failure

comparisons with critical values of drag force, FD , overturning moment about the caisson heel,

MD , and punching pressure on the rubble mound, Pe are evaluated.

FD is determined by summing the pressures on the computational cells normal to the caisson

in the horizontal direction multiplied by the surface area. MD can be found by summing the

multiple of each of those forces by the vertical distance to the caisson heel. To determine the

critical values for comparison, the caisson weight and lift force, FL is required. The weight

is easily determined using the dimensions and densities shown in Figure 5.1. To get FL, the

pressures on the computational cells normal to the caisson in the vertical direction multiplied
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by the surface area are summed. Since the rubble mound is simulated as an impermeable layer

in this study, it is assumed that the pressure acting underneath the caissons is just hydrostatic.

The critical resistance friction force, FDcrit is calculated by:

FDcrit =µ f (mc g−FL) (5.3)

where the coefficient of friction between the caisson and rubble mound, µ f is taken to be 0.6

(Tanimoto and Takahashi, 1994), and mc is the mass of the concrete caisson. Similarly the critical

resisting overturning moment, MDcrit is equal to:

MDcrit = rd(mc g−FL) (5.4)

where rd is the distance from the center of mass of the caisson to its heel.

The punching pressure acting on the rubble mound is a combination of the vertical force and

overturning moment. Firstly, the distance, re from the heel of the caisson to the resultant vertical

force is given by:

re = mc g−FL

mc grd −MD
(5.5)

the punching pressure is then evaluated as (Goda, 2010):

Pe =


2(mc g−FL)
3re

, if re ≤ B/3,
2(mc g−FL)

B (2−3 re
B ), if re > B/3

(5.6)

where B is the caisson width. Time series of FD , MD and Pe are plotted in Figure 5.21 per unit

width showing envelopes of the maximum and minimum values over the length of the submerged

section. The hydrostatic component is also shown for comparison, and found to be significantly

less than the total simulated quantities as already indicated in §5.5.1. The peak forces and

moments correspond to the peak pressure difference shown in Figure 5.20 29.5 minutes after the

earthquake rupture.

According to the simulation it is shown that for about half of the length of the submerged

caissons, the drag force alone exceeds the resistance friction force, FDcrit for a duration of up to

2 minutes. The safety factor of the drag force (= FDcrit/FD) reaches a minimum of 0.77, while

the mean along the length is 1.06 with standard deviation equal to 0.12. For comparison a

safety factor equal to 0.95 for the partially-submerged caissons in the shallow regions of the

south and north sections was estimated in (Port and Airport Research Institute of Japan, 2011b).

For the larger partially-submerged caissons in the deep regions the same study estimated the

safety factor to be 1.19 and this was confirmed in the overtopping simulations of Bricker (2013)

where the drag force was not shown to exceed the resistance force at any time. The overturning

moment for both the current study on the submerged caissons and Bricker (2013) for the large

partially-submerged caissons was shown not to exceed the resisting moment of the caissons and

thus is unlikely to have been a critical factor in the breakwater’s failure.
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Figure 5.21: Location dependent envelopes of, (a) drag force per unit width, FD , (b) overturning

moment per unit width about the caisson heel, MD , and (c) punching pressure on the rubble

mound, Pe on the submerged caissons and rubble mound due to the incoming tsunami as calcu-

lated by 2CLOWNS-3D and compared with critical values - blue shaded region: simulated results,

black shaded region: simulated hydrostatic component, red shaded region: critical resistance

values, red line: design pressure, red dashed line: critical pressure
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We know that in reality almost all the smaller caissons located in the submerged section

as well as the shallow regions of the south and north sections were washed out. The drag force

calculated in the current study shows that it likely played a significant role in the sliding of these

caissons. However, the force alone cannot account for the tilting and sliding of some of the larger

caissons that occurred. Bricker (2013) found that the punching failure of the concrete caisson on

the rubble mound may have been a significant factor for the larger caissons with overtopping.

In this study for the submerged caissons, the punching pressure is shown to slightly exceed the

design pressure of 600 kPa (Goda, 2010) for a small part of the length of the section. However, the

punching pressure does not exceed the critical one of 800 kPa determined by Uezono and Odani

(1987) as was found in Bricker (2013). Hence, it can be concluded that for the smaller caissons

with lower resistance, the drag force alone may be large enough to cause sliding in some locations.

For the partially-submerged larger caissons this may not be the case, but the extra bearing stress

on the rubble mound may induce punching failure that can undermine the stability of the caisson

resulting in tilting and a reduction of the friction resistance force between the caisson and the

rubble mound.

In addition to the hydrodynamic effects on the caissons, strong flow could have caused

significant scour of the rubble mound. Very fast flow at the caisson joints has been identified

by Port and Airport Research Institute of Japan (2011b); Arikawa et al. (2012) to cause scour

that is an important contribution to the tilting and sliding of the caissons as it undermines their

stability. This is likely to be the main reason why even in areas where the drag force is not

estimated to exceed the resistance force, caissons were washed out or tilted in addition to possible

punching failure of the rubble mound foundation. Unfortunately in this study the estimate of the

shear stresses at the joints cannot be reliably determined because the rubble mound is assumed

impermeable and the cell size is too large. Future work needs to find ways to reduce the cell size

so that the RANS model can properly capture the fine-scale effects of the flow while maintaining

the accurate boundary conditions and manageable computational load that has been achieved in

this study, i.e. reduction of the size of the RANS model domain without negatively affecting the

exchange between the models at the boundary.

182



5.6. CONCLUSIONS

5.6 Conclusions

The 2011 Tohoku-oki Earthquake Tsunami caused extensive damage along the Japanese coastline

including that of coastal structures that were meant to protect harbours and towns in behind.

One case was the 63 m deep offshore tsunami breakwater in Kamaishi Bay that has been shown

to attenuate some of the height into the bay. In the process a large number of its concrete caissons

were washed out or tilted, and the rubble mound was severely scoured. This study used a fairly

novel numerical technique to analyse the hydrodynamics of the tsunami flow on the breakwater

and onshore of it, in particular around the submerged section where most of the volume flux

passed through.

The numerical technique consisted of two-way coupling a 2DH shallow water model (NSWE)

with a 3D Navier-Stokes based (RANS) model, where the final coupled model has been named

2CLOWNS-3D. The 2DH NSWE model propagated the tsunami from the source into Kamaishi

Bay as well as accounting for the inundation modelling. The 3D RANS model simulated the

hydrodynamics of the flow around the submerged section of the breakwater to provide vertical

details of the flow and to properly account for non-hydrostatic and turbulent effects. It was

shown that the coupling was successfully achieved where the velocity vectors including rotating

currents could pass through the boundaries of the models relatively unaffected. In addition, the

pressure distributions were very close to hydrostatic near the east and west boundaries for both

the incoming wave and tsunami drawback, allowing for the two-way coupling process to succeed.

This was true even though it was possible to allow for a non-uniform vertical distribution of the

velocities as was the case during tsunami drawback at the west boundary.

It was found that overall similar volume fluxes through the submerged section and maximum

inundation heights were recorded whether or not a 3D RANS model was introduced around

the offshore breakwater, although the peak volume flux was shown to be 4.5% larger in the

2CLOWNS-3D simulation. However, either side of the submerged caissons, pressure slightly

larger than the non-hydrostatic one and significantly smaller than the hydrostatic one offshore

and onshore respectively was generated in the 2CLOWNS-3D simulation that the 2DH NSWE

model could not replicate. This resulted in the over estimation of the free surface difference (by up

to 415%) in the 2DH NSWE simulation and hence the depth-averaged velocity over this section.

However, surprisingly the free surface difference in the 2DH NSWE simulation was on average

similar to the actual pressure difference divided by ρg in the 2CLOWNS-3D simulation.

As the the peak tsunami wave flows over the submerged section significant vertical acceler-

ations occur which can be accounted for in the 2CLOWNS-3D model. The jet like flow onshore

angled downwards so that it would interact with the sea bed. The conversion of the vertical to

horizontal momentum resulted in larger velocities in the jet region in the 2CLOWNS-3D model

compared with the 2DH NSWE model. Furthermore, the vertical distribution of the velocities

was significant and large bed shear stresses were shown to occur in the jet region between 200 m

and 1 km onshore of the breakwater. Bed shear stresses calculated based on the near bed velocity
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rather than the depth-average velocity were ≈20% larger in the 2CLOWNS-3D model. They were

≈110% larger compared with the 2DH NSWE model.

In terms of the hydrodynamic forces simulated on the submerged caissons, it was shown

that the drag force was the most severe which reached a minimum safety factor of 0.77. The

overturning moment was unimportant and the punching pressure on the rubble mound did

exceed the design pressure for a small amount of time in some areas but it did not exceed the

estimate of the critical pressure. Due to the lack of sufficient cell resolution and the assumed

impermeability of the rubble mound the calculation was not able to estimate the scour around

the joints of the caissons. However, such scour has been estimated to have a significant effect on

the failure of the breakwater and future studies should develop ways to reduce the cell resolution

and introduce permeability of the rubble mound into the 2CLOWNS-3D model.

One of the main goals in the near future is to further validate the 2CLOWNS-3D model with

experimental results so that it can be confidently used as a tool for the hydrodynamic simulation

around structures such as presented in this study. Finer cell resolution needs to be considered to

accurately represent the turbulent characteristics of the flow.
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6
CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the thesis and makes recommendations for future work. Firstly, the

main findings of the work are presented in §6.1. With these results in mind, voids still

unfilled, and roads still untrekked are highlighted in §6.2. The author sincerely hopes

that the readers have gained even a small amount of knowledge that can be applied to help

coastal communities deal with potential disasters as severe as mega-tsunamis - just as this “Lone

Miracle Pine” (Figure 6.1) was able to.

Figure 6.1: The Lone Miracle Pine located in Rikuzentakata City, Iwate Prefecture now stands as

a symbol of hope for the region after surviving the 2011 Tohoku-oki Earthquake Tsunami (photo:

courtesy of my colleague, Hiroshi Nagashima)
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6.1 Conclusions

The objective of this study has been to develop, investigate, validate, and apply a two-way

coupled multiscale tsunami model capable of simulating the detailed hydrodynamics of tsunamis

(particularly during wave breaking and around structures) while computing the propagation of

the tsunami from its source towards the coastal zone. This has required the two-way coupling of

different grid scales, and governing equations so that a seamless approach is possible where both

grid systems and/or models influence each other by passing information in both directions. The

coupled model has been named, 2CLOWNS-3D where the “3D” part is omitted in the 2DV case.

Conclusions relating to the various aspects of the study are summarised below.

Chapter 3: Numerical Methodology
The two models coupled together in this study as described in Chapter 3 are based on the (1)

NSWE and, (2) RANS equations. The NSWE model uses staggered leap-frog discretization

with the ability to include linear frequency dispersive effects implicitly if required. It is able

to consider tsunami behaviour over a wide-area from the source to the coastal zone inclusive

of inundation due to its computationally efficient numerical scheme. A multi-grid nesting

technique was developed for the NSWE model in order to consider computation over a range

of scales: e.g. coarse grids and time steps offshore and fine grids and time steps nearshore.

The RANS based model is discretized on a staggered grid using the non-iterative SMAC

algorithm for pressure-velocity coupling. It can accurately model the free surface evolution

through the PLIC implementation of the VOF method. The effect of the turbulence on the

mean flow is modelled through a turbulent viscosity approach. The k−ε model is used to

calculate the transport of turbulent kinetic energy and the rate of turbulent dissipation

which can be related to give the turbulent viscosity at any point in space and time. A

technique was developed to couple the NSWE and RANS models together. It was found that

the multi-grid nesting approach developed for the NSWE model could be simply adapted to

consider the coupling of different grid sizes and time steps between the two separate models.

One of the additional difficulties is to convert the vertically-integrated volume flux from the

NSWE model into a vertical distribution of the velocities as a lateral boundary condition

for the RANS model (and vice-versa). A method was introduced to consider an arbitrary

velocity profile based on the RANS calculation itself. This should allow non-uniform profiles

of the horizontal velocities and vertical vorticities that may develop due to reflections in

the RANS model to be more easily passed out through the coupling interface.

Chapter 4: Basic Validation, Range of Applicability, and Coupling Characteristics
A study on solitary wave transformation and breaking on plane beaches was conducted

and presented in Chapter 4. A range of offshore wave heights (0.05 < A′
0 < 0.3) and slopes

(1:20, 1:35, 1:60, 1:100) were tested. All waves could be categorized as plunging breakers. A

FNBM model was used as a control model for wave shoaling to determine suitable coupling
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positions where deviation from the NSWE model occurs, and to estimate errors at the

coupling interface. Validation of the two-way coupling scheme and its sensitivity to the

vertical distribution of the velocities as an input to the RANS model, the coupling depth,

and the slope and wave height was shown. Results from a FNPF model and experiments

were used to verify wave breaking characteristics (water depth at breaking, h′
b and wave

breaking index Ab/hb). The following major conclusions were found:

• The NSWE model generally described wave shoaling accurately in the zone of gradual

shoaling, however it could not match the required shoaling rate in the rapid shoaling

zone. This implies that the edge of the zone of gradual shoaling is an optimal location

for coupling to the RANS model which can correctly replicate the rapid shoaling

process. Since the FNBM model has also been shown to replicate the initial rapid

shoaling process, the local depth where the NSWE and FNBM models diverge, h′
c was

determined for all the experimental combinations. A combination of S0 and A′
0 was

used to collapse the combinations into a single variable, S0 A′−0.5
0 and the following

equation was derived for h′
c:

h′
c = 0.16−0.25ln(S0 A′−0.5

0 )

• The two-way coupling algorithm was tested by reflecting waves off a vertical wall over

a flat bed. It was found that both the incident and reflected waves could seamlessly

pass through the NSWE and RANS domains in both directions. Two-way coupling on

a steep slope was found to affect the computation of the volume fluxes entering the

RANS domain that occurs in order to balance the wave energy during solitary wave

shoaling. This balancing effect is not possible in one-way coupling simulations.

• The sensitivity to the vertical distribution of the velocities as a boundary condition

to the RANS model during coupling was investigated. It was found that the use of a

linear assumption on the vertical velocities gave very different results to a no gradient

assumption. In contrast, the effect of the distribution of the horizontal velocities was

small. A no gradient condition on both the vertical velocity and the difference in the

depth-averaged horizontal velocities was found to give the best results overall.

• Sensitivity to the coupling depth was tested. If coupling occurs in depths much

smaller than the optimal depth prescribed by the derived equation, accurate wave

transformation could not be achieved. Comparatively, the differences between coupling

at the optimal depth and a larger one was small but better performance was generally

achieved when coupling in larger depths. However, small reductions in accuracy

must be offset against a rapid increase in computational time as the coupling depth

increases.
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• Using the optimised coupling location, 2CLOWNS simulations were conducted for

all experimental combinations. As the slope and offshore wave height increased the

relative errors in the form of a deviation in the local wave height at the coupling

interface compared with the FNBM model approached approximately 3% at the

maximum values of slope and wave height. An equation was derived to describe the

deviation in the local wave height, ARE as a function of S0s−1.095:

ARE = 0.132exp(−0.410S0s−1.095)

This indicates that the coupling performance is far more sensitive to the offshore wave

height in comparison to the slope. Deviations at the coupling interface are smaller

than 1% for offshore wave heights, A′
0 ≤ 0.10 on any slope.

• The computational time of 2CLOWNS simulations was between 6.2% and 22% that of

the computational time using the singular RANS model under the same conditions. In

real 2DH/3D large-scale simulations the effect on computational time will be even more

dramatic and important. An example result was discussed in detail for a beach slope,

s = 1/60 with offshore wave height, A′
0 = 0.05. The entire wave transformation and

breaking process could be accurately described when compared to FNPF, experiments,

and theoretical reference shoaling rates.

• The following equations were found to predict the water depth at breaking, h′
b and

the wave breaking index, Ab/hb. The equations are especially suitable for plunging

breakers over the range indicated.

h′
b =

0.138
(S0/A′

0)0.664 , S0/A′
0 < 4

Ab

hb
= 0.872exp(5.258S0), S0 < 0.25

• In addition to the prediction of wave transformation and breaking characteristics, the

RANS model is able to simulate post-breaking behaviour such as the touchdown of

the plunging jet, splashup, bore formation and runup. Snapshots were presented that

qualitatively agree with FNFP simulations and high-quality photographs of physical

experiments.

• All models have similar vertical profiles of velocity in the zone of gradual shoaling

but the NSWE produces drastically different profiles in the rapid shoaling and decay

regions. The FNBM also predicts very different velocity profiles during gradual decay

to those in 2CLOWNS. These results help to explain the different wave transformation

and breaking behaviour overall.
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Chapter 5: Real-Scale Application Validation
2CLOWNS-3D was applied to model the hydrodynamics of the flow around the Kamaishi

Bay offshore tsunami breakwater during the 2011 Tohoku-oki Earthquake Tsunami in

Chapter 5. At first, results from Chapter 4 were used to guide appropriate coupling locations

and to determine the suitability to the problem at hand. Second, verification of the setup

to the real-scale application was achieved by comparing measured survey values of the

maximum inundation heights along the Kamaishi coast and evaluating the effect of the off-

shore tsunami breakwater. Lastly, the hydrodynamics on and around the offshore tsunami

breakwater computed using the 2CLOWNS-3D were analysed in detail with comparisons

to the 2DH NSWE simulation and the following conclusions were made:

• The offshore tsunami breakwater was shown to have a significant effect on the tsunami

and inundation heights around Kaimaishi Bay through the NSWE model simulations.

An estimation in this study was that the reduction in inundation heights due to the

breakwater was on the order of 50%. The reduction in inundation area was equivalent

to 36%. In reality the breakwater was damaged which explains why the surveyed

inundation heights were on average 1.7 m greater than the calculated ones using the

pre-tsunami undamaged breakwater condition.

• Overall, similar volume fluxes through the submerged section and maximum inunda-

tion heights were recorded whether or not a 3D RANS model was introduced around

the offshore breakwater. The average overall difference in inundation heights between

the NSWE and 2CLOWNS-3D model simulations was shown to be just 0.20 m. This

can be explained by the fact that the peak volume flux was shown to be 4.5% larger in

the 2CLOWNS-3D simulation.

• At the time of attack of the maximum positive tsunami wave travelling towards the

coastline through the offshore tsunami breakwater, the pressure distribution became

significantly smaller than the hydrostatic one over the submerged caissons in the

2CLOWNS-3D simulation. This had the effect of allowing a large pressure force

imbalance acting on the caissons to match the momentum flux imbalance. In contrast,

the hydrostatic NSWE model could only represent the pressure force imbalance

through an extremely large reduction of the free surface over the submerged caissons

that was at maximum, 415% larger than that recorded in the 2CLOWNS-3D model

simulations.

• Vertical accelerations over the submerged caissons directed the jet formed onshore

down into the seabed in the 2CLOWNS-3D model. After interaction with the sea bed

and rubble mound this had the effect of increasing the horizontal momentum flux and

hence velocities in the jet than those in the 2DH NSWE simulation. Furthermore,

the velocities at the seabed were very large for a distance of approximately 1.3 km
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onshore of the breakwater which resulted in very large bed shear stresses over an

extended region. Bed shear stresses calculated based on the depth-averaged velocity

underestimated the bed stresses calculated using the near bed velocity.

• Regarding the hydrodynamic forces on the submerged caissons calculated in 2CLOWNS-

3D, the drag force was found to be most severe with the safety factor reaching as low

as 0.77. This most likely led to the sliding of the caissons that occurred in reality.

Overturning moment and punching pressure were determined to be unlikely causes

of failure for the submerged caissons. It has been found in other studies however,

that scour at the joints of the caissons was also significant for their failure but the

current model could not consider this effect due to limitations on cell resolution and

the assumption of impermeability of the rubble mound.
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6.2 Recommendations for Future Work

This study has introduced two-way coupling between NSWE and RANS equations based models

for multiscale tsunami simulation from the source to the coastal zone. With regards to this

type of model (2CLOWNS), equations for the coupling positions and ranges of application to

long wave transformation on plane beaches were found. In addition, an application to the flow

hydrodynamics through a submerged offshore breakwater section was shown. However, there are

a number of avenues that require further study with regards to this model:

1. Often the nearshore may be represented best as a composite beach with more than one

slope leading up to the shoreline. It would therefore make sense to extend the equations

developed in Chapter 4 to consider composite beaches as well.

2. One verification with an experiment and application to the real-scale situation in 3D was

shown. However, further verifications with 3D problems (particularly physical experiments)

are desired in order to fully understand the capabilities of 2CLOWNS-3D, suitable coupling

locations, and coupling effects.

3. The preponderant application of the 2CLOWNS-3D model is to consider the hydrodynamic

response with structures. This inevitably introduces reflections and other possibly relatively

high frequency, non-hydrostatic, and rotational effects into the domain of the RANS model.

These effects may propagate reasonably far from the structure. Such cases cause significant

difficulty for the coupling in 2CLOWNS-3D, because it assumes only long waves, hydrostatic,

and irrotational phenomena are present (or at least those complicated effects are very small)

at the interface so that the NSWE assumptions remain valid. As was found in Chapter 5, in

order to couple effectively, 2CLOWNS-3D may require a very large RANS domain. Hence,

computational costs increase and very fine grid sizes are almost impossible to adopt. A

reasonable calculation was still possible in the case of Chapter 5 but for best results, finer

resolution is desired in order to accurately represent the turbulent characteristics of the

flow. In order to achieve this there are two options which may in fact be combined:

• Introduction of an intermediate model that is capable of modelling weakly non-

hydrostatic, turbulent and rotational flow but with comparatively faster computational

times than the RANS model. The intermediate model would allow the RANS model

domain size to decrease and the cell resolution to increase. In fact such a model was

used for the analysis in Chapter 4 (COULWAVE - a weakly dispersive, rotational,

and turbulent FNBM). An invsicid, irrotational version of the model has already

been coupled with a RANS one in Sitanggang and Lynett (2010). Hence, it would

appear possible to use this sort of model as an intermediate. Other possbilities include

quasi-3D solvers such as non-hydrostatic versions of ROMS, and SELFE.
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• Development of a dynamic coupling mechanism. Based on the local conditions of the

flow it may be possible to determine suitable reductions, enlargements and translation

of the RANS domain. For example when the wave is small or not present it is unlikely

that the RANS calculation needs to be considered (in fact due to the simplicity of the

problem, this technique was adopted in Chapter 4). Furthermore, a tsunami wave

train alternates between positive flow towards the shoreline and drawback which

would likely result in the change of size and movement of important complex regions

of the flow with time.

192



A
P

P
E

N
D

I
X

A
MULTI-GRID TEMPORAL NESTING SUBROUTINE -

NUMERICAL CODE

Multi-grid nesting often requires that the time step size is different between each grid

(layer). In this case the order of calculation of each layer is important in order to be

able to exchange the necessary information at the right time. A recursive subroutine

was written in the numerical code to achieve this goal. A simplified version of it is shown below:

recursive subroutine inner_loop_recursive (LN,DT_RATIO)

use leapfrog_mod, only: L, LNUM, ONE

implicit none

integer,intent(in) LN , DT_RATIO

integer LNN , DT_COUNT, DT_RATIO_UP

real*8 DT_CF

!————————————————————————————————————————————

!THIS SUBROUTINE LOOPS OVER THE INNER LAYERS IN A RECURSIVE MANNER

!WHEN THE TIME STEPS BETWEEN EACH LAYER ARE DIFFERENT

!————————————————————————————————————————————

Layer_Iter: do DT_COUNT = 1, max(DT_RATIO - 1,1)

DT_CF = real(DT_COUNT) / real(DT_RATIO)

Layer_loop_Up: do LNN = LN , LNUM
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!———- Momentum Flux Calc. at n+1 ——————————–

call leapfrog_flux(L(LNN))

!———- Linearly interpolate the fluxes at outer layer

!along inner layer boundary spatially and in time ———

if (LNN.gt.1) then

if (LNN.eq.LN) call interp_outer_flux(L(LNN-1),L(LNN),DT_CF)

if (LNN.gt.LN) call interp_outer_flux(L(LNN-1),L(LNN),ONE)

endif

!———- If LNN is not in the innermost layer... ——————-

if (LNN.lt.LNUM) then

!Find ratio of DT between outer and inner layer

DT_RATIO_UP = int( L(LNN)%DT / L(LNN+1)%DT )

if (DT_RATIO_UP.gt.1) then

!When the time steps are different between inner and outer regions

!we need to calc continuity and flux again in a recursive manner

call inner_loop_recursive(LNN+1,DT_RATIO_UP)

endif

endif

enddo Layer_loop_Up

do LNN = LNUM,LN,-1

!Interpolate the flux from the inner layer to current layer ———

if (LN.lt.LNUM) call interp_inner_flux(L(LN),L(LN+1),LN)

!Get the adjustment coefficient to ensure water level is

!at correct time inside the coupling region

if (LN.eq.LNUM) CF = 0.0d0 ! No inside region

if (LN.lt.LNUM) CF = 0.50d0 * (1d0 - L(LN+1)%DT / L(LN)%DT) ! 0 ≤ CF < 0.5

!Use continuity to calculate new water level at n+1/2

call leapfrog_cont(L(LN),LN,CF)

enddo

enddo Layer_Iter

end subroutine inner_loop_recursive
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FINITE-DIFFERENCES IN RANS MODEL

F inite-difference formula for use in the RANS model are presented below, as referred from

§3.4.3 and §3.4.5.

Third-order upwind (QUICK) Difference

For the nonlinear advection terms in the momentum equation of the RANS model (see §3.4.3),

the third-order upwind (QUICK) difference formula is adopted.

(
u
∂u
∂x

)n

c
= un

c
(
λ1(un

E −un
c )+λ2(un

e −un
c )+λ3(un

w −un
c )+λ4(un

W −un
c )

)
/Det(A) (B.1)(

v
∂u
∂y

)n

c
= vn

A
(
λ1(un

N −un
c )+λ2(un

n −un
c )+λ3(un

s −un
c )+λ4(un

S −un
c )

)
/Det(A) (B.2)(

w
∂u
∂z

)n

c
= wn

A
(
λ1(un

T −un
c )+λ2(un

t −un
c )+λ3(un

b −un
c )+λ4(un

B −un
c )

)
/Det(A) (B.3)

where, vn
A = 0.25(vn

n +vn
s +vn

ne +vn
se), and wn

A = 0.25(wn
t +wn

b +wn
te +wn

be) are the averaged values

of v and w at the position of uc. The coefficients of the third-order upwind difference are some

combination of the grid sizes:



λ1 = 0, λ2 = a+
2,2a+

3,3 −a+
3,2a+

2,3 if un
c / vn

A / wn
A ≥ 0

λ3 = a+
3,2a+

1,3 −a+
1,2a+
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2,3, λ4 = 0

(B.4)
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where a+
i, j is the (i, j) element of the following matrix, A+:

A+ =


∆h2 (∆h2)2 (∆h2)3

∆h3 (∆h3)2 (∆h3)3

∆h4 (∆h4)2 (∆h4)3

 (B.5)

and a−
i, j is the (i, j) element of the following matrix, A−:

A− =


∆h3 (∆h3)2 (∆h3)3

∆h2 (∆h2)2 (∆h2)3

∆h1 (∆h1)2 (∆h1)3

 (B.6)

with, 

∆h1 =∆xE, ∆h2 =∆xe, ∆h3 =∆xc, ∆h4 =∆xw, for
(
u ∂u
∂x

)n
c

∆h1 = 0.5(∆yN +∆yn), ∆h2 = 0.5(∆yn +∆yc), for
(
v ∂u
∂y

)n

c

∆h3 = 0.5(∆yc +∆ys), ∆h4 = 0.5(∆ys +∆yS)

∆h1 = 0.5(∆zT +∆zt), ∆h2 = 0.5(∆zt +∆zc), for
(
w ∂u

∂z
)n

c

∆h3 = 0.5(∆zc +∆zb), ∆h4 = 0.5(∆zb +∆zB)

(B.7)

and Det(A) is the determinant of A+ if un
c / vn

A / wn
A ≥ 0 and Det(A) is the determinant of A− if

un
c / vn

A / wn
A < 0. Note that for uniform grid size, ∆x, the equation will reduce to the following for(

u ∂u
∂x

)n
c with un

c ≥ 0: (
u
∂u
∂x

)n

c
= un

c

6∆x
(
2un

e +3un
c −6un

w +un
W

)
(B.8)

Second-order Derivatives for Viscous terms

For the viscous terms in the momentum equation of the RANS model (see §3.4.3), the second-order

central difference is adopted.

(
∂2u
∂x2

)n

c
= (un

e −un
c )/∆xe + (un

c −un
w)/∆xc

0.5(∆xc +∆xe)
(B.9)(
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c
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c )/(∆yn +∆yc)+2(un
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First-order Derivatives for Production Term

For the first-order derivatives in the production term, Pk used in the k−ε equations (see §3.4.5),

second-order central differences are adopted. This is straight forward for the normal derivatives.

But, for the cross-derivatives, e.g.
(
∂u
∂z

)
c, the velocities must first be averaged from the cell

boundaries to the cell centre before calculating the derivative. In addition the grid non-uniformity

must be taken into account.

(
∂u
∂x

)
c
= uc −ue

∆xc
(B.12)(

∂v
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)
c
= vn −vs

∆yc
(B.13)(

∂w
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c
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(B.14)

(
∂u
∂y

)
c
=

0.5∆yc+∆ys
∆yc+∆yn

(un +unw −uc −uw)+0.5∆yc+∆yn
∆yc+∆ys

(uc +uw −us −usw)

∆yc +0.5(∆ys +∆yn)
(B.15)

(
∂u
∂z

)
c
=

0.5∆zc+∆zb
∆zc+∆zt

(ut +utw −uc −uw)+0.5 ∆zc+∆zt
∆zc+∆zb

(uc +uw −ub −ubw)

∆zc +0.5(∆zb +∆zt)
(B.16)

(
∂v
∂x

)
c
=

0.5∆xc+∆xw
∆xc+∆xe

(vse +vne −vs −vn)+0.5 ∆xc+∆xe
∆xc+∆xw

(vs +vn −vsw −vnw)

∆xc +0.5(∆xw +∆xe)
(B.17)

(
∂v
∂z

)
c
=

0.5∆zc+∆zb
∆zc+∆zt

(vst +vnt −vs −vn)+0.5 ∆zc+∆zt
∆zc+∆zb

(vs +vn −vsb −vnb)

∆zc +0.5(∆zb +∆zt)
(B.18)

(
∂w
∂x

)
c
=

0.5∆xc+∆xw
∆xc+∆xe

(wbe +wte −wb −wt)+0.5 ∆xc+∆xe
∆xc+∆xw

(wb +wt −wbw −wtw)

∆xc +0.5(∆xw +∆xe)
(B.19)

(
∂w
∂y

)
c
=

0.5∆yc+∆ys
∆yc+∆yn

(wbn +wtn −wb −wt)+0.5∆yc+∆yn
∆yc+∆ys

(wb +wt −wbs −wts)

∆yc +0.5(∆ys +∆yn)
(B.20)

Second-order Derivatives for Turbulent Diffusion Term

For the diffusion terms in the k and ε transport equations (see §3.4.5), the second-order central

difference is adopted.
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RANS MODEL GRID CONVERGENCE AND ACCURACY

FOR SOLITARY WAVE TRANSFORMATION

The RANS model can be quite sensitive to the grid size. This is particularly true in some

areas than others. An additional issue that does not appear for 1DH/2DH models is that

the vertical grid size, ∆z′ and its ratio with the horizontal grid size, ∆x′ also becomes

important. Thus, the grid convergence study should investigate each grid size independently. In

this convergence study we choose s = 1/35 and A′
0 = 0.3 to investigate. This is because good data

exists from a FNPF model (Grilli et al., 1997) on the 1/35 slope to compare against. Also, A′
0 = 0.3

is fairly large, thus potentially sensitive to the grid size.

Firstly, it is common to choose ∆x′ based on the wavelength. Thus, we choose values of ∆x′µ0

where µ0 is a measure of the offshore dispersion parameter which is set equal to 1/(2X ′
s) for a

solitary wave. The selected values to investigate effects on the variation of the horizontal grid

size are: ∆x′µ0 = 1/200, 1/400, 1/800 which are kept constant through the entire domain. Here,

∆z′ =∆x′/2 in each case and is also unchanging in the entire domain. The result of the calculation

is plotted in Figure C.1. The local wave height, A′ and snapshots of the waveform at four different

times are shown. Most of the shoaling process is largely unaffected by the horizontal grid size

offshore. In fact if one were to observe very closely, A′ is very slightly larger in this region for

larger ∆x′. However, beyond x′ ≈ 20, effects of the grid size become more apparent and smaller

∆x′ results in the largest peak value of A′ which is closest to the breaking point (BP) for the

FNPF model (Grilli et al., 1997). Hence, it would be appear that a smaller value of ∆x′ does

in fact give a better result near the BP. However, the peak value of A′ is still underestimated

according to the Grilli et al. (1997) result.

Secondly, since it has been shown that the effects of the horizontal grid size are unimportant

offshore and over the initial shoaling region (up to x′ ≈ 20), in order to reduce computational
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Figure C.1: Effect of horizontal grid size, ∆x′ for solitary wave transformation on slope, s = 1/35

with offshore wave height, A′
0 = 0.30. The local wave height, A′ and snapshots of the waveform

are shown at four different values of t′. Green’s law and the BP in the FNPF of Grilli et al. (1997)

is included for comparison

time it makes sense to vary the grid sizes from a large value offshore (e.g. ∆x′µ0 = 1/200) to a

small value (e.g. ∆x′µ0 = 1/800) beyond where the grid size becomes important (x′ ≈ 20 in this

case). The grid variation can be achieved using the method described in §3.4.9. Thus, the next

computation compares this variation (∆x′µ0 = 1/200→∆x′µ0 = 1/800), with the unvaried cases

of ∆x′µ0 = 1/800 and 1/200. For the varied case ∆z′µ0 = 1/1600 so that it is equal to ∆x′/2 in the

rapidly shoaling region where ∆x′µ0 = 1/800. The result of the calculation is plotted in Figure C.2.

As expected, little difference is shown between the solutions before x′ ≈ 20, but on close inspection

A′ is smallest in the gradually varied case. Beyond x′ ≈ 20, both the varied solution and the

∆x′µ0 = 1/800 solution show good agreement as hoped for, demonstrating that it is not necessary

to have such a fine grid size for x′ < 20, and gradually varying the grid size from a larger size, e.g.

∆x′µ0 = 1/200, offshore at the boundary does not adversely affect the solution.

Thirdly, the effect of changing ∆z′ is investigated. In this case, ∆x′µ0 = 1/400 is kept constant

while the vertical grid is varied: ∆z′ =∆x′, ∆x′/2, ∆x′/4. The result of the calculation is plotted in

Figure C.3. For the propagation offshore and in the initial part of shoaling little influence of ∆z′

is clear. When observing very closely, a slightly larger value A′ for the smaller ∆z′ is noticeable

in this region. However, beyond x′ ≈ 15, the larger value of ∆z′ induces more rapid shoaling. It

is in fact the case where ∆z′ =∆x′, that gives the best solution closest to the BP of Grilli et al.

(1997). This gives the funny situation where increasing the grid size generates a “better” solution.
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Figure C.2: Effect of gradually varying the horizontal grid size, ∆x′ offshore of x′ = 20 for solitary

wave transformation on slope, s = 1/35 with offshore wave height, A′
0 = 0.30. The local wave

height, A′ and snapshots of the waveform are shown at four different values of t′. Green’s law

and the BP in the FNPF of Grilli et al. (1997) is included for comparison

However, it can be viewed from an opposite perspective: for a small ∆z′, reducing ∆x′ (rather

than increasing ∆z′) will give a better solution as has already indicated.

Lastly, similarly to the horizontal grid size, since offshore and over the initial shoaling region

the vertical grid size is not shown to be important, computational time can be reduced by varying

∆z′ below the initial free surface. ∆z′ =∆x′ may be adopted at the offshore sea bed, and increased

to ∆z′ = ∆x′/4 just below and above the free surface. This varied case is compared with the

unvaried cases of ∆z′ =∆x′ and ∆z′ =∆x′/4. Here, ∆x′µ0 = 1/400 in each case. The result of the

calculation is plotted in Figure C.4. Offshore before x′ ≈ 15, the solutions are in good agreement

and the varied case is shown to be in between the other solutions with ∆z′ = ∆x′/4 give the

greatest value of A′ here. Beyond x′ ≈ 15 the solutions diverge with ∆z′ =∆x′ giving the solution

closest to the BP of Grilli et al. (1997), while the varied case and ∆z′ =∆x′/4 give very similar

solutions as expected since the same value of ∆z′ from just below the free surface is defined in

both these cases. This implies that varying ∆z′ from just below the free surface has little effect

on the solution and thus can be used to reduce computational time where possible.

Note it may seem strange that since ∆z′ =∆x′ gives the better result in the rapid shoaling

region we bothered to adopt ∆z′ =∆x′/4 from the initial free surface in the previous investigation.

Indeed that was the case here, but variation in ∆z′ can be combined with the variation in ∆x′

to give an overall optimised setup. Such a setup is illustrated in Figure 4.2. Setting ∆z′ =∆x′
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Figure C.3: Effect of vertical grid size, ∆z′ for solitary wave transformation on slope, s = 1/35 with

offshore wave height, A′
0 = 0.30. The local wave height, A′ and snapshots of the waveform are

shown at four different values of t′. Green’s law and the BP in the FNPF of Grilli et al. (1997) is

included for comparison

offshore at the sea bed where ∆x′µ0 = 1/200 allows ∆z′ to become large here. Further, it has been

shown that ∆z′ =∆x′ is important in the rapid shoaling region near breaking (beyond x′ ≈ 15)

so this is also adopted above the free surface where ∆x′µ0 = 1/800 here. Eqn. (4.12) can be used

to estimated the location to vary ∆x′ until from offshore for some combination of s and A′
0. This

setup has been tested for a range of A′
0 on the s = 1/35 slope versus Green’s law and Boussineq’s

shoaling laws in Figure C.5. Also the FNPF BP data (Grilli et al., 1997) is included for comparison.

The BP in this study has been calculated directly by searching for the maximum value of the

free surface normal in the horizontal direction, (nc)x,max within the calculation domain. BP is

thus defined when (nc)x,max > 0.999. Mostly, the results of the RANS calculation are shown to be

accurate compared with the FNPF model. Breaking is predicted a bit later than the FNPF model

for all cases except A′
0 = 0.10 where breaking is predicted earlier. The FNPF result however

doesn’t fit the trend of the other previous cases very well. It is unknown why this might be the

case.

A final point that must be mentioned is while scaling ∆x′ by µ0 has meaning offshore and for

gradual shoaling, during rapid shoaling any breaking solitary wave tends to become very narrow

whether A′
0 is fairly large (e.g. A′

0 = 0.30) or small (e.g. A′
0 = 0.05). As a result, ∆x′µ0 = 1/800

for some of the smaller values of A′
0 tend to be too coarse to approximate the breaking wave

shape with any accuracy. If one is concerned about correctly modelling wave overturning and
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Figure C.4: Effect of gradually varying vertical grid size, ∆z′ from the bed to just below the free

surface for solitary wave transformation on slope, s = 1/35 with offshore wave height, A′
0 = 0.30.

The local wave height, A′ and snapshots of the waveform are shown at four different values of t′.
Green’s law and the BP in the FNPF of Grilli et al. (1997) is included for comparison

other turbulent effects, it is likely superior and simpler to chose ∆x′ irrespective of µ0 in the

rapid shoaling region and beyond. ∆x′µ0 = 1/800 for A′
0 = 0.30 is equivalent to ∆x′ = 0.012 which

has been found to give a good representation of the breaking wave. Thus, it is suggested that

0.010 < ∆x′ < 0.015 (with ∆z′ = ∆x′) is a suitable choice for any A′
0 to correctly model wave

overturning and post-breaking turbulent effects.
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EXTRA FIGURES FOR CHAPTER 5:

2CLOWNS-3D SIMULATION IN KAMAISHI BAY

Thid appendix includes extra figures for the 2CLOWNS-3D simulation in the vicinity of

the Kamaishi Bay offshore tsunami breakwater during the 2011 Tohoku-oki Earthquake

Tsumami (Chapter 5).
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APPENDIX D. EXTRA FIGURES FOR CHAPTER 5

Figure D.1: Colour plot of the magnitudes of the depth-averaged velocities, U and the vector field

during 2CLOWNS-3D model simulations on the 10 m 2DH NSWE mesh at various snapshots for

1000< t < 2000 s after the earthquake rupture. White dashed rectangle indicates location of the

3D RANS domain
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Figure D.2: Colour plot of the magnitudes of the depth-averaged velocities, U and the vector field

during 2CLOWNS-3D model simulations on the 10 m 2DH NSWE mesh at various snapshots for

2000< t ≤ 3000 s after the earthquake rupture. White dashed rectangle indicates location of the

3D RANS domain
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Figure D.3: Colour plot of the magnitudes of the depth-averaged velocities, U and the vector field

during 2CLOWNS-3D model simulations on the 10 m 2DH NSWE mesh at various snapshots for

3000< t ≤ 4500 s after the earthquake rupture. White dashed rectangle indicates location of the

3D RANS domain
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Figure D.4: Colour plot of the magnitudes of the horizontal velocities, V and the vector field in

the 3D RANS domain during 2CLOWNS-3D model simulations on the z =−20.8 m contour at

various times (1740≤ t ≤ 4500 s) after the earthquake rupture
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APPENDIX D. EXTRA FIGURES FOR CHAPTER 5

Figure D.5: Colour plot of the vorticities, ω and the vector field in the 3D RANS domain during

2CLOWNS-3D model simulations on the z =−20.8 m contour at various times (1740≤ t ≤ 4500 s)

after the earthquake rupture
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Figure D.6: Colour plot of the turbulent kinetic energy, k and the vector field in the 3D RANS

domain during 2CLOWNS-3D model simulations on the z =−20.8 m contour at various times

(1740≤ t ≤ 4500 s) after the earthquake rupture
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APPENDIX D. EXTRA FIGURES FOR CHAPTER 5

Figure D.7: Colour plot of the turbulent viscosity, νt and the vector field in the 3D RANS

domain during 2CLOWNS-3D model simulations on the z =−20.8 m contour at various times

(1740≤ t ≤ 4500 s) after the earthquake rupture
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Figure D.8: Colour plot of the magnitudes of the velocities in the x− z plane, W and the vector

field in the 3D RANS domain during 2CLOWNS-3D model simulations along the y= 4,345,175

m northing cross-section at various times (1740≤ t ≤ 4500 s) after the earthquake rupture
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APPENDIX D. EXTRA FIGURES FOR CHAPTER 5

Figure D.9: Colour plot of the magnitudes of the vorticities in the x− z plane, ω and the vector

field in the 3D RANS domain during 2CLOWNS-3D model simulations along the y= 4,345,175

m northing cross-section at various times (1740≤ t ≤ 4500 s) after the earthquake rupture
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Figure D.10: Colour plot of the magnitudes of the turbulent kinetic energy, k and the vector field

in the x− z plane of the 3D RANS domain during 2CLOWNS-3D model simulations along the

y= 4,345,175 m northing cross-section at various times (1740≤ t ≤ 4500 s) after the earthquake

rupture
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APPENDIX D. EXTRA FIGURES FOR CHAPTER 5

Figure D.11: Colour plot of the magnitudes of the turbulent viscosity, νt and the vector field

in the x− z plane of the 3D RANS domain during 2CLOWNS-3D model simulations along the

y= 4,345,175 m northing cross-section at various times (1740≤ t ≤ 4500 s) after the earthquake

rupture
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