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Abstract

We consider a second-countable Hausdorff space X with its subbase which in-
duces a coding for each point of X. The topological space X has a subbase
consisting of a countable collection of pairs of two disjoint open subsets. A
dyadic subbase S is such a subbase with a fixed enumeration. For each point
x ∈ X and n-th pair of S, we assign 0 or 1 to n-th digit of the coding of x de-
pending on which one of the pair contains x. Since x may belong to none of the
pair, we allow undefinedness in the coding, and the bottom character is used in
the sequence unless we know which one we should assign. Every sequence that
contains the bottom character is called a bottomed sequence. When a dyadic
subbase S is given, each point of X is represented by a bottomed sequence, and
we can construct a domain DS in which X is embedded.

A proper dyadic subbase is a dyadic subbase with an additional property.
We study properties of the domain DS induced by a proper dyadic subbase
S of X. The limit (i.e. non-compact) elements of DS form an upper set LS ,
and the set of minimal elements of LS is denoted by MS . We show that X is
homeomorphic to MS if X is compact.

The domain DS is not a Scott domain in general, i.e., it may not be consis-
tently complete. Moreover, it is possible that DS is consistently complete, but
will not be consistently complete after the enumeration of S is changed. We
introduce the strong properness of dyadic subbases and show that DS is consis-
tently complete regardless of the enumeration of S if and only if S is strongly
proper. We also give a characterization of the regularity of spaces through
strongly proper dyadic subbases.

If the space X is regular Hausdorff, then X is embedded in MS . Therefore,
MS is not empty if X is regular. We construct an example of a Hausdorff but
non-regular space with a dyadic subbase S such thatMS is empty. This example
is a weakened prime integer topology and we show that its Hausdorff property
can be deduced from a theorem of Sylvester and Schur.

We study a condition which ensures the existence of strongly proper dyadic
subbases. It has been proved that every second-countable regular Hausdorff
space has a proper dyadic subbase. We show that every locally compact sepa-
rable metric space has a strongly proper dyadic subbase.
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Chapter 1

Introduction

A real number can be represented by an infinite sequence of finitely many digits
in several ways such as binary expansion, signed digit representation and Gray
expansion. In binary expansion, one number can have two different represen-
tations, e.g., 1 = 1.000 . . . = 0.111 . . . . This duplication causes difficulties in
computation. For example, when we add 0.1000 . . . and 0.0111 . . . , we cannot
determine the first digit from the finite prefixes of the two arguments. The mod-
ified Gray expansion of the unit interval, in contrast, avoids this disadvantage
of binary expansion and provides a unique representation for each number by
allowing undefinedness in a sequence [3, 9]. In this expansion, a real number is
represented by a sequence of T = {0, 1,⊥}, where the bottom character ⊥ de-
notes undefinedness. Let Ga

n (n < ω, a ∈ {0, 1}) denote the set of real numbers
whose n-th digit in this coding is a. The family {Ga

n | n < ω, a ∈ {0, 1}} is a
subbase of the unit interval, the Gray subbase.

A dyadic subbase can be considered as a generalization of the Gray subbase.
Let X be a second-countable Hausdorff space. We can see immediately that X
has a subbase that is the union of a countable collection of pairs of disjoint open
sets. We call such a subbase with a fixed enumeration a dyadic subbase [10]1.

In Chapter 3, we study dyadic subbases and related domain representations.
When a dyadic subbase S is given, every point of X is represented by a sequence
of T. We define a partial order in the set KS of finite prefixes of the bottomed
sequences given by S. We define a domain DS as the ideal completion of KS .
The set of limit (i.e. non-compact) elements of DS is denoted by LS , and the set
of minimal elements of LS is called the minimal limit set MS of DS . A proper
dyadic subbase is a dyadic subbase with an additional property. We prove that
if the space X is regular Hausdorff and S is proper, then X is embedded in MS .
Moreover, if X is compact in addition, then X is homeomorphic to MS .

In Chapter 4, we consider the consistent completeness of DS . The dcpo DS

is not a Scott domain in general, i.e., DS might not be consistently complete.
Moreover, even if DS is a Scott domain, changing the enumeration of some pairs
in S might cause DS not to be consistently complete. We define another poset
D̂S which is always a Scott domain, and we study the condition DS = D̂S . We
introduce the strong properness of dyadic subbases. We show that if a dyadic
subbase S is strongly proper, then we have DS = D̂S and thus DS is a Scott

1In some papers, the definition of dyadic subbases is different.
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domain. Conversely, if DS is a Scott domain regardless of the enumeration of
S, then S is strongly proper. In fact, DS can be a Scott domain even if S is
not strongly proper. In Section 4.2, we give a characterization of the regularity
of spaces through strongly proper dyadic subbases. As we have said, if X is
regular, then X is embedded in MS . Moreover, the image of each point of X is
less than or equal to every consistent element in LS . We prove that the converse
holds if S is strongly proper.

In Chapter 5, we study a space with its dyadic subbase S such that the
minimal limit set MS is empty. Such a case happens only when X is not
regular because every regular Hausdorff space is embedded in MS . Moreover,
if MS is empty, then X is covered by subsets in which no pair of two points
can be separated by closed neighborhoods. We say that a dyadic subbase S is
strongly independent if DS is equal to Tω. If S is strongly independent, then
MS is empty. In Section 5.2, we construct an example of a Hausdorff space
with a strongly independent dyadic subbase. This example is a weakened prime
integer topology, and we show that the Hausdorff property of this space can be
deduced from a theorem of Sylvester and Schur.

In Chapter 6, we study the existence of strongly proper dyadic subbases.
It has been proved that every second-countable regular Hausdorff space has a
proper dyadic subbase. We first give another proof of this fact that uses the
metric induced by the Urysohn’s metrization theorem. Then we show that every
locally compact separable metric space has a strongly proper dyadic subbase.
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Chapter 2

Preliminaries

2.1 Bottomed sequences

In this section, Σ is a finite set containing the bottom character ⊥. Let ω be
the first infinite ordinal. As usual, an element of ω is identified with the set of
its predecessors.

For an ordinal number n ≤ ω, Σn denotes the set of sequences of elements
of Σ of length n, i.e., the maps from n to Σ. We identify a sequence σ ∈ Σn

with its infinite extension

σ(k) :=

{
σ(k) (k < n)
⊥ (n ≤ k < ω)

.

By this identification, we have Σn ⊆ Σm if n ≤ m. For a sequence σ ∈ Σω,
its domain is defined as dom(σ) := {k | σ(k) ̸= ⊥} and its length as len(σ) :=
min{n ≤ ω | dom(σ) ⊆ n}. The set of all sequences of finite length is denoted
by Σ∗ :=

∪
n<ω Σn.

Let σ and τ be sequences of Σ, a ∈ Σ an element and n < ω a finite ordinal.
σ[n 7→ a] is the sequence which maps n to a and equals σ elsewhere. σ|n is the
first n prefix of σ, i.e., the restriction of σ to n. If the length len(σ) is finite,
then a concatenation στ ∈ Σω is defined as

στ(k) :=

{
σ(k) (k < len(σ))
τ(k − len(σ)) (len(σ) ≤ k < ω)

.

The n times concatenation of σ is denoted by σn. Elements a ∈ Σ are identified
with sequences of length one.

2.2 Domain representations

In this section, P = (P,⊑) is a partially ordered set (poset).
Let A be a subset of P . If p ∈ A and p ⊑ q implies q ∈ A, then A is called an

upper set. We set ↑A := {q | (∃p ∈ A)(p ⊑ q)}. The dual notions of an upper
set and ↑A are a lower set and ↓A, respectively. Two elements p, q ∈ P are
consistent if they have a common upper bound in P . The set A is directed if A
is not empty and any two elements of A are consistent in A. The least upper
bound of a directed subset A ⊆ P is denoted by

⊔
A if it exists.
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A directed complete partial order (dcpo) is a poset D = (D,⊑) that contains
the least upper bound of every directed subset of D. A dcpo is pointed if it has
a least element.

Let D be a pointed dcpo. An element p ∈ D is called compact if p ⊑
⊔
A

implies p ∈ ↓A for all directed subsets A ⊆ D. An element is called a limit
element if it is not compact. The set of compact elements of D is denoted by
K(D). For an element p ∈ D, we set ↓ p := ↓{p}, ↑ p := ↑{p} and approx(p) :=
↓ p ∩K(D). D is algebraic if approx(p) is directed and p =

⊔
approx(p) for all

p ∈ D. A subset A ⊆ D is consistent if it has an upper bound in D. The set D
is consistently complete if every consistent subset of D has a least upper bound
in D.

Definition 2.1. A Scott domain is an algebraic, consistently complete, pointed
dcpo.

A poset P is a conditional upper semilattice with least element (cusl) if any
two consistent elements have a least upper bound and if it has a least element.

An ideal of P is a directed lower set. The family of all ideals in P ordered
by set inclusion is called the ideal completion of P , and denoted by Idl(P ).
Following are some known facts regarding cusls and Scott domains.

Proposition 2.2. If a poset P is a cusl, then Idl(P ) is a Scott domain.

Proposition 2.3. Let D be a Scott domain. The set K = K(D) is a cusl, and
there is an isomorphism Idl(K) ∼= D.

Let D be a Scott domain. We set K := K(D). The Scott topology of D
is the topology on D generated by the family {↑ p | p ∈ K}. If two elements
p, q ∈ K are consistent, then their least upper bound p ⊔ q exists in K, and we
have ↑ p ∩ ↑ q = ↑(p ⊔ q). Therefore, the family {↑ p | p ∈ K} forms a base. For
more information on domains, see [4].

Example 2.4. We set T := {0, 1,⊥} ordered by ⊥ ⊑ 0,⊥ ⊑ 1. T is a Scott
domain, and its Scott topology is {∅, {0}, {1}, {0, 1},T}. We equip Tω with the
product order. The set of compact elements of Tω is T∗, and Tω is a Scott
domain. The family {↑σ | σ ∈ T∗} forms a base of the Scott topology of
Tω. Two sequences σ, τ ∈ Tω are consistent if and only if σ(k) = τ(k) for all
k ∈ dom(σ) ∩ dom(τ). For a pair of consistent sequences σ, τ ∈ Tω, their least
upper bound σ ⊔ τ is given by (σ ⊔ τ)(k) = σ(k)⊔ τ(k). For other properties of
Tω, we refer the reader to [7].

Let D be a Scott domain with its Scott topology and X a topological space.
Suppose that there is a quotient map µ from DR ⊆ D onto X. The triple
(D,DR, µ) is a domain representation of X [1]. In this paper, if we have an
embedding φ : X → D, we say that the pair (D,φ) is a domain representation
of X, which corresponds to (D,φ(X), φ−1).
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Chapter 3

Proper dyadic subbases

This chapter reviews proper dyadic subbases [10, 11]. Throughout this chapter,
X = (X,O) is a second-countable Hausdorff space. For a subset A of X, clA
denotes the closure of A, intA the interior of A.

Definition 3.1. A dyadic subbase of X is a map S : ω × {0, 1} → O such that

1. {S(n, a) | n < ω, a ∈ {0, 1}} is a subbase of X,

2. S(n, 0) ∩ S(n, 1) = ∅ for all n < ω.

For readability, S(n, a) is denoted by Sa
n. Definition 3.1 does not imply that

S0
n and S1

n are exteriors of each other, and this condition has been included in
the definitions of dyadic subbases in other papers. Here we consider only the
case in which the dyadic subbase is “proper” (Definition 3.2), from which it
follows easily that S0

n and S1
n will be exteriors of each other.

Let S be a dyadic subbase of X. We use the notations

S(σ) :=
∩

k∈dom(σ)

S
σ(k)
k , (3.1)

S̄(σ) :=
∩

k∈dom(σ)

X \ S1−σ(k)
k , (3.2)

for all σ ∈ Tω, where T = {0, 1,⊥} (Example 2.4).

Definition 3.2. A dyadic subbase S of X is

(i) proper if S̄(σ) = clS(σ) for all σ ∈ T∗.

(ii) independent if S(σ) ̸= ∅ for all σ ∈ T∗.

We have the following characterization of proper dyadic subbases.

Proposition 3.3. A dyadic subbase S is proper if and only if

∀σ ∈ T∗. S̄(σ) ̸= ∅ ⇒ S(σ) ̸= ∅. (3.3)

Proof. Suppose that S is proper. For any σ ∈ T∗, if S̄(σ) = clS(σ) is not empty,
then S(σ) is not empty.
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Conversely, suppose that (3.3) holds. For any σ ∈ T∗, we always have
clS(σ) ⊆ S̄(σ) because S̄(σ) is closed and contains S(σ). Suppose that x
belongs to S̄(σ). For any subset A, a point belongs to clA if and only if all
of its neighborhoods intersects with A. Let U be a neighborhood of x and we
show U ∩ S(σ) ̸= ∅. Since the family {S(τ) | τ ∈ T∗} forms a base of X, there
exists τ ∈ T∗ such that x ∈ S(τ) ⊆ U . If σ and τ are not consistent, then we
have S̄(σ)∩S(τ) = ∅, but this contradicts the fact that x belongs to both S̄(σ)
and S(τ). Therefore, σ and τ are consistent and there exists their least upper
bound σ ⊔ τ ∈ T∗. We can see

∅ ≠ S̄(σ) ∩ S(τ) ⊆ S̄(σ) ∩ S̄(τ) = S̄(σ ⊔ τ).

By (3.3), we get S(σ ⊔ τ) ̸= ∅. Therefore, we obtain

∅ ̸= S(σ ⊔ τ) = S(σ) ∩ S(τ) ⊆ S(σ) ∩ U.

Hence, we obtain x ∈ clS(σ).

By Proposition 3.3, we can see that an independent dyadic subbase is always
proper. Let S be a dyadic subbase of X. We define a map φS : X → Tω as

φS(x)(n) :=

 0 (x ∈ S0
n)

1 (x ∈ S1
n)

⊥ (otherwise)
(3.4)

for x ∈ X and n < ω. For all σ ∈ Tω and x ∈ X, we have

x ∈ S(σ) ⇐⇒ σ ⊑ φS(x), (3.5)

x ∈ S̄(σ) ⇐⇒ σ and φS(x) are consistent in Tω. (3.6)

By (3.5), we have φ−1
S (↑σ) = S(σ) for all σ ∈ T∗. Therefore, the map φS

is continuous. We can see that φS is injective because X is a Hausdorff space.
Hence, the map φS is a topological embedding, and the pair (Tω, φS) is a domain
representation of X.

Suppose that φS(x) can be obtained on an infinite tape as follows. The
output on the tape starts from ⊥ω, and if we get “x is in Sa

n” as a result of
computation, then the contents of the n-th cell of the tape is replaced by a. In
such a computation, the n-th cell could be filled with 0 or 1 after the m-th cell
is filled for some m > n. We want to obtain φS(x) as the least upper bound
of all finite time states of this output. However, the least upper bound of a
strictly increasing sequence in approx(φS(x)) could be less than φS(x). Hence,
we restrict the finite time states of this output to a subset KS of Tω as follows.
We set

KS :=
{
φS(x)|n

∣∣ x ∈ X, n < ω
}
, (3.7)

DS := {σ ∈ Tω | (∀n < ω)(σ|n ∈ KS)}. (3.8)

The set DS is an algebraic pointed dcpo that is the ideal completion of KS .
Clearly, φS(X) is a subset of DS . Moreover, as the next proposition shows,

the map φS : X → DS is continuous. Hence, if DS is a Scott domain, we have
another domain representation (DS , φS) of X.
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Proposition 3.4. Let S be a dyadic subbase of X. The family {S(σ) | σ ∈ KS}
forms a base of X.

Lemma 3.5. Let S be a dyadic subbase of X. For all point x ∈ X, the family
{S(φS(x)|n) | n < ω} forms a neighborhood base at x, i.e., each subset U ⊆ X is
a neighborhood of x if and only if there exists n < ω such that S(φS(x)|n) ⊆ U .

Proof. Let x ∈ X be a point, U ⊆ X a subset. Suppose that U is a neighborhood
of x. Since the family {S(σ) | σ ∈ T∗} forms a base of X, there exists τ ∈ T∗

such that x ∈ S(τ) ⊆ U . By (3.5), we obtain τ ⊑ φS(x). Therefore, we get
S(φS(x)|n) ⊆ S(τ) ⊆ U for all n ≥ len(τ).

Proof of Proposition 3.4. Suppose that U is an open subset of X. By Lemma
3.5, for all x ∈ U , there exists V ∈ {S(σ) | σ ∈ KS} such that x ∈ V ⊆ U .

Suppose that S is a proper dyadic subbase of a Hausdorff space X. Since
the space X is Hausdorff and S is proper, for any two distinct points x, y ∈ X,
there exists σ ∈ KS such that x ∈ S(σ) and y ̸∈ clS(σ) = S̄(σ). By (3.5) and
(3.6), φS(x) and φS(y) are not consistent in Tω, i.e., x and y can be separated
by S0

n and S1
n for some n < ω. Therefore, we obtain y ̸∈ S̄(φS(x)), and hence

∀x ∈ X. S(φS(x)) = S̄(φS(x)) = {x}. (3.9)

Suppose that φS(x) ∈ KS for some x ∈ X. Since φS(x) is compact, S(φS(x)) is
an open set. By (3.9), we have S(φS(x)) = {x}, and therefore, x is an isolated
point. Since dom(φS(x)) is finite, there exist n ∈ ω \dom(φS(x)) and a ∈ {0, 1}
such that x is on the boundary of Sa

n, but this contradicts the fact that x is an
isolated point. Therefore, X is embedded in the space of limit elements in DS ,
i.e.,

LS := DS \KS . (3.10)

We define the minimal limit set MS of DS as the set of minimal elements of
LS . We have the following [11].

Theorem 3.6. Suppose that S is a proper dyadic subbase of a Hausdorff space
X. If X is regular, then we have φS(x) ⊑ σ for all σ ∈ LS and x ∈ S̄(σ).

Proof. See the proof of Proposition 4.12.

Theorem 3.7. If X is compact Hausdorff and S is proper, then S̄(σ) is not
empty for all σ ∈ LS and we have φS(X) = MS.

Proof. Assume that there exists σ ∈ LS with S̄(σ) = ∅. By De Morgan’s law,
we have

S̄(σ) =
∩

k∈dom(σ)

X \ S1−σ(k)
k = X \

∪
k∈dom(σ)

S
1−σ(k)
k .

Since S̄(σ) is empty, we get an open covering X =
∪

k∈dom(σ) S
1−σ(k)
k . However,

we have S̄(σ|n) ̸= ∅ for all n < ω because σ|n belongs to KS . Therefore, there
is no finite subcovering. Hence, X is not compact.

Suppose that X is compact Hausdorff. Note that a compact Hausdorff space
is always regular. For σ ∈ LS and x ∈ X, if σ ⊑ φS(x), then we have x ∈ S̄(σ)
by (3.6), and we get φS(x) ⊑ σ by Theorem 3.6. Since φS(x) belongs to LS for
all x ∈ X, φS(x) is minimal in LS , i.e., φS(X) ⊆ MS . Suppose that σ ∈ MS .
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As above, S̄(σ) is not empty, and we get φS(x) ⊑ σ for a point x ∈ S̄(σ) by
Theorem 3.6. Since σ is minimal in LS , we get σ = φS(x) ∈ φS(X). Hence, we
obtain φS(X) = MS .

Let S be a proper dyadic subbase of a compact Hausdorff space X. From
Theorems 3.6 and 3.7, we have LS = ↑φS(X) ∩ DS . For all σ ∈ ↑φS(x), we
have x ∈ S̄(σ) by (3.6), S̄(σ) ⊆ S̄(φS(x)) from φS(x) ⊑ σ, and S̄(φS(x)) = {x}
by (3.9). That is, we have

∀x ∈ X. ∀σ ∈ ↑φS(x). x ∈ S̄(σ) ⊆ S̄(φS(x)) = {x}.

Therefore, S̄(σ) is a one point set for all σ ∈ LS . Hence, we can define a map
ρS : LS → X as ρS(σ) = x ∈ S̄(σ). It has been proved that ρS is a quotient
map. Therefore, if DS is additionally a Scott domain, then (DS , LS , ρS) is also
a domain representation of X.

Following is the case in which X is the unit interval.

Example 3.8 (Gray subbase of the unit interval). The unit interval [0, 1] ⊆ R
has an independent dyadic subbase as follows. We set

G0
n :=

∪
k<ω

(
4k − 1

2n+1
,
4k + 1

2n+1

)
∩ [0, 1], (3.11)

G1
n :=

∪
k<ω

(
4k + 1

2n+1
,
4k + 3

2n+1

)
∩ [0, 1]. (3.12)

The family {Ga
n | n < ω, a ∈ {0, 1}} is the Gray subbase. We obtain

KG =
∪

m<ω

{0, 1}m ∪
∪

m,n<ω

{0, 1}m⊥10n,

LG = {0, 1}ω ∪
∪

m<ω

{0, 1}m⊥10ω.

For every number x ∈ [0, 1], the sequence φG(x) contains at most one bottom
character. If x is a dyadic rational number on the common boundary of G0

n and
G1

n, then we have φG(x) ∈ {0, 1}n⊥10ω. The unit interval [0, 1] is homeomorphic
to the space MG.
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Chapter 4

Strongly proper dyadic
subbases

Throughout this chapter, S is a proper dyadic subbase of a second-countable
Hausdorff space X.

4.1 Consistent completeness of domains

As we have shown, S induces an algebraic pointed dcpo DS . However, DS need
not always be consistently complete. Moreover, even if DS is a Scott domain,
changing the enumeration of S might cause DS not to be consistently complete.
On the other hand, we can construct a Scott domain as follows. We set

K̂S := {σ|n ∈ T∗ | σ ∈ ↑φS(X), n < ω}, (4.1)

D̂S := {σ ∈ Tω | (∀n < ω)(σ|n ∈ K̂S)}. (4.2)

A compact sequence σ ∈ T∗ belongs to K̂S if and only if there exists a point
x ∈ X such that φS(x)|len(σ) ⊑ σ.

Proposition 4.1. K̂S is a cusl. Moreover, if two sequences σ, τ ∈ K̂S are
consistent in T∗, then their least upper bound σ ⊔ τ in T∗ belongs to K̂S .

Proof. Suppose that two sequences σ, τ ∈ K̂S are consistent in T∗ and len(σ) ≤
len(τ). Their least upper bound σ⊔ τ exists in T∗ and has the same length as τ
has. Since τ belongs to K̂S , there exists a point x ∈ X such that φS(x)|len(τ) ⊑
τ . We have

φS(x)|len(σ⊔τ) = φS(x)|len(τ) ⊑ τ ⊑ σ ⊔ τ.

Therefore, σ⊔τ belongs to K̂S and is a least upper bound of σ and τ in K̂S .

We study a condition on S which ensures that KS = K̂S . Note that we
always have KS ⊆ K̂S .
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We introduce some notations. Let S∂
n be the common boundary of S0

n and
S1
n. Similarly to equations (3.1) and (3.2), for any σ ∈ {0, 1, ∂,⊥}ω, we set

S(σ) :=
∩

k∈dom(σ)

S
σ(k)
k , (4.3)

S̄(σ) :=
∩

k∈dom(σ)

clS
σ(k)
k . (4.4)

Suppose that σ ∈ {0, 1, ∂,⊥}ω. We call every ordinal n < len(σ) with σ(n) = ⊥
an inner bottom of σ. Let σ∂ be the sequence that maps all inner bottoms of
σ to ∂ and equals σ elsewhere. For all x ∈ X, since φS(x) is a limit element,
every n ∈ ω \ dom(φS(x)) is an inner bottom of φS(x). Similarly to (3.5) and
(3.6), for all σ ∈ {0, 1, ∂,⊥}ω, we have

x ∈ S(σ) ⇐⇒ ∀k ∈ dom(σ). φS(x)
∂(k) = σ(k), (4.5)

x ∈ S̄(σ) ⇐⇒ ∀k ∈ dom(φS(x)) ∩ dom(σ). φS(x)(k) = σ(k). (4.6)

Proposition 4.2. Let S be a proper dyadic subbase of X. We have the follow-
ing.

KS = {σ ∈ T∗ | S(σ∂) ̸= ∅}, (4.7)

K̂S = {σ ∈ T∗ | S̄(σ∂) ̸= ∅}. (4.8)

Proof. Let σ ∈ T∗ be a sequence. We have x ∈ S(σ∂) ⇔ φS(x)|len(σ) = σ, and

get equation (4.7). Similarly, we have x ∈ S̄(σ∂) ⇔ φS(x)|len(σ) ⊑ σ, and hence
we obtain equation (4.8).

Definition 4.3. We say that a dyadic subbase S of X is strongly proper if
S̄(σ) = clS(σ) for all σ ∈ {0, 1, ∂,⊥}∗.

If a dyadic subbase S is strongly proper, then for all σ ∈ T∗, we have
S(σ∂) ̸= ∅ if and only if clS(σ∂) = S̄(σ∂) ̸= ∅. Therefore, by Proposition 4.2,
we obtain KS = K̂S if S is strongly proper. We will show that the converse is
true. Moreover, DS is a Scott domain regardless of the enumeration of S if and
only if S is strongly proper [12].

Theorem 4.4. Suppose that S is a proper dyadic subbase of a Hausdorff space
X. The following are equivalent.

1. S is strongly proper.

2. For all permutations π : ω
∼−→ ω, KSπ is a cusl, where Sπ is the dyadic

subbase defined as Sπa
n := Sa

π(n) for n < ω and a ∈ {0, 1}.

3. KS = K̂S.

Concerning proper dyadic subbases, we have the following lemma.

Lemma 4.5. If a dyadic subbase S is proper, then we have ↑σ ∩ {0, 1}len(σ) ⊆
KS for all σ ∈ KS .
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Proof. Suppose that S is proper and σ ∈ KS . Take any sequence τ ∈ ↑σ ∩
{0, 1}len(σ). By equation (4.7), S(σ∂) is not empty, and we have only to show
that S(τ∂) is not empty. Since τ contains no inner bottom, we have τ∂ = τ . We

get clS(τ) = S̄(τ) because S is proper, and S̄(τ) ⊇ S(σ∂) because clS
τ(n)
n ⊇

S
σ∂(n)
n for all n < len(σ) = dom(τ). Therefore, we have

clS(τ∂) = clS(τ) = S̄(τ) ⊇ S(σ∂) ̸= ∅.

Hence, S(τ∂) is not empty.

As a corollary to this lemma, we obtain a lemma about least upper bounds
of consistent pairs in KS .

Lemma 4.6. Let S be a proper dyadic subbase ofX. If two sequences σ, τ ∈ KS

are consistent in T∗, then they are consistent also in KS . Moreover, if there
exists a least upper bound υ of σ and τ in KS , then υ is their least upper bound
in T∗.

Proof. Suppose that σ, τ ∈ KS are consistent in T∗ and len(σ) ≤ len(τ). Their
least upper bound σ ⊔ τ in T∗ has the same length as τ has. For a ∈ {0, 1}, we
set

υa(k) :=

{
a (if k is an inner bottom of σ ⊔ τ)
(σ ⊔ τ)(k) (otherwise)

.

We can see that υ0 and υ1 are upper bounds of σ and τ , and they have no inner
bottom. Therefore, υ0 and υ1 belong to ↑ τ ∩ {0, 1}len(τ). By Lemma 4.5, we
have ↑ τ ∩ {0, 1}len(τ) ⊆ KS . Hence, υ0 and υ1 belong to KS and are upper
bounds of σ and τ in KS .

Suppose that υ is the least upper bound of σ and τ in KS . Since υ is smaller
than or equal to υ0 and υ1, we get υ(k) ⊑ υa(k) for all k < ω and a ∈ {0, 1}.
Therefore, we obtain υ = σ ⊔ τ .

Proof of Theorem 4.4. (1 ⇒ 2) The first condition itself does not depend on the
permutation. Therefore, we have only to show that KS is a cusl. Assume that
σ and τ are consistent in KS and len(σ) ≤ len(τ). Let υ be the least upper
bound of σ and τ in T∗. We will show that υ belongs to KS . By equation (4.7),
S(τ∂) is not empty, and we have only to show that S(υ∂) is not empty. We have

S(τ∂) ⊆ S̄(υ∂) because S
τ∂(k)
k ⊆ clS

υ∂(k)
k for all k < len(τ) = len(υ). Since S

is strongly proper, we have clS(υ∂) = S̄(υ∂). Therefore, we obtain

∅ ̸= S(τ∂) ⊆ S̄(υ∂) = clS(υ∂).

Hence, S(υ∂) is not empty.
(2 ⇒ 3) Note that we have Sπ(σ ◦ π) = S(σ) for all σ ∈ T∗ and π : ω

∼−→ ω.
We will show KS = K̂S . That is, for all σ ∈ KS , every sequence υ ∈ ↑σ∩Tlen(σ)

belongs to KS . Since the cardinality of dom(υ) \ dom(σ) is finite, we have only
to show σ[n 7→ a] ∈ KS , where n is an inner bottom of σ and a ∈ {0, 1}.
Let π : ω

∼−→ ω be the transposition (0n). Note that KSπ is a cusl by the
assumption. We have Sπ∂

0 = S∂
n ⊇ S(σ∂) ̸= ∅. Since Sπ∂

0 is the boundary of
Sπa

0 , we obtain Sπa
0 ̸= ∅. Hence, a ∈ {0, 1}1 belongs to KSπ. The sequence

σ′ := σ ◦ π belongs to KSπ because Sπ(σ′∂) = S(σ∂) is not empty. Since we
have σ′(0) = σ(n) = ⊥, σ′ and a ∈ {0, 1}1 are consistent in T∗. By Lemma 4.6,
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they are consistent also in KSπ. Since KSπ is a cusl, their least upper bound
exists in KSπ, and by Lemma 4.6, the least upper bound is σ′ ⊔ a = σ′[0 7→ a].
Since σ′[0 7→ a] belongs to KSπ, the set Sπ(σ′[0 7→ a]∂) = S(σ[n 7→ a]∂) is not
empty. Therefore, we obtain σ[n 7→ a] ∈ KS .

(3 ⇒ 1) Suppose that σ ∈ {0, 1, ∂,⊥}∗ and KS = K̂S . We will show
S̄(σ) = clS(σ). We have S̄(σ) ⊇ clS(σ) because S̄(σ) contains S(σ) and is
closed. Suppose that x ∈ S̄(σ) and U is a neighborhood of x. We have only to
show S(σ) ∩ U ̸= ∅. Since φS(x) is a limit element, there exists a finite ordinal
n > len(σ) such that len(φS(x)|n) = n and S(φS(x)|n) ⊆ U . We decompose
σ into two sequences σ0,1 := σ|σ−1({0,1}) and σ∂ := σ|σ−1(∂). Since we have
x ∈ S̄(σ) ⊆ S̄(σ0,1), φS(x)|n and σ0,1 are consistent in T∗. Let υ be their least

upper bound φS(x)|n ⊔ σ0,1 in T∗. Since υ ∈ ↑φS(x)|n ∩ Tn, we get υ ∈ K̂S .
By the assumption, υ belongs to KS , and therefore S(υ∂) is not empty. Every
k ∈ dom(σ∂) is an inner bottom of υ because we have σ0,1(k) = φS(x)|n(k) = ⊥
and k < n. Therefore, we get S(υ∂) ⊆ S(υ) ∩ S(σ∂). Note that we have
S(υ) = S(φS(x)|n) ∩ S(σ0,1) and S(σ) = S(σ0,1) ∩ S(σ∂). Therefore, we obtain

∅ ̸= S(υ∂) ⊆ S(υ) ∩ S(σ∂)

= S(φS(x)|n) ∩ S(σ0,1) ∩ S(σ∂)

= S(φS(x)|n) ∩ S(σ)

⊆ U ∩ S(σ).

Hence, U ∩ S(σ) is not empty.

We give some examples of regular Hausdorff spaces with independent dyadic
subbases. Before that, we show a proposition for strongly proper dyadic sub-
bases. We do not use the notation Sa

n and we write S(n, a) if we distinguish
some dyadic subbases by their subscripts.

Proposition 4.7. Suppose that S0 and S1 are dyadic subbases of X0 and X1,
respectively.

1. Let X2 be the disjoint union of X0 and X1. A dyadic subbase S2 of X2 can
be obtained by S2(0, a) := Xa and S2(n, a) := S0(n− 1, a) ∪ S1(n− 1, a)
for 1 ≤ n < ω and a ∈ {0, 1}.

2. Let X3 be the Cartesian product of X0 and X1. A dyadic subbase S3 of
X3 can be obtained by S3(2n, a) := S0(n, a) × X1 and S3(2n + 1, a) :=
X0 × S1(n, a) for n < ω and a ∈ {0, 1}.

Moreover, if both S0 and S1 are strongly proper, then S2 and S3 are also strongly
proper.

Proof. From the definition, S2 and S3 are dyadic subbases of X2 and X3, re-
spectively.

The latter statement follows from the fact that the operator taking closure
commutes with both taking disjoint union and taking Cartesian product.

Proposition 4.8. The Gray subbase G (Example 3.8) is strongly proper.

Proof. Take any sequence σ ∈ {0, 1, ∂,⊥}∗. Since G is proper, we have Ḡ(σ) =
clG(σ) if σ contains no ∂. Suppose that σ(n) = ∂ for some n < ω. Since we
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have G∂
k = {(2l+1)/2k+1 | l = 0, . . . , 2k − 1} for all k < ω, we get G∂

k ∩G∂
n = ∅

for all k ̸= n. Therefore, we obtain

G(σ) =
∩

k∈dom(σ)\{n}

(G
σ(k)
k ∩G∂

n)

=
∩

k∈dom(σ)\{n}

(
(G

σ(k)
k ∪G∂

k) ∩G∂
n

)
=

∩
k∈dom(σ)\{n}

(clG
σ(k)
k ∩G∂

n) = Ḡ(σ).

By taking closures of both sides, we obtain clG(σ) = Ḡ(σ).

Example 4.9. Consider the unit interval [0, 1] with the Gray subbase, eliminate
two points 1/4 and 3/4, and let X1 be its one-point compactification.

Let p be the added point. Since φG(1/4) = 0⊥10ω and φG(3/4) = 1⊥10ω,
an independent dyadic subbase G1 of X1 can be defined as

φG1(x) =

{
⊥⊥10ω (x = p)
φG(x) (otherwise)

for x ∈ X1. Note that G1(0, ∂) = {1/2, p} and G1(1, ∂) = {p}. The set of
sequences of length 3 in KG1 is {0, 1}3 ∪ {⊥⊥1,⊥10}, where ⊥⊥1 = φG1(p)|3
and ⊥10 = φG1(1/2)|3. KG1 contains ⊥⊥1 and 0 but not 0⊥1. Hence, there is
no least upper bound of ⊥⊥1 and 0 in KG1 .

Let π : ω
∼−→ ω be a permutation and G1π the corresponding dyadic subbase

of X1. Suppose that n > max{π−1(0), π−1(1)} + 1 is a finite ordinal. The
sequence σ = φG1π(p)|n ∈ KG1π has two inner bottoms π−1(0) and π−1(1).
We have G1π(σ

∂) ⊆ G1(∂∂) = {p}. We set τ = σ|m[m 7→ 0], where m =
min{π−1(0), π−1(1)}. Since G1π is independent, τ belongs to KG1 . We can see
σ⊔ τ = σ[m 7→ 0]. We have G1π(σ[m 7→ 0]∂) ⊆ G1(∂∂[π(m) 7→ 0]), where π(m)
is 0 or 1 by definition. Since G1(0∂) = G1(∂0) = ∅, we get G1π(σ[m 7→ 0]∂) = ∅.
Hence, σ[m 7→ 0] does not belong to KG1π, and there is no least upper bound
of σ and τ in KG1π. Therefore, KG1π is not a cusl for any permutation π.

Example 4.10. Let X2 be the disjoint union of two unit squares [0, 1]× [0, 1]×
{0, 1} with an independent dyadic subbase G2 given by

φG2((x, y, a))(k) =

 a (k = 0)
φG(x)((k − 1)/2) (k is odd)
φG(y)((k − 2)/2) (k > 0 and k is even)

for k < ω and (x, y, a) ∈ [0, 1]× [0, 1]×{0, 1}. By Proposition 4.7, G2 is strongly
proper and KG2 is a cusl.

Example 4.11. Let X2 and G2 be the same as in Example 4.10. Eliminate
two points (1/2, 0, 0) and (1/2, 0, 1) from X2, and let X3 be its one-point com-
pactification.

Let p be the added point. An independent dyadic subbase G3 of X3 is given
by

φG3(x) =

{
⊥⊥010ω (x = p)
φG2(x) (otherwise)
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for x ∈ X. We have p ∈ Ḡ3(∂0) ̸= clG3(∂0) = ∅. Thus, G3 is not strongly
proper.

We will show that KG3 is a cusl. Note that

KG3 = KG2 ∪ {(⊥⊥010ω)|n | n < ω}. (4.9)

We get {p} = G3(∂) = G3(∂∂010
ω|n) for all n > 0. Therefore, for all σ ∈ KG3

with σ(0) = ⊥, we have σ = ⊥⊥010ω|len(σ). Note that for all a ∈ {0, 1} and
n < ω, the sequence a⊥010ω|n belongs to KG3 because G3(a∂010

ω|n) contains
a point (1/2, ϵ, a), where ϵ is a sufficiently small positive real number. Suppose
that σ, τ ∈ KG3 are consistent in KG3 . If σ(0) = τ(0) ̸= ⊥, then we have
σ, τ ∈ KG2 . Since G2 is strongly proper, KG2 contains σ⊔ τ . By equation (4.9),
KG3 also contains σ ⊔ τ . Moreover, if one of τ(0) and σ(0) is not the bottom,
then we obtain σ ⊔ τ = σ[0 7→ a] ⊔ τ [0 7→ a], where a = σ(0) ⊔ τ(0) ̸= ⊥.
Therefore, we can deduce σ⊔ τ ∈ KG3 from the case σ(0) = τ(0) ̸= ⊥. Suppose
that σ(0) = τ(0) = ⊥ and len(σ) ≤ len(τ). We obtain σ = ⊥⊥010ω|len(σ) and
τ = ⊥⊥010ω|len(τ). By len(σ) ≤ len(τ), we get σ ⊔ τ = τ , and it belongs to
KG3 .

For a transposition π = (01), two sequences 0 and ⊥⊥0 belong to KG3π, and
they are consistent. Since we have G3π((0⊥0)∂) = G3π(0∂0) = G3(∂00) = ∅,
the sequence 0⊥0 does not belong to KG3π. Therefore, there exists no least
upper bound of 0 and ⊥⊥0 in KG3π. Hence, KG3π is not a cusl.

4.2 Regularity of spaces

In this section, we give a characterization of the regularity of spaces through
strongly proper dyadic subbases.

Proposition 4.12. Suppose that S is a strongly proper dyadic subbase of a
Hausdorff space X. The space X is regular if and only if

∀σ ∈ LS . ∀x ∈ S̄(σ). φS(x) ⊑ σ. (4.10)

Theorem 3.6 states that if S is a proper dyadic subbase of a regular Hausdorff
space X, then (4.10) holds. First, we show the following characterization of the
regularity.

Lemma 4.13. Suppose that S is a proper dyadic subbase of a Hausdorff space
X. The space X is regular if and only if

∀x ∈ X. ∀n ∈ dom(φS(x)). ∃m < ω. S̄(φS(x)|m) ∩ S∂
n = ∅. (4.11)

Proof. Suppose that X is regular, x ∈ X and n ∈ dom(φS(x)). Note that
S∂
n does not contain x and is closed. Since X is regular, there exists an open

neighborhood U of x such that clU ∩ S∂
n = ∅. Since U is a neighborhood of x,

there exists m < ω such that S(φS(x)|m) ⊆ U . By taking closures, we obtain
clS(φS(x)|m) ⊆ clU . Since S is proper, we have clS(φS(x)|m) = S̄(φS(x)|m).
Therefore, we obtain

∅ = clU ∩ S∂
n ⊇ clS(φS(x)|m) ∩ S∂

n = S̄(φS(x)|m) ∩ S∂
n .

Hence, S̄(φS(x)|m) ∩ S∂
n is empty.
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Conversely, suppose that (4.11) holds. Take any point x ∈ X with its neigh-
borhood U . Since U is a neighborhood of x, there exists n′ < ω such that
S(φS(x)|n′) ⊆ U . By the assumption, for all n ∈ dom(φS(x)), there exists

mn < ω such that S̄(φS(x)|mn
)∩S∂

n = ∅. Note that S̄(φS(x)|k)∩S1−φS(x)(n)
n = ∅

if k > n. Therefore, we have S̄(φS(x)|k) ⊆ S
φS(x)(n)
n for all k > max{mn, n},

where n ∈ dom(φS(x)|n′). By taking their intersection, for a finite ordinal
k′ > max{mn, n | n ∈ dom(φS(x)|n′)}, we obtain

S̄(φS(x)|k′) ⊆ S(φS(x)|n′) ⊆ U.

Since S̄(φS(x)|k′) ⊆ U is a closed neighborhood of x, X is regular.

Lemma 4.14. Suppose that S is a proper dyadic subbase of a Hausdorff space
X. Let A ⊆ X be a subset and σ ∈ Tω a sequence. If we have S̄(σ|n) ∩ A ̸= ∅
for all n < ω, then there exists τ ∈ ↑σ ∩ {0, 1}ω such that S̄(τ |n) ∩ A ̸= ∅ for
all n < ω.

Proof. Suppose that σ(m) = ⊥ for some m < ω. Since clS0
m ∪ clS1

m = X, there
exists a ∈ {0, 1} such that S̄(σ[m 7→ a]|n) ∩ A ̸= ∅ for all n < ω. Therefore, we
can obtain such a sequence τ ∈ ↑σ∩{0, 1}ω without the bottom inductively.

Proof of Proposition 4.12. Suppose that S is a proper dyadic subbase of a reg-
ular Hausdorff space X. Let σ ∈ Tω \ T∗ be a sequence with x ∈ S̄(σ) for
a point x ∈ X. We assume φS(x) ̸⊑ σ, and we show σ ̸∈ LS . By equation
(4.7), we have only to show that S((σ|k)∂) = ∅ for some k < ω. Since σ and
φS(x) are consistent and φS(x) ̸⊑ σ, there exists n ∈ dom(φS(x)) such that
σ(n) = ⊥. By Lemma 4.13, there exists m < ω such that S̄(φS(x)|m)∩S∂

n = ∅.
Since σ is a limit element, there exists a finite ordinal k > max{m,n} such that
len(σ|k) = k. We will show that S((σ|k)∂) is empty. Since we have k = len(σ|k),
every i ∈ k\dom(σ) is an inner bottom of σ|k. Therefore, we obtain S((σ|k)∂) =
S(σ∂ |k). Since σ and φS(x) are consistent, we have S

σ∂(i)
i ⊆ clS

φS(x)(i)
i for all

i ∈ dom(φS(x)). Hence, we get S(σ∂ |k) ⊆ S̄(φS(x)|k). We get S(σ∂ |k) ⊆ S∂
n

from k > n and σ(n) = ⊥, S̄(φS(x)|k) ⊆ S̄(φS(x)|m) from k > m. Therefore,
we obtain

S((σ|k)∂) = S(σ∂ |k)
⊆ S̄(φS(x)|k) ∩ S∂

n

⊆ S̄(φS(x)|m) ∩ S∂
n = ∅.

Hence, S((σ|k)∂) is empty.
Conversely, assume that X is not regular and S is strongly proper. By

Lemma 4.13, there exist x ∈ X and n ∈ dom(φS(x)) such that S̄(φS(x)|k)∩S∂
n ̸=

∅ for all k < ω. By Lemma 4.14, there exists τ ∈ ↑φS(x) ∩ {0, 1}ω such that
S̄(τ |k) ∩ S∂

n ̸= ∅ for all k < ω. For all k < ω, we have

∅ ≠ S̄(τ |k) ∩ S∂
n = S̄(τ |k[n 7→ ∂]) ⊆ S̄(τ [n 7→ ∂]|k) = S̄(τ [n 7→ ⊥]∂ |k),

and since S is strongly proper, we get

S̄(τ [n 7→ ⊥]∂ |k) = clS(τ [n 7→ ⊥]∂ |k) ⊆ clS((τ [n 7→ ⊥]|k)∂).

We set σ := τ [n 7→ ⊥]. Since σ is a limit element and S((σ|k)∂) ̸= ∅ for all
k < ω, we obtain σ ∈ LS . The sequence σ satisfies x ∈ S̄(σ) and φS(x) ̸⊑ σ.
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The assumption that S is strongly proper cannot be avoided as the next
example shows.

Example 4.15 (Example 5.6 of [11]). We setA0 := {σ ∈ {0, 1}ω | σ has infinitely many 1}
and A1 := {⊥n10ω | n < ω}. We equip A := A0 ∪ A1 ∪ {0ω} ⊆ Tω with a sub-
space topology induced from Tω. The space A is Hausdorff because no two
points of A are consistent in Tω. An independent dyadic subbase S of A is
defined as Sa

n := {x ∈ A | x(n) = a} for all n < ω and a ∈ {0, 1}.
We obtain LS = {0, 1}ω ∪ A1 and A = MS . Therefore, we get φS(x) ⊑ σ

for all σ ∈ LS and x ∈ S̄(σ). However, for all σ, τ ∈ T∗ with len(σ) ≤ len(τ),
we have ⊥len(τ)10ω ∈ S̄(σ) ∩ S̄(τ). Hence, every two closures of non-empty
open sets intersect, and thus A is not regular. In fact, S is not strongly proper
because we have S(∂0) = ∅, whereas S̄(∂0) ⊇ S(∂∂) ∋ ⊥⊥10ω.
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Chapter 5

Strongly independent
dyadic subbases

In this chapter, we construct a Hausdorff space X with a proper dyadic subbase
S such that MS = ∅. By Theorem 3.6, X is not regular.

5.1 Existence of minimal limit elements

In this section, S is a proper dyadic subbase of a second-countable Hausdorff
space X. We introduce some topological conditions which cannot hold if X is
regular.

Definition 5.1. A space X is called adhesive if X has two or more points and
no pair of two points of X can be separated by closed neighborhoods. We say
that X is locally adhesive if for all x ∈ X with its open neighborhood U , there
exists an adhesive neighborhood V ⊆ U of x.

Note that not all subspace of an adhesive space is adhesive, e.g., the union
of two disjoint open subsets is not adhesive.

Proposition 5.2. Suppose that S is a proper dyadic subbase of X and MS is
empty. For all x ∈ X, there exists an adhesive neighborhood of x. Moreover,
X is locally adhesive if S is strongly proper.

Proof. Suppose that MS is empty and x ∈ X is a point. We define a decreasing
sequence (σn)n<ω in LS as follows. We set σ0 := φS(x) ∈ LS . For an ordinal
n < ω, if there exists τ ∈ ↓σn ∩ LS with τ(n) = ⊥ ≠ σn(n), then we set
σn+1 := τ , and we set σn+1 := σn otherwise. We can see

∀n < ω. ∀τ ∈ ↓σn ∩ LS . σn|n = τ |n. (5.1)

Let σ′ be the greatest lower bound of (σn)n<ω in Tω. We have σ′|n = σn|n ∈ KS

for all n < ω, and hence σ′ belongs to DS . By (5.1), for all τ ∈ LS , if τ ⊑ σ′,
then we get τ |n = σ′|n for all n < ω, i.e., σ′ = τ . Hence, if σ′ belongs to
LS , then σ′ is minimal in LS , but this contradicts the assumption that MS is
empty. Therefore, σ′ is compact. We have S(σ′∂∂n−len(σ′)) = S(σ∂

n|n) ̸= ∅ for
all n > len(σ′). For any pair of two compact sequences τ0, τ1 ∈ ↑σ′ ∩ KS , we
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have S̄(τ0) ∩ S̄(τ1) ⊇ S(σ′∂∂n−len(σ)) ̸= ∅ for n > max{len(τ0), len(τ1)}. Since
the family {S(τ) | τ ∈ ↑σ′ ∩ KS} forms a base of S(σ′), S(σ′) is an adhesive
neighborhood of x.

Suppose that S is strongly proper and MS is empty. As above, for all x ∈ X,
there exists its adhesive neighborhood S(σ′), where σ′ ∈ ↓φS(x) ∩KS . For all
neighborhood U of x, there exists n < ω such that S(φS(x)|n) ⊆ U . We set
τ := φS(x)|n ⊔ σ′. Note that we have x ∈ S(τ) ⊆ U ∩S(σ′). Since S is strongly
proper, we obtain

clS(τ∂∂n−len(τ)) = S̄(τ∂∂n−len(τ)) ⊇ S(σ′∂∂n−len(σ′)) ̸= ∅

for all n > max{len(τ), len(σ′)}. We can see similarly that S(τ) is adhesive.

As a corollary to this, we have the following.

Corollary 5.3. If no open subsets of X is adhesive, then we have ↑MS = LS .

Proof. Suppose that σ0 ∈ LS \ ↑MS . Similarly to the proof of Proposition
5.2, there exists a decreasing sequence (σn)n<ω in LS such that its greatest
lower bound σ′ belongs to KS . We can see that S(σ′) is a non-empty adhesive
subspace of X.

We give a sufficient condition for MS = ∅.

Definition 5.4. A dyadic subbase S of X is called strongly independent if
S(σ) ̸= ∅ for all σ ∈ {0, 1, ∂,⊥}∗.

If a dyadic subbase S is strongly independent, then we have S(σ∂) ̸= ∅ for
all σ ∈ T∗, and hence KS = T∗. Since LS = Tω \ T∗ has no minimal elements,
we get MS = ∅. We have a characterization of strongly independent dyadic
subbases as follows.

Proposition 5.5. Let S be a proper dyadic subbase of X. S is strongly inde-
pendent if and only if all of the following hold.

1. S is independent.

2. S is strongly proper.

3. X is adhesive.

Proof. Suppose that the three conditions above hold. Let σ ∈ {0, 1, ∂,⊥}∗ be a
sequence. We will show S(σ) ̸= ∅. For a ∈ {0, 1}, we define a sequence σa ∈ T∗

as

σa(k) :=

{
a (k ∈ σ−1(∂))
σ(k) (otherwise)

.

Since S is independent, both S(σ0) and S(σ1) are not empty. Hence, we can
take two points x ∈ S(σ0) and y ∈ S(σ1). Since x and y cannot be separated
by closed neighborhoods, we obtain clS(σ0) ∩ clS(σ1) ̸= ∅. Since S is strongly
proper, we have clS(σ0)∩clS(σ1) = S̄(σ0)∩S̄(σ1) = S̄(σ) = clS(σ). Therefore,
we obtain S(σ) ̸= ∅.

Conversely, let S be a strongly independent dyadic subbase. Trivially, S
is independent. Since we have T∗ = KS ⊆ K̂S ⊆ T∗, we get KS = K̂S . By
Theorem 4.4, S is strongly proper. We will show the third condition. Suppose
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that x ∈ U and y ∈ V for some x, y ∈ X and their neighborhoods U, V . There
exist two sequences σ, τ ∈ T∗ such that x ∈ S(σ) ⊆ U and y ∈ S(τ) ⊆ V . We
define a sequence υ ∈ {0, 1, ∂,⊥}∗ as

υ(k) =

{
σ(k) ⊔ τ(k) (if σ(k) and τ(k) are consistent)
∂ (if {σ(k), τ(k)} = {0, 1}) .

We have clU ∩ clV ⊇ S̄(σ)∩ S̄(τ) = S̄(υ) ⊇ S(υ). Since S is strongly indepen-
dent, S(υ) is not empty. Therefore, two closures clU and clV intersect.

5.2 Weakened prime integer topology

In this section, we will construct a Hausdorff space with a strongly independent
dyadic subbase [12].

Let N be the set of natural numbers, i.e., the set of positive integers. For
two natural numbers p, r ∈ N, let Up(r) be the congruence class of r mod p:

Up(r) := {n ∈ N | n ≡ r (mod p)}.

The prime integer topology is the topology on N generated by the family

{Up(r) | p : prime number, 0 < r < p}.

Since there exist arbitrarily large prime numbers, any two points are separated
by open neighborhoods. However, using the Chinese Remainder Theorem, we
can show that the space is adhesive. Hence, the prime integer topology is
Hausdorff but non-Urysohn, in particular, non-regular [8].

We weaken the prime integer topology as follows. Let (pn)n<ω := (3, 5, 7, 11, . . . )
be the sequence of odd prime numbers. We set

U0
p :=

∪
{Up(r) | 0 < r < p/2}, (5.2)

U1
p :=

∪
{Up(r) | p/2 < r < p} (5.3)

for p ∈ N. The topology on N generated by {Ua
pn

| n < ω, a ∈ {0, 1}} is denoted
by P2. We will study the space (N,P2).

Proposition 5.6. The space (N,P2) has a strongly independent dyadic subbase
S : ω × {0, 1} → P2 defined as Sa

n := Ua
pn

for n < ω and a ∈ {0, 1}.

Proof. We will later show that the space (N,P2) is a Hausdorff space.
From the definition, the family {Sa

n | n < ω, a ∈ {0, 1}} is a subbase of
(N,P2) and we have S0

n ∩ S1
n = ∅ for all n < ω. Note that S∂

n = {qpn | q ∈ N}.
By the Chinese Remainder Theorem, S is strongly independent.

Theorem 5.7. The topological space (N,P2) is Hausdorff.

We show Theorem 5.7 from the following.

Theorem 5.8 (Sylvester, 1912; Schur, 1929; Erdős, 1934). Let m and n be
two natural numbers. If n ≥ m, then there exists a number containing a prime
divisor greater than m in the sequence n+ 1, n+ 2, . . . , n+m.
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The case n = m corresponds to Bertrand’s postulate. This was first proved
by Sylvester and Schur independently, and an elementary proof was given by
Erdős [2].

Proof of Theorem 5.7. Let m,n ∈ N be natural numbers with m < n. There
are two cases: 2m ≤ n or m < n < 2m.

(1) For the case 2m ≤ n, we have n ≥ 2. From Bertrand’s postulate (or
Theorem 5.8), there exists a prime number p such that n < p < 2n. Since
p ≥ 3, we can put p = pk with k < ω. We have m < pk/2 < n < pk, and hence
m ∈ S0

k and n ∈ S1
k.

(2) For the other case m < n < 2m, we have 0 < 2n − 2m − 1 < 2m. Note
that 2m + (2n − 2m − 1) = 2n − 1. From Theorem 5.8, there exists a number
qp containing a prime divisor p such that

p > 2n− 2m− 1, (5.4)

2m+ 1 ≤ qp ≤ 2n− 1. (5.5)

By equation (5.4), p is odd if n > m+1. On the other hand, by equation (5.5),
we have 2m + 1 = qp = 2n − 1 if n = m + 1. Therefore, p is always odd, and
hence we can put p = pk with k < ω. By equations (5.4) and (5.5), we obtain

(q − 1)pk < 2m < qpk < 2n < (q + 1)pk,

and hence,
q − 1

2
pk < m <

q

2
pk < n <

q + 1

2
pk.

Therefore, we obtain m ∈ S1
k and n ∈ S0

k if q is even, whereas m ∈ S0
k and

n ∈ S1
k if q is odd.

We can see that the set {n ∈ N | n + 1 ∈ Sa
k} is not open for all k > 0 and

a ∈ {0, 1}. Therefore, the increment function is not continuous with respect to
this topology.

Example 5.9. We discuss another example of a Hausdorff space with a strongly
independent dyadic subbase. We define a topology on ω. For a non-negative
integer n < ω, let

∑
k<ω tk(n)3

k (tk(n) ∈ {0, 1, 2}) be the ternary expansion
of n. If we interpret 2 as ⊥, then we get a non-Hausdorff topology. Note
that tk(n) = 0 for all n ≤ k and every sequence in {0, 1, 2}k is obtained as
(t0(n), t1(n), . . . , tk−1(n)) for some n > k. We set

S0
n := {m < ω | tn(m) = 0} \ {n}, (5.6)

S1
n := {m < ω | tn(m) = 1} ∪ {n}. (5.7)

For any two numbers m < n, we have m ∈ S0
n and n ∈ S1

n. Therefore, the
topology on ω generated by the family {Sa

n | n < ω, a ∈ {0, 1}} is Hausdorff. If
we interpret 2 as ∂, then we get n ∈ S((t0(n), t1(n), . . . , tk−1(n))) for all n > k.
Hence, S is a strongly independent dyadic subbase of ω with this topology.

20



Chapter 6

Existence of strongly
proper dyadic subbases

In this chapter, we will show the following.

Theorem 6.1. Every locally compact separable metric space has a strongly
proper dyadic subbase.

Every separable metric space is second-countable and regular Hausdorff.
Urysohn’s metrization theorem states that every second-countable regular Haus-
dorff space is metrizable. Therefore, Theorem 6.1 states that every locally com-
pact second-countable regular Hausdorff space has a strongly proper dyadic
subbase.

6.1 Existence of proper dyadic subbases

First, we show the following.

Proposition 6.2. Every separable metric spaceX = (X, d) has a proper dyadic
subbase.

Proposition 6.2 has been proved [5, 6]. Using the metric directly, we give
another proof of this fact. Let f : X → R be a function, c a real number. We
use the notations

U0(f, c) := {x ∈ X | f(x) < c},
U1(f, c) := {x ∈ X | f(x) > c},
U∂(f, c) := f−1(c).

(6.1)

We will construct a dyadic subbase S : ω × {0, 1} → O of the form

Sa
n := Ua(fn, cn) (6.2)

for all n < ω and a ∈ {0, 1}, where fn : X → R is a continuous function and cn
is a real number for all n < ω.

We say that c is a local maximum (resp. local minimum) of f if c is a
maximum (resp. minimum) value of f |V for some open subset V . Local maxima
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and local minima are collectively called local extrema. If c is a local maximum
of f : X → R, then there exists a point x ∈ U∂(f, c) with its neighborhood
V such that V ∩ U1(f, c) is empty. The point x belongs to neither clU1(f, c)
nor U0(f, c). Therefore, U0(f, c) is not the exterior of U1(f, c). Similarly, if c a
local minimum, then there exists y ̸∈ clU0(f, c) ∪ U1(f, c). Hence, every local
extremum should be avoided in order to obtain a proper dyadic subbase. We
do not fix real numbers cn first, but give open intervals In from which cn will
be taken.

Lemma 6.3. There exist a sequence (fn)n<ω of continuous functions and a
sequence (In)n<ω of open intervals such that the family {Ua(fn, cn) | n <
ω, a ∈ {0, 1}} is a subbase of X if cn ∈ In for n < ω.

Proof. SinceX is separable, there exists a dense countable set {xn ∈ X | n < ω}.
Suppose that {Bn | n < ω} is a countable base of the space R>0 of positive real
numbers. Note that if bn ∈ Bn for all n < ω, then the set {bn | n < ω} is
dense in R>0. Let n 7→ (n0, n1) be a map from ω onto ω × ω. We define
fn(x) := d(xn0 , x) and In := Bn1 . If cn ∈ In for all n < ω, then the family
{Ua(fn, cn) | n < ω, a ∈ {0, 1}} is a subbase of X because {U0(fn, cn) | n < ω}
forms a base. By definition, U0(fn, cn) and U1(fn, cn) are disjoint for all n <
ω.

As the following lemma shows, the set of local extrema is countable.

Lemma 6.4. Every function f : X → R has at most countably many local
extrema.

Proof. Let {Bn | n < ω} be a countable base of X. Since each local extremum
is an extremum of f |Bn for some Bn, the number of local extrema of f is
countable.

In order to obtain the properness property, we have only to avoid local
extrema of finitely many functions. Therefore, we can avoid them.

Lemma 6.5. Let A be a subset of X, f : X → R a continuous function,
c a real number. If c ∈ R is not a local extremum of f |clA, then we have
clA \ U1−a(f, c) = cl(A ∩ Ua(f, c)) for a ∈ {0, 1}.

Proof. We can see clA \ U1−a(f, c) ⊇ clA ∩ clUa(f, c) ⊇ cl(A ∩ Ua(f, c)).
Suppose that x ∈ clA \ U1−a(f, c) and V is an open neighborhood of x. Since
c is not a local extremum of f |clA, there exists y ∈ V ∩ clA such that y ∈
Ua(f, c), i.e., V ∩ clA ∩ Ua(f, c) ̸= ∅. Since Ua(f, c) and V are open, we have
V ∩A ∩ Ua(f, c) ̸= ∅. Therefore, we obtain x ∈ cl(A ∩ Ua(f, c)).

Proof of Proposition 6.2. By Lemma 6.3 we can take a sequence (fn)n<ω of
continuous functions and a sequence (In)n<ω of open intervals, such that the
family {Ua(fn, cn) | n < ω, a ∈ {0, 1}} is a subbase of X if cn ∈ In for n < ω.

First, we take c0 ∈ I0 which is not a local extremum of f0, and set Sa
0 :=

Ua(f0, c0) for a ∈ {0, 1}. By Lemma 6.5, S0
0 and S1

0 are exteriors of each other.
Let n be a finite ordinal. Suppose that we have obtained a family {Sa

k |
k < n, a ∈ {0, 1}} such that S̄(σ) = clS(σ) for all σ ∈ Tn. We take a real
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number cn ∈ In which is not a local extremum of fn|S̄(σ) for all σ ∈ Tn. We set
Sa
n := Ua(fn, cn) for a ∈ {0, 1}. For all σ ∈ Tn and a ∈ {0, 1}, we have

S̄(σ[n 7→ a]) = S̄(σ) \ S1−a
n = clS(σ) \ S1−a

n

by the assumption. Since cn is not a local extremum of fn|clS(σ), by Lemma
6.5, we obtain

clS(σ) \ S1−a
n = cl(S(σ) ∩ Sa

n) = clS(σ[n 7→ a]).

Therefore, S̄(σ) = clS(σ) holds for all σ ∈ Tn+1. Hence, we obtain a proper
dyadic subbase inductively.

6.2 Fat points

In the proof of Proposition 6.2, cn could be a local extremum of fn|f−1
m (cm)

for some m,n < ω. If cn is a local extremum of fn|f−1
m (cm), then U0(fn, cn) ∩

U∂(fm, cm) and U1(fn, cn) ∩ U∂(fm, cm) are not exteriors of each other in the
space U∂(fm, cm), and we fail to obtain the strong properness. We have to
avoid cm such that already chosen cn will be a local extremum of fn|f−1

m (cm). In
Section 6.3, we show that such real numbers can be avoided if the space X is
locally compact.

In the rest of this section, X is a locally compact separable metric space.

Definition 6.6. A subset A ⊆ X is

(i) codense if intA = ∅.

(ii) nowhere dense if int clA = ∅.

(iii) meagre if A is a countable union of nowhere dense subsets.

Let r be a non-negative integer, f : X → Rr a continuous map. We say that
a point x ∈ X is fat with respect to f if f(V ) has an interior point for every
neighborhood V of x. The set of all fat points with respect to f is denoted by
fatf X.

Lemma 6.7. Let f : X → Rr be a continuous map. For all subset A ⊆ X, we
have fatf A ⊆ fatf X ∩A.

Proof. Let x ∈ fatf A be a point, V ⊆ X its open neighborhood. We can see
x ∈ A. Since x belongs to fatf A, f(A ∩ V ) has an interior point. Therefore,
f(V ) ⊇ f(A ∩ V ) also has an interior point, and hence x ∈ fatf X.

By definition, X has no fat point with respect to f if f(X) is codense. We
show its converse.

Proposition 6.8. Let r be a non-negative integer, f : X → Rr a continuous
map. If fatf X is empty, then f(X) is codense.

We make a remark about the case in which r is zero. R0 is a one point set
and every point x ∈ X is mapped to the same point by f . Therefore, we have
fatf X = X. Note that for all subset A of a one point set, we have

A is codense ⇔ A is nowhere dense ⇔ A is meagre ⇔ A = ∅.
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Therefore, we can easily see that Proposition 6.8 holds in this case.
Baire category theorem states that every meagre subset of a complete metric

space is codense. Since Rr is a complete metric space, we have the following.

Lemma 6.9 (Baire category theorem). Every meagre subset of Rr is codense.

Proof. Suppose that Kn is a nowhere dense subset of Rr for all n < ω. For
any non-empty open subset V ⊆ Rr, there exists a sequence of non-empty open
subsets (Vn)n<ω such that V0 ⊆ V \K0 and clVn ⊆ Vn−1 \Kn for 0 < n. We
can see that

∩
n<ω Vn is non-empty.

Proof of Proposition 6.8. Suppose that X has no fat point and {Bn | n < ω} is
a base of X. For all x ∈ X, there exists a compact neighborhood clBn of x such
that f(clBn) is codense. Note that the image of a compact set by a continuous
map is always compact and every compact codense subset is nowhere dense.
Therefore, we have X =

∪
{clBn | f(clBn) is nowhere dense}. We can see that

f(X) =
∪
{f(clBn) | f(clBn) is nowhere dense} is meagre, and hence f(X) is

codense by Lemma 6.9.

We will take real numbers that determine a strongly proper dyadic subbase
inductively. At each step, we will choose the real number cn so that for every
m > n, the set of real numbers which we have to avoid as cm is meagre. First,
we show that the pairwise condition can be satisfied.

Proposition 6.10. Let f : X → R be a continuous function, r a non-negative
integer, g : X → Rr a continuous map, c a real number which is not a local
extremum of f |fatg X . The set {p ∈ Rr | c is a local extremum of f |g−1(p)} is
meagre.

Lemma 6.11. Suppose that f, g and c are as above. For any compact subset
K of X, g(K ∩ U∂(f, c)) \ g(Ua(f, c)) is nowhere dense for a ∈ {0, 1}.

Proof. For a ∈ {0, 1}, we have

g(K ∩ U∂(f, c)) \ g(Ua(f, c)) ⊆ g(K ∩ U∂(f, c)) \ int g(Ua(f, c)).

We can see that the right hand side is closed. Therefore, we have only to show
that g(K ∩ U∂(f, c)) \ int g(Ua(f, c)) is codense for a ∈ {0, 1}. Let V ⊆ g(K ∩
U∂(f, c)) be a non-empty open subset. We can see that K ∩ U∂(f, c) ∩ g−1(V )
is a locally compact separable metric space. Therefore, by Proposition 6.8, the
set fatg(K ∩ U∂(f, c) ∩ g−1(V )) is not empty. By Lemma 6.7, we obtain

∅ ≠ fatg(K ∩ U∂(f, c) ∩ g−1(V )) ⊆ fatg X ∩K ∩ U∂(f, c) ∩ g−1(V )

⊆ fatg X ∩ U∂(f, c) ∩ g−1(V ).

Since c is not a local extremum of f |fatg X , we obtain fatg X∩Ua(f, c)∩g−1(V ) ̸=
∅ for a ∈ {0, 1}, and thus g(Ua(f, c)) has an interior point in V . Hence, g(K ∩
U∂(f, c)) \ int g(Ua(f, c)) is codense for a ∈ {0, 1}.

Lemma 6.12. Suppose that f, g and c are as above. For any open subset B of
X, g(B ∩ U∂(f, c)) \ (g(B ∩ U0(f, c)) ∩ g(B ∩ U1(f, c))) is meagre.
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Proof. Since B is locally compact separable metric space, there exists a covering∪
n<ω Kn = B consisting of countably many compact subsets Kn. Since c is not

a local extremum of f |fatg B , by Lemma 6.11, g(Kn ∩U∂(f, c)) \ g(B ∩Ua(f, c))
is nowhere dense for all n < ω and a ∈ {0, 1}. Therefore, their union∪

n<ω,a∈{0,1}

g(Kn ∩ U∂(f, c)) \ g(B ∩ Ua(f, c))

= g(B ∩ U∂(f, c)) \ (g(B ∩ U0(f, c)) ∩ g(B ∩ U1(f, c)))

is meagre.

Proof of Proposition 6.10. Let {Bn | n < ω} be a countable base of X. By
Lemma 6.12, g(Bn ∩U∂(f, c)) \ (g(Bn ∩U0(f, c)) ∩ g(Bn ∩U1(f, c))) is meagre
for all n < ω. Therefore, their union

M :=
∪
n<ω

(g(Bn ∩ U∂(f, c)) \ (g(Bn ∩ U0(f, c)) ∩ g(Bn ∩ U1(f, c)))

is meagre.
Suppose that c is a local extremum of f |g−1(p) for a point p ∈ Rr. There

exists a base element Bn such that Bn ∩ g−1(p) ∩ U∂(f, c) is non-empty, and
either Bn ∩ g−1(p) ∩ U0(f, c) or Bn ∩ g−1(p) ∩ U1(f, c) is empty. That is, p
belongs to g(Bn ∩ U∂(f, c)) \ (g(Bn ∩ U0(f, c)) ∩ g(Bn ∩ U1(f, c))). Therefore,
we obtain

{p ∈ Rr | c is a local extremum of f |g−1(p)} ⊆ M.

We will show that if the set of (r+1)-tuples that we should avoid is meagre,
then we have only to avoid a meagre subset at each step. For a real number c,
a hyperplane Hc ⊆ Rr+1 is defined as {(x0, . . . , xr) | xr = c}.

Proposition 6.13. Suppose that M ⊆ Rr+1 is meagre. The set {c ∈ R |
M ∩Hc is meagre in Hc} is comeagre, i.e., its complement is meagre.

Lemma 6.14. Suppose that K ⊆ Rr+1 is nowhere dense. The set {c ∈ R |
clK ∩Hc is codense in Hc} is comeagre.

Proof. Let {Bn | n < ω} be a countable base of Rr. For a real number c,
Bn × {c} denotes the set {(x0, . . . , xr−1, c) | (x0, . . . , xr−1) ∈ Bn}. Note that
if clK ∩ Hc is not codense in Hc, then an open subset of Hc is contained in
clK, and therefore, Bn × {c} ⊆ clK for some n < ω. For all n < ω, the set
{c ∈ R | Bn × {c} ⊆ clK} is nowhere dense because clK is nowhere dense. We
can see that their union∪

n<ω

{c ∈ R | Bn × {c} ⊆ clK} = {c ∈ R | clK ∩Hc is not codense in Hc}

is meagre. Therefore, its complement {c ∈ R | clK ∩ Hc is codense in Hc} is
comeagre.

Lemma 6.15. Suppose that K ⊆ Rr+1 is nowhere dense. The set {c ∈ R |
K ∩Hc is nowhere dense in Hc} is comeagre.
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Proof. We have cl(K ∩Hc) ⊆ clK ∩Hc. Since Hc is closed, cl(K ∩Hc) equals
the closure of K ∩Hc in the space Hc. Therefore, if clK ∩Hc is codense in Hc,
then K ∩Hc is nowhere dense in Hc. That is, we have

{c ∈ R | clK∩Hc is codense in Hc} ⊆ {c ∈ R | K∩Hc is nowhere dense in Hc}.

By Lemma 6.14, the left hand side is comeagre.

Proof of Proposition 6.13. Suppose that M ⊆ Rr+1 is meagre. There exists
a countable covering M =

∪
n<ω Kn, where Kn is nowhere dense for n < ω.

By Lemma 6.15, {c ∈ R | Kn ∩ Hc is nowhere dense in Hc} is comeagre for
all n < ω. By De Morgan’s law, the intersection of countably many comeagre
subsets is comeagre. Therefore, their intersection

C :=
∩
n<ω

{c ∈ R | Kn ∩Hc is nowhere dense in Hc}

is comeagre. If c ∈ C, then Kn ∩ Hc is nowhere dense in Hc for all n < ω,
and therefore,

∪
n<ω Kn ∩ Hc = M ∩ Hc is meagre in Hc. Hence, the set

{c ∈ R | M ∩Hc is meagre in Hc} ⊇ C is comeagre.

6.3 Proof of Theorem 6.1

6.3.1 Construction of a strongly proper dyadic subbase

By Lemma 6.3, we can take a sequence (fn)n<ω of continuous functions and
a sequence (In)n<ω of open intervals, such that the family {Ua(fn, cn) | n <
ω, a ∈ {0, 1}} is a subbase of X if cn ∈ In for n < ω.

Every subset of ω is represented by the domain of a sequence of {⊤,⊥},
where the top character ⊤ means non-bottom. For a sequence υ ∈ {⊤,⊥}∗, fυ
denotes the map fυ : X → Rdom(υ) given by fυ(x) = (fk(x))k∈dom(υ).

Take c0 which is not a local extremum of f0|fatfυ X for all υ ∈ {⊤,⊥}∗
with υ(0) = ⊥. Set Sa

0 := Ua(f0, c0) for a ∈ {0, 1, ∂}. By Proposition 6.10,
the set {p ∈ Rdom(υ) | c0 is a local extremum of f0|f−1

υ (p)} is meagre for all

υ = ⊥υ′ ∈ {⊤,⊥}∗.
Let n > 0 be a finite ordinal. Suppose that we have obtained a sequence

(ci)i<n of real numbers such that

∀τ ∈ {∂,⊥}n. ∀υ = ⊥nυ′ ∈ {⊤,⊥}∗. ∀k ∈ n \ dom(τ).

{p ∈ Rdom(υ) | ck is a local extremum of fk|S(τ)∩f−1
υ (p)} is meagre. (6.3)

We set Sa
i = Ua(fi, ci) for all i < n and a ∈ {0, 1, ∂}. Setting τ = υ = ⊥,

we can see that ck is not a local extremum of fk for all k < n. Therefore, by
Lemma 6.5, X \S1−a

k = clSa
k for all k < n and a ∈ {0, 1}, i.e., S∂

k is the common
boundary of S0

k and S1
k for all k < n. Thus, we can justify the notation S(τ)

for τ ∈ {∂,⊥}n. By Proposition 6.13, if n ∈ dom(υ),

{c′ ∈ R = R{n} |
{p ∈ Rdom(υ)\{n} | ck is a local extremum of fk|S(τ)∩f−1

n (c′)∩f−1
υ[n 7→⊥]

(p)}

is meagre}
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is comeagre for all τ ∈ {∂,⊥}n, υ = ⊥nυ′ ∈ {⊤,⊥}∗ and k ∈ n \ dom(τ).
Therefore, their intersection Cn is comeagre. By Lemma 6.4, the set of local
extrema of fn|fatfυ S(τ) is countable for all τ ∈ {∂,⊥}n and υ = ⊥n+1υ′ ∈
{⊤,⊥}∗. Their union En is countable. We can take cn from (In∩Cn)\En, and
we set Sa

n := Ua(fn, cn) for a ∈ {0, 1, ∂}. Note that S(τ) is a locally compact
separable metric space for all τ ∈ {∂,⊥}n. Since cn ̸∈ En, by Proposition 6.10,
the set

{p ∈ Rdom(υ) | cn is a local extremum of fn|S(τ)∩f−1
υ (p)}

is meagre for all τ ∈ {∂,⊥}n and υ = ⊥n+1υ′ ∈ {⊤,⊥}∗. Therefore, we can
obtain a sequence (cn)n<ω which satisfies (6.3) for all n < ω inductively.

6.3.2 Proof of strong properness

Suppose that (fn)n<ω is a sequence of functions, (cn)n<ω is a sequence of real
numbers, (6.3) holds for all n < ω and {Sa

n | n < ω, a ∈ {0, 1}} forms a subbase
of X, where Sa

n = Ua(fn, cn) for n < ω and a ∈ {0, 1}. We can easily see that S
is a dyadic subbase of X. As we have remarked, from (6.3), we can deduce the
fact that S∂

k is the common boundary of S0
k and S1

k for all k < n. Since (6.3)
holds for all n < ω, S∂

n is the common boundary of S0
n and S1

n for all n < ω.
Therefore, we can use the notations S(σ) and S̄(σ) for all σ ∈ {0, 1, ∂,⊥}∗.

Lemma 6.16. For all n < ω, cn is not a local extremum of fn|S̄(σ) for all
σ ∈ {0, 1, ∂,⊥}∗ with σ(n) = ⊥.

Proof. In (6.3), setting υ := ⊥, we can see that ck is not a local extremum of
fk|S(τ) for all τ ∈ {∂,⊥}n and k ∈ n \ dom(τ). Since (6.3) holds for all n < ω,
cn is not a local extremum of fn|S(τ) for all τ ∈ {∂,⊥}∗ and n ∈ ω \ dom(τ).

Suppose that cn is a local extremum of fn|S̄(σ) for a sequence σ ∈ {0, 1, ∂,⊥}∗
with σ(n) = ⊥. There exists an open subset V ⊆ X such that cn is an ex-
tremum of fn|V ∩S̄(σ). Take a point x ∈ V ∩ S̄(σ) ∩ f−1

n (cn) and set W :=
V ∩ S(φS(x)|dom(σ)). Let τ ∈ {∂,⊥}∗ be a sequence whose domain is the
set dom(σ) \ dom(φS(x)). By definition, we have S(φS(x)|dom(σ)) ∩ S(τ) =

S(φS(x)
∂ |dom(σ)). Since we have S

φS(x)∂(k)
k ⊆ clS

σ(k)
k for all k ∈ dom(σ), we

get S(φS(x)
∂ |dom(σ)) ⊆ S̄(σ). Therefore, we have

W ∩ S(τ) = V ∩ S(φS(x)|dom(σ)) ∩ S(τ)

= V ∩ S(φS(x)
∂ |dom(σ))

⊆ V ∩ S̄(σ).

We can see that cn is an extremum value of f |W∩S(τ) because W ∩ S(τ) is a
subset of V ∩ S̄(σ) and contains the point x ∈ f−1

n (cn). Since W is open, cn is
a local extremum of f |S(τ), a contradiction.

Proposition 6.17. S is a strongly proper dyadic subbase.

Proof. Let σ ∈ {0, 1, ∂,⊥}∗ be a sequence, τ0 ∈ {∂,⊥}∗ a sequence with
dom(τ0) = σ−1(∂). Since the cardinality of σ−1({0, 1}) is finite, we can take a
finite sequence (τk)k<m such that τk+1 = τk[n 7→ σ(n)] for some n ∈ dom(σ) \
dom(τk) for all k < m, and τm−1 = σ. We show that S̄(τk) = clS(τk) for all
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k < m by induction. By definition, we have S̄(τ0) = S(τ0) = clS(τ0). As-
sume that we have S̄(τk) = clS(τk) and τk+1 = τk[n 7→ a] for some k < m,
n ∈ dom(σ) \ dom(τk) and a = σ(n) ∈ {0, 1}. By the assumption, we have
S̄(τk[n 7→ a]) = S̄(τk) ∩ clSa

n = clS(τk) ∩ clSa
n. By Lemma 6.16, cn is not

a local extremum of fn|S̄(τk). By Lemma 6.5, we obtain clS(τk) ∩ clSa
n =

cl(S(τk) ∩ Sa
n) = clS(τk+1).
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