
Algorithmic Approaches
to PatternMining from Structured Data

Keisuke Otaki
Doctoral dissertation

Department of Intelligence Science and Technology
Graduate School of Informatics

Kyoto University

A doctoral dissertation

submitted for the degree of Doctor of Informatics.

Department of Intelligence Science and Technology,
Graduate School of Informatics,
Kyoto University.

Typeset with
XƎLATEX3.14159265-2.6-0.99992 (TeX Live 2015)

©Copyright by Keisuke Otaki, 2016
All rights reserved.

Abstract

Data Mining is conception related to methods for discovering previously unknown
knowledge in data to realize Knowledge Discovery. The flow to achieve the dis-
covery is named KDD process, and often modeled as consecutive problems: pre-
processing of data, discovering knowledge from the refined data with some algo-
rithms, and post-processing of the discovery. Patternmining is a principal research
topic to implement the step of discovering knowledge, where researchers aim at
developing methodologies and theories of finding combinatorial patterns satisfy-
ing given constraints. Many researchers have shown an interest in both exploring
variations of patterns and developing algorithms for pattern mining in the last 25
years. In the beginning of DataMining, numerical / categorical data in table format
were typical objects. However, rapid growing technologies concerning the Internet
and computer science generate a large quantity of graphs in a scientific discipline,
andKnowledgeDiscovery fromgraphs have becomemuch important in these days.
Therefore, nowadays the field is also focusing on a bunch of combinatorial objects
(e.g., sequences, trees, and graphs).

This thesis investigates patternmining and its surrounding problems withmeth-
ods and theories for algorithms to enhance the usability and the effectiveness of
pattern mining. Main objects for the KDD process treated in the thesis are graphs.
Nowadays previously developed pattern mining algorithms work efficiently due
to sophisticated enumeration algorithms. They are able to list all frequent pat-
terns from large databases, regardless of whether they are theoretically guaran-
teed. However, in many problems, applying enumeration algorithms to large scale
data is still challenging in the sense that they generate a huge amount of patterns
which could be larger than the size of the input and redundant. This phenomenon
is knownas pattern combinatorial explosions. Methods to overcome the explosions
still remains controversial. In order to utilize pattern mining with large scale and
complex data, more technical advances are required, and we would contribute it
with studying both theoretical and practical aspects of pattern mining. More pre-
cisely, we build novel methods from pre-processing to post-processing for graphs
generated by various manners in pattern mining.

First we answer the fundamental question: What is the theoretical efficiency
of mining algorithms? We discuss the listing complexity of mining algorithms for
graphs, particularly for graphs of bounded treewidth – a parameterized graph class
–, to clarify the performance and the theoretical limitations of algorithms. Based
on developments of efficient algorithms including the contribution above, we in-
vestigate practical aspects of pattern mining, by focusing on both post-processing
and pre-processing of pattern mining. Second, we prepare a method to support
exploratory data analysis by users in post-processing of pattern mining. We build
a kind of structure, lattices of enumerated patterns. With the lattice structures we
develop a new formalization based on the minimum description length principle,
to solve the unsupervised pattern set mining problem, which is known as a major
problem for post-processing to reduce the size of the output. Third, we investi-
gate pre-processing of pattern mining to enhance the readability of enumerated

patterns based on clustering. We evaluate the effect of the pre-processing method
from the output of pattern mining. The developed methods above are experimen-
tally evaluated and discussed from the viewpoint of how they are helpful in pat-
tern mining via graphs. Our experimental results indicate that the developments
of methods for patternmining from pre-processing to post-processing are valuable
to enhance the utility, the usability, and the effectiveness of pattern mining.

Keywords: frequent patternmining, graphs of bounded treewidth, formal concept
analysis, pattern structure, lattice, generalized pattern, unsupervised pattern set
mining, minimum description length principle, edit operation, similarity graph,
data pre-processing, pattern frequency spectrum.

Acknowledgments

I am deeply grateful to all the people who have supported me during my Ph.D
course. First of all, I would like to thank my supervisor Prof. Akihiro Yamamoto.
His enormous support and insightful comments were invaluable to my researches.
I would also like to owe my deepest gratitude to the other committee members,
Prof. Tatsuya Akutsu and Prof. Hisashi Kashima, for reviewing this thesis and for
discussions to improve the thesis.
In addition, I would like to showmy greatest appreciation to my co-authors. Par-

ticularly, Dr. Tamás Horváth and Dr. Jan Ramon gave me enormous advice, which
leads me to the main research field in the thesis, i.e., pattern mining from struc-
tured data. I would also like to thank Dr. Mahito Sugiyama, Dr. Ryo Yoshinaka,
Mr. Madori Ikeda, Mr. Kentaro Imajo, Mr. Seiichi Kondo, and Mr. Tomohiko
Okayama, who were also my co-authors related to Yamamoto Cuturi Laboratory.
Discussions with them were valuable to me when completing the thesis and pro-
moting researches in my Ph.D course.
I would also like to express the deepest appreciation to themember of Yamamoto

Cuturi Laboratory for their useful comments regarding my research. Both profes-
sors Dr. Cuturi Marco and Dr. Ryo Yoshinaka were sincerely supporting my Ph.D
course in the laboratory. With Dr. Cuturi, I had a good experience to organize
Machine Learning Summer School held in Kyoto twice in 2012 and in 2015, which
was one of the most fascinating events during the course. My deepest appreciation
also goes to members in the CAML group of Fraunhofer IAIS. I received generous
support from them during my stay in Germany.
Apart from the researches, I gratefully appreciate the financial support of the

KDDI foundation (for my stay in Germany), the JSPS (Japan Society for the Promo-
tion of Science), and the JASSO (Japan Student Services Organization) that made it
possible to complete my thesis.
Finally, I would like to express my gratitude to my parents and my brother for

their moral support and warm encouragements to complete my Ph.D course.

Contents

Abstract III

Acknowledgments V

1 Introduction 1
1.1 Contributions . 8

2 Preliminaries 11
2.1 Frequent Itemset Mining . 12
2.2 Reducing Outputs . 20
2.3 Theory Extraction Framework . 24
2.4 References . 26

3 Mining from Graphs of Bounded Treewidth 29
3.1 Introduction . 29
3.2 Graphs and Tree Decompositions . 30
3.3 Frequent Connected Induced Subgraph Mining 33
3.4 Mining Graphs of Bounded Treewidth 36
3.5 Summary . 46

4 (Summary) Pattern Structure Analysis for Episodes 47

5 (Summary) MDL Principle for Pattern Set Mining on Lattices 49

6 Periodical Skeletonization for Periodic Pattern Mining 51
6.1 Introduction . 52
6.2 Periodic Patterns and Skeletonization . 54
6.3 Periodical Skeletonization . 57
6.4 Experiments . 59
6.5 Mining Using Skeletonization . 66
6.6 Summary . 70

7 Conclusion 73

Appendix A Symbols 77

Publications by the Author 81

References 83

Listing of Figures

1.1 Data in the table format . 2
1.2 Example of graphs and several tasks in Data Mining 3
1.3 Flows of the KDD process . 5
1.4 Flows of the KDD process with pattern mining 7
1.5 Numbers of frequent itemsets . 7
1.6 KDD Process with feedback and modification 8

2.1 The search space and an instance of traversing the space 13
2.2 Running example of FIM . 16
2.3 Prefix tree for FIM . 17
2.4 Construction examples of FP-trees . 19
2.5 Projection examples of FP-growth . 19
2.6 Times for enumerating all frequent itemsets 21
2.7 Lattices for maximal and closed itemsets 22
2.8 Numbers of ordinal, maximal, and closed itemsets 23
2.9 Times for enumerating ordinal, maximal, and closed itemsets 23
2.10 Listing Complexity . 25

3.1 Example of tree decompositions . 31
3.2 Example of nice tree decompositions . 32
3.3 Example of iso-quadruple and merging partial answers 39
3.4 Dynamic programming approach on nice tree decomposition 40

6.1 Numeric sequence and discretization . 53
6.2 Example of temporal skeletonization and clusters discovered 56
6.3 Example of implicit model of temporal clusters 57
6.4 Example of periodical skeletonization and clusters discovered 58
6.5 Example of cyclic HMMs for implicit model 59
6.6 Experimental results: synthetic data (HMM) 61
6.7 Experimental results: real data (PD-32, PD-128F) 62
6.8 Experimental results: real data (Kyoto) 63
6.9 Example of implicit model of periodical clusters with failures 63
6.10 Case study: Last.fm User 672 . 65
6.11 Case study: Last.fm User 808 . 65
6.12 Examples of trajectory plot . 66
6.13 Case study: Trajectory ID 1277 . 67
6.14 Case study: Trajectory ID 6275 . 67
6.15 Example of support spectrum . 69
6.16 Frequency of symbols . 71

List of Tables

1.1 Example of transaction databases with timestamp 4

3.1 Treewidth distribution of graphs in the ZINC dataset 36

6.1 Data summary used in experiments . 60
6.2 Results of recovering hidden states with failure transitions 64
6.3 Data summary used in case study experiments: Last.fm 64
6.4 Data summary used in case study experiments: Trajectory 66
6.5 Numbers of patterns with / without pre-processing: Period fixed . . . 68
6.7 Numbers of patterns with / without pre-processing: Period unfixed . 69

CHAPTER 1

Introduction

Data mining Data Miningis a principal research field concerned with discovering knowledge
from databases. With increasing the size and the variety of data, the field has

attracted much attention in the last 25 years. In the field researchers aim at devel-
oping methodologies to find unknown but potential useful knowledge in the form
of patterns, rules, subgroups, etc. from databases and theories to support the dis-
covery. Although the goal – to find something useful from data – is a bit abstract,
great success of many advances and developed applications have been widely rec-
ognized, and now data science Data Sciencehas become one of the most fascinating scientific
disciplines in both research societies and industries. A typical example of defini-
tions of Data Mining collected by FriedmanFri97 is that Data Mining is the process
of extracting previously unknown, comprehensive, and actionable information from
large databases and using it tomake crucial business decisions (by Zekulin). Another
example is that DataMining is a set of methods used in the knowledge discovery pro-
cess to distinguish previously unknown relationships and patterns within data (by
Ferruzza).

Recent success of studies in Data Mining are supported by rapid growths of re-
lated technologies, including high performance computation, networks and dis-
tributed systems, databases, datamanagement, artificial intelligence, andmachine
learning. Those areas also generate various data, characterized by the word 3V

3V(volume, variety, and velocity) of data, which is now recognized as fundamental
conception of Big Data Big Data. Along with the increase of 3V of data, the research field
of Data Mining has become valuable to find useful knowledge, and consequently
the filed has attracted much attention. On the one hand, Data Mining from various
data is undoubtedly important to users, and on the another hand it arises many
challenges in both research societies and industries.

Originally in the traditional style in statistics, users focused on data represented
by tables (a.k.a. relational data) Relational Data, including numerical or categorical vectors, as il-
lustrated in Figure 1.1. Computed several statistics (e.g., mean, standard deviation,
etc.) are discovered insights, which characterize the given table data. Furthermore,
considering a (linear) model between three random variables xHeight, xWeight, and
xIncome and learning parameters of the model from samples are a typical example
of statistical analyses.

In these days, however, data that are not represented as a table appear because
of the increase of various applications concerned with the Internet. Examples of

1

Chapter 1. Introduction

xHeight

xWeight

xIncome

Figure 1.1.: Data in the table format, which is a set of tuples each of which corresponds to a sample.
Each value in a vector indicates some meaningful measured value of an attribute. A ba-
sic task is considering a model f from attributes to the target attribute; e.g., discovering
a function f of xHeight and xWeight to predict xIncome.

such non-table format data include semi-structured documents (e.g., HTML/XML
documents), graph-based documents for Knowledge-Base Systems (e.g., RDF docu-
ments), Bioinformatics / medical data, and social networks. According to the emer-
gence of such structured data, developingmethods for DataMiningwith taking into
account the structure of data has becomemuch important, and several studies have
been devoted in the last 15 years. A large part of such data can be represented in
graphsGraph , which are main objects throughout the thesis. Data represented by graphs
are ubiquitous in these days. Particularly, we categorize graphs dealt in the thesis
into two groups:

1. graphs explicitly generated or adopted in a problem domain, and

2. graphs implicitly adopted in a problem domain.

To explain the expressiveness and the utility of graph-based representations, we
here introduce two scenarios of Data Mining from structured data.

Example 1: Discovery on Graphs Graphs can be used to directly represent various
objects based on relations among entities. An entity corresponds to an (individual)
data unit. A relation explains the relationship between entities with or without
directions. In Graph Theory, V denotes the set of entities, called vertices, and E

denotes the set of relations, called edges, and the pair G = (V,E) denotes a graph,
where E ⊆ V × V , i.e., relations are defined with pairs of vertices. Let us con-
sider the following and follower relationship in twitter*. Users correspond to ver-
tices, and the following / follower relationship can be represented as edges. That
is, graphs are directly representing the phenomenawe are interested in. Figure 1.2
illustrates the graph drawn from the twitter data† with several tasks of DataMining.
*Twitter, http://twitter.com/
†From http://www.martingrandjean.ch/introduction-to-network-visualization-gephi/ (accessed at
Sep. 15, 2015.)

2

http://twitter.com/
http://www.martingrandjean.ch/introduction-to-network-visualization-gephi/

Chapter 1. Introduction

Data Flow
Analysis

Pattern
Mining

Visualization
Clustering

Figure 1.2.: A graph from twitter data. Vertices in V represent users, and edges in E represent the
following / follower relationship. Then various phenomena observed can be modeled
in Graph Theory; e.g., evaluating distances, finding characteristic graph structures, or
detecting hidden communities and visualizations, etc.

Though “data analysis” is conception covering various problems, once given data
are represented as graphs, tasks and methods to analyze the data can be formally
described. The followings are examples.

• Link Mining (e.g.,CDK+99,GD05); topics related to build predictive or descriptive
models of edges on graphs.
• Graph Classifications (e.g.,KMM04,DKWK05); supervised classification problems in
which each datum is given as a graph.
• Social Network Analyses (e.g.,WF94,Sco12); area to investigate network structures
in the intersection area of graph theory, computer science, and sociology.
• Graph Pattern Mining (e.g., IWM00,KK01,YH02); methodologies of finding interest-
ing substructures of graphs as several forms (e.g., paths, subtrees, subgraphs).
For example, frequently appearing subgraphs show common structures behind
the entire network or several networks.
• Community Detection (e.g.,New04,New06,For10); finding communities among users
to clarify structures of graphs. For example, modularity-based clustering of ver-
tices, graph cuts, hierarchical clustering, finding cliques have been studied.
• GraphKernels (e.g.,G0̈3,GFW03,KTI03,VSKB10); developing and investigatingmethods
for comparing two graphs.
• Graph Indexing (e.g.,SWG02,YYH04); methods for constructing data structures and
indices for querying and answering some statistics on the graph. For example,
answering the distance between two users, evaluating the property of communi-
ties in the graph, etc.
• Domain Specific Applications; dealing with biological data (e.g.,HYH+05,PTU10),
for example.

We have several possible formulations to realize the discovery from graphs ac-
cording to problem and data. For example, a community; a potential meaningful

3

Chapter 1. Introduction

Table 1.1.: An example of transactions with timestamps representing an Web access log (generated
by apache-loggen, and transformed for the thesis), consisting of four attributes Times-
tamp, User ID, IP Address, Visited Pages (a set of symbols representing pages).

Timestamp User ID IP Address Visited Pages

22/Oct/2015:16:56:31 0012039 40.60.27.166 a, b, d
22/Oct/2015:16:56:48 0020061 192.201.225.220 a, e
22/Oct/2015:16:57:12 0010199 84.66.224.70 b, c, d
22/Oct/2015:16:58:01 0079180 164.87.21.44 c, f
22/Oct/2015:16:58:22 0191805 76.87.35.51 e, f, g

subgraph G′ of the given graph G can be defined by several manners, including
cliquesClique (i.e., complete subgraphs of G), a set V ′ of vertices inducing a dense sub-
graph of G, connected componentsConnected

Component
(i.e., subgraphs in which any two vertices are

connected) of G. Several parameterization of graphs might be useful for discus-
sions. Examples are including the width, the weight, the number of connected
components, the average size of connected components, and the density of edges.

Example 2: Analyzing Ordered Transactions Using Graphs Let us see another exam-
ple: transaction databases with timestampsTimestamp . In databases, we often face ordered
transactions by some attribute (e.g., times, unique IDs), where transactions can be
sorted (e.g., in the chronological order). Table 1.1 shows examples, where we as-
sume that databases have timestamps as its ordering auxiliary attribute of main
information (e.g., a set of visited pages by a user in the right-most column). In such
a situation, Data Mining taking into account the order have been attracted much
attention to extract useful knowledge based on “time” induced by the order. A fun-
damental task is to analyze the precedence-subsequencePrecedence-

Subsequence
Relation

relation of events whenwe
have a set of events‡. The followings are examples studied in pattern mining from
such databases with some ordering attribute.

• Sequential patterns (e.g.,SA96,Zak01,PHMa+01)Sequential Pattern ; finding linear combinations of the
fixed set of symbols from various transaction databases.
• Association rules (a.k.a. Bipartite episodes, e.g.,AS94,ZPOL97,KAH09)Association Rule ; finding a pair
(X,Y) of two sets of symbols from the set of symbols, which can be interpreted
as a rule of the form X → Y , where X and Y are a premise (e.g., conditions) and
a consequence (e.g., results), respectively.
• Episodes (e.g.,MTIV97,Kat11,TC12)Episode Pattern ; discovering general rules from databases, for-
mulated by directed graphs G = (V,E), where labels of vertices in V can be mod-
eled as a set of symbols and relations represented by edges in E are a bit gener-
alization of the above two examples.

All of the above examples can be represented in graphs, and thereforemining these
relations from databases generate many graphs indirectly in Data Mining. We can
thus assume that methods for graphs represented directly (as in Example 1) can

‡The set of symbols, alphabet, is denoted by B in the thesis.

4

Chapter 1. Introduction

Figure 1.3.: The KDD process based onFPsS96 consisting of the main four parts.

be applied to indirectly generated graphs. The key conception on the various prob-
lems in the thesis is that both algorithms andmathematical formulations that reflect
properties of given data are important to clarify and achieve the purpose of Data
Mining.

Throughout the two examples, we confirm that formulations using graphs are
ubiquitous and widespread. It is not only for graphs explicitly given (Example 1)
but also other data (e.g., transactions with timestamps) related to graphs indirectly
(Example 2). From those graphs, the problem is how to discover knowledge.

Models of KDD An overall model of data analysis, i.e., Knowledge Discovery in
Databases KDDwas described by Fayyad et al.FPsS96 as below.

Knowledge Discovery in Databases (KDD) is the nontrivial process of identi-
fying valid, novel, potentially useful and ultimately understandable patterns in
large databasesFPsS96.

An ideal idea of finding useful, hidden, and valuable knowledge from databases
can be modeled as the KDD process, consisting of the four parts as illustrated in
Figure 1.3:

1. Data collection: preparing databases in a structured, semi-structured, or
non-structured fashion. In some application scenarios we need to integrate
multiple databases or tables.

2. Data pre-processing: executing data pre-processing tasks listed below. Re-
lated topics are surveyed in a recent bookGLH15. The tasks are essential to
make the data suit for algorithms used in the later parts:

• Data selection (e.g., removing redundant parts of the input).
• Data discretization (e.g., methods based on uniform bins, histograms, etc.)
• Data cleaning (e.g., removing noisy data, compensating missing data)
• Data transformation (e.g., Linear / Quadratic / Polynomial Transformation
of data, The Box-Coxmethod) formaking the distribution of a datum suit for
algorithms.

3. Data mining: doing a main task by applying a selected data analysis method
(Supervisedmethods, unsupervisedmethods, parametric / non-parametric al-
gorithms, parameter estimations, enumeration algorithms, etc.), to find pat-
terns for the later decision making step, and

5

Chapter 1. Introduction

4. Evaluation and post-processing: evaluating, utilizing, and visualizing re-
sults of the main task for extracting knowledge from the selected data and
to support users’ decision making.

Note that in the thesis we adopt pattern mining in the main data mining part of the
KDD process, assuming that labels are not give (i.e., unsupervised problem), to find
useful but hidden knowledge in the form of (various) patterns. This assumption
means that some refined data are given to patternmining algorithms. More details
and overview of pattern mining is given in Chapter 2.
For clear discussions on data analysis, i.e., to clarify the purpose and the problem

of specific tasks from the viewpoint of the KDD process above, we often face the
following questions: (Input) What are the data? (Output) What do users want
to find from the input? (Method) How can algorithms compute the output? For
example in Example 1, finding cliques is a way of accomplishing the community
detection for Data Mining from graphs, summarized below:

Input A labeled undirected graph G = (V,E,λ)

Output All cliques in G whose size is larger than k

Method Applying a clique enumeration algorithm toG, and prune the cliques
listed if the size is less than or equal to k

From this viewpoint, the purpose of Data Mining is no longer ambiguous. It is
clearly described and several methods can be applied to solve the problem. Then
the questions become both theoretical and practical ones. Is the enumeration prob-
lem computationally tractable or intractable? Is the enumeration efficient? How
muchmemory spaces are required for the enumeration? What kinds of graphs can
be enumerated efficiently?
To give clear objectives, precise problem definitions, and develop efficient meth-

ods, both theoretical backgrounds and practical studies are important. For exam-
ple to deal with graphs directly given (as in Example 1), Graph Theory supports
us to handle them theoretically, and various practical and efficient algorithms de-
veloped in Algorithmic Graph Theory could support us to computationally solve
specific problem instances on graphs for Data Mining. For analyzing ordered data
(e.g., numbers, finite sets, or sequences, including transactions with timestamps, as
in Example 2), Order Theory provides us mathematical formulations. Methods in
the theory called Formal Concept Analysis is an algorithmic approach based on an
order among data. Obviously both theoretical and practical studies are important
for Data Mining from data that have structures on them.
Based on successes of various problems and developed algorithms for pattern

mining, we should recognize that pattern mining often requires efficient enumer-
ation algorithms. Therefore, it is often assumed that given data are well-formatted
and cleand for enumeration algorithms, and consequently the input of patternmin-
ing is also fixed (as illustrated in Figure 1.4). In addition, the algorithms are often
applied once to databases, i.e., feedback is not taken into account, and their outputs
are represented in mere lists of patterns. In such a situation, where enumeration

6

Chapter 1. Introduction

Pattern Mining

Evaluation
Post-processing

Enumeration
Algorithms

Fixed
Input

Output

Data
Collection

Data
Pre-processing

Figure 1.4.: Pattern mining in the KDD processing, where the input is fixed and feedback is usually
not taken into account.

(a) From datasets mushroom, chess, and con-
nect with varying σ = 50%, 40%, . . . , 10%.

(b) From datasets kosarak and T10I4D100K
with varying σ = 50%, . . . , 10%, 9%, . . . , 1%,
and 0.9%,

Figure 1.5.: Numbers of frequent itemsets mined from several benchmark datasets with varying the
threshold parameter, where the y-axis is the logarithmic scale.

algorithms are used to implement pattern mining from structured data, we com-
monly face the following problems.

• The size of the output of enumeration algorithms is often larger than the size
of the input (a.k.a., pattern combinatorial explosions).
• The output is sensitive to hyperparameters.
• The output list is redundant and has no explict structures.

To see these problems we show small experimental results of the simplest pat-
tern mining instance; Frequent Itemset MiningAS94 Itemset. We adopted a freely available
implementation§ of the Eclat algorithm (It will be explained more in Chapter 2),
and used five benchmark datasets namedmushroom, chess, connect, kosarak, and
T10I4D100K. After applying mining algorithms to the datasets with varying the
threshold parameter, we observed and plotted the number of frequent itemsets of
them (i.e., the number of elements in the output), as illustrated in Figure 1.5, where
Figure1.5a shows results of mushroom, chess, and connect, and Figure 1.5b does
for kosarak and T10I4D100K. As the y-axes of them are in the logarithmic scale, we
can easily confirm that the size of the output of pattern mining can possibly be ex-
ponential to the size of input, meaning that the size of the output could be larger
than the size of the input. In addition, judging from results in Figure 1.5b, it is ob-
vious that tuning hyperparameters (i.e., a threshold θ). Because these outputs are
generated by enumeration algorithms, they are given as mere lists or sets of fre-
quent itemsets in experiments. That is, they are redundant (i.e., some itemsets in

§See http://www.borgelt.net/fpm.html for experiments.

7

http://www.borgelt.net/fpm.html

Chapter 1. Introduction

Pattern Mining

Enumeration
Algorithms

Pre-processing
of Enumeration

Post-processing
of Enumeration

feedback

Figure 1.6.: Pattern mining with pre-processing, post-processing, and feedback.

the output are related to others each other) and have no explict structures. From
these results, we recognize that methods to overcome the above problems should
be important.

1.1. Contributions

This thesis would like to contribute for pattern mining in the KDD process by fo-
cusing on the above three problems. The key idea is focusing not only the core
part of pattern mining with enumeration algorithms but also pre-processing and
post-processing of pattern mining. In addition, by considering feedback from the
output to its pre-processing, we can build an iterative approach (a.k.a. adaptive,
exploratory, or interactive methods) as illustrated in Figure 1.6. On the conceptual
sketch of the KDD process, we list contributions of the thesis, which consist of four
main chapters. See also pp. 81 – 83 for the list of publications. Before the main con-
tents, preliminaries are given in Chapter 2. This chapter covers important aspects
of the problem; foundations, theory, and algorithms (Sections 2.1, 2.2, and 2.3). It
also contains the list of related publications (Section 2.4).

Theoretical Aspects of PatternMining The results of this part have been published
in [P4]. We first mainly focus on theoretical aspects on the listing problem, which is
known as a general description of several pattern mining problems. On the listing
problem, listing complexitiesListing Complexity are mainly discussed, where intuitively we discuss
how difficult listing processes are for a given problem setting of pattern mining.
Without any restrictions, pattern mining from graphs is relatively intractable and
investigating the listing complexity is difficult.
In Chapter 3, the key conception is to utilize common properties of a given tar-

get database. In the chapter, targets are chemical compound graphs, characterized
by the treewidthTreewidth parameter, where compounds can be modeled as labeled undi-
rected graphs whose treewidth is typically less than or equal to 3 (in many cases the
treewidth parameter is 2). The parameter treewidth is also known to be useful from
algorithmic viewpoints as many decision problems on graphs can be efficiently
solved if the treewidth is fixed and bounded by k. However, induced subgraph iso-
morphism remains computationally hard even though the treewidth parameter is
a small constant (Sections 3.2 and 3.3). Apart from the algorithmic intractability,
with tree decompositions and dynamic programming approaches, we can design the
efficient mining algorithms (Section 3.4). They are summarized as follows.

8

1.1. Contributions

Input A setD of (undirected) graphs from a graph class G of bounded treewidth
graphs and a threshold parameter θ

Output A list of all frequent connected subgraphs on the class G that are in-
duced subgraph isomorphic to at least θ graphs in D

Method A dynamic programming-based levelwise search algorithm

Practical Aspects of Pattern Mining We next focus on practical aspects of pattern
mining from viewpoints of pre-processing and post-processing. Results about post-
processing in the first half are published in [P2, P3] and those of pre-processing in
the second half are done in [J1,P1]. We begin our discussions on post-processing as-
suming that pattern mining is efficiently possible. We then develop pre-processing
of pattern mining to address problems when pattern mining is possible but hard
to tune its parameter. Throughout chapters, we focus on how we can utilize the
result F of pattern mining based on the redundancy on F Redundancy. That is, the output, i.e.,
the list or set of (interesting) patterns, is usually redundant by meanings that some
patterns subsume others, they are similar to others, and many patterns have sim-
ilar degree of interestingness for users. To overcome this issue, we often need to
take care of the selection of the whole patterns to utilize pattern mining as a core
method of the KDD process.
(This chapter is closed. Only a summarization is provided in this online ver-

sion) In Chapter 4, we focus on the problem of constructing lattice structures Latticefrom
the output F of graphs to support users’ exploratory data analyses Exploratory Data

Analysis
in the evalua-

tion / post-processing part. Our idea is thatmany patterns inF aremutually related
and are in the sibling relation on an enumeration tree. Such two patterns are al-
most the same, where a few sub-structures of patterns are different and most of
them are shared. We would like to merge similar patterns into clusters to clarify
the structure behind the set F using pattern structures Pattern Structure. These methods are also
discussed via computational experiments and related works are also explained.

Input A list F = ⟨G1, G2, . . . , GN ⟩ where Gi ∈ G (1 ≤ i ≤ N) on some class G of
episodes

Output A lattice structure ⟨L,≼⟩ comprehensively and compactly represents
F with the order ≼

Method Adopting Lattice Theory and its algorithmic methodology named pat-
tern structures Pattern Structure, which are our new formulations and applications particu-
larly for episodes

(This chapter is closed. Only a summarization is provided in this online ver-
sion) In Chapter 5, we revisit the key relation between pattern mining and lattice
structures with two important concepts in data mining; closed itemsets Closed Itemsetand formal
concept analysis Formal Concept

Analysis
. Based on lattices, we build a new interpretation of pattern set

mining problems to give an evaluation method (i.e., post-processing) to overcome
pattern combinatorial explosions using lattices and an Information Theory-based

9

Chapter 1. Introduction

criteria. More precisely, we are focusing on problems to reduce the size of the out-
put of pattern mining (i.e., compute a set M ⊆ F such that |M | is small enough).
This problem has been known and studied as unsupervised pattern set miningPattern Set Mining .

Input A lattice ⟨L,≼⟩ (or, a list L of concepts)

Output A sublattice structure ⟨L′,≼⟩ satisfying |L′| ≤ |L| (i.e., a selected list L′

of concepts)

Method A greedy algorithmbased on the state-of-the-art and common criteria
named Two-part Minimum Description Length principleTwo-part MDL

Principle
to solve the unsu-

pervised pattern set mining problem

In Chapter 6, we discuss the data pre-processing part of pattern mining based on
the fact that the result F depends on not only the threshold parameter θ but also
the input database D and symbols used in D. We study pre-processing of such a
database D using similarity graphs to take into account co-occurrences of symbols
(Sections 6.2 and 6.3). The method in this chapter aims at reduce the number of
symbols used in D to realize effective pattern mining from D. We also discuss the
difference between mining results with and without pre-processing via computa-
tional experiments (Sections 6.4 and 6.5).

Input A database D = {S} of a single sequence S
Output A set of (generalized) partially periodic patterns (PPPs)

Method A pre-processing using similarity graphs built from D and clustering
on graphs to reduce the number of symbols

That is our pre-processing constructs a function f to transform the data sequence
S to S ′ so that the transformed sequence S ′ is much easier than the original one S
for pattern mining.

10

CHAPTER 2

Preliminaries

Many pattern mining problems can be discussed in a unified manner by consid-
ering an order among patterns. To explain basic concepts used in the thesis,

we establish preliminaries and common notations for the following chapters in
Sections 2.1, 2.2, and 2.3 with major references in the literature in Section 2.4. A
list of symbols, notations, and mathematical backgrounds are also summarized in
Appendix A.

Patternmining, from a viewpoint of DataMining, is a collection of problems aim-
ing at finding combinatorial patterns (or features) from databases. Then an algo-
rithm for pattern mining can be regarded as a tool in Data Mining to realize the
discovery in Knowledge Discovery. We have various data in real applications, and
regularities behind data can be modeled by different patterns. A famous instance
of models capturing a regularity behind a database is Frequent Itemset Mining FIM Problemby
Agrawal, Imieliński, and SwamiAIS93. This is revisited by Agrawal and SrikantAS94.
Following the work, many variations of patterns have been investigated.
Informally, pattern mining is described below.

Definition 2.1 (Pattern mining) Pattern mining Pattern Miningis a set of problem instances,
all of which aims at finding combinatorial discrete patterns from the given trans-
action database satisfying some constraints. A transaction database Transaction

Database
D is a set of

transactions, which aremeaningful units for representing data.

Example 2.1 (Market Basket Analysis) Market Basket
Analysis

A transaction t ∈ D is a set of products
bought by a consumer on some retailer, and the database D stores all activities
by consumers on a store. A fundamental technique of analyzingD is to discover
co-occurrence relationship among products (e.g., some two products are often
bought simultaneously even the two belong to completely different categories)
to promote future sales. To capture such regularities behind databases, patterns
are modeled as itemset (sets of products)AIS93,AS94, and mining algorithms have
been studied to efficiently find them.

Examples of patterns studied in the pattern mining literature are diverse; asso-
ciation rulesAS94, negative rulesYBYZ02, sequential patternsAS95,PHMa+01,MR13, periodi-
cal patternsHGY98,HDY99, episodesMTIV97,Kat11, graphsYWY03. Several general patterns
having specific problem settings are also studied. For example, mining with utility

11

Chapter 2. Preliminaries

valuesHM07,TWSY10, mining from streamsGHP+03,CH08,HD09, distributed casesCNFF96 are
generalization for several application scenarios.
According to patterns, transactions are interpreted in various forms; a set of

items bought by a user, a sequence of locations visited by a tourist, or a graph ex-
amined by an pharmacological experiment, and so on. In the following contexts,
patterns are set tomathematical discrete objects consisting of elements in a base-set.

Definition 2.2 (Base-set) Let B be a base-setBase-set for defining patterns.

For example to represent itemsets, a base-set B is set to be the set of all items that
we want to analyze. As other examples, a set B′ becomes a set of all symbols to
represent sequences or strings, and another set B′′ should be a set of all labels rep-
resenting some chemical atoms for modeling chemical compounds.

Definition 2.3 (Patterns) A patternPattern is a mathematical discrete object consisting
of finite elements from a pre-defined base-set B.

For example, all of the followings are instances of patterns on B.

• itemsets X ⊆ B, sets of items in B,
• sequences s ∈ B+, sequences consisting of elements in B where B+ denotes the
Kleene closure of B, and
• graphs G = (V,E,λ) having elements in B as labels of vertices (or edges), i.e., V
is a set of vertices, E ⊆ V × V is a set of edges, and λ is a labeling function on V

and E defined as λ : V ∪ E → B.

When the base-setB is fixed, the set of all possible patterns onB is decided accord-
ing to patternswe are interested in. For example, if we are interested in itemsets on
B = {1, 2, 3, 4, 5}, we immediately can assumea search space of all itemsets as shown
in Figure 2.1a. On the space of all itemsets, we need a search strategy that efficiently
traverse patterns in the space in a duplication-less manner. For example, the way
in Figure 2.1b is an example of traversing all itemsets in the space without dupli-
cations by assuming the order of items in B = {1, 2, 3, 4, 5}, i.e., 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 is
assumed. The tree in Figure 2.1b is called a enumeration treeEnumeration Tree .
Several formulations of patterns have been studied according to the purpose of

pattern mining and a type of databases. A basic question in pattern mining is, as
noted, to find all patterns satisfying some constraints, and clarify how difficult the
problems are. The next section describes the most fundamental problem setting
based on itemsets and support (or, frequency).

2.1. Frequent Itemset Mining

Let us recall themarket basket analysis. Aswewould like to analyze consumers and
their activities from databases, a base-set B is set to a set of all items (i.e., products).
A pattern X ⊆ B, called an itemset, representing the co-occurrence relationship

12

2.1. Frequent Itemset Mining

(a) All itemsets on B = {1, 2, 3, 4, 5}. (b) An enumeration tree on B = {1, 2, 3, 4, 5}.

Figure 2.1.: The search space of itemsets and an enumeration tree on B = {1, 2, 3, 4, 5}.

among items. For the convenience of notations we could write an itemset {i, j, k}
as ijk briefly, and a singleton itemset {i} as i for short. A transaction is defined as
a pair t = ⟨tid,X⟩, where tid ∈ N is a transaction identifier and X ⊆ B is an itemset.
Without loss of generality we shall represent tid and X of t = ⟨tid,X⟩ as tid = t.tid

and X = t.X , respectively. For the convenience of denoting set operations, we
sometime ignore the tid of a transaction t. For example, given a transaction t =

⟨tid,X⟩ and an itemset Y , t ⊆ Y means X ⊆ Y by ignoring t.tid. Now a formulation
of transaction databases is a set of transactions: D = {⟨tid,X⟩ | tid ∈ N, X ⊆ B}.
Whenwe focus on the co-occurrence relation among items, a basic assumption is

that if two items occur in common frequently, the two are meaningful. This simple
assumption to evaluate an itemset is implemented in the form of support (or fre-
quency). A transaction t is said to contain, support Support, or cover an itemset Y , denoted
byX ⊆ t, if all items i ∈ Y it holds that i ∈ t.X (i.e., Y ∈ t.X). The cover Coverof an itemset
is defined as the set of identifiers of transactions that contain the itemset:

cover(X,D) = {t.tid | t ∈ D s.t. X ⊆ t}.

If the cardinality of the cover of an itemset X is large, we can say that items from
X occur in D frequently in common, and this is also applicable to evaluate the co-
occurrence relation of items. The support of an itemset X in D is, based on this
observation, defined as the number of transactions in D covering X:

supp(X,D) = |cover(X,D)| = |{t ∈ D | X ⊆ t}|.

For the convenience, the frequency of an itemsetX inD is introduced as the relative
number of transactions covering X: freq(X,D) = supp(X,D)

|D| .

Problem 2.1 (The Frequent Itemset Mining problem) FIM ProblemThe frequent itemset
mining (FIM) problem is to find the collection F out of all possible itemsets
2B whose support is higher than a user-defined threshold. The collection F is
defined as

F = {X ⊆ B | supp(X,D) ≥ θ} = {X ⊆ B | freq(X,D) ≥ σ},

13

Chapter 2. Preliminaries

where θ ∈ (0, |D|] and σ ∈ (0, 1]. The itemsets in F are called frequent (or, fre-
quent itemsets). The user-given parameters θ (or, σ) are set according to prob-
lems or users’ interest on analyzing D.

In the following, without loss of generality, we deal with θ ∈ (0, |D|]; the absolute
number of the support of an itemset X .
Based on frequent itemsets computed in the FIM problem, association rulesAssociation Rule have

been studiedAS94: For itemsets X and Y , an association rule between X and Y is
denoted as X → Y . We interpret an association rule X → Y as a pattern repre-
senting implicationImplication : “If X occurs in D, then with high probability Y follows it”. To
evaluate whether or not such a rule is interesting, the confidenceConfidence of an association
rule X → Y is defined as:

conf(X → Y,D) =
supp(X ∪ Y,D)

supp(X,D)
.

Problem 2.2 (The Association Rule Mining problem) The association rule
mining problem is to list all association rules whose confidence is higher than
a user-defined threshold τ , and for which the union of X and Y (in the rule of
the form X → Y) is frequent under the constraint X ∩ Y = ∅.

For association rule mining, methods for the above frequent itemset mining prob-
lem can be applicableAS94,ZPOL97.

2.1.1. Foundations of Mining Algorithms

Not only for itemsets but also for various patterns, to find the set F , mining algo-
rithms follow a common strategy known as Generation-and-TestGeneration-and-

Test
. Recall the search

space illustrated in Figure 2.1a. Now the set F of pattern mining results can corre-
spond to a subspace of the whole space. To find such a space based on Generation-
and-Test, the process consists of two phases:

Generation Phase Algorithms try to generate all possible solutions.

Test Phase Algorithms test to see if a possible solution is expected.

In the Generation Phase, we had better avoid the duplications of generating pos-
sible solutions. To ensure the issue, a typical search strategy, e.g., Breadth-First
Search (BFS) or Depth-First Search (DFS) strategies, can be adopted with check-
ing the duplications in pattern mining. Below we review three algorithms in both
search strategies for itemsets.

Apriori Algorithm The AprioriApriori algorithmAS94 is a fundamental algorithm using the
BFS strategy to generate and test all frequent itemsets. The fundamental property
adopted is often referred as anti-monotonicity.

14

2.1. Frequent Itemset Mining

Algorithm 1 The Apriori algorithmAS94,AH14

Input: A transaction database D and a threshold θ
Call Apriori (D, θ)

1: procedure Apriori (a transaction database D, a threshold θ)
2: Generate frequent singleton itemset, denoted by F1

3: l = 1
4: while Fl is not empty do
5: Generate Cl+1 by using joins on Fl

6: Prune Cl+1 with the subset pruning trick
7: Generate Fl+1 by counting candidates Cl+1 with respect to D and θ
8: l← l + 1

Definition 2.4 (anti-monotonicity on the FIM problem) For itemsetsX and Y

on a base-set B and a database D, X ⊆ Y implies supp(X,D) ≥ supp(Y,D).

This property on the itemsets and the support immediately arises the following
corollary, and this fact is the main concept used in the Apriori algorithm to find all
frequent itemsets in the FIM problem.

Corollary 2.1 (Traversing itemsets with anti-monotonicity) For X ∈ 2B, if
there exists a subset X ′ ⊂ X such that |X ′| = |X| − 1 and X ′ is an infrequent,
the itemset X should become infrequent as well.

The search space is formally formulated by a lattice structure (For lattices, see
appendix A) on the set 2B of all itemsets, as we saw in Figure 2.1a. Following Corol-
lary 2.1, the basic strategy of the traverse is to join two frequent itemset X1 and X2

of size l to make a new possible frequent itemset of size l+1. After getting the can-
didates, we filter them by the property in Corollary 2.1, and then we test whether
or not the new candidate itemset is frequent, by accessing to the databaseD. In the
Apriori algorithm, the traverse of the itemset lattice begins from the level 1, i.e., the
singleton itemsets. If an item i ∈ B is infrequent, any itemsets containing this item i

are no longer frequent, and then the search space corresponding this item i should
be pruned (corresponding to the gray sub-lattice containing the item 4, for exam-
ple in Figure 2.2). In summary, on some level l, i.e., when considering computing
frequent itemsets of size l, we do the followings:

Generation Phase We generate all candidates in Cl+1 on level l + 1 by using only
frequent itemsets of size l from the set Fl. Note that a possible itemset of size
l + 1 contains no infrequent itemsets of size l, and this property is checked.

Test Phase For all X ∈ Cl+1, we access the database D to evaluate the measure
supp(X,D), and if X is now frequent, this set X should be included in Fl+1.

The process halts when the set Fl on some level l is empty. The overall process of
Apriori is in Algorithm 1.

15

Chapter 2. Preliminaries

Figure 2.2.: Three examples from Example 2.2. (1) Once the item 4 is turned to be infrequent, the
part containing 4 is not needed to check. (2) The itemset 12 is infrequent and conse-
quently the following parts 123, 145, · · · are not taken into account. (3) Though the item-
set 123 can be made by the join of 13 and 23, it contains the infrequent itemset 12 and
consequently the itemset 123 is not needed to check.

Example 2.2 (A FIM instance) Let B = {1, 2, 3, 4, 5}, θ = 2 (i.e., σ = 0.4), and
D = {⟨100, 134⟩, ⟨200, 235⟩, ⟨300, 1235⟩, ⟨400, 25⟩}.

1. The item 4 is infrequent, and F1 = {1, 2, 3, 5} is computed.

2. The set C2 is computed from F1 as C2 = {12, 13, 15, 23, 25, 35}. Out of items
in C2, it turns out that 13, 23, 25, and 35 are frequent in D. Thus the set F2 is
now F2 = {13, 23, 25, 35}.

3. The set C3 is now computed as C3 = {235}, and it is also done F3 = {234}.
The set C4 is now empty and finished.

The key generation is in step 3: itemsets 123, 145, and 135 should not be included
in C3 because all of them contain infrequent itemsets of size 2. The result set is
F = {1, 2, 3, 5, 13, 23, 25, 35, 235}. See also Figure 2.2 of these operations.

Apriori-based algorithms have been studied not only for itemsets but also several
patterns. As the fundamental idea in the Apriori algorithm is simple, consisting
of two phases (the Generation Phase and the Test Phase), we can construct simi-
lar search methods to various patterns. This point will be explained more in Sec-
tion 2.3.
A drawback of the Apriori algorithm is that it requires to generate candidate pat-

terns Cl+1 from Fl. This process, in practice, requires a large memory space and
computation resources, and in some cases the computation is practically impossi-
ble. In addition, the Test Phase is also hard if the database D gets large and when
the measure gets hard to compute in patterns. That is, 1) the candidate genera-
tion, 2) the search space of patterns, and 3) the evaluation of the measure freq(·)
are common problems in pattern mining. Because algorithms need to generate
combinations of frequent itemsets it should be time consuming to test l(l+1)

2 ways
in the naïve manner. An efficient implementation of used is that in Figure 2.1b,

16

2.1. Frequent Itemset Mining

1 2 3 4 5

12 13 14 15 23 24 25 34 35 45

123 124 125 134 135 145 234 235 245 345

1345 23451234 1235 1245

12345

1 2 3 4

2

3

4

3 4

4 3 4

443

Figure 2.3.: A prefix tree on B = {1, 2, 3, 4, 5}, where the total order on integers are used to remove
redundant candidate generations, i.e., the canonical parents are used to build the tree
without duplications. Common prefixes are labeled on edges. The red subtree shows
the parts related to the item 1.

where algorithms adopt the canonical representation of itemsets by assuming the
order on items in B, which enable us to avoid reach the same itemset X ⊆ B twice
in traversing itemsets. From the viewpoint of enumeration, the canonical repre-
sentation supports the canonical parent, denoted by parentc(I), of the itemset X
by parentc(X) = X \ {maxi∈X i}. This discussion is related to the Reverse Search

Reverse Searchmethod in enumerationAF96. In addition, the canonical representation provides an
enumeration tree in the form of prefix trees as shown in Figure 2.3.
To overcome issues in algorithms adopting the BFS strategy, algorithms based on

the DFS strategy and those using compressed data structures had attracted much
attention. We explain the Eclat algorithm and the FP-Growth algorithm below.

Eclat The Eclat EclatalgorithmZPOL97 checked itemsets in the lexicographical order (See
Figure 2.3), which adopts the vertical representation of databases.

Example 2.3 (Cont’d from Example 2.2) Recall that we have a database D =

{⟨100, 134⟩, ⟨200, 235⟩, ⟨300, 1235⟩, ⟨400, 25⟩}. It is called a horizontal representation.
On the other hand, vertical representations stores the inverse index of the occur-
rences of items. For example, the item 1 now occurs at transactions of id 100 and
300. Therefore, the vertical representation of the item 1 is the list ⟨100, 300⟩ and
its bit array is given as 1010.

Let us consider the divide-and-conquer Divide and Conquerstrategy for the FIM problem: We divide
the databaseD into two sub-databasesD1 andD2, whereD1 satisfies some condition
and D2 does not satisfy it. For example, focusing on the item 1 on the prefix tree
in Figure 2.3, where we can set D1 to be a database D consisting of transactions
having the item 1, andD2 to be that of transactions which do not contain the item 1.
This divide-and-conquer strategy can be interpreted with the DFS strategy on the
prefix tree. That is, the algorithm first tries to solve the problem for the item 1, and
then it processes the problem for the itemsets 12 in the DFS manner. In the Eclat
algorithms, such partitions are implemented by a vertical representation. Such a

17

Chapter 2. Preliminaries

Algorithm 2 The Eclat algorithmZPOL97

Input: A transaction database D and a threshold θ
Let F be a global variable for F . Call Eclat (D, θ).

1: procedure Eclat (a transaction database D, a threshold θ)
2: F = {(∅, |D|)} ◃ Global variable
3: C∅ = {(x,Dx) | x ∈ B,Dx = {t ∈ D | x ∈ d}} ◃ The 1st level
4: C ′

∅ = freq(C0) ≡ {(x,Dx) ∈ C0 | |Dx| ≥ θ}.
5: Call traverse(∅, C ′

∅)

6: procedure traverse(a prefix p, the conditional database C)
7: for (x,Dx) ∈ C do
8: q = p ∪ {x}
9: Cq = {(y,Dx ∩Dy) | (y,Dy) ∈ C, y > x}.
10: C ′

q = freq(Cq) ≡ {(y,Dy) ∈ Cq | |Dy| ≥ θ}.
11: if C ′

q ̸= ∅ then
12: traverse (q, C ′

q) ◃ Depth-First Search from level k to k + 1

13: F = F ∪ {(q, |Dx|)}

sub-database partitioned with respect to the itemset given is called a conditional
databaseConditional

Database
. The pseudo code of the Eclat algorithm is given in Algorithm 2, where

conditional databases on the itemset q (also called prefix) is represented by Dx, the
bit matrix (a collection of bit arrays) representation is used to compute conditional
databases.

FP-Growth The FP-growthFP-growth algorithmHPY00,HPYM04 is an algorithmbased on the DFS
strategy using compressed data structures. The key strategy of FP-growth is travers-
ing the databaseD first and store the information required to evaluate the support
on a trie-like tree structure, called FP-tree, tominimize the number of accesses to the
databaseD required when evaluating the support. In pre-processing of FP-growth,
the algorithm filters out infrequent itemsets. We then check items in support de-
scending and lexicographically descending order as shown in Figure 2.4a.
Next, the algorithm scan the filtered database once, and store lexicographically

ordered items in a trie, named FP-tree. The process is illustrated in Figure 2.4b. To
traverse FP-trees efficiently, they should have links between the same items (e.g.,
the link between the box 3:1 to the same box in Figure 2.4b).
After building an FP-tree, we traverse the tree, as its Generation Phase, from the

bottom of the item table in which frequent items are stored; The algorithm tra-
verses items in support ascending order. When visiting the parent from the item,
the support value is transferred from the leaf to the root of the FP-tree (e.g., when
the item 1 of support 1 is accessed, the supports of the items 2, 3, 5 are now revised
with the support 1 of the item 1). This part corresponds to the part getting condi-
tional databases in the Eclat algorithm.

18

2.1. Frequent Itemset Mining

TID Itemset

100 h3, 1i
200 h2, 3, 5i
300 h2, 3, 5, 1i
400 h2, 5i

remove
infrequent 4

sorting

Item Support

2 3

3 3

5 3

1 2

More
Frequent

Less
Frequent

(a) A pre-processing for the FP-growth algorithm.

root

3:1

1:1

TID Itemset

100 h3, 1i
200 h2, 3, 5i
300 h2, 3, 5, 1i
400 h2, 5i

root

3:1

1:1

2:1

3:1

5:1

root

3:1

1:1

2:3
3:2

5:2

1:1

5:1

(b) Building an FP-tree; the first transaction ⟨3, 1⟩ is stored directly with the support, the second
transaction ⟨2, 3, 5⟩ is inserted and the internal link (dashed arrow) from 3 in the second transac-
tion to the first transaction is set, and finally the FP-tree is given after reading all transactions.

Figure 2.4.: The summary of the construction of FP-trees.

(Prefix 1)

Item Support

3 2

2 1

5 1

Cond TID Itemset

1-100 h3, 2, 5i
1-200 h3i

root

3:2

2:1

5:1
2

3

5

5:1
Item Support

2 3

3 3

5 3

1 2

root

3:1

1:1

2:3→1

3:2→1

5:2→1

1:1Traverse

Conditional Database

Line

Item Table
(header)

Figure 2.5.: A conditional database with prefix {1}, where the values above the node 1 are updated,
and this leads us to compute the conditional database with the prefix 1. If the FP-tree is
like a line, combinations of items; itemsets 12, 13, 15, etc. are generated and tested.

Example 2.4 (Traversing FP-trees) In focusing on the item 1 (e.g., the condi-
tional database in Figure 2.5), the support value 1 is adopted to the ancestors
235, and values stored with 235 are updated with 1. From the updated sub-FP-
tree, the conditional database with prefix 1 is computed. In the process, we can
confirm that with the item 1, the item 3 occurs twice, and the items 2 and 5 oc-
cur once, consequently have the answer that 13 has the support 2 and both 12

and 15 have the value 1, respectively, as the Test phase. This process is possible
when the FP-tree is a line as shown in Figure 2.5. If the database contains further
items (i.e., the obtained sub-FP-tree is not a line), the algorithm again compute
the projected database to traverse the search space more deeply.

The step above is summarized in Algorithm 3.

Let us see an (small) experimental evaluations of the three algorithms above.
We adopted two datasets mushroom and connect, and applied three algorithms
with varying the threshold parameter, andmeasured the times required for listing
all frequent itemsets. Generally speaking, algorithms based on the BFS strategy

19

Chapter 2. Preliminaries

Algorithm 3 The FP-tree construction / FP-growth algorithmHPY00,HPYM04

Input: A transaction database D and a threshold θ
Let T =FP-tree-construction (D, θ). Call FP-growth (T, ∅).

1: procedure FP-tree-construction (a transaction database D, a threshold θ)
2: Scan D once and collect F1 with its support
3: Sort F1 in the support ascending order as FList
4: Create the root of a FP-tree T
5: for each transaction t ∈ D do
6: Remove infrequent items in t and sort it
7: Let SLt be a sorted list of frequent items in t ◃ the list SLt = ⟨h | H⟩
8: Call insert (⟨h | H⟩); a function inserting SLt in the tree T

return T

9: procedure FP-growth (a FP-tree T , a prefix α)
10: Let SL be a sorted frequent itemset. In a support-ascending order of items

in SL, do the following:
11: for each item i ∈ SL do
12: Take the pointer list of nodes related to the item i
13: Consider the parent of i on T
14: Compute the conditional database CDB
15: Build the conditional FP-tree T ′ with the item F ′

16: if The conditional FP-tree T ′ is a line form then
17: Compute combinations of itemsets with α
18: Compute its support and output if frequent
19: else
20: Continue the procedure with FP-growth(CT,α ∪ {i})

are slower than those using the DFS strategy. Similar results are also obtained for
other patterns; e.g. sequential patterns by comparing apriori-based methods and
projection-based methods.

Figure 2.6 illustrates times required to enumerate frequent itemsets with the
three algorithms above from two benchmark datasets; mushroom and connect.
As results indicate, the DFS-based methods are much faster than those using the
BFS-strategy.

2.2. Reducing Outputs

Although some pattern mining instances are tractable (e.g., itemsets mining), re-
sults of mining algorithms are sometimes troublesome. That is, even for the FIM
problem, the time complexity of computing the set F is exponential to the input
parameter (e.g., the size of the input database |D|) in the worst. This drawback, the
fact that the number of enumerated patterns is in general extremely large and it is
hard to utilize the set F in practice, is known as pattern combinatorial explosionsCombinatorial

Explosion
.

This is undesirable for both theoretical and practical aspects.
From the theoretical viewpoint, the time complexity of almost all mining algo-

rithms cannot be bound by a polynomial of the input parameter. To discuss the

20

2.2. Reducing Outputs

(a) For mushroom, times for listing frequent
itemsets with varying with varying σ =
50%, 40%, . . . , 10%.

(b) For connect, times for listing frequent
itemsets with varying with varying σ =
50%, 40%, . . . , 10%.

Figure 2.6.: Times for enumerating all frequent itemsets for two datasets (mushroom, connect) with
three algorithms explained above, where the y-axes are logarithmic scale.

theoretical point, we introduced listing complexity Listing Complexityin Section 2.3 and this complex-
ity is a main subject in Chapter 3.
From the practical viewpoint, we should decide which enumerated patterns in

the set F are really important for some Knowledge Discovery tasks and decision
making problems. The following chapters focuses on developing structures which
support users to search for the set F with features by focusing on post-processing
in Chapter 4 and Chapter 5 of patternmining. Comparedwith pre-processing, post-
processing of pattern mining and evaluation methods have been studied for a long
time. However, for large scale data, more advances are now required. That is why
behaviors of mining algorithms are often extreme, i.e., results are heavily sensitive
with respect to the threshold parameter. This phenomenon arisesmany challenges
in post-processing. Therefore, in Chapter 6 we deal with pre-processing of pattern
mining so thatwe can control enumeration algorithms generating. In summary, we
simultaneously investigate both pre-processing and post-processing in the thesis to
overcome the issues from practical viewpoints.

2.2.1. Maximal and Closed Itemsets

An idea to reduce the number of frequent itemsets is to make a cluster of frequent
itemsets with constraints. Two representative ways are computing maximal and
closed itemsets.

Definition 2.5 (Maximal ItemsetBay98) An itemset X is maximal Maximal Itemsetif and only if
none of its proper supersets are frequent. Such an itemsetX is called a maximal
itemset. The setMF denotes the set of all maximal itemsets.

Maximal itemsets support us to recover every frequent itemsets F without its sup-
ports. On the other hand, closed itemsets support us to recover every frequent
itemsets F with their supports.

21

Chapter 2. Preliminaries

{}

1 2 3 4 5

12 13 14 15 23 24 25 34 35 45

123 124 125 134 135 145 234 235 245 345

1234 1345 23451235 1245

12345

(a) The lattice with maximal itemsets indicated
with red rectangles.

{}

1 2 3 4 5

12 13 14 15 23 24 25 34 35 45

123 124 125 134 135 145 234 235 245 345

1234 1345 23451235 1245

12345

(b) The lattice with closed itemsets indicated
with green rectangles.

Figure 2.7.: Examples of maximal itemsets (red) and closed itemsets (green) from the set F =
{1, 2, 3, 5, 13, 23, 25, 35, 235} of frequent itemsets (blue).

Definition 2.6 (Closed ItemsetPBTL99) An itemsetX is closedClosed Itemset if and only if none
of its proper supersets have the same support of X . Such an itemset X is called
a closed itemset. The set CF denotes the set of all closed itemsets.

Because we can recover the support of each frequent itemset from the set of all
closed itemsets, we can regard closed itemsets as loss-less, compact representations
of frequent itemsets.

Example 2.5 (Maximal and closed itemsets) Recall the lattice we used in Fig-
ure 2.1a and Example 2.2, where the set F of frequent itemsets with the param-
eter θ = 2 is {1, 2, 3, 5, 13, 23, 25, 35, 235}. In the example, MF = {13, 23, 235} and
CF = {2, 3, 13, 23, 25, 235}, and it holds that MF ⊆ CF ⊆ F . For example in
maximal itemsets, from the frequent itemset 235 of support 2, we can recover
frequent itemsets 5, 25, and 35, but the supports of them cannot be recovered.
On the other hand in closed itemsets, from the closed itemset 13, the itemset 1 is
recovered with its support (the same to the support of 13), and the support of 5
is the same to 25, and that of 35 is also the same to 235. That is, we can recover
the supports of all frequent itemsets from closed itemsets. See Figure 2.7 of the
maximal and closed itemsets, continued from Example 2.2.

From experiments shown in Figure 1.5 (numbers of frequent itemsets) and Fig-
ure 2.6 (times for listing), we here confirm that the relation MF ⊆ CF ⊆ F holds
for the selected benchmark datasets. Figure 2.8 showed times required to list all
ordinal, maximal, and closed itemsets from the selected datasets; mushroom in Fig-
ure 2.8a, chess in Figure 2.8b, and connect in Figure 2.8c. Compared with maximal
itemsets, numbers of closed itemsets are a bit larger, but they are still smaller than
those of ordinal frequent itemsets, and recall that we can recover all information
from closed ones. In contrast, with respect to running time of mining algorithms,
the closed itemsets are more time-consuming than others (See Figure 2.9; results
with mushroom in Figure 2.9a, chess in Figure 2.9b, and connect Figure 2.9c).
The closed itemsets are also important from the viewpoint of closuresClosure , which is a

key conception used in Formal Concept AnalysisFormal Concept
Analysis

, which is followed and explained

22

2.2. Reducing Outputs

(a) mushroom (b) chess (c) connect

Figure 2.8.: Numbers of ordinal, maximal, and closed itemsets from three datasets with varying the
threshold parameter, where the y-axis is the logarithmic scale.

(a) mushroom (b) chess (c) connect

Figure 2.9.: Times of listing ordinal, maximal, and closed itemsets from three datasets with varying
the threshold parameter, where the y-axis is the logarithmic scale.

more formally in Chapter 4, where the main discussion is the generalization of clo-
sures for structured patterns beyond itemsets (i.e., binary data), and in Chapter 5,
where the problemof selecting the subset of thewhole setF based on a Information
Theory-based criterion.

2.2.2. Pattern Selection and Mining Sets of Patterns

For frequent F , maximalMF , and closed itemsets CF , we know the relationMF ⊆
CF ⊆ F . More generally, towards the purpose of reducing the output size |F|, a
straightforward problem setting is selecting a subset M ⊆ F based on some mea-
sure. Themaximal itemsets and closed itemsets can be regarded as special cases of
selecting the subset of the whole set F of patterns enumerated, in the evaluation /
post-processing part of the KDD process.
Putting more constraints than maximal or closed patterns is a fundamental ap-

proach (e.g., Chapter 7 inAH14). The anti-monotonicity property as we used in item-
sets is important to achieve efficient pattern mining algorithmsMT97,HLN99. Top-k

23

Chapter 2. Preliminaries

miningTop-k Mining is an example of problems adopting more restrict constraints; For example
inHWLT02, Han et al. formalized the problem to find top-k closed itemsets of minimal
length minl: finding only a closed itemset X satisfying there exists no more than
(k − 1) closed itemsets of length at least minl whose support is higher than that of
X . Intuitively, this is a problem to find relatively long, frequent, and rare closed
itemsets out of the set CF of all closed itemsets.
Generally speaking, problems getting a set S ⊆ F from the whole set of frequent

patterns are referred as Pattern Set MiningPattern Set Mining , consisting of two problem settings; Su-
pervised and unsupervised pattern set mining. This thesis only discusses pattern
mining settings in the unsupervisedmanner, where we select such a subset S based
on some criteria or models. This is the problem dealt in Chapter 5.

2.3. Theory Extraction Framework

As many pattern mining problems are heavily depending on the implicit order of
the base-set B and a partial order among patterns (e.g., the subset relation among
itemsets) to avoid duplications, a formal description of pattern mining instances is
characterized with such an order. Mannila et al. gave a high-level description of
pattern mining instances as the Theory Extraction Problem.

Definition 2.7 (Theory Extraction ProblemMT97)Theory Extraction
Problem

Let us consider the 4-tuple
(D,L,!, qD) consisting of 1) a transaction database D, 2) a pattern language L,
expressing properties or defining subgroups of the data in which elements of
L are referred to as sentences or patterns, 3) a partial order ! on L, repre-
senting generalization of patterns, and 4) an interestingness measure predicate
qD : L → {true, false} to evaluate whether or not a pattern P ∈ L is interesting
on D. The task, computing the set

Th(L,D, qD) = {P ∈ L | qD(P) is true},

is called a Theory Extraction Problem on (D,L,!, qD). The set Th(L,D, qD) of in-
teresting patterns is called a theoryTheory of D with respect to L and qD.

In many practical pattern mining instances, a partial order ! on L is assumed.
For two patterns P1 and P2 in L, we say that P1 is more general than P2, denoted
by P1 ! P2 by the partial order !. In addition, in many cases we often assume that
L has a least element with respect to !. With a partial order !, a general form of
anti-monotonicity is now given.

Definition 2.8 (Anti-monotonicity) Let L and ! be a pattern language and a
natural partial order. An interestingnessmeasure qD anti-monotonewith respect
to! if for two pattern P1, P2 such that P1 ! P2, it holds that qD(P1) = true implies
qD(P2) = true.

Mannila et al. inMT97 also described a formal algorithm, named levelwise search
algorithmLevelwise Search as shown in Algorithm 4. In Line 1, we begin the enumeration from the

24

2.3. Theory Extraction Framework

Algorithm 4 The Levelwise Search algorithmMT97

Input: A 4-tuple (D,L,!, qD).
Call LevelwiseSearch (D,L,!, qD).

1: procedure LevelwiseSearch (an 4-tuple (D,L,!, qD))
2: C1 = {P ∈ L | there is no P ′ ∈ L such that P ′ ≺ P}.
3: l← 1
4: while Cl ̸= ∅ do
5: Fl = {P ∈ Cl | qD(P) is true}
6: Cl+1 = {P ∈ L | for all P ′ ≺ P we have P ′ ∈

⋃
j≤l Fj} \

⋃
j≤l Cj

7: l← l + 1
8: output

⋃
j<l Fj .

timeST
A
R
T

o1 o2 o3 o4

 poly(|I|) poly(|I|) poly(|I|) poly(|I|)

(a) Polynomial delay

timeST
A
R
T

o1 o2 o3

 poly(|I|) poly(|I|+ |o1|) poly(|I|+ |o1|+ |o2|)

(b) Incremental polynomial time

timeST
A
R
T

o1 o2 oN. . .

 poly(|I|+ |O|)
(c) Output polynomial time

Figure 2.10.: Three classes of listing complexity, from the input I to the output list O = ⟨o1, . . . , oN ⟩.

minimal elements on the poset (L,≺), and in Line 5 the candidates in Cl is checked
and filtered to get Fi. Using the combination of only frequent patterns before (cor-
responding to

⋃
j≤l Fj), without duplications (corresponding to \

⋃
j≤l Cj), build the

set of next candidates Cl+1 in Line 6. This process is iterated til we cannot get more
candidates in the iteration.

Compared with typical algorithmic problems, the enumeration Enumeration* problems or list-
ing Listingproblems are a little different from them on the viewpoint of computational
complexity. That is, a common feature of many listing problems is that the size
of the output can be exponential in that of the input. It is obvious for such cases
that we cannot have algorithms that enumerate the output of a problem instance
in time polynomial in the size of the input. This is the motivation of taking into ac-
count the size of the output in evaluating listing algorithms. The following listing
complexity classes are usually distinguished in the literature (see, e.g., JYP88,the web

*An enumeration is an ordered listing of all the items in a collection. Usually, the items in the list sat-
isfy some conditions in common. In this sense, patternmining instances can be solved by efficient
enumeration algorithms.

25

Chapter 2. Preliminaries

page†): For some input I, let O be the output set of some finite cardinality N . Then
the elements of O = ⟨o1, . . . , oN ⟩, are listed with

Polynomial delay if the time before printing o1, the time between printing oi and
oi+1 for every i = 1, . . . , N − 1, and the time between printing oN and the ter-
mination is bounded by a polynomial of the size of I,

Incremental polynomial time if o1 is printed with polynomial delay, the time be-
tween printing oi and oi+1 for every i = 1, . . . , N − 1 (resp. the time between
printing oN and the termination) is bounded by a polynomial of the combined
size of I and the set {o1, . . . , oi} (resp. O),

Output polynomial time (or polynomial total time) if O is printed in time polyno-
mial in the combined size of I and the entire output O.

In the following poly(n)means somepolynomialswith the parameter n. Figure 2.10
illustrates these three types. Clearly, polynomial delay implies incremental polyno-
mial time, which, in turn, means output polynomial time. Furthermore, in contrast
to incremental polynomial time, the delay of an output polynomial time algorithm
may be exponential in the size of the input even before printing the first element
of the output.

2.4. References

Han et al.HCXY07 surveyed pattern mining thoroughly and gave many links and
overviews of the field and several algorithms. For graphs,Washio andMotodaWM03

surveyed the field. A recent book for such survey is by Aggarwal and HanAH14.

Itemsets After itemsets are investigated by Agrawal, Imieliński, and SwamiAIS93,
and Agrawal and SrikantAS94, the problem is a long-standing fundamental study
to analyze theoretical and practical questions on pattern mining. ZakiZPOL97 inves-
tigated vertical representations of databases for efficient algorithms. Association
rules based on frequent itemsets are a good example in the data mining commu-
nity. Agrawal et al.AMS+96 studied an efficient algorithm, and a generalization of as-
sociation rules is also an important research topic in the area; e.g., generalized asso-
ciation rulesSA95 and evaluations of association rules onmulti-level viewpointHF95.
Contests are held several times to investigate experimental performance of several
algorithms (e.g.,GZ03,JGZ04).
To reduce the output of patterns, several algorithms have been developed for

itemsets first, and they are generalized for various patterns. Algorithms for min-
ing frequent maximal itemsets are MaxMinerBay98, MafiaBCG01, and GenMaxGZ05.
Algorithms for mining frequent closed itemsets are CLOSETPHM00, CLOSET+WHP03,
LCMUAUA03,UKA04, CHARMZH02 and DCI ClosedLOP06.

†http://www-ikn.ist.hokudai.ac.jp/~wasa/enumeration_complexity.html is a page of listing the list-
ing complexity of several listing algorithms

26

http://www-ikn.ist.hokudai.ac.jp/~wasa/enumeration_complexity.html

2.4. References

Rather than maximal and closed itemsets, non-derivable patterns by Calders and
GoethalsCG02. Selecting Top-k patterns in a lossymanner is also famous; e.g., Han et
al.HWLT02, Wang et al.WHLT05, Xin et al.XCYH06. Approximation of the output by Afrati
et al.AGM04.

Sequential, Tree, andGraphpatterns Agrawal ans SrikantAS95 also studied the algo-
rithm AprioriAll for sequential patterns, which take into account the precedence-
subsequence relations among elements in B. They inSA96 studied the efficient algo-
rithm, named GSP, based onAS95, together with our background knowledge. Zaki
studied the algorithm named SPADEZak01, which takes into account the equivalent
classes in sequential pattern mining. Pei et al.PHMa+01 studied the DFS-based al-
gorithm algorithm named PrefixSpan for the efficient sequential pattern mining
to avoid the candidate generation part in the Generation Phase of apriori-based
algorithms. Closed patterns are also an important technique for sequential pat-
terns. For example Pan et al. developed CarpenterPCT

+03 and Yan et al.YHA03 studied
CloSpan based on the PrefixSpan algorithm.
For more structured data, Inokuchi et al. IWM00 introduced the Apriori-like pat-

tern mining instance for graphs. Miyahara et al.MSU+01 and ZakiZH02 studied its
very efficient version for some classes of trees, which are a special case of graphs
(without cycles). ILP-based studies (e.g.,DTK98) were also an example of datamining
from graphs, where graphs are not represented in the graph, which are related to
relational data in pattern mining.

Constraints andCompressions Exploratory paradigms in the Generation phase are
important topics to reduce the computational complexity (e.g., Ng et al.NLHP98). To
introduce and developmore useful interestingnessmeasures as queries to transac-
tion databases, constraints represented by several forms / formulae are also stud-
ied: Constraints for itemsetsSVA97, those by regular expressions by Garofalakis et
al.GRS99. For Pattern Set Mining, several models have been studied: the maximum
entropy modelJS02,Tat08, tilingGGM04,GMS04,TV12, constraint-based methodsDRZ07, the
minimum description length principle-based approachesSVVL06,VvLS11.

The above literatures are only about unsupervised patternmining. For the super-
vised patternmining problems, a.k.a. discriminative pattern mining Discriminative

Pattern Mining

MS00,CYHH07. Let
us consider a (statistical) measure f and its parameter ι (e.g., the p-value in statis-
tics) of getting information by the query to two positive and negative databases D+

and D−. Then the question is getting a theory in which all pattern satisfy both con-
straints; that from pattern mining and that from statistical measure, as desribed
below.

Th(L,D+,D−, qD+ , qD− , f, ι) = {φ ∈ L | qD(φ) is true, and
f(qD+ (φ),qD− (φ),D+,D−)≥ι}.

The problem is also known (or, studied as different forms of)mining emerging pat-
ternsDL99, subgroup discoveryWro97,LKFT04, and interesting pattern miningBAG00.

27

CHAPTER 3

Mining fromGraphs of Bounded Treewidth

The target pattern mining instance in this chapter is the Frequent Connected In-
duced Subgraph Mining (FCISM) problem, where the database is a set of graphs,

a pattern language L is also a set of graphs, and induced subgraph isomorphism, an
instance of graph matching operators, is used to evaluate patterns.
Our first question is how difficult the mining problem is on the viewpoint of the

listing complexity. We then show that the FCISM problem cannot be solved for
arbitrary graphs in output polynomial time if P ̸= NP. This result is followed by the
second question: What constraints on graphs are helpful to achieve the efficient
pattern mining algorithms. We in this chapter focus on the parameterization of
graphs named treewidth, and deal with graphs of bounded treewidth (i.e., graphs
whose treewidth parameters are less than or equal to a some constant k), we prove
that the FCISM problem can be solved in incremental polynomial time.

keywords: Frequent Graph Mining, Graphs of Bounded Treewidth, Tree Decom-
positions, Dynamic Programming on Tree Decompositions

3.1. Introduction

Over the past 15 years a lot of research efforts have been devoted to build efficient
and effective frequent graphmining algorithms (recall Chapter 2). Despite the stud-
ies in the literature, theoretical aspects of the topic have been still understudied.
The importance of a better understanding of the theoretical complexity aspects of
various graph mining problems appears somewhat neglected, which has negative
side effects that most algorithms are limited to some ten thousands graphs only in
transaction databases.
The goal of this chapter is to take one step towards a better understanding of

graph pattern mining. Particularly, the Frequent Connected Induced Subgraph Min-
ing (FCISM) problem FCISM Problemis discussed. This is a mining instance of enumerating all
connected graphs that are induced subgraph isomorphic to at least θ graphs in the

This chapter is based on the publication below:

• Horváth, T., Otaki, K., Ramon, J. (alphabetical order): Efficient Frequent Connected Induced Sub-
graphMining in Graphs of Bounded Tree-Width, In Proc. of ECML/PKDD 2013 (LNCS 8188), pp.622-
637, 2013, DOI:10.1007/978-3-642-40988-2_40.

29

https://dx.doi.org/10.1007/978-3-642-40988-2_40

Chapter 3. Mining from Graphs of Bounded Treewidth

given database D, where all graphs in the output F are non-isomorphic in a pair-
wise manner. This problem, as we show, cannot be solved in output polynomial
time for arbitrary transaction graphs. For forests, however, it can be solved in in-
cremental polynomial time.
As the main result, we generalize the positive result on forests by showing that

the FCISM problem can be solved in incremental polynomial time for graphs of
bounded treewidthGraph of Bounded

Treewidth
. The positive result of this paper is of practical, theoretical, and

algorithmic importance. Regarding the practical aspects, we mention e.g. the ZINC
dataset containing about 16.5 millions molecular graphs: 99.99% of these graphs
have treewidth at most 3. With respect to its theoretical aspects, we note that
induced subgraph isomorphism is a persistent problem that remain NP-complete
even for graphs of treewidth 2MT92. Our positive result provides an example of
the case that efficient pattern mining is possible even for computationally intractable
graph pattern matching operators. To the best of our knowledge, there is only
one further such exampleHR10. Finally, relating to the algorithmic aspects, the
paradigm we followed, and which is used also inHR10 for the frequent connected
subgraph mining (FCSM) problemFCSM Problem in graphs of bounded treewidth, appears suffi-
ciently general for the design of graphmining algorithms for further graph pattern
matching operators. This paradigm consists of the following main steps:

1. Give a generic levelwise search algorithm with some conditions,

2. prove the existence of an efficiently computable pattern refinement operator
that is complete with respect to the graph pattern matching operator, and

3. show that the otherwise exponential-time dynamic-programming algorithm
provided inMT92 deciding the underlying graph pattern matching works in
time polynomial in the size of the set of patterns generated so far.

When comparing the steps above with those in subgraph isomorphismHR10, on the
one hand one can notice a number of steps that are (almost) the same for the two
problems. On the other hand, however, there are some crucial steps that require
entirely different techniques, induced from the difference of graphmatching oper-
ators. Thus, for example, the pattern refinement operator and the combinatorial
characterization of the necessary information needed to calculate by the graph pat-
tern matching algorithm become much more complicated for induced subgraph
isomorphism.

3.2. Graphs and Tree Decompositions

Graphs: An undirected graphUndirected Graph is a pair (V,E), where V is a set of vertices and E ⊆
{{u, v} | u, v ∈ V } is a set of (undirected) edges. We consider simple graphsSimple Graph that do
not contain loops or parallel edges. A labeled undirected graphLabeled Undirected

Graph
is a triple (V,E,λ),

where (V,E) is an undirected graph and λ is the labeling function λ : V ∪E → N. The
set of vertices, the set of edges, and the labeling function of a graphG are denoted by

30

3.2. Graphs and Tree Decompositions

V (G), E(G), and λG, respectively. A subgraph Subgraphof G is a graph G′ with V (G′) ⊆ V (G),
E(G′) ⊆ E(G), and λG′(x) = λG(x) for all x ∈ V (G′)∪E(G′);G′ is an induced subgraph

Induced Subgraphof G if it is a subgraph of G satisfying {u, v} ∈ E(G′) if and only if {u, v} ∈ E(G) for
all u, v ∈ V (G′). For S ⊆ V (G), G[S] denotes the induced subgraph of G with vertex
set S. For v ∈ V (G), G⊖ v denotes G[V (G) \ {v}]. Unless otherwise stated, by graphs
we mean labeled undirected graphs.
A path Pathconnecting two vertices v1, vk of a graphG, denoted by Pv1,vk , is a sequence

{v1, v2}, {v2, v3}, . . . , {vk−1, vk} ∈ E(G) such that the vi’s are pairwise distinct. A graph
is connected Connected Graphif there is a path between any pair of its vertices. A connected compo-
nent Connected

Component
of G is a maximal subgraph of G that is connected. The set of all connected

components of G is denoted by C(G).

Graph morphisms: Two graphs G1 and G2 are isomorphic Graph Isomorphism, denoted by G1 ≃ G2, if
there is a bijection ϕ : V (G1)→ V (G2) satisfying

1. {u, v} ∈ E(G1) if and only if {ϕ(u),ϕ(v)} ∈ E(G2) for every u, v ∈ V (G1),

2. λG1(u) = λG2(ϕ(u)) for every u ∈ V (G1), and

3. λG1({u, v}) = λG2({ϕ(u),ϕ(v)}) for every {u, v} ∈ E(G1).

For G1 and G2 we say that G1 is subgraph isomorphic Subgraph
Isomorphism

to G2, denoted by G1 ! G2, if
G1 is isomorphic to a subgraph of G2.
It is induced subgraph isomorphic Induced Subgraph

Isomorphic
to G2, denoted by G1 !i G2, if it is isomorphic

to an induced subgraph of G2. In what follows, two graphs are regarded the same
graph if they are isomorphic. By this mean, the FCISM problem should be solved
without containing the same graphs in the output.

Treewidth and Tree Decompositions: A central notion is treewidth Treewidththat was rein-
troduced in algorithmic graph theory inRS86. A tree decomposition Tree

Decomposition
of a graphG, de-

notedbyTD(G), is a pairTD(G) = (T,X), where T is a rooted tree andX = (Xz)z∈V (T)

is a family of subsets of V (G) satisfying the conditions:

1. ∪z∈V (T)Xz = V (G),

2. for every {u, v} ∈ E(G), there is a z ∈ V (T) such that u, v ∈ Xz , and

0 5

0 4 5

0 2 3
0 1

2

34

5

0 1 2

0 3 4

0

5

0

2

34

5

0

34

5

z1
G[z1]

z2

z3
G[z2]

G[z3]

Figure 3.1.: An example of a tree decomposition with a cycle. The colored vertex 0 shows the ex-
ample of the condition 3 of tree decompositions. A cycle has the treewidth 2. The right
parts show examples of terminal graphs G[z].

31

Chapter 3. Mining from Graphs of Bounded Treewidth

0 5

0 4 5

0 2 3 0 1

2

34

5

0 1 2

0 3 4

0 5 0 4

0 4 5

0 4 3

0 3 4

0 1

2

34

5
NTD

0

5

0

4

0

4
5

0

4
3

0

34

Leaf

Join

Separator

Join

Leaf

Leaf

Figure 3.2.: A TD(G) in Figure 3.1 is transformed into a nice tree decomposition NTD(G).

3. Xz1∩Xz3 ⊆ Xz2 for every z1, z2, z3 ∈ V (T) such that z2 is on the path connecting
z1 with z3 in T .

The set Xz associated with a node z of T is called the bag of z. The nodes of T will
often be referred to as the nodes of the tree decomposition TD(G). The treewidth
of (T,X) is maxz∈V (T) |Xz| − 1, and the treewidth of G, denoted by tw(G), is the
minimum treewidth over all tree decompositions of G. For our discussions, G[z]

denotes the induced subgraph of G defined by the union of the bags of z’s descen-
dants, where z is considered also as a descendant of itself. By graphs of bounded
treewidthGraph of Bounded

Treewidth
we mean graphs of treewidth at most k, where k is some constant. See

an example in Figure 3.1 of a cycle of 6 vertices and a tree decomposition of X =

{{0, 1, 2}, {0, 2, 3}, {0, 3, 4}, {0, 4, 5}, {0, 5}}.
Wewill use a special kind of tree decomposition, named a nice tree decomposition

Nice Tree
Decomposition

of G, denoted by NTD(G). It is a tree decomposition (T,X), where T is a rooted
binary tree consisting of only three types of nodes.

1. leaf node has no children,

2. separator node z has a single child z′ with Xz ⊆ Xz′ , and

3. join node z has two children z1 and z2 with Xz = Xz1 ∪Xz2 .

It follows fromBod98 that for graphs of treewidth at most k, where k is some con-
stant, a nice tree decomposition of treewidth at most k always exists and can be
constructed in linear time. See an example of a nice tree decomposition in Fig-
ure 3.2. Intuitively, leaf nodes provide smallest fragments (i.e., subgraphs) in G,
and join nodes merge two fragments and make a larger fragment. In addition, sep-
arator nodes can be recognized nodes to separate a graph into two parts; one part
is vertices already processed (i.e., the vertex 5) and another part represents those
processed later (i.e., the vertices 0 and 4). These interpretations are given by an
idea of traversing NTD(G) from leaves to the root (i.e., in a postorder manner) in
order to evaluate a graphmatching operator (i.e., induced subgraph isomorphism),
which will be described later sections.
Treewidth is a useful parameter of graphs, as many NP-hard problems can be

solved in polynomial time particularly for graphs of bounded treewidth. How-
ever, well-known NP-complete problems – subgraph isomorphism and induced

32

3.3. Frequent Connected Induced Subgraph Mining

subgraph isomorphism (e.g.,GJ79) – remain NP-complete even for the easiest case
in our setting; graphs of treewidth 2MT92,Sys82.

3.3. Frequent Connected Induced Subgraph Mining

We start by defining the pattern mining problem we are interested in.

Problem 3.1 (The FCISM problem) FCISM ProblemThe Frequent Connected Induced Sub-
graph Mining (FCISM) problem is a pattern mining instance aiming at listing
the set F of all distinct frequent connected induced subgraphs, that is, all con-
nected graphs that are induced subgraph isomorphic to at least θ graphs in D
when a class G of graphs, a transaction database D of graphs from G, and an
integer support count threshold θ > 0 are given.

Note that we do not distinguish between isomorphic graphs. The parameter of
the above problem is the size of D. Clearly, the size of F can be exponential in
that of D*. Thus, in general, the set of all frequent connected induced subgraphs
cannot be computed in time polynomial only in the size of D. The following sim-
ple polynomial reduction shows that even output polynomial time enumeration is
unlikely.

Theorem 3.1 (The Intractability on the FCISM problem) Unless P = NP, the
FCISM problem cannot be solved in output polynomial time.

Proof We consider a reduction from the NP-complete k-Clique problem. For an
unlabeled graphGwith n vertices, letD consist ofG and the cliqueKn with n ver-
tices. ForD and t = 2, the number of frequent connected induced subgraphs is at
most n (i.e., all cliques up to size n). Thus, if the FCISM problem could be solved
in output polynomial time, we could decide the k-Clique problem in polynomial
time by listing first the set F of all 2-frequent connected induced subgraphs and
checking then whether |F| ≥ k or not. "

3.3.1. A Generic Levelwise Search Mining Algorithm

If, however, the transaction graphs are restricted to forests, the FCISM problem
becomes equivalent to the FCSM problem, which can be solved with polynomial
delay, and thus, in incremental polynomial time (see, e.g.,HR10). Our goal in this
paper is to show that the FCISM problem can be solved in incremental polynomial
time for graphs of bounded treewidth. To prove this result, we start by giving a
generic algorithm, called FCISM, that lists frequent connected induced subgraphs
with levelwise search (see Algorithm 5, the special case of the Levelwise algorithm
*Take for instance the database consisting of a single labeled clique over n vertices such that each
vertex has a unique label and set the frequency threshold θ to 1, inducing the polynomial number
of subgraphs.

33

Chapter 3. Mining from Graphs of Bounded Treewidth

Algorithm 5 The FCISM algorithm

Input: A transaction database D and a threshold θ > 0.
Call FCISM (D,L,!, qD).

1: procedure FCISM (D, θ)
2: let F1 ⊆ G be the set of frequent graphs consisting of a single labeled vertex
3: for (l := 1; Fl ̸= ∅; l := l + 1) do
4: Cl+1 := Fl+1 := ∅
5: for all P ∈ Fl do
6: for all H ∈ ρ(P) ∩ G satisfying (i) H ̸∈ Cl+1 and (ii) ρ−1(H) ⊆ Fl do
7: add H to Cl+1

8: print H and add it to Fl+1 if |{G ∈ D : H !i G}| ≥ t

in Algorithm 4 described with the refinement operator ρ). As we will discuss be-
low in this section, the difference of the refinement operator ρ arises a completely
different complexity issue for the FCISM problem that is not raised by the FCSM
problem. The algorithm assumes the transaction graphs to be elements of some
graph class G that is closed under taking subgraphs. Thus, as we are interested
in mining frequent connected induced subgraphs, all patterns belong to G as well.
Recall that one of the basic features of the levelwise search algorithmsLevelwise Search

Algorithm
is that the

underlying pattern language L is associated with naturally defined partial order.
Following the common pattern mining terminology (see, e.g.,MT97, Section 2.3),

for a pattern language (L,≤) we say that a pattern P1 ∈ L is a generalizationGeneralization of a
pattern P2 ∈ L (or P2 is a specialization of P1) if P1 ≤ P2; P1 is a proper generalization

Proper
Generalization

of P2 (or P2 is a proper specialization of P1), denoted by P1 < P2, if P1 ≤ P2 and P1 ̸=
P2. Furthermore P1 is a direct generalization of P2 (or P2 is a direct specialization of
P1) if P1 < P2 and there is no P3 ∈ Lwith P1 < P3 < P2. Now the underlying pattern
languageL is the set of all finite connected (labeled) graphs of G, associatedwith the
following natural generalization relation ≤ defined as follows: For any P1, P2 ∈ L,
P1 ≤ P2 if and only if P1 !i P2. The proofs of the two claims in the proposition
below are straightforward.

Proposition 3.1 Let L and ≤ be as defined above. Then (L,≤) is a partially or-
dered set. Furthermore, for any P1, P2 ∈ L it holds that P1 is a direct generaliza-
tion of P2 if and only if

P1 < P2 and |V (P1)| = |V (P2)|− 1. (3.1)

In the main loop of Algorithm 5 (lines 4–8), the set Fl+1 of frequent connected
induced subgraphs containing l + 1 vertices are calculated from those containing l

vertices, in accordancewith condition (3.1). In particular, for each frequent pattern
P ∈ Fl, we first compute a set ρ(P) ∩ G of graphs, where ρ(P) is a subset of the set
of direct specializations of P . Clearly, the graphs in ρ(P) are all connected by the
choice of L. Notice that we cannot define ρ(P) as the set of all direct specializations
of P , as this set can be of exponential cardinality. In Theorem 3.2 below we will
provide sufficient conditions for ρ needed for efficient pattern enumeration.

34

3.3. Frequent Connected Induced Subgraph Mining

For each direct specialization H ∈ ρ(P) ∩ G, we check whether it has already
been generated during the current iteration (see condition (i) in line 5). If not, we
also check for each connected direct generalization of H , denoted by ρ−1(H) in the
algorithm, whether it is frequent (condition (ii) in line 5). Here we utilize that fre-
quency is an anti-monotonic interestingness predicate for (L,≤). In what follows,
candidate patterns generated by Algorithm 5 that satisfy conditions (i) and (ii) in
line 5 will be referred to as strong candidates Strong Candidate. If H is a strong candidate, we add
it to the set Cl+1 of candidate patterns consisting of l + 1 vertices and compute its
support count (lines 6–7). If H is frequent, i.e., it is induced subgraph isomorphic
to at least t transaction graphs in D, we add it to the set Fl+1.
By Theorem 3.1 above, the FCISM problem cannot be solved in output polyno-

mial time for the general problem setting. If, however, the class G of transaction
graphs and the refinement operator ρ satisfy the conditions of Theorem 3.2 below,
the FCISM problem can be solved in incremental polynomial time. To state the the-
orem, we recall some basic notions for refinement operators (see, e.g.,NCW97). A
downward refinement operator Ξ for a poset (L,≤) is a function Ξ : L → 2L with
Ξ(P) ⊆ {P ′ : P ≤ P ′} for all P ∈ L. That is, Ξ(P) is a subset of the set of specializa-
tions of P † For Ξ, we define the n-th power Ξn : L→ 2L recursively by

Ξn(P) =

⎧
⎨

⎩
Ξ(P) if n = 1

Ξ(Ξn−1(P)) otherwise

for all n ∈ N. Finally, we say that Ξ is complete, if for all P ∈ L, there is some n ∈ N
with P ∈ Ξn(⊥), where ⊥ denotes the empty graph.
Using the above notions, we can formulate the following generic theorem:

Theorem 3.2 (Generic Levelwise Search) Let G be a class of graphs, L be the
set of connected graphs in G, and ρ : L→ 2L be a downward refinement operator.
If ρ andG satisfy the conditions below thenAlgorithm5 solves the FCISMproblem
in incremental polynomial time and in incremental polynomial space.

(i) G is closed under taking subgraphs.
(ii) The membership problem in G can be decided in polynomial time.
(iii) ρ is complete and ρ(P) can be computed in time polynomial in the combined

size of the input and the set of frequent patterns listed so far by Algorithm 5.
(iv) Isomorphism can be decided in polynomial time for G.
(v) For every H,G ∈ G such that H is connected, it can be decided in time poly-
nomial in the combined size of the input and the set of frequent patterns listed
so far by Algorithm 5 whether H !i G.

†We note that refinement operators based on pattern specializations are referred to as downward
refinement operators in Inductive Logic Programming (ILP).

35

Chapter 3. Mining from Graphs of Bounded Treewidth

Treewidth number of molecules percentage (%)

1 38,754 0.23
2 16,349,503 99.08
3 111,764 0.68

≥ 4 1,313 0.01

Table 3.1.: Treewidth distribution of molecular graphs in the ZINC dataset.

Proof The proof follows directly from the remarks and concepts above. "

The following positive result on forests can immediately be obtained by applying
the theorem above (it follows also e.g. fromHR10):

Corollary 3.1 The FCISMproblemcanbe solved in incremental polynomial time
for forest transaction graphs.

Proof Conditions (i)–(iii) of Theorem3.2 are straightforward for forests and con-
ditions (iv)–(v) holds by the fact that induced subgraph isomorphism from a tree
into a forest can be decided in polynomial time (see, e.g.,Mat78).

3.4. Mining Graphs of Bounded Treewidth

We generalize the positive result of Corollary 3.1 to graphs of bounded treewidth
and prove the main result:

Theorem 3.3 The FCISM problem can be solved in incremental polynomial time
for graphs of bounded treewidth.

Before proving this result, we note that the class of graphs of bounded treewidth
is not only of theoretic interest, but also of practical relevance as we explained. As
an example, consider the ZINC dataset‡ consisting of more than 16 million chem-
ical compounds. Regarding the distribution of the molecular graphs with respect
to their treewidth, 99.99% of the 16, 501, 334 molecular graphs in this dataset have
treewidth at most 3 and 99, 31% only treewidth at most 2. See Table 3.1.
To proveTheorem3.3, the positivemining result on graphs of bounded treewidth,

it suffices to show that all conditions of Theorem 3.2 hold for graphs of bounded
treewidth. The proof of the claims in the theorem below is shown inHR10 for the
positive result in graphs of bounded treewidth; notice that the conditions consid-
ered in the theorem are all independent of the underlying graph pattern matching
operator.

‡We used a commercial version of the ZINC dataset for the treewidth statistics.

36

3.4. Mining Graphs of Bounded Treewidth

Theorem 3.4 Conditions (i), (ii), and (iv) of Theorem 3.2 hold for the class of
graphs of bounded treewidth.

Proof (i) It is easy to see that the class of graphs of treewidth at most k is closed
under taking subgraphs.

(ii) For any constant k, it can be decided in linear time whether a graph has
treewidth at most kBod96.

(iv) Isomorphism can be decided in polynomial time for graphs of bounded
treewidthBod90.

"

Thus, to show that the FCSM problem can be solved in incremental polynomial
time for graphs of bounded treewidth, we only need to prove conditions (iii) and
(v). We first show (iii).

Theorem 3.5 For the class of graphs of bounded treewidth, there exists a refine-
ment operator ρ satisfying condition (iii) of Theorem 3.2.

Proof For a connected pattern P with tw(P) ≤ k, define the refinement ρ(P) of
P as follows: A connected graph P ′ with tw(P ′) ≤ k is in ρ(P) iff P ′ has a vertex v

with degree atmost k such thatP ≃ P ′⊖v. Notice that this definition is unique, as
isomorphic graphs are not distinguished from each other by definition. Clearly,
ρ(P) is a subset of the set of direct specializations of P . Utilizing condition (i)
of Theorem 3.2 and the basic fact that every graph of treewidth at most k has a
vertex of degree at most k, the completeness of ρ follows directly by induction
on the number of vertices.
We now turn to the complexity of computing ρ(P) and show the stronger prop-

erty that ρ(P) can actually be computed in time polynomial in the size ofD. Since
each new vertex v is connected to P by at least one and at most k vertices, for
the cardinality of ρ(P) we have

|ρ(P)| ≤
k∑

i=1

|Λ|i+1

(
n

i

)
< |Λ|k+1(n+ 1)k,

where Λ is the set of vertex and edge labels used inD and n is the number of ver-
tices of P . Since k is a constant, |ρ(P)| is polynomial in the size of D, and hence,
as condition (iv) of Theorem 3.2 holds by Theorem 3.4, ρ(P) can be computed in
time polynomial in the size of D, as claimed. "

It remains to show for the proof of Theorem 3.3 that condition (v) also holds.
In Section 3.4.1 we first recall fromHN07 a dynamic programming algorithm de-
ciding induced subgraph isomorphism for a restricted class of graphs of bounded
treewidth. Given a connected graphH and a transaction graphG, both of bounded
treewidth, this algorithm decides H !i G by computing recursively a certain set of
tuples representing partial induced subgraph isomorphisms betweenH andG. The

37

Chapter 3. Mining from Graphs of Bounded Treewidth

problem is, however, that for arbitrary graphs of bounded treewidth, the number
of such partial solutions can be exponential in the size of H . Using the paradigm
developed inHR10 for frequent connected subgraph mining in graphs of bounded
treewidth, we will show that H !i G can be decided by computing only a polyno-
mial number of new partial solutions and efficiently recovering all missing partials
solutions from those calculated for the already generated frequent patterns.

3.4.1. A Dynamic Programming Algorithm

The dynamic programming algorithm fromHN07 decides induced subgraph isomor-
phism for a restricted class of graphs of bounded treewidth. It is based on an effi-
cient algorithmMT92 deciding various morphisms between bounded treewidth and
bounded degree graphs, which, in turn, follows a generic dynamic programming ap-
proach designed inAP89. In order to be consistent withHR10 on frequent connected
subgraph mining in graphs of bounded treewidth, we naturally adapt the notions
and notations from Section 4.1 ofHR10.
Let H and G denote connected graphs with tw(H), tw(G) ≤ k. The algorithm

inHN07 decides whetherH !i G by computing a nice tree decomposition NTD(G) of
G, traversing NTD(G) in a postorder manner, calculating for each node in NTD(G)

a set of tuples, called characteristics, and by testing whether the root ofNTD(G) has
a characteristic satisfying a certain condition formulated in Lemma 3.1 below. In
the dynamic programming, partial answers of partial problems (i.e., problems of
deciding thematching for small subgraphs) are stored in the formof iso-quadruples.
More precisely, an iso-quadrupleIso-Quadruple ofH relative to a node z of NTD(G) is a quadruple
(S,R,K,ψ), where

(i) S ⊆ V (H) with |S| ≤ k + 1,
(ii) R ⊆ C(H[V (H) \ S]),
(iii) K = H[S ∪ V (R)], and
(iv) ψ : S → Xz is an induced subgraph isomorphism from H[S] to G[Xz].

The set of all iso-quadruples of H relative to a node z of NTD(G) is denoted by
Γ(H, z). See also Figure 3.3 for example. For a node z in NTD(G), an iso-quadruple
(S,R,K,ψ) ∈ Γ(H, z), if there exists an induced subgraph isomorphism ϕ fromK to
G[z] satisfying the following condition, the iso-quadruple is z-characteristicCharacteristic :

(i) ϕ(u) = ψ(u) for all u ∈ S and
(ii) ϕ(v) ̸∈ Xz for all v ∈ V (R).

These conditions imply that ϕ(u) ∈ Xz for all u ∈ S. In addition, the set of all z-
characteristics ofH relative to z is denoted by Γch(H, z). Clearly, Γch(H, z) ⊆ Γ(H, z).
The following lemma fromHN07 provides a characterization of induced subgraph
isomorphism in terms of r-characteristics for the root r of NTD(G).

Lemma 3.1 Let r be the root of a nice tree decomposition NTD(G) of G. Then
H !i G iff there exists (S,R,K,ψ) ∈ Γch(H, r) with K = H .

38

3.4. Mining Graphs of Bounded Treewidth

0

1 0 1

2

34

5

S
ψ(0)=0

ψ(1)=5

0 5

0 4 5

0 40

0

1

2Join

ψ’(0)=4

0

4

5

isomorphic

S

S

Figure 3.3.: An iso-quadruple of the graph of 3 vertices and 2 edges, where S = {0, 1}. An example
of the mapping from S to Xz = {0, 5} is ψ(0) = 0 and ψ(1) = 5. Two iso-quadruples on
Xz = {0, 5} and Xz′ = {0, 4} are merged to get a larger iso-quadruple in Xz′′ = {0, 4, 5}.

Thus, by the lemma above, we need to calculate the characteristics of the root
of NTD(G). Lemma 3.2 below fromHN07 shows how to compute the set of charac-
teristics for leafs. In addition, it explains how to compute Γcf(H, z) for a separator
or a join node z from characteristics in its children. This enables the computation
of the characteristics for all nodes of NTD(G) by a postorder traversal of NTD(G).
Figure 3.3 illustrates basic ideas for the join node {0, 4, 5} of NTD(G).

Lemma 3.2 LetG,H be connected graphs of bounded treewidth and z be a node
in NTD(G). For all (S,R,K,ψ) ∈ Γ(H, z) it holds that (S,R,K,ψ) ∈ Γch(H, z) if and
only if one of the following conditions holds:

Leaf: z has no children and R = ∅.

Separator: z has a single child z′ and ∃(S′,R′,K ′,ψ′) ∈ Γch(H, z′) with

(S.a) S = {v ∈ S′ : ψ′(v) ∈ Xz},
(S.b) R′ = {D′ ∈ C(H[V (H) \ S′]) : D′ is a subgraph of some D ∈ R},
(S.c) ψ(v) = ψ′(v) for every v ∈ S.

Join: z has two children z1, z2 and there exist (S1,R1,K1,ψ1) ∈ Γch(H, z1) and
(S2,R2,K2,ψ2) ∈ Γch(H, z2) satisfying

(J.a) Si = {v ∈ S : ψ(v) ∈ Xzi} for i = 1, 2,
(J.b) R1 and R2 form a binary partition of the connected components of R,
(J.c) ψi(v) = ψ(v) for every v ∈ Si and for i = 1, 2.

As mentioned, Lemma 3.2 provides a polynomial time algorithm to decide induced
subgraph isomorphism for restricted subclasses of graphs of bounded treewidth
(e.g., when the degree is boundedMT92, or when the graphs have log-bounded frag-
mentationHN07). Clearly, the algorithm above is exponential for arbitrary graphs
of bounded treewidth; this follows directly from the negative result inMT92.
It is important to stress that almost the same notions and conditions are used for

the Frequent Connected Subgraph Mining (FCSM) problem FCSM Problem(cf. Section 4.1 inHR10).
The only difference is in the definition of iso-quadruples, in particular, in the def-

39

Chapter 3. Mining from Graphs of Bounded Treewidth

Leaf node z
G

G[Xz]

H

S

K

ψ(S)

(a) Leaf node; As |Xz| ≤ k+1, the all possible characteristics can be enumerated as G[Xz] =
G[Xz],R should be ∅, and ψ is a isomorphism from H[S] to G[Xz].

S

K

S’
G[Xz]

ψ’

ψ

G

G[Xz] = G[X0
z]

Separator node z

Child z’

(b) Separator node; It holds that G[Xz] = G[X′
z]
and it holds that ψ = ψ′ on the set S.

Join node z

z1 z2

G

G[Xz1]

G[Xz2]

S1

S1
ψ1

ψ2

(c) Join node; merging two partial solutions with keeping the mapping (i.e., characteris-
tics) on the common part S = S1 ∩ S2.

Figure 3.4.: Illustrations on the dynamic programming approach for three types of nodes in the nice
tree-decomposition.

inition of ψ, in accordance with the semantic difference between the FCSM and
FCISM problems. However, as it turns out in Section 3.4.2 below, we need a differ-
ent combinatorial arguments to show the positive result for the FCISM problem.

3.4.2. Feasible Iso-Quadruples

The source of computational intractability of the algorithm based on Lemma 3.2
is the possibly exponential number of iso-quadruples needed to test. Using the
paradigm developed for the FCSM problemHR10, we show that for each node of
NTD(G), it suffices to check only a polynomial number of iso-quadruples, as we can
utilize the characteristics of the frequent patterns computed earlier by Algorithm 5.
Note that for all transaction graphs we fix a nice tree decomposition computed in
a pre-processing part of the whole KDD process.
Let H1, H2, and G be connected graphs of bounded treewidth, NTD(G) be some

fixed nice tree decomposition of G, and z be a node in NTD(G). For any two ξ1 =

(S1,R1,K1,ψ1) ∈ Γ(H1, z) and ξ2 = (S2,R2,K2,ψ2) ∈ Γ(H2, z), ξ1 is equivalent to ξ2,

40

3.4. Mining Graphs of Bounded Treewidth

denoted by ξ1 ≡ ξ2, if there is an isomorphism π between K1 and K2 such that π is
a bijection between S1 and S2 and ψ1(v) = ψ2(π(v)) for every v ∈ S1. The lemma
below shows that it suffices to store only one representative z-characteristic for
each equivalence class of the set of z-characteristics and that equivalence between
iso-quadruples can be decided in polynomial time. The proof is similar to that of
the corresponding lemma inHR10.

Lemma 3.3 Let G, H1, and H2 be connected graphs of treewidth at most k, z be
a node in NTD(G), and ξi = (Si,Ri,Ki,ψi) ∈ Γ(Hi, z) (i = 1, 2). Then

(i) ξ1 ∈ Γch(H1, z) iff ξ2 ∈ Γch(H2, z) whenever ξ1 ≡ ξ2 and
(ii) ξ1 ≡ ξ2 can be decided in time O

(
nk+4.5

)
.

For a strong candidate pattern H generated by Algorithm 5, F (H) denotes the set
of patterns consisting of H and all frequent patterns listed before H . For a trans-
action graph G and node z of NTD(G), an iso-quadruple ξ ∈ Γ(H, z) of a strong
candidate H is redundant if there are P ∈ F (H) \ {H} and ξ′ ∈ Γ(P, z) with ξ ≡ ξ′;
otherwise, ξ is non-redundant. Finally, Γnr(H, z) and Γnr,ch(H, z) denote the set of
non-redundant iso-quadruples of H relative to a node z in NTD(G) and the set of
non-redundant z-characteristics of H , respectively.
Proposition 3.2 below implies that for a strong candidateH and an iso-quadruple

ξ ∈ Γ(H, z), it has to be tested whether ξ is a z-characteristic of NTD(G) only when ξ
is non-redundant; otherwise, it suffices to check whether ξ is equivalent to a non-
redundant z-characteristic for some frequent pattern P ∈ F (H) \ {H}.

Proposition 3.2 Let H be a strong candidate, G be a transaction graph, both of
bounded treewidth, and let ξ ∈ Γ(H, z) for some node z in NTD(G). Then ξ ∈
Γch(H, z) if and only if there exists ξ′ ∈

⋃
P∈F(H) Γnr,ch(P, z) with ξ ≡ ξ′.

Thus, induced subgraph isomorphism can be decided by using only the non-
redundant z-characteristics of the frequent patterns. Instead of non-redundant
iso-quadruples, we can use an efficiently computable superset of them, the set of
feasible iso-quadruples Feasible

Iso-Quadruple
.

Lemma 3.4 Let H , G, and z be as in Proposition 3.2 and let ξ ∈ Γnr(H, z) with
ξ = (S,R,K,ψ). Then, for all vertices v ∈ V (H) \ V (K) it holds that (i) the degree
of v in H is at least 2 and (ii) v is a cut vertex in H .

Proof The proof of (i) applies a similar argument used for ordinary subgraph
isomorphismHR10. In particular, suppose for contradiction that V (H)\V (K) has
a vertex vwith degree 1 inH . Since, by assumption,H contains at least one edge
and is connected, it has no isolated vertices. Let H ′ be the graph obtained from
H by removing v and the (only) edge adjacent to it. Clearly, H ′ is a connected
induced subgraph of H . Since H is a strong candidate pattern, H ′ is a frequent

41

Chapter 3. Mining from Graphs of Bounded Treewidth

connected induced subgraph and has therefore already been generated by Al-
gorithm 5. Furthermore, K is an induced subgraph of H ′ implying ξ ∈ Γ(H ′, z).
But ξ is then redundant for H , contradicting the assumption.
To prove (ii), suppose there is a non-cut vertex v ∈ V (H) \ V (K) of H . Let

H ′ = H ⊖ v. SinceH is connected and v is a non-cut vertex ofH ,H ′ is connected.
Similarly to the case above, it holds that H ′ contains K as an induced subgraph
because all edges that have been removed are outside of E(K). Thus, Γ(H ′, z)

has an element equivalent to ξ, contradicting that ξ is non-redundant. "

We now show that for any S ⊆ V (H) with |S| ≤ k + 1, only a constant number of
connected components in H[V (H) \ S] can fulfill the two conditions of Lemma 3.4.
Although the statement formulated below is similar to the corresponding claim
stated for the case of ordinary subgraph isomorphism inHR10, the arguments used
in the proofs are entirely different, due to the difference of isomorphisms.

Lemma 3.5 Let H be a strong candidate pattern generated by Algorithm 5,
S ⊆ V (H) with |S| ≤ k + 1, and CA be the set of connected components C from
C(H[V (H) \ S]) such that for all v ∈ C, v satisfies both conditions of Lemma 3.4.
Then

|CA| ≤
(
k + 1

2

)
.

To show the claim above, we first prove two technical lemmas.

Lemma 3.6 Let H , S, and CA be as defined in Lemma 3.5. Then for all C ∈ CA, C
is connected to S by at least two edges ending in different vertices in S.

Proof The claim is straightforward if |V (C)| = 1; H has no parallel edges by
construction and the only vertex of C for this case must be connected to S by at
least two edges, as it is a cut vertex in H .
The proof of the case |V (C)| > 1 utilizes the fact that every connected graph

has at least two non-cut vertices. More precisely, let u be a non-cut vertex of C.
Since u is a cut vertex inH by condition (i) of Lemma 3.4, it must be the case that
u is connected to at least one vertex in S. Thus,C is connected to S by at least two
edges, as it has at least two non-cut vertices. Suppose that all non-cut vertices of
C are adjacent to the same vertex in S, say w. Let u, v ∈ V (C) be different non-
cut vertices of C. Since, on the one hand, u is a non-cut vertex of C, and, on the
other hand, it is a cut vertex in H by the condition of the lemma, there are two
vertices x, y ∈ V (H) that are disconnected by u (i.e., x and y belong to different
connected components of H ⊖ u). Since u is a non-cut vertex of C, at most one
of x and y can belong to C. It can easily be seen for this case that in fact, exactly
one of x and y, say x, belongs to C. Furthermore, {u,w} must be an edge on the
path connecting x and y in H , i.e., x and y are connected by a path of the form
Px,u + {u,w} + Pw,y, where Px,u is a path in C. Since C ⊖ u remains connected,
there is a path Px,v connecting x and v in C⊖u. Thus, the path Px,v+{v, w}+Pw,y

42

3.4. Mining Graphs of Bounded Treewidth

connects x and y in H ⊖ u, contradicting that u disconnects x and y. Hence, all
connected components in CA are connected to at least two different vertices in
S, as stated. "

The second lemma states that each connected component of CA connects such two
vertices of S that are not connected by any other component of CA.

Lemma 3.7 LetH , S, and CA be as defined in Lemma 3.5. Then for all connected
components C ∈ CA, there exist u′, v′ ∈ S such that

(i) u′ ̸= v′ and {u, u′}, {v, v′} ∈ E(H) for some u, v ∈ V (C), and
(ii) for all C ′ ∈ CA \ {C}, at least one of u′ and v′ is not adjacent to C ′.

Proof By Lemma 3.6, for all C ∈ CA there are u′, v′ ∈ S satisfying (i). Thus, to
show the claim above, suppose for contradiction that there exists a connected
component C ∈ CA with the following property: for all u′, v′ ∈ S satisfying (i)
for C, there is a C ′ such that both u′ and v′ are adjacent to C ′. Let u be the only
vertex of C if |V (C)| = 1; otherwise let u be a non-cut vertex of C. Since C ∈ CA,
u is a cut vertex in H by condition and hence, there are x, y ∈ V (H) such that u
disconnects x and y in H . Depending on the number of vertices of C and on the
membership of x and y in C, we distinguish the following cases by noting that
the case x, y ∈ V (C) cannot occur by the choice of u:

Case 1. Suppose |V (C)| = 1. Then x and y must be connected inH by a path of
the form Px,v+{v, u}+{u,w}+Pw,y for some v, w ∈ S with v ̸= w, where the
length of Px,v and Pw,y can be zero. By assumption, v and w are adjacent to
some C ′ ∈ CA and thus, there is a path Pv,w inH that does not contain u. But
x and y are then connected inH by the path Px,v+Pv,w+Pw,y, contradicting
that u disconnects x and y.

Case 2. Suppose x ∈ V (C). Then x cannot be a non-cut vertex of C, as in this
case x must be adjacent to a vertex x′ ∈ S, which, in turn, is not adjacent
to u. It can be shown in a way similar to the proof of Case 1, that for this
case there is a path in H connecting x and y that does not contain u; a con-
tradiction. Thus, as C has at least two non-cut vertices if |V (C)| > 1, there
is a non-cut vertex v ∈ V (C) with v ̸= u. Since u disconnects x and y in H ,
there is a path of the form Px,u + {u, u′} + Pu′,y, where Px,u is a path in C,
{u, u′} is an edge of H with u′ ∈ S, and Pu′,y is a path connecting u′ and y

in H . Let v′ ∈ S be a vertex adjacent to v. Notice that v′ ̸= u′, as otherwise
the path Px,v + {v, u′} + Pu′,y connects x and y in H ⊖ u, contradicting that
u disconnects x and y; clearly, a path Px,v connecting x and v in C ⊖ u al-
ways exists, as u is a non-cut vertex of C. Thus, u′, v′ fulfill condition (i) and
hence, u′ and v′ are connected by a path Pu′,v′ via some connected compo-
nent C ′ ∈ CA by assumption. But then x and y are connected by the path
Px,v + {v, v′}+ Pv′,u′ + Pu′,y in H ⊖ u, a contradiction.

43

Chapter 3. Mining from Graphs of Bounded Treewidth

Case 3. The case of x, y ̸∈ V (C) can be shown in a way similar to the cases
above.

"

The proof of Lemma 3.5 follows directly from Lemma 3.7 and |S| ≤ k + 1. With
feasible iso-quadruples, a superset of non-redundant iso-quadruples, we formulate
in Theorem 3.6 the main result, which states that feasible iso-quadruples can be
used correctly to decide induced subgraph isomorphism and that the number of
feasible iso-quadruples of a strong candidate pattern is polynomial in the pattern’s
size: For a strong candidateH generated by Algorithm 5 and for a node z inNTD(G)

of a transaction graph of bounded treewidth, an iso-quadruple ξ ∈ Γ(H, z) is called
feasible if it satisfies the conditions of Lemma 3.4. The set of feasible iso-quadruples
relative to z and the set of feasible z-characteristics are denoted by Γf(H, z) and
Γf,ch(H, z), respectively.

Theorem 3.6 LetH be a strong candidate pattern generated by Algorithm 5 and
z be a node of NTD(G) for some transaction graph G with tw(G) ≤ k. Then

(i) Γnr(H, z) ⊆ Γf(H, z),
(ii) for all ξ ∈ Γ(H, z), ξ ∈ Γch(H, z) iff there exist a ξ′ ∈

⋃
P∈F(H) Γf,ch(P, z) with

ξ ≡ ξ′,
(iii) |Γf(H, z)| = O

(
|V (H)|k+1

)
, and

(iv) Γf(H, z) can be computed in time polynomial in the size of H .

Proof The proof of (i) is immediate from the definitions and Lemma 3.4.
Claim (ii) follows from Proposition 3.2 and from the fact that

⋃
P∈F(H) Γnr,ch(P, z)

and
⋃

P∈F(H) Γf,ch(P, z) are equal up to equivalence. To show (iii), let S ⊆ V (H)

with |S| ≤ k + 1 and CA be the set of connected components as defined in
Lemma 3.5. By definition, for every ξ = (S,R,K,ψ) ∈ Γf(H, z), R contains all
connected components in C(H[V (H) \ S]) that are not in CA. For a fixed sub-
set S ⊆ V (H) with |S| ≤ k + 1 and for a fixed injective function ψ : S → Xz

the number of possible feasible quadruples is bounded by 2|CA|, which, in turn,
is bounded by 2(

k+1
2) by Lemma 3.5. The number of induced subgraph isomor-

phisms from H[S] to G[Xz] is at most the number of injective functions from S

to the bagXz of z, which is bounded by (k+1)!. Since S can be chosen in at most
|V (H)|k+1 different ways, we have

|Γf(H, z)| ≤ 2(
k+1
2) · (k + 1)! · |V (H)|k+1,

fromwhich we get (iii) by noting that k is a constant. Finally, (iv) holds along the
lines in the proof of (iii) above by noting that all cut vertices of H can be found
in time O (|V (H)|+ |E(H)|) and it can be decided whether an injective function
ψ : S → Xz is an induced subgraph isomorphism from H[S] to G[Xz] in constant
time, as |S|, |Xz| ≤ k + 1. "

44

3.4. Mining Graphs of Bounded Treewidth

3.4.3. Deciding Induced Subgraph Isomorphism

We summarize how to utilize feasible characteristics efficiently for deciding in-
duced subgraph isomorphism. Let H be a strong candidate pattern generated by
Algorithm 5 and G be a transaction graph, both of treewidth at most k. Further-
more, let NTD(G) be a nice tree-decomposition of G and r the root of NTD(G). By
Lemma 3.1 and Theorem 3.6,H !i G if and only if there is a feasible r-characteristic
(S,R,K,ψ) ∈ Γf,ch(H, r) with K = H . The algorithm deciding H !i G assumes that
all nodes z in NTD(G) is associated with a set containing all elements of Γf,ch(P, z),
for all frequent patterns P ∈ F (H) \ {H}. It visits the nodes of NTD(G) in postorder
traversal and calculates first Γf(P, z) for all nodes z visited; this can be done in time
polynomial in the size of H by (iv) of Theorem 3.6. It then computes Γf,ch(P, z) by
testing for all ξ = (S,R,K,ψ) ∈ Γf(P, z) whether ξ is a characteristic. Depending
on the type of z, this test can be performed by checking the condition given in the
corresponding case below:

Leaf: By the case Leaf of Lemma 3.2, ξ is a characteristic iff R = ∅.
Separator: Let z′ be the child of z in NTD(G) and let S(ξ) be the set of all
iso-quadruples ξ′ ∈ Γ(H, z′) that satisfy conditions (S.a)–(S.c) of Lemma 3.2.
Using similar arguments as in the proof of Lemma 16 inHR10, one can show
that (i) ξ is a characteristic if and only if Γf,ch(H, z′)∩S(ξ) ̸= ∅ and (ii)S(ξ) ⊆
Γf(H, z′) and thus, it can be computed in time polynomial in the size of H .

Join: Let z1 and z2 be the two children of z inNTD(G). To give the condition for
this case, we need a definition. Let ξi = (Si,Ri,Ki,ψi) ∈ Γ(Pi, zi) for some
Pi ∈ F (H) \ {H} (i = 1, 2). We assume without loss of generality that K,K1,
and K2 are pairwise vertex disjoint. The join of ξ1 and ξ2 with respect to
ξ, denoted by ⊕ξ(ξ1, ξ2), is an iso-quadruple (S′,R1 ∪ R2,K ′,ψ′) relative to
z obtained from (S1 ∪ S2,R1 ∪ R2,K1 ∪ K2,ψ1 ∪ ψ2) by (i) replacing u1 and
u2 in S1 ∪ S2, K1 ∪K2, and ψ1 ∪ ψ2 with a new vertex u for all vertex pairs
u1 ∈ S1 and u2 ∈ S2 with ψ1(u1) = ψ2(u2) and by (ii) connecting in K ′ all
original vertices u, v ∈ S′ with u ∈ S1 and v ∈ S2 by an edge labeled by ℓ
if the vertices u′, v′ ∈ S with ψ(u′) = ψ1(u) and ψ(v′) = ψ2(v) are connected
in K by an edge labeled with ℓ. One can check that this definition is in fact
an adaptation of conditions (J.a)–(J.c) of Lemma 3.2. In a way similar to the
proof of Lemma 17 inHR10, one can show that (i) ξ is a characteristic if and
only if there are ξi = (Si,Ri,Ki,ψi) ∈

⋃
P∈F(H) Γf,ch(P, zi) for i = 1, 2 with

ξ ≡ ⊕ξ(ξ1, ξ2) and that (ii) ⊕ξ(ξ1, ξ2) can be computed in time polynomial in
the size of ξ, ξ1, and ξ2 for any ξ1, ξ2, implying that it can be decided in time
polynomial in the size of F (H), i.e., in incremental polynomial time, whether
ξ is a characteristic.

Combining the arguments above with Lemma 3.1, we get Theorem 3.7 below for
condition (v) of Theorem 3.2. Together with Theorems 3.4 and 3.5, this completes
the proof of our main result stated in Theorem 3.3.

45

Chapter 3. Mining from Graphs of Bounded Treewidth

Theorem 3.7 Let G be the class of graphs of bounded treewidth. For everyH,G ∈
G such that H is a strong candidate pattern generated by Algorithm 5, it can be
decided in time polynomial in the combined size of the input D and the set of
frequent patterns listed before H whether H !i G.

3.5. Summary

By the main result, the FCISM problem can be solved in incremental polynomial
time for graphs of bounded treewidth. Positive results based on the dynamic pro-
gramming framework suggest the investigation of further, computationally hard
graph pattern matching operators for graphs of bounded treewidth (e.g., (induced)
homeomorphism or (induced) minor embedding). We suspect that the systematic
study of these and other graph pattern matching operators will result in an ef-
ficient parameterized frequent pattern mining algorithm for graphs of bounded
treewidth, with the graph pattern matching operator as the parameter. Design-
ing such a generic pattern mining algorithm is a very challenging project because,
as the results inHR10 and in this paper show, different graph pattern matching op-
erators may require entirely different pattern refinement operators and entirely
different combinatorial characterizations of feasible iso-quadruples.
The results of this paper raise interesting open problems. For example, it is an

open question whether the positive result formulated in Theorem 3.3 can further
be strengthened. In particular, can the FCISM problem be solved with polynomial
delay for graphs of bounded treewidth? By setting the frequency threshold θ to
1, our main result implies that one can efficiently generate all distinct connected
induced subgraphs of a graph of bounded treewidth. Does this positive result hold
for arbitrary graphs aswell? Or does the negative result given in Theorem3.1 apply
even to the special case that the database contains a single (arbitrary) graph and
the frequency threshold is set to 1?

46

CHAPTER 4

Pattern Structure Analysis for Episodes

Outcomes of pattern mining would be applicable to many problems. That is, a
list / set F generated can be regarded as characteristic sets (i.e., features) ex-

tracted from a given transaction database D. This chapter particularly discusses
the question on how to utilize the result set F in Knowledge Discovery.

The setting in this chapter is extracting patterns in the KDD process from indi-
rectly generated graphs viamining (Example 2 in Chapter 1). We consider applying
episode mining to sequential databases is an important activity to find valuable in-
sights on the databases in the form of directed acyclic graphs. We assume that the
result F can be sorted, and that we have a linear list of frequent episodes in sup-
port descending order. In practice, however, many episodes often subsume others,
which has detrimental effects particularly when complex structures are consid-
ered, although efficient mining algorithms exist. We then need to consider how to
utilize the list / set F .
We here propose Pattern Structure Analysis (PSA) to build a compact view of enu-

merated episodes to support exploratory analysis by users from F . PSA provides
a way of obtaining clusters of episodes with their futures and of giving relations
among the clusters. Both of them are represented by lattices compactly and then
lattices can be applicable for utilizing enumerated episodes. In the design of PSA
we adopt star graphs as a basic component of features, which are easy to inter-
pret. By adopting the wildcard of symbols, which is easily introduced, PSA can
merge similar episodes aggressively in clusters, which could be useful to get more
insights from the mere linear list of all episodes. We show experimental results
obtained using PSA and discuss an application of the obtained lattice structure for
ranking clusters to show that ourmethod effectively obtains informative ones from
episodes enumerated.

keywords: Episode PatternMining, Generalized Pattern, Formal Concept Analysis,
Pattern Structure, Ranking Concept, Exploratory Data Analysis

This chapter is based on the publications below:

• Otaki, K., Yamamoto, A.: Pattern Structures for Understanding Episodes, In Proc. of CLA 2014,
CEUR Workshop Proceedings Vol.1252 (http://ceur-ws.org/Vol-1252/), pp.47-58, 2014.
• Otaki, K., Yamamoto, A.: Pattern Structure Analysis for Episode Mining, IEICE Transactions on
Information and Systems (submitted, under the revision).

47

http://ceur-ws.org/Vol-1252/

Chapter 4. (Summary) Pattern Structure Analysis for Episodes

Note: This chapter is not open to the public because contents in this chapter is
under the revision and the reviewing process as a journal paper. Themain contents
here are summarized as follows.

• Section 4.1 explains the introduction of problems in this chapter.
• Section 4.2 gives preliminaries to develop pattern structures for episodes based
on Formal Concept Analysis.
• Section 4.3 defines pattern structures for epsidoes to make clusters of them.
• Section 4.4 provides experimental results using pattern structures for episodes.
• Section 4.5 summarizes related work.
• Section 4.6 concludes this chapter.

48

CHAPTER 5

MDL Principle for Pattern SetMining on
Lattices

Unsupervised pattern set mining is a problem focusing on post-processing of pat-
ternmining, where a task is to select a subset of thewhole outputF of a pattern

mining algorithm without any labels. From algorithmic viewpoints, it is related to
problem of putting suitable and tractable constraints on the set F to make us pos-
sible to find a valuable subset. The closedness, one of the most fundamental con-
straints to filter F to get the set of closed patterns CF = {X ∈ F | X is closed} ⊆ F ,
is important conception in both FCA and pattern mining.

Although various efficient mining algorithms have been proposed (recall Chap-
ter 2), finding characteristic and easy to interpret subsets of F is still challenging
in the unsupervised setting. Out of various problems and methods studied in the
field, this chapter focuses on methods using a Information Theory-based criterion,
that is, theMinimumDescription Length principle. In the field, MDL-basedmethods
have been recognized as an effective and general approach in unsupervised pat-
tern set mining. However, it requires us to design theMDL evaluation from scratch
according to target patterns. We therefore investigate a new framework applicable
to various patterns using lattices, which are beneficial to the MDL evaluation.

A key idea is revising an existing model for itemsets by using edit operations de-
fined on lattices among concepts on them, which enables us to consider additional
information such as background knowledge and helps us to design the MDL evalu-
ation in general settings when lattices are given. We experiment our method to see
that our proposal helps us to obtain informative results from the whole sets, and
confirm that our model is applicable to various patterns.

keywords: MinimumDescription Length Principle, Unsupervised Pattern Set Min-
ing, Edit Operation, Lattice Structure

This chapter is based on the publication below:

• Otaki, K., Yamamoto, A.: Edit Operations on Lattices for MDL-based Pattern Summa-
rization, In Proc. of ICFCA 2015 Supplementary, CEUR Workshop Proceedings Vol.1434,
(http://ceur-ws.org/Vol-1434/, as FCA&AWorkshop), pp.17-32, 2015.

49

http://ceur-ws.org/Vol-1434/

Chapter 5. (Summary) MDL Principle for Pattern Set Mining on Lattices

Note: This chapter is not open to the public because contents in this chapter is be-
fore the submission to an international journal. The main contents here are sum-
marized as follows.

• Section 5.1 explains the introduction of problems in this chapter.
• Section 5.2 gives preliminaries focusing on the problem of pattern set mining
and the MDL principle in the pattern mining literature.
• Section 5.3 defines our new formalization based on the Two-partMDL principle
and lattice structures of patterns to solve unsupervised pattern set mining.
• Section 5.4 provides examples of generalizations of coering based on lattice
structures.
• Section 5.5 evaluates proposals via computational experiments using bench-
mark datasets.
• Section 5.6 concludes this chapter.

50

CHAPTER 6

Periodical Skeletonization for Periodic
PatternMining

Finding periodic regularity from sequential databases is an important topic in
Knowledge Discovery. In pattern mining, such regularity can be formulated as

periodic patterns, where constraints using the periodicity of occurrences of symbols
can be introduced based on the ordinal sequential pattern mining problem.

Although efficient enumeration algorithms have been studied in the literature,
applying them to real databases is still challenging because they are noisy and
sparse, and consequently most patterns are not extremely frequent. These phe-
nomena cause a pattern (combinatorial) explosion and the difficulty of tuning a
threshold parameter θ in that the number of frequent patterns is sensitive with θ.
To overcome these issues we provide a novel pre-processing method called skele-
tonization by considering co-occurrences of symbols. The skeletonization is re-
cently develop pre-processing method, for sequential patterns, aiming at finding
clusters of symbols, aiming at shrinking the space of all possible patterns in order
to avoid the combinatorial explosion. The key idea is to compute similarity within
symbols in patterns from a given database based on the definition of patterns we
would like to mine, and to use graph clustering methods based on the similarity
computed. Although the original method cannot allow for periods, we generalize
it by using the periodicity.
Experimental results using both synthetic and real datasets show the effective-

ness of our approach, and compare results of periodic pattern mining with and
without the skeletonization to see that our method is helpful for mining compre-
hensive (i.e., readable) patterns. Our main interests in the chapter are how effec-
tive pre-processing of pattern mining is, and how we can confirm the effects of
pre-processing on pattern mining.

keywords: Periodic Pattern Mining, Pre-processing, Graph-based Clustering, Pat-
tern Spectrum

This chapter is based on the publications below:
• Otaki, K., Yamamoto, A.: Periodical Skeletonization for Partially Periodic PatternMining, In Proc.
of DS 2015, pp.186-200, 2015, DOI:10.1007/978-3-319-24282-8_16.
• Otaki, K., Yamamoto, A.: Periodic Pattern Mining with Periodical Co-occurrences of Symbols,
IPSJ Transactions on Mathematical Modeling and Its Applications (TOM), vol.9(1), pp.32-42, 2016.

51

https://dx.doi.org/10.1007/978-3-319-24282-8_16

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

6.1. Introduction

Recall our target described in Example 2 in Chapter 1, where we assume that trans-
actions in databases have timestamps as their auxiliary attribute and transactions
are sorted in the chronological order. If such an order is important to a sequen-
tial database, typical periods related to clocks or calendars (e.g., hour, day, etc.)
may contribute to hidden regularity in sequences as the order is related to time
directly. Therefore assuming that such periodic behaviors may appear in various
sequential databases (e.g., trajectory, life-log) is natural in data mining. To obtain
valuable but hidden insights from databases by capturing periodic regularity, pe-
riodic pattern miningPeriodic Pattern

Mining
have been studiedHDY99,HGY98,YHCL13 and applied to various

problemsHLXC12,LG13.
We have several variations on the definition of periodic patterns. The fundamen-

tal ones are full periodic patternsFull Periodic
Pattern

and partial periodic patternsHDY99. Note that we
now assume that patterns are sequences of symbols drawn from a given base-set
B for the sake of simplicityPartial Periodic

Pattern
.

For example, let B = {sns,news,blog, shops}. We consider a sequence suser:

suser = (sns,news,blog, sns,news,blog, sns, shop,blog)

representing a log of categories of Web sites visited by a user. A pattern in suser
(sns,news,blog) appears twice, and this is called full periodic pattern of period
length 3. Full periodic patterns require that all symbols should be fully specified. In
some cases, such requirement is so strong and it is difficult to handle various peri-
odic behaviors. As more flexible patterns, partial periodic patterns have been stud-
iedHGY98. For example, a partial periodic pattern (sns,⊥B,blog) appears 3 times,
where ⊥B is the wildcard symbol of length 1 representing any symbol in B. As par-
tial periodic patterns can contain the symbol ⊥B, they are more flexible than full
periodic patterns to capture periodic behaviors in databases. In mining these pe-
riodic patterns, we assume that a given sequence s is divided into ⌈ |s|P ⌉ fragments,
where P is a period of users’ interest, and the fragments are used to evaluate pat-
terns: In the example above, the pattern (sns,⊥B,blog) appears 3 times in frag-
ments (sns,news,blog), (sns,news,blog), and (sns, shop,blog) of suser.
Althoughmany efficient algorithms have been developedHDY99,YHCL13 for the enu-

meration, it is still challenging to use them in practice because the number of enu-
merated patterns highly depends on the number |B| of symbols we use. When
databases get large, |B| increases as well and databases should contain more noise.
This fact consequently makes evaluating patterns by their support (i.e., the num-
ber of occurrences) difficult because the supports ofmost patterns appear is similar
and relatively small. That is, the space of (frequent) patterns on B get sparse with
respect to the space of all possible patterns*.

*Consider to find all partially periodic patterns up to the length k on B. Let B⊥B = B ∪ {⊥B}. All
possible combinations are in B⊥B ∪ B2

⊥B ∪ · · · ∪ Bk
⊥B , which can become much larger than that of

all patterns appearing in databases in practice.

52

6.1. Introduction

(a) Original (b) |B| = 4 (c) |B| = 8 (d) |B| = 16

Figure 6.1.: A numeric sequence of electric power demand in UK, 2013 in Figure 6.1a, and its dis-
cretization with 4, 8, 16 symbols (Figure 6.1b, 6.1c, and 6.1d).

Motivating Examples For both numerical (e.g., price, temperature) and symbolic
(e.g., item, product) sequences, preparing a large set B of symbols is essential to
achieve the high resolution of describing phenomena. For example, Figure 6.1a
shows a sequence of electric power demand per day in UK, 2013. To deal with the
sequence in pattern mining, we discretize the sequence with dividing values into
|B| bins uniformly† as seen in Figure 6.1d with |B| = 16. Clearly, we can represent
a sequence as a symbolic sequence with a smaller loss with a larger set B by com-
paring figures (in Figures 6.1b, 6.1c, and 6.1d). In Figure 6.1d, however, only a few
combinations of B appear consecutively. It is difficult to tune the set Bwhile taking
a balance among the expressiveness and the sparseness. Now a typical periodic
behavior is that the demand gets higher every weekend, which could be obtained
by frequent patterns, where symbols corresponding to low values are followed by
those doing to high values. We believe that such high-level patterns are more in-
formative and useful to analyzing databases in Knowledge Discovery.
We also consider those stored from Last.fm‡, as another example, which are se-

quences of songs listened by users. We take some logs of users froman open dataset
(See Section 3 ofCel10), where a sequence s = ⟨S1, S2, . . . ⟩ is a log of a user and each
Si is the set of songs heard in the index i in which the index i corresponds to a 1

hour interval of the log (e.g., the set S4 shows the listened songs during 0 a.m. to
1 a.m.). For example, the sequence for user ID 808 is length 16, 913 log, where the
user listened to 24, 310 songs and 1, 340 out of 16, 913 intervals are not empty (i.e.,
in other intervals the user did not listen to any songs). Then if we would like to
analyze some daily behaviors (i.e., P = 24) including the empty situation, 24, 31024

is the upper bound of the size of all possible combinations. This is intractable and
data we have are obviously sparse.

Approaches In pattern mining, therefore, Liu et al.LZX+14 and others insisted that
users need to tune the set B carefully, and proposed the temporal skeletonization
for symbolic sequential patterns. Their idea is to construct clusters of symbols and

†If the range of values [0, 10) and |B| = 4, values in [0, 10] would be categorized into either
[0, 2.5), [2.5, 5.0), [5.0, 7.5), or [7.5, 10), and symbolic alphabets are assigned to encode the sequence
into a symbolic sequence.

‡http://last.fm/

53

http://last.fm/

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

assign each cluster a label. Then a sequence can be translated into a high-level and
potentially comprehensive sequences of the labels. By grouping symbols into clus-
ters, we can reduce the size |B|. We develop such method for periodic analyses by
generalizing the ideaLZX+14, and discuss frequently occurring high-level patterns
with the periodicity. Note that such idea to reduce the size |B| is sometimes studied
as alphabet indexing inmachine learning (e.g.,SSS+93). In the existingmethodLZX+14,
to represent comprehensive sequential patterns, left-to-right HMMsLeft-to-right HMM are implicitly
assumed as their models. Based on the study we take into account the periodic-
ity of the given period length P by considering a bit different models of sequences,
i.e., cyclic HMMsCyclic HMM , which can be applicable to describe periodical behaviors of se-
quences comprehensively.
In addition to that, wewould like to emphasis on the fact thatmany existing stud-

ies dealt with DNA sequences, which requires only 4 symbols (i.e., B = {T,C,A,G}).
In such a situation, the combinatorial explosion is only depending on the length l

of patterns we try to mine. However, this situation is a bit restricted as many se-
quences require more symbols in general. Therefore developing a new approach
with the periodicity is an important remained problem. We thus focus on the point
by following the existing methodLZX+14. Since the temporal skeletonization can-
not be applied to periodic settings, we generalize it by using the idea of periodic
extensions of functions.

6.2. Periodic Patterns and Skeletonization

Let B be the alphabet. The set B∗ denotes the Kleene closure of B. We use B+ ≡
B⋆ \{ϵ}, where ϵ is the empty string. For a sequence s ∈ B+, |s| denotes the length of
s. We let |ϵ| = 0. In addition, si and si,j represent i-th element and the continuous
subsequence from i to j of s (i < j), respectively. Let P be a fixed integer repre-
senting the period of users’ interest. Without a loss of generality, we generalize the
notations above for the case of sequences s ∈ (2B)+ of sets of symbols.

6.2.1. Frequent Partially Periodic Pattern Mining

Periodic behaviors of databases can be modeled as partially periodic patterns. In
the literature, transaction databases can be defined as (singleton) sets of sequences
on B or those of subsets of B. Then patterns are intuitively sequences of (sets of)
symbols. An important concept used is periodic segments of sequences.

Definition 6.1 (Periodic Segment)Periodic Segment For an event sequence s ∈ B+ and a period
P, s can be divided into m (= ⌈ |s|P ⌉) mutually disjoint segments, denoted by s =

⟨ps1, ps2, . . . , psm⟩, where for 1 ≤ i ≤ m, psi = s(i−1)m,im−1.

A periodic pattern can be a mere sequential pattern in the definition of the pat-
tern language L. The difference is only in the existence of the wildcard ⊥B to allow
patterns partially fixed with characters by B.

54

6.2. Periodic Patterns and Skeletonization

Definition 6.2 (Partial Pattern) Partial PatternA sequence from B∪{⊥B} is a (partial) pattern,
where the special character ⊥B ̸∈ B represents any event of length 1.

We are now interested in partial patterns appearing in periodic segments fre-
quently on a given sequence s. Then, for a sequence s and a pattern p, it is neces-
sary to evaluatewhether or not p has an interesting occurrence in s. The traditional
measure for the purpose is to adopt the support of partial patterns.

Definition 6.3 (Support) The support of a pattern p, denoted by SupP(p), is de-
fined as SupP(p, s) = |{psi | s = ⟨ps1, . . . , psm⟩, psi ≼ p}|, where psi ≼ p means that
for all 1 ≤ i ≤ |p| it satisfies either pi = ⊥B or pi = si. We say that a pattern p is
frequent if SupP(p) ≥ θ for a user-specific threshold θ.

Such a pattern p is called a partially periodic pattern (PPP) Partially Periodic
Pattern

when the period P is
given and important.

Example 6.1 (Support) For s = abcabdabb = ⟨abc, abd, abb⟩ and the a constant
(period) P = 3, SupP(ab⊥B, s) =

3
3 = 1.0.

Now the mining problem is formally described below.

Problem 6.1 (The FPPPM problem) FPPPM ProblemLet θ be a user-specific threshold and P a
given period length. For a sequence s, the FPPPM problem is defined as to list
all partially periodic patterns p from s satisfying SupP(p) ≥ θ.

Several efficient algorithms have been developed: Han et al. showed a funda-
mental algorithm using max sub-pattern treesHGY98. Algorithms using max sub-
pattern trees are used frequently in several application problems using periodic
patternsHLXC12,LG13. Yang et al. proposed to use tuple representations for periodic
patterns and a depth-first search algorithm based on the PrefixSpanPHMA+04 used
in sequential pattern miningYHCL13.

6.2.2. Temporal Skeletonization

We review the original definition of temporal graphs to explain the idea of the tem-
poral skeletonization Temporal

Skeletonization
inLZX+14, which tries to build a similarity graph Similarity Graph§ from a given

database D to capture the similarity within symbols in B. Note that in this litera-
ture, a transaction in D is defined as a sequence on B.

Definition 6.4 (Temporal GraphLZX+14) Temporal GraphLet G = (V,E) be a weighted undi-
rected graph and D = {s(1), . . . , s(N)} be the set of sequences of symbols from
B. For two symbols x, y ∈ B, the weight Wx,y of the edge corresponding to {x, y}
is defined as

Wx,y =
1

N

N∑

n=1

∑

1≤i≤j≤|s(n)|,
|i−j|≤r

1[s(n)i = x ∧ s(n)j = y] (6.1)

§A similarity graph is a weighted graph in which vertices represent data points and edges represent
the similarity between two points with their weights.

55

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

(a) ComputedWs,t. (b) Re-orderedW ′
s,t.

Figure 6.2.: Compute two heatmaps from a toy example inLZX+14: Figure 6.2a shows the originalW
computed from D, and Figure 6.2b is the re-ordered one, in which a cluster C1 is drawn.

whereN is the number of sequences, r be thewindow width, 1[p] is the indicator
function that returns 1 if and only if the predicate p is true; 0 otherwise.

Intuitively we count the number of co-occurrences of symbols x and y in a win-
dow. The indicator function 1[·] can be replaced with other similarity measures;
The authors inLZX+14 used the exponential function exp(−k|i−j|)with a parameter
k. In constructing a temporal graph G, all indices of sequences in D are taken into
account several times. After constructing G, users try to find clusters of symbols
by applying clustering methods to G (e.g., spectral clusteringNJW01,SM97)Spectral Clustering . The prob-
lem of finding clusters can be formulated as a standard graph-based optimization
problem with some constraints as explained inLZX+14, where an important step is
to compute eigenvalues and eigenvectors from G. Now a computed matrix W of
weights can be represented as a heatmap illustrated in Figure 6.2.

Example 6.2 (Temporal Skeletonization) Let D = {s(1), s(2), s(3), s(4)},
where s(1) = ⟨12, 7, 9, 5, 3, 0, 8, 10, 1⟩, s(2) = ⟨9, 11, 12, 0, 13, 5, 1, 14, 6⟩, s(3) =

⟨4, 7, 11, 2, 5, 7, 9, 1, 14⟩, and s(4) = ⟨7, 11, 4, 2, 0, 7, 10, 14, 8⟩ on B = {0, 1, 2, . . . , 15}.
We compute the weights and represent them by a heatmap, where both the
x-axis and y-axis correspond to the order of the alphabet B. That is, on some
(i, j), the thickness in the heatmap corresponds the valueWBi,Bj . After applying
the spectral clustering, we can re-order indices of W as shown in Figure 6.2b.
For example, we can find a cluster of symbols such as C1 = {4, 7, 9, 11, 12},
which is the upper right area in Figure 6.2b. Note that C1 appears in prefixes of
sequences in D. Then we can now conjecture that all sequences in D are in the
form (C1, C1, C1, . . .). This prefix consisting of cluster labels can be regarded as
a high-level pattern of the sequences.

Models andAssumptions This method is based on an implicit assumption; symbols
x, y appearing closely and temporally may belong to some meaningful cluster. In

56

6.3. Periodical Skeletonization

s(1) = h12, 7, 9, 5, 3, 0, 8, 10, 1i
s(2) = h 9, 11, 12, 0,13, 5, 1, 14, 6i
s(3) = h 4, 7, 11, 2, 5, 7, 9, 1, 14i
s(4) = h 7, 11, 4, 2, 0, 7, 10, 14, 8i

Observations

T1 T2 T3
Hidden transition

(Left-to-right HMM)

Learning

Error 9Error 13

0,2,3,
5,7

4, 7, 9,
11, 12

1,6,8,
10,14

Figure 6.3.: Temporal clusters and their transition; assuming that a left-to-right HMM consisting of
three states T1, T2, T3, which represent hidden meaningful clusters behind sequences
s(i), and learning them from the observations.

this scenario, a typical (left-to-right) HMM Left-to-right HMMis adopted, illustrated in Figure 6.3, and
based on the implicit assumption above, the method tries to find such clusters by
using a moving window of width r and graph clustering methods.

6.3. Periodical Skeletonization

The key idea for taking into account periodic information is simple: Extending
functions representing areas that we check in computing weights to some periodic
functions of the periodicity P of our interest. In order to analyze some monthly
behaviors, for example, we set P = 31.
The (sliding)window Windowof width r used in the temporal skeletonization can bemod-

eled by a rectangular function with width r and the origin i¶. By modifying this
function in a periodic manner, we can deal with the periodicity of occurrences of
symbols. We can easily imagine such techniques on the analogy of Fourier series
and Fourier transforms. Recall the toy examples in Section 6.2.1. For an input se-
quence s = abcabdabb and P = 3, a frequent partially periodic pattern ab⊥B appears
3 times in every segment abc, abd, and abb. This means that not only neighbors ac-
cording to the sliding window Recti,r(·), but also periodic information from i, that
is, i+ P, i+ 2P, i+ 3P, . . . could be used to search for similar intervals.
The above observation inspired our method, periodical skeletonization Periodical

Skeletonization
, where

a similarity graph named a periodic graph is computed by observing the periodic
co-occurrences of symbols from an input sequence s.

Definition 6.5 (Periodic Graph) Periodic GraphLet G = (V,E) be a similarity graph. The
weights of edges in G from an input sequence s and a period P for two symbols
x, y are computed as:

Wx,y =
∑

1≤i,j≤|s|
if si=x∧sj=y

1[|i− j| ≤ r] + 1[i ≡ j (mod P)] (6.2)

The second term is newly introduced based on the periodic information.
¶It is defined as Recti,r(t) = 0 if |t− i| > r, 1 otherwise.

57

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

(a) By the temporal method (b) By the periodical method

Figure 6.4.: An example of periodic co-occurrences of a sequence s = ⟨0, 2, 6, 0, 2, 4, 0, 3, 7, . . . , ⟩. Fig-
ure 6.4a is a result only using the temporal information and Figure 6.4b is that adopting
the periodic information only, where rectangles are the discovered clusters.

We can also replace the right-hand side of Equation 6.2 with similarity functions
by adapting them in a similar fashion based on the temporal skeletonization.

Example 6.3 (Periodical Skeletonization)] Figure 6.4 illustrates examples of
computing Equation 6.2 from s = ⟨0, 2, 6, 0, 2, 4, . . . ⟩ with B = N. Figure 6.4a is
computed by the temporal skeletonization, while Figure 6.4b adopts the periodic
term only in Equation 6.2. We can see 3 clusters as rectangles: C1 = {0, 1}, C2 =

{2, 3} and C3 = {4, 5, 6, 7, 8} in Figure 6.4b, and they are clear than those in Fig-
ure 6.4a (it is hard to find clusters from it).

Models and Assumptions Our basic observation is that we can represent periodic
sequences by cyclic HMMs. From the definition of patterns, we assume that sym-
bols appearing frequently and periodically in s should belong a meaningful cluster
in periodic data analyses with period P. Our computation is then a bit generalized
from the existing study, where the periodical co-occurrences of symbols in s are
newly taken into account.

An example is given in Figure 6.5. For example, to simulate a partially periodic
pattern 02⊥B, in T1 and T2, H outputs 0 and 2, respectively with high probability
100×(1−u)%andoutputs 1 and 3with lowprobability 100×u%. On the other hand in
T3,H generates {4, 5, 6, 7, 8, 9} uniformly. By generating sequences of lengthN from
H, we can obtain a sequence s containing the partially periodic pattern 02⊥B very
frequently. Compared with the result in Figure 6.4a, we can confirm that C1, C2, C3

correspond to T1, T2, T3 are found by the skeletonization more clearly as blocks in
the matrix in Figure 6.4b.

58

6.4. Experiments

start

Figure 6.5.: Settings of HMMs used for Example 6.3. The output symbols from states T1, T2, and T3

are set to be o(T1) = {0, 1}, o(T2) = {2, 3}, and o(T3) = {4, 5, 6, 7, 8, 9}. The two symbols
0 and 2 are generative with a high probability 1 − u and 1 and 3 are done with a low
probability u (0 < u ≤ 0.25). Symbols from T3 is generated uniformly.

6.3.1. Set Sequences

Let us reminder the computation ofWsi,sj when indices i and j are considered in s ∈
D. The discussion above and the existing studyLZX+14 only consider the case when
s ∈ B+. However, some applications of sequential and periodic pattern mining
assume that s is a sequence of subsets of B: s ∈ (2B)+. To deal with set sequences

Set Sequencewe consider two naïve methods below:

SUM-UP for two sets Si and Sj of indices i and j, compute straightforwardly
weights and sum up them. That is, compute all WSi,k,Sj,l for Si,k ∈ Si and
Sj,l ∈ Sl, Sj,l ∈ Sj in a pair-wise manner, and use them.

AVERAGE for two sets Si and Sj , compute the weights in a pair-wise manner
as well, and divide the weights WSi,k,Sj,l with |Si| + |Sj |, to take an average
contribution of each symbols in Si and Sj .

By these small generalizations, we note that the skeletonization techniques can
be generalized to set sequences. If not otherwise stated, we adopt the sum-up idea.

6.4. Experiments

We report experiments with synthetic and real datasets which should have sim-
ple periodic behaviors to observe the effect of our proposal. We also discuss the
difference between two skeletonization methods.

6.4.1. Datasets

Now in this part, we use both synthetic and real datasets. The summary of these
datasets is shown in Table 6.1. A synthetic dataset is generated by using the HMM
shown in Figure 6.5. A real dataset, named PowerDemand, is a set of sequences of
electric power demand in 2013, extracted from theGridWatch system‖, whichwere
previously used in Figure 6.1. The original sequence records power demand in UK

‖http://www.gridwatch.templar.co.uk/

59

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

Table 6.1.: Summary of datasets used in experiments.

Name Length |B| P Note

HMM-600-u 600 10 3 with u = 0.25
PD-32 365 32 7 Discretized with level 32
PD-128F 100 128 7 Subset with level 128
Kyoto 43,833 359 365 The resolution 0.1 celsius

12 times per hour, that is, roughly 300 times per day. We take the simple average
of them to construct a hourly sequence of power demand in 2013, named PD-32.
Because an yearly recordmay containmany periodic behaviors (e.g., daily, weekly,
monthly, etc.), we extract a small subset, named PD-128F, of PD-32 and make the
resolution of Bmore clear by increasing the size B from 32 to 128 and taking a part
roughly from summer to autumn. For PD-128F, we expect that the sequence have
the period P = 7. As another real dataset, we use Kyoto, a sequence of the daily
temperatures from 1880 to 2014 with P = 365 and |B| = 359.

6.4.2. Preparations

We implemented the periodic skeletonization part in C++ **, and apply the spectral
clustering algorithm (and k-means algorithm in it) by using a built-in implemen-
tation by scikit-learnPVG+11 based on Python 2.7.8. All experiments are run on a
machine of Mac OS X 10.10 with 2× 2.26 GHz Quad-Core Intel Xeon processors and
64GB memory.
We would like to show computed graphs and the discovered clusters by the spec-

tral clustering algorithmvia temporal/periodic graphs. We set k byusing the heuris-
tic of the spectral clustering (Please seeVL07), or by a small number (2 or 3, for exam-
ple). In experiments we basically use only the original definition, i.e., we only use
the delta function by the indicator function 1[f]. In the following, we prepare the
following labels to represent methods: 1) DT means the temporal skeletonization,
2) DP users the periodic information only, and 3) DTP adopts the both of them.

6.4.3. Results

Out of several parameter settings we tried, we took a part of results to compare our
periodic skeletonization with the temporal one. We showed results of synthetic
data in Figure 6.6, and those of real datasets in Figures 6.7 and 6.8 with varying
methods of computing weights, where the labels {DT,DP,DTP} represent themeth-
ods used.

Synthetic Datasets From results using synthetic data, we can conjecture that pe-
riodic information of temporal graphs are helpful to find clusters of symbols com-
pared with Figure 6.6a and Figures 6.6b and 6.6c, where we would like to extract
**gcc 4.7 with -std=c++11 without parallelization

60

6.4. Experiments

(a) DT (b) DP (c) DTP

Figure 6.6.: Heatmaps representing similarity matrices of graphs from the synthetic sequence with
P = 3 and r = 3. Figures 6.6b and 6.6c successfully show clusters as rectangles.

periodic clusters, that is, clusters representing {0, 1} and {2, 3}, which corresponds
to T1 and T2 in the HMM in Figure 6.5, respectively. From the result using only tem-
poral information in Figure 6.6a, however, we cannot find them. On the another
hand, results using periodic information seen in Figure 6.6b and both of them in
Figure 6.6c show two clusters {0, 1} and {2, 3}much clearly.

Real Datasets Results from real datasets should be affected by properties of se-
quences and the periodicity of them. In two cases with PD-32 and PD-128F, for
example, results were symmetric with respect to methods: If we use the periodic
information in Figures 6.7b and 6.7c, we cannot find any clusters but in Figures 6.7e
and 6.7f, we can find a few clusters of symbols, which are similar to results of syn-
thetic data. We guessed that the difference between PD-32 and PD-128F is whether
or not there exists many periodic behaviors in sequences. Because we selected a
subsequence from PD-32 as PD-128F to remove multiple periodic information, the
periodic skeletonization with a fixed period parameter P = 7 seemed to work well.
In results from Kyoto, we can see that there exist roughly 3 clusters in all out-

puts in Figure 6.8. If we adopt the periodic information, those clusters are also
emphasized on visualized temporal graphs. For example, by comparing results in
Figure 6.8a and Figure 6.8c, we confirm that two dense clusters (top left and bot-
tom right) in Figure 6.8c are much more clear than in those Figure 6.8a. Note that
these clusters are related to winter and summer, respectively. We conjecture that
these visualized results are helpful to analyze given sequential databases and enu-
merated patterns, particularly when we need to run methods many times to tune
parameters.

Conclusions We conclude experiments using sequences containing clear periodic
behaviors. Originally, results of clustering symbols are sensitive to the definition
of similarities. The previous study reported inLZX+14 that results of the skeletoniza-
tion seemed to be stable. As far as we investigated in experiments, with respect to
the parameter r, which control a kind of smoothing of sequences, the results could
be stable as well. We also see that our method could be helpful to highlight periodic
behaviors of sequences. We guess that this result is also affected from the multiple

61

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

(a) DT (b) DP (c) DTP

(d) DT (e) DP (f) DTP

Figure 6.7.: Heatmaps from PD-32 (top row) and PD-128F (bottom row) with DT, DP, and DTP.

periodicity, and conclude that the periodic skeletonization help us to find underly-
ing structures. Although the method sometimes (as seen in PD-32) disturbs results,
it seems to work as we expected particularly when the periodicity is clear.

6.4.4. Unstable Case

Aswe show inFigure 6.5, themodel behind our skeletonizationprocedure is a cyclic
HMM. This assumption suits the FPPPM problem with (fixed) periodic segments.
However, in general, the period of a sequence s is unstable because of noisy sym-
bols or outliers. In the pattern mining part, mining algorithms allowing for a small
gap (i.e., a kind of wildcard) between segments have been studiedZKCY07. Therefore
wewould like to discuss the same point on the skeletonization techniques. Because
temporal clusters correspond to a kind of moving average on symbols, we conjec-
ture that adopting both the temporal skeletonization and the periodic one should
be useful to deal with such a situation.
To investigate this issue, we generated synthetic sequences from a cyclic HMM

of P states, and see whether or not we can discover P clusters from the data. The
results by DT (only temporal), DP (only periodic), and DTP (both) of the transition
failure percentage η = 20% in Figure 6.9 were summarized in Table 6.2. We can
confirm that, at least for synthetic data, periodic information used in the skele-
tonization is helpful to estimate hidden periodic clusters of sequences. From exper-
iments, we guess that using both information could be helpful when real sequences
are processed.

62

6.4. Experiments

(a) DT (b) DP (c) DTP

Figure 6.8.: Heatmaps from Kyoto with DT, DP, and DTP.

start

Figure 6.9.: A cyclic HMM including unstable periods with transition failures with probability η of
the case P = 3.

6.4.5. Case Studies

We provide results using (more) real datasets. One is from Last.fm data that we
have used in Section 6.1. In addition to that, we here adopt 2-dimensional se-
quences (i.e., X and Y) representing trajectories of movements, and encode them
as (1-dim) symbolic sequences for experiments.

Last.fmDatasets Because properties of data vary according to users in the service,
wewould like to investigate how results get for real datasets. Datasets are obtained
fromCel10 by gathering and ordering the logs of songs listened by users based on fo-
cusing the granularity “hour”. One database corresponds to one sequence of sets of
symbols (i.e., songs) by oneuser. For experiments, we take randomlyusers from the
whole dataset, obtain sequences of sets of symbols, and use small parts of such se-
quences. We provide statistics of selected parts of sequences chosen by ourmethod
in Table 6.3. For a sequence s = ⟨S1, S2, . . . , SM ⟩ of Si ⊆ B, Lall means |s| = M , Lne

shows |{Si | Si ̸= ∅, Si is in s}|, |B| means the size of the set |S1 ∪ · · · ∪ SM |, and
||S|| =

∑
i |Si|, respectively. We set P = 24 to analyze hourly behaviors.

We show results in Figures 6.10 and 6.11. Here we do not want to say which
clustering results are good (or bad). From experiments by periodic information
in the skeletonization we can confirm two kind of results: A type increases the
number of clusters compared with the ordinal temporal skeletonization (e.g., from
Figure 6.10a to Figure 6.10c). Another type, in contrast, decreases the number of

63

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

Table 6.2.: From P states cyclic HMM, for each state we generate 5 symbols uniformly. The transi-
tion failure η is 20%. Values show accuracy of recovering hidden clusters.

P DT DP DTP

3 0.33 0.80 0.80
5 0.24 0.92 0.92

Table 6.3.: Statistics of user logs from the Last.fm dataset.

User ID |Lall| |Lne| (non-empty) |B| ||S||

User 672 384 147 247 2,329
User 808 529 147 578 2,108

clusters (e.g., from Figure 6.10a to Figure 6.10b, Figure 6.11a to Figures 6.11b and
6.11c). As the periodic information help us to consider periodic co-occurrences of
symbols, if there exist some periodic behaviors of sequences, then applying the
periodicity skeletonization should be helpful. We can only confirm that in some
cases the clustering work for our purpose. We conjecture that for some databases
our method does not work as they contain no periodic regularity.

TrajectoryDatasets As an another example, we adopted trajectory (timestamped)
databases used inYZZ+10,YZXS11††. A trajectory here is an ordered sequence of pairs,
i.e., (X,Y) corresponding to longitude and latitude of an entity. Its movements is
regularly recorded and stored as a sequential database. An example of trajectory
can be plotted in 2-dimensional space as shown in Figure 6.12. Note that a sequen-
tial database D is now encoded as a single sequence s by discretizingX and Y , and
putting some integer n ∈ N on each grid. Table 6.4 shows some statistics of tra-
jectories used. All trajectories are discretized with level d = 256, and many (X,Y)

slots on the grid could be empty. Thus the table also shows the number of non-
empty (X,Y) slots in discretized sequences. As they include some obvious outliers
or noise, such data are cleaned by checking the mean and standard decreases ofX
and Y .
In contrast to the datasets used above, for trajectories, we have no idea on what

are its period. In the following experiments, therefore, we provide a kind of ex-
ploratory data analyzing processes using skeletonization by observing the similar-
ity graphs constructed. In addition, we only try the case k = 2, i.e., try to divide all
symbols B into two clusters as the basis of recursively decomposition of B.
Figures 6.13 and 6.14 are results of the skeletonization with w = 45 and P = 60

and 120. First of all, compared with synthetic cases or some real datasets used
above, trajectory data are much more sparse. That is, most symbols in B appear
only once in our discretized sequential databases. In results, similar results are
obtained compared with Last.fm datasets, but it was difficult to find clusters au-
tomatically without tuning algorithms. In fact, only small clusters (illustrated in

††See also http://research.microsoft.com/en-us/projects/tdrive/

64

http://research.microsoft.com/en-us/projects/tdrive/

6.4. Experiments

(a) DT (b) DP (c) DTP

Figure 6.10.: Heatmaps of User 672 from Last.fm datasets with varying DT, DP, and DTP where P =
24 and w = 2.

(a) DT (b) DP (c) DTP

Figure 6.11.: Heatmaps of User 808 from Last.fm datasets with varying DT, DP, and DTP where P =
24 and w = 2.

the right-bottom part) can be found: From Figure 6.13a to Figure 6.13b and Fig-
ure 6.13c, a small cluster containing a few symbols was found. By contrast, from
Figure 6.14a to Figure 6.14b or Figure 6.14c, a (relatively) large cluster disappeared,
and small cluster were found again.

6.4.6. Discussions

Discussing the quality of clusters is fundamentally impossible as we do not have
any labels. Conceptually, the skeletonization does not use any semantic informa-
tion of symbols, and results only depend on the co-occurrences of symbols. In
our method, we intend that adding more computations by the periodicity have in-
creased information we can use in the pre-processing step. Introducing additional
resources for computing the similarities such as background knowledge or taxon-
omy is one of interesting future work. However, such knowledge resources are
in general high cost compared with the skeletonization. Therefore, we guess that
combining both methods is much effective for solving the sparseness problem.
As another direction from the viewpoint of the increase of syntactic information

when constructing similarity graphs, taking into account the order of indices or the
distance of them should be an interesting future problem. These are also related to

65

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

Table 6.4.: Statistics of discretized trajectories.

ID |D| # of non-empty (X,Y) slots (|B|)

1277 8187 3410
6275 3960 2450

(a) ID 1277 (b) ID 6275

Figure 6.12.: An example of trajectory plots.

the application step of graph clustering methods. In addition, we also expect that
introducing sophisticated clustering algorithms is important: For example, hierar-
chical spectral clusteringAS12, Non-negative Matrix Factorization (NMF) (e.g.,CZA08)
should be helpful (e.g., considering multiple periods with hierarchy).

6.5. Mining Using Skeletonization

We now try to apply pattern mining algorithms based on the clusters discovered
by the skeletonization techniques. In the following, we consider two cases: 1) We
have some assumption on P, and 2) we have no idea on P. For the case 1), we solve
the FPPPM problem with a fixed P we have in mind. For the case 2), we allow
for patterns contain a gap among symbols in the following form based onZKCY07Periodi Pattern with

Gap
:

Let p = c1c2, where c1, c2 ∈ B and [α,β] be an closed interval of integers. Then, we
interpret the pattern p as follows: p has at least α and at most β wildcard characters
between c1 and c2. For example s1 = abc and s2 = abbbc, a pattern ac with [α,β] =

[0, 2] matches with s1, but does not match with s2 because three b occurs between
the first a and c.

Experiments We now apply the periodic skeletonization with mining problems
(e.g., the FPPPM problem). Our purpose here is to obtain readable and high-level
patterns in mining by reducing the size |B|. We use clustering results obtained by
the above experiments.
For enumeration of patterns in the case 1), we use the algorithm proposed by

Yang et al.YHCL13, and call it PPPMinerPPPMiner . For the purpose, we re-implemented PPP-

66

6.5. Mining Using Skeletonization

(a) DT (w = 45) (b) DTP (P = 60) (c) DTP (P = 120)

Figure 6.13.: Heatmaps of ID 1277 with DT and DTP (w = 45, P = 60 and 120), trying with the num-
ber k = 2 of clusters.

(a) DT (w = 45) (b) DTP (P = 60) (c) DTP (P = 120)

Figure 6.14.: Heatmaps of ID 6275 with DT and DTP (w = 45, P = 60 and 120), trying with the num-
ber k = 2 of clusters.

Miner in Python 2.7.8. Experimental settings are the same to those in Section 6.4.2.
To examine how the periodic skeletonization affects enumerating patterns by the
PPPMiner, we use Kyoto and Last.fm datasets. On the other hand, for the case 2) we
adopt the algorithm by Zhang et alZKCY07, which is also re-implemented, named by
GAPMiner GAPMiner, in Python 2.7.8.
Based on the number k of clusters, we propose an incremental method, where

users replace symbols with cluster labels incrementally. The overview of this pro-
cess is shown in Algorithm 6. We first sort clusters by the size (in Line 5). In de-
scending order of the size, we incrementally re-encode an original sequence swith
cluster labels. That is, we first replace symbols in s belonging to the largest cluster
labelC1 (this new sequence is denoted by s(≥1) in Algorithm6). We then do the same
with the second largest cluster C2, and continue this replacement (corresponding
to Line 6 and Line 7). For each step in Line 8, we apply a mining method.

6.5.1. Mining with the PPPMiner

In the following experiments, we adopt both (temporal and periodical) information
in the clustering step. For the Kyoto dataset, using k = 3 clusters, we prepared four
cases: Kyoto (original), Kyoto(≥1), Kyoto(≥2), and Kyoto(≥3) to apply the PPPMiner.

67

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

Algorithm 6 Incremental Mining with Skeletonization
Input: A input sequence S and a parameter θ

Call Inc-MS (S, θ) until the output F of mining is enough for the purpose.
1: procedure Inc-MS (S , θ)
2: Construct a similarity graph G from s
3: Estimate the number k of clusters (with heuristics)
4: Compute assignments of symbols ◃ B → {1, 2, . . . , k}
5: Sort clusters C1, · · ·Ck

with their cardinality (|C1| > |C2| > . . . |Ck|, descending)
6: for j = 1 to k do ◃ (Or, any j (1 ≤ j ≤ k) if you want)
7: Replace symbols in s using the cluster Cj

and get the encoded sequence s(≥j) ◃ Re-encoding
8: Apply a mining method to s(≥j) with θ

Table 6.5.: Numbers of enumerated patterns with (i.e., re-encoding labeled as (≥j)) and without the
skeletonization with the PPPMiner

(a) For the Kyoto dataset (P = 365)

Datasets θ=0.9 0.7 0.5 |B|

Kyoto 0 0 0 359
Kyoto(≥1) 9,065 57,596 133,027 224
Kyoto(≥2) 28,134 210,806 523,021 97
Kyoto(≥3) 54,354 349,648 917,403 3

(b) For User 672 dataset (P = 24)

Datasets θ =0.3 0.2 0.1 |B|

User 672 0 0 0 247
User 672(≥1) 128 318 51,304 177
User 672(≥3) 128 319 22,540 144
User 672(≥10) 127 260 5,718 10

We show the number of enumerated patterns with P = 365 and with varying θ in
Table 6.6a. For the User 672 dataset from the Last.fm dataset, we use the number
k = 10 of clusters to pre-process. Out of k = 10 clusters illustrated in Figure 6.10c, for
the integer j in Line 6, we use the largest clusterC1 and get the re-encoded sequence
User 672(≥1) corresponding to j = 1. In the same manner, we adopt the top three
largest clusters C1, C2, and C3 (i.e., j = 3) and get the sequence User 672(≥3). We
finally use all clusters (j = 10) and label the obtained sequence as User 672(≥10).
We show in Table 6.6b the numbers of enumerated patterns.

Discussions In both cases we cannot find any frequent patterns without the peri-
odic skeletonization. That is, without any pre-processing, databases are sparse and
we cannot evaluate the support well to get insights from datasets in the form of
partially periodic patterns. However, with thanks to the periodic skeletonization,
we can find many frequent patterns in other cases.

68

6.5. Mining Using Skeletonization

Table 6.7.: Numbers of enumerated patterns for ID 1277 trajectory, with threshold 0.00022 of the
gap [α,β] = [0, 5] by using the GAPMiner.

Datasets Length 3 4 5 6

ID 1277(≥1) 46 58 68 78
ID 1277 72 59 51 51

(a) From ID 1277 (b) From ID 1277(≥1)

Figure 6.15.: Two logarithmic plots of the support of patterns enumerated by the GAPMiner from
two sequences.

Because the periodic skeletonization help us to find rough, characteristic pat-
terns by clustering, we can find abstract but readable and high-level frequent pat-
terns. For example in the Kyoto(≥1) setting, we can find 9,065 patterns which char-
acterize 90% of segments in the given sequence. In addition, in the settings of User
672(≥1) and User 672(≥3), we successfully find roughly 300 frequent patterns that
characterize 20% of segments, and this number of patterns is relatively small and
easy to analyze.
We confirmed that clustering using the skeletonization as a pre-processing of pat-

ternmining work well to get more frequent patterns than those obtained from raw
sequences.

6.5.2. Mining with the GAPMiner

We adopt the trajectory sequence of ID 1277 used the above. In this case, we use the
number k = 2 of clusters because we have no idea on the numbers of discretized
trajectories. Then the largest cluster C1 is replaced and a new encoded dataset, de-
noted by ID 1277(≥1), is obtained. We let [α,β] – the gap admitted among characters
– to be α = 0 and β = 5, and mine patterns with gaps up to the length 6 as an ex-
ample. As shown in Table 6.7, we could find almost similar numbers of patterns of
length from 3 to 6.

Discussions To investigate the differences of enumerated patterns by using the
support of patterns we give logarithmic plots of them in Figure 6.15. The figure
shows the difference of patterns enumerated by GAPMiner clearly. Without apply-

69

Chapter 6. Periodical Skeletonization for Periodic Pattern Mining

ing any pre-processing methods to databases, in Figure 6.15a, the support varies in
exponential. On the other hand, by the skeletonization in Figure 6.15b, patterns can
have similar supports, as results of removing rare symbols from B by replacing the
symbols in the large cluster discovered with a cluster label. This result appeared
as an waved curve on the logarithmic plot in Figure 6.15b.
Through experiments, we confirmed that the skeletonization affected the distri-

bution of the frequency of patterns. We have many choices on how to replace sym-
bols originally in B with cluster labels, and in these experiments we use cluster
labels in an descending order.

6.5.3. Future Directions

It is always an open problem in pattern mining how to deal with a kind of redun-
dancy among patterns. In our experiments, many patterns constructed by shifting
symbols are mined. For example, we often have the case a frequent pattern p oc-
curring at 8 a.m. again becomes frequent patterns at 9 a.m., 10 a.m., and so on. That
is, the primitive definition of partially periodic patterns have some redundancy. It
is our important future work to overcome the redundancy problem by consider-
ing well-studied conception (e.g., closed ormaximal patterns) and combining them
with our pre-processing method. Tuning hyper-parameters including the number
k of clusters and the width r of sliding windows is also our future work to enrich
partially periodic pattern mining with pre-processing using the skeletonization.
In addition, further studies are possible in pre-processing of the KDD process

beyond the last experiments using the plots of frequencies of patterns. Figure 6.16
is a logarithmic plot (in the y-axis) representing the frequency of each symbol‡‡ in
B for the ID 1277 sequence. If given databases are not merely noise, we have an
assumption that the symbol frequency is not uniform. This fact encourages more
developments on applications of Machine Learning methods for the sparseness of
several pattern mining problems. For example considering the TF-IDF model in
patternmining, utility-based patternmining, and unsupervisedmetric learning on
symbols area related topics from the viewpoint of pre-processing using machine
learning algorithms.

6.6. Summary

In this chapter we provide a new skeletonization method for dealing with par-
tially periodic patterns based on the temporal skeletonization and periodic infor-
mation. Our experiments with synthetic and real datasets show that our method
could help us to obtain clusters of symbols even for periodic settings, particularly
for sequences having only one fixed period. Pattern mining results with the skele-
tonization indicate that our method is helpful to obtain readable results with a rel-
atively small computational cost as B get small. Even we use a large threshold,
‡‡It is equal to the support of each symbol, i.e., the total number of occurrences of symbols in a

database.

70

6.6. Summary

Figure 6.16.: The logarithmic plot of the frequency of symbols.

we can find frequent patterns which cannot be listed without the skeletonization.
Furthermore, in unstable cases (of the period of sequences), it is clarified that our
skeletonization work well to learn hidden clusters from sequences. Using more
real datasets, we test that our method give some insights on relation of symbols
used for describing databases, and their analyses might be important and helpful
for Knowledge Discovery.
Wewould like to develop algorithms to reduce the redundancy of patterns more,

based onwell-studied concepts (e.g., closed patterns) together with the skeletoniza-
tion. Further discussion using other pre-processing methods, particularly compar-
ing methods using semantic information (i.e., hierarchy of symbols, background
knowledge) are also our important future work.

71

CHAPTER 7

Conclusion

This thesis focused on the three main parts in a common model of Data Mining,
the KDD processFPsS96, consisting of 1) pre-processing of data, 2) pattern min-

ing from the refined data, and 3) post-processing of the output of pattern mining.
Based on preliminaries of pattern mining, shortly summarized in Chapter 2, each
section treated one of the problems along with the KDD process. Pre-processing
for effective pattern mining was discussed in Chapter 6. Theoretical analyses of
pattern mining was given in Chapter 3. Post-processing of pattern mining using
lattices based on algorithmic approaches was investigated in Chapter 4 and Chap-
ter 5. Objects throughout of the thesis are graphs given or generated by various
manners in Data Mining from and using graphs.
The results indicated the importance of the developments ofmethods for enhanc-

ing the utility, the usability, and the effectiveness of pattern mining in Knowledge
Discovery via graphs. In addition, the results suggested that using implicit assump-
tions in the KDD process to design algorithms are effective. For example, in Chap-
ter 3, common properties of given databases were used to design and investigate
mining algorithms. In Chapter 4, naturally available side information was embed-
ded into operators to compare episodes, a class of directed acyclic graphs. In Chap-
ter 6, definitions of patterns are adopted toMachine Learning-based pre-processing
to clarify given data from the viewpoint of data cleaning.
In summary, the core strategy throughout the thesis is to develop methods for

various problems in the KDD process for graphs based on our assumption that
Knowledge Discovery can be achieved by solving not only one-time-only problems,
but also iterative (multiple) problems simultaneously and continuously. We have
construct methods in the thesis to take into account such iterative applications of
algorithms to databases, for enhancing the utility and the effectiveness of pattern
mining in Knowledge Discovery.

The followings are lists of future perspectives of pattern mining research and
problem settings beyond the thesis.

1. Supervised and unsupervised pattern mining: When no labels are given (i.e.,
in unsupervised mining problems mainly discussed in the thesis), evaluations of
methods at pre-processing and post-processing are challenging compared with the
pattern mining part in which computational complexity (time complexity, space
complexity, listing complexity, etc.) is adopted. To discuss methods with labels,
adopting datasets with labels is a fundamental approach (e.g.,LOP15, Section ??). It

73

Chapter 7. Conclusion

is also known as discriminative pattern mining, which is a famous variation in the
literature with statistical evaluations or testing (e.g.,MS00,NBT07,CYHH07,NLW09).
If we have labels of data, we can directly apply the statistical hypothesis test-

ing (e.g., Fisher’s exact test) to evaluate patterns in the sense of some statistical
test. As the number of patterns is huge because of the pattern combinatorial explo-
sion, recent researches have been focused on multiple statistical test (e.g., recent
papersTOHTS13,TTS13,MUT+14,SLKB15,LSPB15,TKS15).
In addition, considering hypothesis could be possible by testing whether or not

the given database D obeys a hypothesis H without explicitly describing models
(e.g., code-tables are explicitly defined models in Chapter 5). The method named
swap randomization (e.g.,GMMT07,HOV+09,KDB10) has been investigated as a tool of test-
ing such hypotheses, particularly for itemsets in that itemsets can easily modeled
by probabilistic distributions. Generalizing such strategies for structured data is
an important future research direction.

2. Quantification of behavior of iterative pattern mining: Judging from exper-
imental results in the thesis, we strongly believe that our work focusing on the
pre-processing and the mining task could be important. We conjecture that such
methods can be also discussed (without labels) based on the idea of the grid search
strategy of machine learning in hyperparameter optimization in that we vary the
parameter θ from 50%, 40%, 30%, 20%, 10%, . . . in mining. We partially discussed
this problem in Section 6.5 by checking the spectrum of frequent patterns enumer-
ated. The studies related to spectrums have been attractedmuch attention recently
(e.g.,BP14,vLU14). Using spectrum of patterns, we could formulate a behavior of some
algorithm with a database D and a parameter θ.
How changes of parameters affect pattern mining results could be also related

to the sensitivity of a function, which is often used in the research area of pattern
mining under privacy preserving constraints: Consider a function f(·) getting a
database D and returning some real value. The sensitivity of the function f with
respect to the database is defined as

∆f = max
D1,D2

||f(D1)− f(D2)||1,

where ||·||1 represents somenormandmax is checked for all database pairs (D1,D2)

which are in the neighbor relation (i.e.,D1 andD2 are differing in at most one trans-
action). Though this measure is not directly applicable to listing algorithms, the
methods related to evaluate a function itself could be regarded as a start point to
build new formulations of evaluations of listing algorithms, beyond their listing
complexity (studied in Chapter 3). This perspective arises from the fact that listing
algorithms can be regarded as a kind of function to generate some distribution on
a set F of frequent patterns.

3. Issues on probability/uncertainty and utility: Weights of items (e.g., prices,
priority in a wishlist, etc.) have been a formulation to take into account the im-
portance of elements in the base-set B to reflect users’ interests or preferences
(e.g.,HM07,EGA08). Values of theweights are often referred as utilities. Roughly speak-

74

Chapter 7. Conclusion

ing, miming patterns by taking into account utilities of patterns and elements in
B is more difficult than mining ordinal patterns. Particularly, keeping the anti-
monotonicity of a measure is a crucial problem for efficient enumeration.
Independently of utility pattern mining, another famous variation is uncertainty

of transactions as uncertain databases (e.g.,CKH07,AY09,Agg09). Methodologies for un-
certain data are related to Chapter 4 to prune the space of pattern concepts in our
study, and to provide a good measure to evaluate enumerated concepts without
labels. As utilities can be normalized, methods for utility pattern mining and those
for uncertain pattern mining could be adopted simultaneously to achieve effective
pattern mining. From viewpoints of model selections (related to Chapter 5), char-
acterizations of mining algorithms and patterns (related to Section 6.5 as we men-
tioned above) in probabilities and uncertainty could be valuable, and it could be
a future research topic to investigate these approaches for complex data (beyond
binary data in FCA or itemsets).
From the viewpoint of probabilistic models, sampling or approximating the set

F directly under a given constraint described as a probabilistic distribution Pr(·)
is an alternative approach for pattern set mining (e.g., approximationAGM04, sam-
pling methodsBLPG11,MBG14). Therefore, combining such models with algorithmic
approaches for unsupervised pattern setmining could be important research topic.

75

APPENDIXA

Symbols andMathematical Background

Mathematical backgrounds are listed, particularly for lattices (used in Chapters 4
and 5).

Relation, Order, and Lattice

Definition A.1 (Binary Relation) Binary RelationA binary relation R between two finite sets E
and F defined on the product E × F consisting of pairs (re, rf) with re ∈ E and
rf ∈ F .

Definition A.2 (Partial Order Relation) Partial Order
Relation

A binary relation R on a finite set E
is called an partial order relation if it satisfies the following conditions for all
elements x, y, z ∈ E: 1) Reflexivity; (x, x) ∈ R, 2) Anti-symmetry; (x, y) ∈ R and
x ̸= y implies (y, x) ̸∈ R, and 3) Transitivity; (x, y) ∈ R and (y, z) ∈ R implies
(x, z) ∈ R.

Definition A.3 (Partially Ordered Set) Partially Ordered
Set

Given a partial order ≼ on a finite set
E, a poset (i.e., partially ordered set) is a pair (E,≼).

If it holds either a ≤ b or b ≤ a for any a, b ∈ E, the partial order is a total order.
For example, the set of all itemset 2B is a poset with the subset relation ⊆.

Definition A.4 (Infimum, Supremum) Let (E,≼) be a poset andA ⊆ E. A lower
bound ofA is an element s ∈ Ewith s ≼ a for all a ∈ A. If it exists a largest element
in the set of all lower bounds of A, it is called the infimum Infimumof A, denoted by infA.
Dually, a upper bound is defined, and a least upper bound is called supremum Supremum,
denoted by supA.

Sometimes the infimum and the supremum of A is referred to be meet and join,
respectively.

Definition A.5 (Lattice) LatticeAposet (E,≼) is a lattice if for any two elements x, y ∈ E

the supremum x ∨ y and the infimum x ∧ y always exist. The poset is called
a complete lattice if for any subset X ⊆ E, the supremum

∨
X and the infimum∧

X exist. Every complete lattice has a largetst element 1E called theunit element
and the smallest element 0E called the zero element.

77

Appendix A. Symbols

Definition A.6 (Join Semi-lattice, Meet Semi-lattice) A poset (E,≼) is a join
semi-latticeJoin Semi-lattice if for any two elements a, b ∈ E the supremum x ∨ y always exists.
Dually, it is a meet semi-latticeMeet Semi-lattice if the infimum x ∧ y always exists. A lattice is
a poset that is both a join semi-lattice and meet semi-lattice with respect to the
same partial order ≼.

Let E be a set and η a mapping from the powerset 2E into 2E .

Definition A.7 (Closure Operator) The function η is a closure operator on E if
for anly sets A,B ⊆ E, it is 1) Extensive; A ⊆ η(A), 2) Monotone; A ⊆ B implies
that η(A) ⊆ η(B), and 3) Idempotent; η(η(A)) = η(A).

A subset A ⊆ S is η-closed if A = η(A). The set of all η-closed {A ⊆ E | A = η(A)}
is called a closure system.

Definition A.8 (Galois Connection)Galois Connection Let (P,≼) and (Q,!) be two ordered sets.
A pair (µ, γ) of maps; µ : P → Q and γ : Q → P is called a Galois connection if it
holds for p1, p2 ∈ P and q1, q2 ∈ Q: p1 ≼ p2 implies µ(p1) ≽ µ(p2), q1 ! q2 implies
γ(q1) # γ(q2), p ≼ γ ◦ µ(p), and q ! µ ◦ γ(q).

In FCA, on the contextK = (G,M, I), we have a Galois connection between (2G,⊆)
and (2M ,⊆) with letting P be G, Q beM , ≼ be ⊆, and ! be ⊆.

Definition A.9 (Basic Theorem)Basic Theorem The concept latticeP(G,M, I) is a complete lat-
tice in which infimum and supremum are given by

∧

t∈T
(At, Bt) =

(
⋂

t∈T
At,

(
⋃

t∈T
Bt

)′′)
and (A.1)

∨

t∈T
(At, Bt) =

((
⋃

t∈T
At

)′′

,
⋂

t∈T
Bt,

)
, (A.2)

where (·)′ is a short representation of a Galois connection on K = (G,M, I).

Information Theory To address the interestingness of items and patterns enumer-
ated in pattern mining, the field Information Theory is the traditional research dis-
cipline, in which the notion of entropy introduced by Shannon 1948* measuring the
information content of a given random variable. Formally, given a discrete random
variable X with domain X a probability distribution p, the entropy of X , denoted
by H(X), is defined as

H(X) = −
∑

x∈X
p(x) log p(x).

The base of the logarithm in the paper is set to be 2, and by convenience 0 log 0 = 0.

*A mathematical theory of communication

78

Appendix A. Symbols

For a database D and an itemset X , we can now define the entropy of X as

H(X,D) = −
∑

x∈X
freq(X = x) log freq(X = x),

where X = dom(X).

The problem of finding a model Modelfor a given database D is not trivial and an im-
portant background of Knowledge Discovery.

Proposition A.1 (Occam’s razor) Given two models of equal explanatory
power, the simplestmodel is to be preferred.

Theminimum description length (MDL) principle is known as a practical version
of Kolmogorov Complexity. Given a database D and a set of models M, the best
modelM ∈M according to the MDL principle is the one that minimizes

L(M) + L(D | M),

where

• L(M) is the length in bits of the description of a modelM , and
• L(D | M) is the length in bits of the description of the data D encoded with a
given modelM .

79

Appendix A. Symbols

Foundations
{· · · } Set;

If it is clear from the context, the parenthes are omitted;
e.g., {i, j, k} is represented by ijk

⟨· · · ⟩ Sequence;
If it is clear from the context, the parenthes are omitted;
e.g., ⟨a, b, c⟩ is represented by abc.
For an element h and a sequence H , the list ⟨h | H⟩ is obtained by in-
serting h before H .

1[pred] Indicator function;
If the given predicate pred is true, returns 1 and 0 otherwise.

2A Powerset of a finite set A
N The set of natural numbers including 0

Sequences, Strings, and Episodes
λ The empty string
B Alphabet (event symbols)
B∗ The set of finite sequences / strings over B
B+ The set of finite sequences / strings without λ
|w| The length of w
a >→ B >→ c A diamond episode ⟨a,B, c⟩
A >→ B A bipartite episode ⟨A,B⟩ (a.k.a., a rule A→ B)
⊓B The binary operation of comparing symbols in B
⊥B The infimum (bottom) of the comparison by ⊓B
(B,⊓B) Meet semi-lattice of symbols

Formal Concept Analysis, Pattern Structure Analysis
O The set of objects
A The set of attributes
I Binary relation between O and A
K = (O,A, I) (Formal) context
(·)↑, (·)↓ Galois connection for FCA
≼ Partial order between concepts
⟨L,≼⟩ Concept lattice, where L is a set of all concepts

D The set of descriptions
⊓ Binary operation among descriptions
(D,⊓) Meet semi-lattice
δ Extractor; Mapping from O to D
P = (O, (D,⊓), δ) Pattern structure
(·)$, (·)⋄ Galois connection for PSA

Information Theory andMDL
H(X) Entropy on a discrete probability distribution p and a random

variable X
M Set of models
M,M1,M2, . . . Models
L(D) Description length of a database D
L(D | M) Description length of a database D when the modelM is given

80

Publications by the Author

Major Publications
Journal Articles
[J1] Otaki, K., Yamamoto, A.: Periodic Pattern Mining with Periodical Co-

occurrences of Symbols, IPSJ Transactions on Mathematical Modeling and
Its Applications (TOM), vol.9(1), pp.32–42, 2016.

Peer-reviewed Conference Proceedings
[P1] Otaki, K., Yamamoto, A.: Periodical Skeletonization for Partially Periodic

PatternMining,Discovery Science 2015 (LNCS 9356), pp.186-200, 2015 (long
paper).

[P2] Otaki, K., Yamamoto, A.: Edit Operations on Lattices for MDL-based Pat-
tern Summarization, FCA&A@ICFCA2015 (Electric Online Proceedings),
CEUR Workshop Proceedings Vol.1434, pp.17-32, 2015.

[P3] Otaki, K., Yamamoto, A.: Pattern Structures for Understanding Episode
Patterns, Concept Lattice and Their Applications (Electric Online Proceed-
ings), CEUR Workshop Proceedings Vol.1252, pp.47-58, 2014.

[P4] Horváth, T., Otaki, K., Ramon, J. (alphabetical order): Efficient Frequent
Connected Induced Subgraph Mining in Graphs of Bounded Tree-Width,
Machine Learning and Knowledge Discovery in Databases - European Con-
ference, ECML PKDD 2013 (LNCS 8188), pp.622-637, 2013.

All Other Research Activities by the author
Journal Activities

[J2] Otaki, K., Sugiyama, M., Yamamoto, A.: Privacy Preserving Using Dummy
Data for Set Operations in Itemset Mining Implemented with ZDDs, IEICE
Transactions on Information and Systems, vol.95-D(12), pp.3017-3025, 2012.

[J3] Ouchi, S., Okayama, T., Otaki, K., Yoshinaka, R., Yamamoto, A.: Learning
Concepts and Their Unions from Positive Data with Refinement Operators,
Annals of Mathematics and Artificial Intelligence, to appear.

Peer-reviewed Conference Proceedings

[P5] Okayama, T., Yoshinaka, R., Otaki, K., Yamamoto, A.: A Sufficient Condition
for LearningUnboundedUnions of Languageswith RefinementOperators,
International Symposium on Artificial Intelligence and Mathematics (Elec-
tric Online Proceedings), 2014.

[P6] Sugiyama, M., Otaki, K.: Detecting Anomalous Subgraphs on Attributed
Graphs via Parametric Flow, New Frontiers in Artificial Intelligence (JSAI-
isAI Workshops 2014, LNCS 9067), pp.340-355, 2014.

[P7] Ikeda, M., Otaki, K., Yamamoto, A.: Formal Concept Analysis for Process
Enhancement on a Pair of Perspectives, Concept Lattice and Their Applica-
tions (Electric Online Proceedings), CEURWorkshop Proceedings Vol.1252,
pp.59-70, 2014.

[P8] Kondo, S., Otaki, K., Ikeda, M., Yamamoto, A.: Fast Computation of the Tree
Edit Distance betweenUnordered Trees Using IP Solvers,Discovery Science
2014 (LNCS 8777), pp.156-167, 2014 (long paper).

Peer-reviewed Talks

81

Publications by the Author

[T1] Otaki, K., Yamamoto, A.: Probabilistic Models Based on Regular Pattern
Languages andTheir Learning Problems,Work-In-Progress session in 12th
International Conference on Grammatical Inference, 2014.

Domestic Conferences
[D1] Otaki, K., Yamamoto, A.: Mining Periodic Patterns of Sequences via Skele-

tonization, IPSJ Annual Meetings (IPSJ 2015), Vol.1, pp.447-448, 2015.
[D2] Otaki, K., Yamamoto, A.: Periodic Pattern Mining with Periodical Co-

occurrences of Symbols, IPSJ SIG Technical Report, Vol.2015-MPS-105,
np.7, 2015, Best Presentation Award.

82

References

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Math-
ematics, 65(1–3):21 – 46, 1996. First International Colloquium on Graphs and Opti-
mization.

[Agg09] C. C. Aggarwal. Managing and Mining Uncertain Data, volume 35 of Advances in
Database Systems. Kluwer, 2009.

[AGM04] F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent sets.
In Proceedings of the 10th KDD, pages 12–19, 2004.

[AH14] C. C. Aggarwal and J. Han, editors. Frequent pattern mining. Springer International
Publishing, 2014.

[AIS93] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. SIGMOD Record, 22(2):207–216, 1993.

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discov-
ery of association rules. In Advances in Knowledge Discovery and Data Mining, pages
307–328. 1996.

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11 – 24, 1989.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th VLDB, pages 487–499, 1994.

[AS95] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of the 11th
ICDE, pages 3–14, 1995.

[AS12] C. Alzate and J. A. Suykens. Hierarchical kernel spectral clustering. Neural Net-
works, 35(0):21 – 30, 2012.

[AY09] C. C. Aggarwal and P. S. Yu. A survey of uncertain data algorithms and applications.
IEEE Transactions on Knowledge and Data Engineering, 21(5):609–623, 2009.

[BAG00] R. J. Bayardo, Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule mining in
large, dense databases. Data mining and knowledge discovery, 4(2-3):217–240, 2000.

[Bay98] R. J. Bayardo, Jr. Efficientlymining long patterns from databases. SIGMOD Record,
27(2):85–93, 1998.

[BCG01] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset al-
gorithm for transactional databases. In Proceedings of the 17th ICDE, pages 443–452,
2001.

[BLPG11] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct local pattern sampling
by efficient two-step random procedures. In Proceedings of the 17th KDD, pages 582–
590, 2011.

[Bod90] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11(4):631–643, 1990.

[Bod96] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science, 209(1–2):1–45, 1998.

[BP14] C. Borgelt andD. Picado-Muiño. Simple pattern spectrumestimation for fast pattern
filtering with CoCoNAD. In Proceedings of the 13th IDA, pages 37–48, 2014.

83

Bibliography

[CDK+99] S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins,
D. Gibson, and J. Kleinberg. Mining the web’s link structure. Computer, 32(8):60–67,
1999.

[Cel10] O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

[CG02] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proceed-
ings of the 6th PKDD, pages 74–86. Springer, 2002.

[CH08] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. Pro-
ceedings of the VLDB Endowment, 1(2):1530–1541, 2008.

[CKH07] C.-K. Chui, B. Kao, and E. Hung. Mining frequent itemsets from uncertain data. In
Proceedings of the 11th PAKDD, pages 47–58, 2007.

[CNFF96] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. Fu. Efficient mining of association rules
in distributed databases. IEEE Transactions on Knowledge and Data Engineering,
8(6):911–922, 1996.

[CYHH07] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis
for effective classification. In Proceedings of the 23rd ICDE, pages 716–725, 2007.

[CZA08] A. Cichocki, R. Zdunek, and S.-I. Amari. Nonnegative matrix and tensor factoriza-
tion [lecture notes]. Signal Processing Magazine, IEEE, 25(1):142–145, 2008.

[DKWK05] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-
based approaches for classifying chemical compounds. IEEE Transactions on Knowl-
edge and Data Engineering, 17(8):1036–1050, 2005.

[DL99] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proceedings of the 5th KDD, pages 43–52, 1999.

[DRZ07] L. De Raedt and A. Zimmermann. Constraint-based pattern set mining. In Pro-
ceedings of the 7th SDM, pages 237–248, 2007.

[DTK98] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chem-
ical compounds. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD-98), pages 30–36, 1998.

[EGA08] A. Erwin, R. P. Gopalan, and N. Achuthan. Efficient mining of high utility itemsets
from large datasets. In Proceedings of the 12th PAKDD, pages 554–561, 2008.

[For10] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[FPsS96] U. Fayyad, G. Piatetsky-shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, 17:37–54, 1996.

[Fri97] J. H. Friedman. Data mining and statistics: What’s the connection? In Proceedings
of the 29th Symposium on the Interface Between Computer Science and Statistics, 1997.

[G0̈3] T. Gärtner. A survey of kernels for structured data. SIGKDD Explorations Newsletter,
5(1):49–58, 2003.

[GD05] L. Getoor and C. P. Diehl. Link mining: A survey. SIGKDD Explorations Newsletter,
7(2):3–12, 2005.

[GFW03] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Proceedings of the 16th COLT / 7th Kernel (COLT/Kernel 2003),
pages 129–143, 2003.

[GGM04] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proceedings of the
7th DS, pages 278–289, 2004.

[GHP+03] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining frequent patterns in data
streams at multiple time granularities. Next generation data mining, 212:191–212,
2003.

84

Bibliography

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guid to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[GLH15] S. García, J. Luengo, and F. Herrera. Data preprocessing in data mining. Springer,
2015.

[GMMT07] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining
results via swap randomization. ACM Transactions on Knowledge Discovery from
Data, 1(3):14, 2007.

[GMS04] A. Gionis, H. Mannila, and J. Seppänen. Geometric and combinatorial tiles in 0—1
data. In Proceedings of the 8th PKDD, pages 173–184, 2004.

[GRS99] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: sequential pattern mining with
regular expression constraints. In Proceedings of the 25th VLDB, pages 223–234, 1999.

[GZ03] B. Goethals and M. J. Zaki, editors. FIMI ’03, Frequent Itemset Mining Implementa-
tions, Proceedings of the ICDM 2003Workshop on Frequent Itemset Mining Implemen-
tations, volume 90 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[GZ05] K. Gouda and M. J. Zaki. Genmax: An efficient algorithm for mining maximal fre-
quent itemsets. Data Mining and Knowledge Discovery, 11(3):223–242, 2005.

[HCXY07] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status
and future directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

[HD09] J. Han and B. Ding. Stream mining. In Encyclopedia of Database Systems, pages
2831–2834. 2009.

[HDY99] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time
series database. In Proceedings of 15th ICDE, pages 106–115, 1999.

[HF95] J. Han and Y. Fu. Discovery ofmultiple-level association rules from large databases.
In Proceedings of the 21st VLDB, pages 420–431, 1995.

[HGY98] J. Han,W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related
databases. In Proceedings of the 4th KDD, pages 214–218, 1998.

[HLN99] J. Han, L. V. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional data
mining. Computer, 32(8):46–50, 1999.

[HLXC12] P. Huang, C.-J. Liu, L. Xiao, and J. Chen. Wireless spectrum occupancy prediction
based on partial periodic patternmining. In Proceedings of the 20thMASCOTS, pages
51–58, 2012.

[HM07] J. Hu and A. Mojsilovic. High-utility pattern mining: A method for discovery of
high-utility item sets. Pattern Recognition, 40(11):3317–3324, 2007.

[HN07] M. Hajiaghayi and N. Nishimura. Subgraph isomorphism, log-bounded fragmen-
tation, and graphs of (locally) bounded treewidth. Journal of Computer and System
Sciences, 73(5):755 – 768, 2007.

[HOV+09] S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, and H. Mannila. Tell
me something i don’t know: randomization strategies for iterative data mining. In
Proceedings of the 15th KDD, pages 379–388, 2009.

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the SIGMOD2000, pages 1–12, 2000.

[HPYM04] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Discov-
ery, 8(1):53–87, 2004.

[HR10] T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theoretical Computer Science, 411(31–33):2784 – 2797, 2010.

85

Bibliography

[HWLT02] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns
without minimum support. In Proceedings of the 2002 ICDM, pages 211–218, 2002.

[HYH+05] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs
acrossmassive biological networks for functional discovery. Bioinformatics, 21(suppl
1):i213–i221, 2005.

[IWM00] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures fromgraph data. In Proceedings of the 4th PKDD, pages 13–23,
2000.

[JGZ04] R. J. B. Jr., B. Goethals, and M. J. Zaki, editors. FIMI ’04, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, volume 126 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

[JS02] S. Jaroszewicz and D. A. Simovici. Pruning redundant association rules using maxi-
mum entropy principle. In Proceedings of the 6th PAKDD, pages 135–147. 2002.

[JYP88] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27(3):119 – 123, 1988.

[KAH09] T. Katoh, H. Arimura, and K. Hirata. Mining frequent bipartite episode from event
sequences. In Proceedings of the 12th DS, pages 136–151, 2009.

[Kat11] T. Katoh. Efficient Algorithms for Extracting Frequent Episodes from Event Se-
quences. PhD thesis, Hokkaido University, 2011.

[KDB10] K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding
informative noisy tiles in binary databases. In Proceedings of the 18th SDM, pages
153–164, 2010.

[KK01] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the
2001 ICDM, pages 313–320, 2001.

[KMM04] T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classi-
fication. In Advances in Neural Information Processing Systems 17 (NIPS 2004), pages
729–736, 2004.

[KTI03] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the 20th ICML, pages 321–328, 2003.

[LG13] A. Le andM. Gertz. Mining periodic event patterns from rdf datasets. In B. Catania,
G. Guerrini, and J. Pokorný, editors, Proceedings of the 17th ADBIS, pages 162–175,
2013.

[LKFT04] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-
SD. The Journal of Machine Learning Research, 5:153–188, 2004.

[LOP06] C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining of
frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering,
18(1):21–36, 2006.

[LOP15] C. Lucchese, S. Orlando, and R. Perego. Supervised evaluation of top-k itemset
mining algorithms. In Proceedings of the 17th DaWaK, pages 82–94, 2015.

[LSPB15] F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. M. Borgwardt. Fast and
memory-efficient significant pattern mining via permutation testing. In Proceedings
of the 21st KDD, pages 725–734, 2015.

[LZX+14] C. Liu, K. Zhang, H. Xiong, G. Jiang, and Q. Yang. Temporal skeletonization on
sequential data: Patterns, categorization, and visualization. In Proceedings of 20th
KDD, pages 1336–1345, 2014.

[Mat78] D. W. Matula. Subtree isomorphism in o(n
5
2). Annals of Discrete Mathematics,

2:91–106, 1978.

86

Bibliography

[MBG14] S. Moens, M. Boley, and B. Goethals. Providing concise database covers instantly
by recursive tile sampling. In Proceedings of the 17th DS, pages 216–227, 2014.

[MR13] C. H. Mooney and J. F. Roddick. Sequential pattern mining – approaches and algo-
rithms. ACM Computer Surveys, 45(2):19:1–19:39, 2013.

[MS00] S. Morishita and J. Sese. Transversing itemset lattices with statistical metric prun-
ing. In Proceedings of the 19th PODS, pages 226–236, 2000.

[MSU+01] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, and H. Ueda. Discovery of
frequent tree structured patterns in semistructured web documents. In Proceedings
of the 5th PAKDD, pages 47–52, 2001.

[MT92] J. Matoušek and R. Thomas. On the complexity of finding iso- and othermorphisms
for partial k-trees. Discrete Mathematics, 108(1–3):343 – 364, 1992.

[MT97] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

[MTIV97] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

[MUT+14] S.-i. Minato, T. Uno, K. Tsuda, A. Terada, and J. Sese. A fast method of statistical
assessment for combinatorial hypotheses based on frequent itemset enumeration.
In Proceedings of the ECML PKDD 2014, pages 422–436, 2014.

[NBT07] S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequencemining for action
classification. In Proceedings of the 11th ICCV, pages 1–8, 2007.

[NCW97] S.-H. Nienhuys-Cheng and R. d. Wolf. Foundations of Inductive Logic Program-
ming. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[New04] M. E. Newman. Detecting community structure in networks. The European Phys-
ical Journal B-Condensed Matter and Complex Systems, 38(2):321–330, 2004.

[New06] M. E. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences, 103(23):8577–8582, 2006.

[NJW01] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algo-
rithm. In Advances in Neural Information Processing Systems 13 (NIPS 2001), pages
849–856, 2001.

[NLHP98] R. T. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratorymining and pruning
optimizations of constrained associations rules. In ACM SIGMOD Record, volume 27,
pages 13–24, 1998.

[NLW09] P. K. Novak, N. Lavrač, and G. I. Webb. Supervised descriptive rule discovery: A
unifying survey of contrast set, emerging pattern and subgroup mining. The Journal
of Machine Learning Research, 10:377–403, 2009.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of the 7th ICDT, pages 398–416, 1999.

[PCT+03] F. Pan, G. Cong, A. K. Tung, J. Yang, and M. J. Zaki. Carpenter: Finding closed
patterns in long biological datasets. In Proceedings of the 9th KDD, pages 637–642,
2003.

[PHM00] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In Proceedings of the DMKD2000, pages 21–30, 2000.

[PHMa+01] J. Pei, J. Han, B.Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, andM. chunHsu. Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In Proceedings of 17th ICDE, pages 215–224, 2001.

[PHMA+04] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C.
Hsu. Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE
Transactions on Knowledge and Data Engineering, 16(11):1424–1440, 2004.

87

Bibliography

[PTU10] S. Parthasarathy, S. Tatikonda, and D. Ucar. A survey of graph mining techniques
for biological datasets. In C. C. Aggarwal and H. Wang, editors,Managing and Mining
Graph Data, volume 40 of Advances in Database Systems, pages 547–580. Springer US,
2010.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[RS86] N. Robertson and P. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309 – 322, 1986.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In Proceedings of
the 21st VLDB, pages 407–419, 1995.

[SA96] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. Springer, 1996.

[Sco12] J. Scott. Social network analysis. Sage, 2012.

[SLKB15] M. Sugiyama, F. Llinares-López, N. Kasenburg, and K. M. Borgwardt. Significant
subgraph mining with multiple testing correction. In Proceedings of the 15th SDM,
pages 100–207, 2015.

[SM97] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

[SSS+93] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, and S. Arikawa.
Finding alphabet indexing for decision trees over regular patterns: an approach to
bioinformatical knowledge acquisition. In Proceedings of the 26t HICSS, pages 763–
772, 1993.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of the 3rd KDD, pages 67–73, 1997.

[SVVL06] A. Siebes, J. Vreeken, and M. Van Leeuwen. Item sets that compress. In Proceed-
ings of the 6th SDM, pages 393–404, 2006.

[SWG02] D. Shasha, J. T. Wang, and R. Giugno. Algorithmics and applications of tree and
graph searching. In Proceedings of the 21st PODS, pages 39–52, 2002.

[Sys82] M. M. SysŁ;o. The subgraph isomorphism problem for outerplanar graphs. Theo-
retical Computer Science, 17(1):91 – 97, 1982.

[Tat08] N. Tatti. Maximum entropy based significance of itemsets. Knowledge and Infor-
mation Systems, 17(1):57–77, 2008.

[TC12] N. Tatti and B. Cule. Mining closed strict episodes. Data Mining and Knowledge
Discovery, 25(1):34–66, 2012.

[TKS15] A. Terada, H. Kim, and J. Sese. High-speed westfall-young permutation procedure
for genome-wide association studies. In Proceedings of the 6th ACM-BCB, pages 17–
26, 2015.

[TOHTS13] A. Terada, M. Okada-Hatakeyama, K. Tsuda, and J. Sese. Statistical signifi-
cance of combinatorial regulations. Proceedings of the National Academy of Sciences,
110(32):12996–13001, 2013.

[TTS13] A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for
combinatorial regulation discovery. In Proceedings of the IEEE BIBM 2013, pages
153–158, 2013.

[TV12] N. Tatti and J. Vreeken. Discovering descriptive tile trees. In Proceedings of the
ECML PKDD 2012, pages 24–28, 2012.

88

Bibliography

[TWSY10] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu. Up-growth: an efficient algorithm
for high utility itemset mining. In Proceedings of the 16th KDD, pages 253–262, 2010.

[UAUA03] T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM: an efficient algorithm for enu-
merating frequent closed item sets. In Proceedings of the FIMI ’03, 2003.

[UKA04] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In Proceedings of the FIMI ’04, 2004.

[VL07] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[vLU14] M. van Leeuwen and A. Ukkonen. Fast estimation of the pattern frequency spec-
trum. In Proceedings of the ECML PKDD 2014, pages 114–129. Springer, 2014.

[VSKB10] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, andK.M. Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[VvLS11] J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: Mining itemsets that com-
press. Data Mining and Knowledge Discovery, 23(1):169–214, 2011.

[WF94] S. Wasserman and K. Faust. Social network analysis: Methods and applications,
volume 8. Cambridge university press, 1994.

[WHLT05] J.Wang, J. Han, Y. Lu, andP. Tzvetkov. TFP: An efficient algorithm formining top-
k frequent closed itemsets. IEEE Transactions on Knowledge and Data Engineering,
17(5):652–663, 2005.

[WHP03] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the 9th KDD, pages 236–245, 2003.

[WM03] T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD
Explorations Newsletter, 5(1):59–68, 2003.

[Wro97] S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Proceed-
ings of the 1st PKDD, pages 78–87. Springer, 1997.

[XCYH06] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware top-k patterns.
In Proceedings of the 12th KDD, pages 444–453, 2006.

[YBYZ02] X. Yuan, B. P. Buckles, Z. Yuan, and J. Zhang. Mining negative association rules.
In Proceedings of the 7th ISCC, pages 623–628, 2002.

[YH02] X. Yan and J. Han. gspan: Graph-based substructure patternmining. In Proceedings
of the 2002 ICDM, pages 721–724, 2002.

[YHA03] X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
databases. In Proceedings of the 3rd SDM, pages 166–177, 2003.

[YHCL13] K.-J. Yang, T.-P. Hong, Y.-M. Chen, and G.-C. Lan. Projection-based partial periodic
pattern mining for event sequences. Expert Systems with Applications, 40(10):4232–
4240, 2013.

[YWY03] J. Yang,W.Wang, and P. Yu. Mining asynchronous periodic patterns in time series
data. IEEE Transactions on Knowledge and Data Engineering, 15(3):613–628, 2003.

[YYH04] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based approach.
In Proceedings of the SIGMOD 2004, pages 335–346, 2004.

[YZXS11] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the physical
world. In Proceedings of the 17th KDD, pages 316–324, 2011.

[YZZ+10] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. T-drive: driving
directions based on taxi trajectories. InProceedings of the 18th SIGSPATIALGIS, pages
99–108, 2010.

89

Bibliography

[Zak01] M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
learning, 42(1-2):31–60, 2001.

[ZH02] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset mining.
In Proceedings of the 2nd SDM, volume 2, pages 457–473, 2002.

[ZKCY07] M. Zhang, B. Kaon, D.W. Cheung, and K. Y. Yip. Mining periodic patternswith gap
requirement from sequences. ACM Transaction on Knowledge Discovery from Data,
1(2), 2007.

[ZPOL97] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast dis-
covery of association rules. In Proceedings of the 3rd KDD, pages 283–286, 1997.

90

Index

3V, 1

Algorithm
Apriori, 14
Eclat, 17
FP-growth, 18
GAPMiner, 67
Levelwise Search, 24
PPPMiner, 66

Association Rule, 4, 14

Base-set, 12
Basic Theorem, 78
Big Data, 1
Binary Relation, 77

Characteristic, 38
Clique, 4
Closure, 22
Combinatorial Explosion, 20
Conditional Database, 18
Confidence, 14
Connected Component, 4, 31
Connected Graph, 31
Cover, 13

Data Mining, 1
Data Science, 1
Discriminative Pattern Mining, 27
Divide and Conquer, 17

Enumeration, 25
Enumeration Tree, 12
Episode Pattern, 4
Exploratory Data Analysis, 9

Feasible Iso-Quadruple, 41
Formal Concept Analysis, 9, 22

Galois Connection, 78
Generalization, 34
Generation-and-Test, 14
Graph

Graph, 2
Labeled Undirected Graph, 30
Undirected Graph, 30

Graph Isomorphism, 31
Graph of Bounded Treewidth, 30, 32

HMM

Cyclic HMM, 54
Left-to-right HMM, 54, 57

Implication, 14
Induced Subgraph, 31
Induced Subgraph Isomorphic, 31
Infimum, 77
Iso-Quadruple, 38
Itemset

Closed Itemset, 9, 22
Itemset, 7
Maximal Itemset, 21

Join Semi-lattice, 78

KDD, 5

Lattice, 9, 77
Levelwise Search Algorithm, 34
Listing, 25
Listing Complexity, 8, 21

Market Basket Analysis, 11
Meet Semi-lattice, 78
Model, 79

Nice Tree Decomposition, 32

Partial Order Relation, 77
Partial Pattern, 55
Partially Ordered Set, 77
Partially Periodic Pattern, 55
Path, 31
Pattern, 12
Pattern Mining, 11
Pattern Set Mining, 10, 24
Pattern Structure, 9
Periodic Graph, 57
Periodic Pattern

Full Periodic Pattern, 52
Partial Periodic Pattern, 52
Periodi Pattern with Gap, 66

Periodic Pattern Mining, 52
Periodic Segment, 54
Periodical Skeletonization, 57
Precedence-Subsequence Relation, 4
Problem

FCISM Problem, 29, 33
FCSM Problem, 30, 39

91

Index

FIM Problem, 11, 13
FPPPM Problem, 55

Proper Generalization, 34

Redundancy, 9
Relational Data, 1
Reverse Search, 17

Sequential Pattern, 4
Set Sequence, 59
Similarity Graph, 55
Simple Graph, 30
Spectral Clustering, 56
Strong Candidate, 35
Subgraph, 31
Subgraph Isomorphism, 31
Support, 13
Supremum, 77

Temporal Graph, 55
Temporal Skeletonization, 55
Theory, 24
Theory Extraction Problem, 24
Timestamp, 4
Top-k Mining, 24
Transaction Database, 11
Tree Decomposition, 31
Treewidth, 8, 31
Two-part MDL Principle, 10

Window, 57

92

The contents of Chapter 6 are based on work published in IPSJ Transactions on Math-

ematical Modeling and Its Applications, vol.9(1), pp.32-42, 2016.

	Title
	Copyright
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Frequent Itemset Mining
	2.2 Reducing Outputs
	2.3 Theory Extraction Framework
	2.4 References

	3 Mining from Graphs of Bounded Treewidth
	3.1 Introduction
	3.2 Graphs and Tree Decompositions
	3.3 Frequent Connected Induced Subgraph Mining
	3.4 Mining Graphs of Bounded Treewidth
	3.5 Summary

	4 (Summary) Pattern Structure Analysis for Episodes
	5 (Summary) MDL Principle for Pattern Set Mining on Lattices
	6 Periodical Skeletonization for Periodic Pattern Mining
	6.1 Introduction
	6.2 Periodic Patterns and Skeletonization
	6.3 Periodical Skeletonization
	6.4 Experiments
	6.5 Mining Using Skeletonization
	6.6 Summary

	7 Conclusion
	Appendix A Symbols
	References
	Index

