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1. Introduction 

Elastodynamic problems such as ultrasonic propagation in solid media have frequently 

been solved numerically using general-purpose modeling techniques such as the finite 

difference method (FDM) [1, 2], finite element method (FEM) [3], and boundary element 

method (BEM) [4], where the continuum media are discretized into small subdivisions. 

Each modeling technique has advantages and disadvantages, and therefore, many extended 

techniques have already been developed to overcome their shortcomings. For example, the 

finite difference time domain (FDTD) method [5, 6] and elastodynamic finite integration 

technique (EFIT) [7] can be considered extended FDMs. FDTD was originally used for 

solving electric and magnetic fields in Maxwell’s equation alternately. In elastodynamic 

problems, the velocity and stress fields are solved by the leap-flog algorithm. EFIT can be 

applied to inhomogeneous and/or curved regions by introducing the concept of a finite 

integration technique. An extended FEM (XFEM) [8] and spectral FEM [9] were 

developed as extended FEM techniques. Semi-analytical techniques with a Green’s 

function such as BEM include CSM [10], MMP [11], and DPSM [12]. These extended 

BEMs can be considered extended analytical solutions because Green functions are a type 

of analytical solution. 

We also have studied an extended technique of the FEM, called a semi-analytical finite 

element (SAFE) method [13-17]. In the SAFE, only a cross-section of an elongated 

structure is divided into small elements and displacement distributions in the longitudinal 

direction are expressed in terms of orthogonal functions. Consequently, calculation time 

and memory are significantly reduced especially in guided wave calculation. In addition, 

since the displacement field is expressed as a summation of guided wave modes, modal 

analysis can be carried out in a straightforward manner [13-25]. 

Cheung [26, 27] developed a special FEM for the static strain analysis of plate-like 
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structures such as a box girder and folded plate in their early works; in this method, 

displacement distributions in the longitudinal direction were expressed as an orthogonal 

function. Subsequently, many studies have reported analogous techniques for elongated 

structures; these are called the semi-analytical finite element (SAFE) method by 

Zienkiewicz [28]. Similar semi-analytical techniques have been applied to dynamic 

problems such as vibration and wave propagation in the early stage. For example, Dong 

and Nelson calculated the frequency spectra of wavenumbers of guided wave modes in 

laminated plates using an extended Ritz method [29]. Datta et al. [30] and Kausel [31] 

obtained the frequency spectra of wavenumbers in a complex domain and discussed 

non-propagating as well as propagating modes. Gavrić [32], Gry [33], Thompson et al. [34] 

developed SAFE techniques for a bar with an arbitrary cross section for the vibration 

analyses of railway rails. These studies pertained to eigenmode analyses and dispersion 

curves. Liu and Achenbach [35] presented the time domain response for transient loading 

on a laminated plate. Hayashi [13-16] derived the group velocity dispersion curves 

required in guided wave inspection and visualized the guided wave motion by obtaining 

transient waves in the structure. Recently, Loveday et al. [18] and Mazzotti et al. [19] 

extended the SAFE technique to a bar with axial loading and a viscoelastic waveguide. 

SAFE techniques have been widely used with the progress of guided wave inspection. 

However, most SAFE calculations are performed under the assumption of traction-free 

boundaries without the consideration of energy leakage to the surrounding media. 

Castaings and Lowe [17], Fan et al. [18], Treyssède et al. [19], and Nguyen and Treyssède 

[20] succeeded in modeling leaky guided waves by introducing absorbing layers and 

perfectly matched layers around external fluids. Mazzoti et al. developed a combination 

SAFE and BEM technique [24, 25]. These studies provided important results such as the 

dispersion curves and wave structures of guided waves in a bar with an external fluid, 
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embedded solid plates, and embedded helical structures. The authors [17], too, have 

derived dispersion curves and attenuation curves for a plate loaded with a fluid using the 

characteristic that a harmonic plane leaky wave propagates at the velocity of the fluid for a 

single Lamb wave mode, and they discussed the vibration distributions for several modes. 

Based on our previous study [17], this study derives the displacement responses in a 

plate cross section and external fluid regions for external harmonic point loading and 

calculates the time-domain waveforms by the inverse Fourier transform of the 

frequency-domain data. The time domain waveforms help our understanding of the 

generation mechanism of guided wave modes by external loading and the variations of 

waveforms due to the superposition of guided wave modes that cannot be understood in 

frequency domain analyses. To gain fundamental insights into the nondestructive 

evaluation of water-filled tanks and pipes, we investigate the wave propagation in a plate 

loaded with water on a single side. 

 

2. Semi-analytical finite element method for leaky Lamb waves 

2.1 Frequency response for a point harmonic loading on a surface of a plate 

Since the extension of Ref. [17] yields transient responses for external dynamic 

loading, this section presents the formulation avoiding overlap with equations in Ref. [17]. 

Consider that time-harmonic point loadings )(1 zF δ  and )(2 zF δ  are applied at z=0 on 

surfaces of a plate in contact with semi-infinite fluid media of the common wave velocity 

1Lc  and different density 1ρ  and 2ρ , where y and z are the thickness and longitudinal 

directions, respectively (Fig. 1). Letting a wavenumber of Lamb wave in the +z direction be 

zξ  and a nodal displacement vector in the wavenumber-frequency domain with 2N 

elements on N line nodes be U , the governing equation becomes 

( ) extfluid
zzi FFUMKKK +=−++ 2

3
2

21 ωxx ,  (1) 
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where 1K , 2K , 3K  and M  are known 2Nx2N matrices calculated from material 

properties and thickness of the layered elements, fluidF  is a nodal force vector that acts on 

the plate surfaces from the fluid, extF  is a nodal force vector by external dynamic 

loadings, and ω  is an angular frequency. Using a 2Nx2N matrix Q consisting of the fluid 

density 1ρ , 2ρ  and a wavenumber in the y direction of harmonic wave radiating in fluids 

yξ  and a nodal displacement vector U , fluidF  can be written as 

=fluidF QU
yξ

ω 2

.      (2) 

If external forces act on the plate surfaces in the thickness direction, the external nodal 

force vector becomes 

( )Text FF 000 21 −=F .    (3) 

The governing equation (1) is rewritten as 

ext

y
zzi FUQMKKK =










−−++
x
ωωxx

2
2

3
2

21 .  (4) 

In the Ref. [17], the nonlinear eigenvalue problem of eq. (4) was linearized for 0=extF  

using the characteristics of leaky Lamb waves into the following form as, 

( ) 0=− XBA yξ ,      (5) 

where A and B are (4N+2)x(4N+2) matrices consisting of known matrices 1K , 2K , 3K , 

M , Q , and X  is an unknown 4N+2 vector. Denoting the y and z components of the 

nodal displacement vector U  by yU  (N vector) and zU  (N vector), respectively, and 

the y displacement components on the lower and upper surfaces by 1
yU  and N

yU , the 

unknown vector X  is written as 
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Solving the linear eigenvalue problem with respect to yξ  provides 4N+2 eigenvalues. The 

eigenvalues correspond to 2N outgoing modes, 2N incoming modes and two quasi-Scholte 

modes. Moreover, using the following relationship between the wavenumbers 

222
fzy ξξξ =+ , 222

fzmym ξξξ =+ ,   (7) 

2N pairs of zξ± are obtained, where )( 1Lf cωξ =  is the wavenumber of a plane 

harmonic wave in the fluid. The pair of wavenumber zξ±  stands for forward and 

backward waves. The solutions are classified as shown in Fig.2. 

Following the form of Eq. (6), the right eigenvector for the mth mode is written as 



























=

N
my

my

mzzmym

myym

mzzmym

myym

m
R

ϕ
ϕ
ξξ

ξ
ξξ

ξ

1

2

2

φ
φ
φ

φ

v .     (8) 

Now, consider the solution of Eq. (4) for harmonic loading at z=0. Like our previous 

study[17], Eq. (4) is rewritten in the form of an eigen equation with respect to yξ  as 

( ) ext
y FXBA ~=−x , 








=

0
~ ext

ext F
F .    (9) 

The solution X  of Eq. (9) can be expressed as a linear sum of right eigenvectors m
Rv  

that are obtained from Eq. (5) 
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∑
+

=

=
24

1

N

m
m

R
m vX α .      (10) 

Substituting Eq. (10) into Eq. (9) and multiplying a left eigenvector n
Lv  of Eq. (5) from 

the left provide 

n
Lv ( )XBA yξ− = ( )[ ]∑

+

=

−
24

1

N

m
m

R
n

L
ym

R
n

L
m BvvAvv ξα .  (11) 

Now, using the relationships as 

0== m
R

n
L

m
R

n
L BvvAvv   if nm ≠   (12) 

m
R

n
L

ymm
R

n
L BvvAvv ξ=   if nm = , 

Eq. (11) becomes 

n
Lv ( )XBA yξ− = ( )n

R
n

L
yn

R
n

L
n BvvAvv ξα −  

( ) n
R

n
L

yynn Bvvξξα −= .   (13) 

Because the right-hand side of Eq. (9) becomes ext
n

L Fv ~ , the following equation holds 

( ) =− n
R

n
L

yynn Bvvξξα ext
n

L Fv ~ ,    (14) 

and the amplitude of the nth mode nα  can be obtained as, 

( ) n
R

n
L

yny

ext
n

L

n Bvv
Fv

xx
α

−
−

=
~

.     (15) 

Considering Eqs. (6) and (8), extracting the first to the Nth elements as well as the (N+1)th 

to the 2Nth elements in Eq. (10) gives 

∑
+

=

=
24

1

22
N

m
myymmyy φU ξαξ , ∑

+

=

=
24

1

22
N

m
mzzmymmzzy φU ξξαξξ , 

(16) 

and introducing the following variables 

m
R

m
L

ext
m

L

m Bvv
Fv ~−

=′α ,     (17) 
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Eq. (16) is rewritten as 

( )∑
+

= −
′=

24

1
2

2N

m
my

yymy

ym
my φU

ξξξ

ξ
α , ( )∑

+

= −
′=

24

1
2

2N

m
mz

zyymy

zmym
mz φU

ξξξξ

ξξ
α . 

        (18) 

Using Eq. (7), Eq. (18) becomes 

( )
( )( )( )( )∑

+

= −+−+

+′=
24

1

2N

m
my

fzfzzmzzmz

ymymy
my φU

ξξξξξξξξ
ξξξ

α  (19a) 

( )
( )( )( )( )∑

+

= −+−+

+′=
24

1

2N

m
mz

zfzfzzmzzmz

zmymymy
mz φU

ξξξξξξξξξ
ξξξξ

α  (19b) 

Because the nodal displacement vectors yU  and zU  in Eq. (19) are the 

wavenumber-domain representation, the space-domain nodal displacement vectors are the 

inverse Fourier transform of yU  and zU  as 

zzyy dzi ξξ )eξp(∫
∞

∞−
= Uu , zzzz dzi ξξ )eξp(∫

∞

∞−
= Uu . (20) 

The infinite integration can be calculated by the residue theorem with respect to the 

contour as shown in Fig. 3. Four or five poles zmξ± , fξ±  and 0 exist for each m in Eq. 

(19a) and (19b). If the poles are located on the real axis, the integration paths are selected 

to obtain physically reasonable solutions. Namely, fξ±  and 0 should not be within the 

interior of the integration path. If zmξ±  are real, a positive propagating mode (namely 

0>gmc ) should be included in 0>z  as shown in solid closed curves, while a negative 

propagating mode (namely 0<gmc ) should be included in 0<z  as shown in dashed 

closed curves, where the group velocity of the mth mode gmc  is defined as zmξω ∂∂  for 

real zmξ . Because zmξ±  can be selected positive and negative values arbitrarily, 

assuming zmξ+  is the pole that should be included in the closed path for 0>z  gives the 
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nodal displacement vector in the space domain as 

( )
( )( )( ) )exp(lim2

24

1

2

)(

zii zm

N

m
my

fzfzzmz

ymymy
my

ymy
zmz
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xxxxxx

xxx
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xx
xx ∑

+

=→
→ −++
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)exp(2
24
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=

−′= φ    (21a) 
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1

2
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zii zm

N

m
mz
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zmymymy
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ymy
zmz

x
xxxxxxx
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xx
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+

=→
→ −++
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)exp(2
24

1
zii zm

N

m
mz

zm

ym
m x

x
x

αp ∑
+

=

−′= φ .   (21b) 

Summarizing Eqs. (21a) and (21b) gives 

)exp(
24

1
ziC zm

N

m
mm

F

z

y x∑
+

=

=







= φ

u
u

u , 
zm

ym

m
R

m
L

ext
m

L

m
F iC

x
x

π
Bvv
Fv ~

2= . 

       (22) 

In 0<z , the displacement field can be obtained by replacing zmξ  by zmξ−  as 

)exp(
24

1
ziC zm

N

m
mm

B x−= ∑
+

=

φu , 
zm

ym

m
R

m
L

ext
m

L

m
B iC

x
x

π
Bvv
Fv ~

2−= . (23) 

 

2.2 Displacement field in fluids 

The displacement field in external fluids can be derived from out-of-plane displacement on 

a plate surface. For example, considering a harmonic wave of the mth mode and letting the 

displacement in the y direction on the upper surface (y=y2) at z=0 be 2yy
ymU = , the 

displacement in the z direction in the fluid can be represented as 2yy
ym

ym

zm U =

ξ
ξ  and then a 

displacement vector at an arbitrary position in the upper fluid region 2yy >  for the mth 

mode becomes 
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( ){ }2exp
1

2 yyiziU ymzm
yy

ym
ymzm

m −+







= = xx

xx
u ,  (24) 

where 2yy
ymU =  is obtained from Eq. (22). The displacement vector at an arbitrary position 

in the fluid region can be represented as the superposition of Eq. (24). 

∑
+

=

=
22

1

N

m
muu .      (25) 

 

2.3 Verification of accuracy of the SAFE calculations 

The formulations described above provide the displacement responses at an arbitrary 

position for a harmonic point loading. To verify the accuracy of the SAFE calculation, the 

energy balance of waves propagating in and leaking out from a plate is calculated. 

 An aluminum alloy plate of thickness d having the longitudinal velocity 6310 m/s, 

transverse velocity 3140 m/s and density 2700 kg/m3 and water having the sound velocity 

1485 m/s and density 1000 kg/m3 are used as a waveguide and a leaky medium in this 

study. As shown in Fig. 4 (a), when a point source is located at z=0, the vibration energy 

flows from the cross-sectional boundary Γ1 at z=0 and leaks out from the other boundaries 

Γ2，Γ3 and Γ4. Letting displacements in the y and z directions at an arbitrary position on the 

boundary Γ1 be uy, uz and the normal stress and the shear stress on the boundary be σz, τyz , 

the time-averaged energy flux across Γ1 is represented as 

( )











Γ∗⋅+∗⋅

−
= ∫

Γ1

11 2
Re duuiE yzyZz τσω ,   (26) 

where * denotes complex conjugate and the integration on the cross-sectional boundary Γ1 

was calculated by numerical integration. Similarly, the time-averaged energy flows E2, E3, 

E4 are calculated. Figure 5 (a) shows that energy ratio of outflow to inflow ( ) 1432 / EEEE ++  

is within 1.00±0.01 in the frequency range for various numbers of SAFE elements M = 8, 
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16 and 32, which indicates that the SAFE calculations were executed with very high 

accuracy from the view point of energy balance. 

 In the SAFE calculation, each leaky medium can be replaced with a vacuum 

region by setting the density of the region to zero[17]. When the upper region is a vacuum 

( 02 =ρ ) as shown in Fig. 4 (b), the energy ratio ( ) 132 / EEE +  is also about 1.00 as shown in 

Fig. 5 (b). These results also show that the SAFE calculation is done with high accuracy. 

 

3. Analyses of transient responses for non-destructive inspection of a water-loaded 

plate 

The displacement field calculated in the frequency domain can be converted into 

one in time domain by the inverse Fourier transform. Thus, transient waves at arbitrary 

positions can be calculated and wave propagation can be simulated both in a plate and 

fluids. 

 Considering the guided wave inspection of a tank and a pipe filled with water as a 

typical example, transient waves in a plate loaded with water as shown in Fig. 6 are 

analyzed in this section. Since guided waves in a pipe and a plate have many similar 

features, simulations of leaky Lamb wave propagation in a water-loaded plate are useful to 

obtain basic insight into the physical phenomenon as a first step. Material constants of a 

plate and water are the same as in the previous section and the number of layered elements 

is M=32. 

 A transient load is acting at z = 0 normal to the surface of a vacuum side as 

( ) 







−−= 2

2

2
2exp

σ
p ttfitσ c ,    (27) 

where •  denotes non-dimensional parameters. The non-dimensional time t , 

non-dimensional center frequency cf  and non-dimensional standard deviation of 
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Gaussian distribution σ  are defined using plate thickness d and transverse velocity cT as 

dccdffdtct TTccT /,/,/ σσ === .   (28) 

The other parameters appearing below are also normalized by d, Tcd / , and dcT /  for 

parameters having the dimension of distance, for those of the dimension of time and for 

those of the dimension of frequency, respectively. 

Figure 7 shows the waveforms of input loadings used in the transient wave 

analyses. We investigate four different central frequencies of =cf 0.125, 0.25，0.5, 1 with 

cf3.0
2

=σ . Frequency spectra of the input loadings are illustrated in Fig. 8 (a). 

 Figures 8 (a) - (c) are dispersion curves for phase velocity, group velocity and 

attenuation calculated with the SAFE for the aluminum plate water-loaded on the single 

surface. (a) and (b) show only propagating modes having the imaginary part of 

wavenumber smaller than 1)Im( =zmξ . Here we define the group velocity gc  as 

)Re( zξω ∂∂ , because the group velocity calculated from time-averaged Poyting vector 

and energy velocity flux are almost identical to )Re( zξω ∂∂  within small attenuation 

)Im( zmξ  range [36]. We can estimate the degree of velocity dispersion from the dispersion 

curves and the frequency spectra of input loadings. 

 Figures 9 - 12 are the time-variation of displacement in the y direction at six 

positions ( ) == dzz / 0, 100, 200, 300, 400, 500 on the lower plate surface contacting to 

water, and the distributions of displacement in the y direction at a representative time. 

Because the amplitude is much larger at =z 0 than the other distances in (a), the 

waveforms were magnified by the numerical factor indicated. Additionally, in (a), the 

expected arrival times of different modes are indicated by dashed lines that were calculated 

from the group velocities at cff = . Note that Lamb wave modes are now called S or A in 
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accordance with Lamb waves in a plate with traction-free boundaries. Strictly speaking, 

each mode does not have symmetric or anti-symmetric displacement distributions with 

respect to the center-line of a plate because the boundary conditions on the upper and lower 

surfaces are not identical. However, as displacement distributions maintain approximately 

symmetric or anti-symmetric forms and the dispersion curves of phase and group velocities 

are only slightly different from those in a plate with traction-free boundaries, we call them 

symmetric (S) or anti-symmetric (A) modes in this paper. Apart from S and A modes, the 

mode with the velocity close to water appearing in the phase and group velocity dispersion 

curves is an interface wave propagating at the interface between a plate and fluid, called a 

quasi-Scholte mode. 

 In the lowest frequency band of =cf 0.125, three propagating modes exist; S0, A0 

and a quasi-Scholte mode. In Fig. 9, the quasi-Scholte mode appears in large amplitude and 

very small S0 mode can be seen at 100≥z , while the A0 mode disappears. This can be 

explained by the characteristics that both S0 and quasi-Scholte modes have small attenuation 

and dispersion in the frequency band around =cf 0.125. For example, the attenuation 

coefficient )Im( zmξ  of the S0 mode at =cf 0.125 is 41077.6 −× , and so the amplitude of 

harmonic S0 mode at =z 500 is 713.05001077.6 4

=××− −

e  times of its amplitude at =z 0. In 

addition, the group velocity dispersion curve of the S0 mode in Fig. 8 (b) represents that it is 

a weakly dispersive mode in this frequency band. The quasi-Scholte mode can also 

propagate over long distances because the attenuation coefficient is zero over the whole 

frequency range and its dispersion is small beyond the frequency region of =cf 0.125. It 

should be noted that the quasi-Scholte wave in the low frequency range has a dispersive 

characteristic because the interface wave is affected by the opposite surface of the plate. A 

Scholte mode at the interface between semi-infinite solid and fluid media is generally known 
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to be non-attenuated and non-dispersive, which corresponds to the high frequency range in 

this study. On the other hand, we cannot find a waveform of the A0 mode in Fig. 9 (a). 

Out-of-plane vibration, an A0 mode, is generated in a plate significantly when an 

out-of-plane loading acts on a surface of a plate with no fluids. However, for a water-loaded 

plate, the A0 mode disappeared due to its large attenuation. In the attenuation curves of Fig. 8 

(c), the attenuation coefficient )Im( zmξ  of the A0 mode indicates 0.144, which means that 

the A0 mode may disappear over 100≥z  because the A0 mode amplitude at =z 100 

becomes 7100144.0 1072.5 −×− ×=e  times of that at =z 0. On the contrary, since all propagating 

and non-propagating modes are superposed at =z 0 just under the point source, a large 

waveform can be observed at the opposite surface of the source. It should be noted that the 

waveform at z=0 in Fig. 9 (a) is reduced to 1/5 of the others to recognize the waveforms in 

the same figure. 

 Figures 9 (b) and (c) are snapshots of displacement distribution in the range from 

=z 90 to 110 for =cf 0.125. The mesh deformation expresses the two-dimensional 

displacement field and the gray scale in the region means the vertical displacement uy. 

Figure 9 (b) shows the snapshot at 75=t  when the S0 mode arrives at the region from =z

90 to 110. The vertical displacement in the plate region has the opposite phase at the upper 

and lower surfaces as shown in Fig. 9 (b) and the leaky waves of the S0 mode form an 

oblique plane wave. These are typical features of leaky Lamb waves. 

 Figure 9 (c) is the snapshot at 188=t  when the quasi-Scholte mode arrives. 

Although a Scholte wave is known as an interface wave that concentrates at a solid-liquid 

interface in energy, the quasi-Scholte mode in the low frequency range accompanies 

vibration over the whole cross-section of the plate. Furthermore, the wavefront in water is 

vertical to the plate surface, because the phase velocity of the quasi-Scholte mode almost 

equals to the sound speed of water. 
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 Figure 10 (a) represents the y-directional displacement at the same six positions for 

=cf 0.25. Similarly, the waveform at =z 0 is much larger than that of 100≥z , showing 

that the waveform contains the highly attenuated A0 mode and the other non-propagating 

modes together with the quasi-Scholte mode. And the S0 and quasi-Scholte modes can 

propagate over long distances like in the case of the low frequency range of =cf 0.125. 

Unlike the waveforms at =cf 0.125 shown in Fig. 9 (a), the wave packets in Fig. 10 (a) are 

more localized due to their higher frequency components and the nearly non-dispersive 

nature of quasi-Scholte mode. These features are useful in the non-destructive inspection. 

Figure 10 (b) shows that the S0 mode at =cf 0.25 has vibration over the whole thickness 

like in Fig. 9 (b), while the quasi-Scholte mode in Fig. 10 (c) propagates with larger 

amplitude at the lower plate surface. This indicates that the quasi-Scholte mode is more 

effective for defect detection of the lower water-loaded surface. 

 Next, Fig. 11 (a) represents the y-directional displacement at the same six positions 

for =cf 0.5. The A0 mode disappears over ≥z 100 due to its large attenuation coefficient 

0795.0)Im( =zmξ  like in =cf 0.125 and 0.25. The S0 mode gradually becomes smaller as it 

propagates due to attenuation and dispersion. The quasi-Scholte mode cannot be clearly seen 

at =z 100 because of the superposition of A1 mode that spreads widely. As they propagate, a 

sharp pulse of quasi-Scholte mode can be observed. This feature is caused by the facts that 

the A1 mode amplitude decreased by the dispersion and attenuation and that the 

quasi-Scholte mode retained its pulse shape due to non-dispersion and non-attenuation 

natures. 

 Figures 11 (b) and (c) are snapshots showing vibration distributions at the two 

points in Fig. 11 (a). Figure 11 (b) corresponds to 424=t  when the A1 and quasi-Scholte 

modes overlapped at =z 190 to 210, and (c) to one at 1058=t  when the A1 mode 
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disappeared and only the quasi-Scholte mode remains in the region of =z 490 to 510. In (b), 

we can see the oblique pattern of leaky wave of the A1 mode as well as the vertical pattern of 

the quasi-Scholte mode. While in (c), we can observe only the quasi-Scholte mode that 

concentrates at the lower water-loaded surface of the plate. 

 Finally, we discuss the displacement at the six positions at =cf 1 and the vibration 

distributions at =t 179 at =z 190 to 210 in Fig. 12. Only a single attenuated and dispersive 

mode can be seen in Fig. 12 (a). The displacement distribution in the plate shown in Fig. 12 

(b) proves that the mode has a symmetric distribution with respect to the centerline of the 

plate. Judging from the attenuation curves, it is likely that the mode remaining even at =z

500 is the S1 mode having small attenuation at around =cf 1.2. The group velocity of the S1 

mode at =cf 1.2 is slightly higher than one at the center frequency of =cf 1. Therefore we 

can observe the wave packet slightly faster than the dashed line of S1 mode. 

 From the calculation results shown above, when Lamb waves are generated in a 

plate water-loaded on a single surface by dynamic loads on the other vacuum surface, a 

quasi-Scholte mode is also excited. Because it is a non-attenuated and weakly dispersive 

wave which propagates over long distances, the quasi-Scholte mode is very effective for the 

non-destructive inspection of the plate loaded on one side by water. Although the 

quasi-Scholte mode can be excited on the water-loaded surface in the low frequency range 

such as =cf 0.125 and 0.25, it is not very sensitive to small defects at the water-loaded 

surface because its vibration energy spreads over the plate thickness. In contrast, in the high 

frequency range as =cf 0.5 and 1, the quasi-Scholte mode would be effective for such 

defects because the energy concentrates at the water-loaded surface. However, dynamic 

loading on the opposite surface results in poor generation efficiency. In summary, in order to 

use the quasi-Scholte wave in a long-range inspection, we need to find the appropriate 
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frequency band by considering the generation efficiency and defect detectability besides its 

attenuation and dispersion. 

 

4. Conclusions 

We extended formulation of the semi-analytical finite element method for leaky 

Lamb waves so as to calculate transient responses of dynamic loading on the surfaces of a 

fluid-loaded plate. Using eigenvalues and eigenvectors obtained from an eigenvalue 

problem of a plate loaded with fluids, amplitudes of guided wave modes were calculated 

for dynamic point loading in frequency-wavenumber domains. Converting the 

displacements in frequency-wavenumber domains into those in time-space domains, we 

obtained transient responses at arbitrary positions. In order to gain basic insight into the 

guided wave inspection of water-filled pipes and tanks, transient responses in a flat plate 

that is loaded with water on a single surface and with dynamic force on the other vacuum 

surface were analyzed. The results showed that the quasi-Scholte mode at the plate-water 

interface propagates over long distances due to the features of non-attenuation and small 

dispersion. In the low frequency range, we can generate the quasi-Scholte mode effectively, 

but it accompanies vibration over the whole cross-section of a plate and is expected to be 

insensitive to small defects on a water-plate surface. On the other hand, the quasi-Scholte 

mode concentrates on the water-plate interface in the high frequency range and it is sensitive 

to defects on the inner surface, but we cannot generate it effectively by dynamic loading on 

the vacuum surface. It remains as a subject of future study to explore the optimal frequency 

range to achieve efficient generation and high defect-sensitivity of the Scholte mode.  
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Figure Captions 

Fig. 1. Layered elements and leaky media for the SAFE calculation. 

 

Fig. 2. Classification of eigenvalues obtained from Eq. (5). 

 

Fig. 3. Integral paths in Eq. (20). 

(a) zmξ  is real and (b) zmξ  is complex. 

 

Fig. 4. Regions for verifying calculation accuracy of the SAFE calculations.  

(a) A plate loaded with water on both surfaces and (b) a plate loaded with water on a single 

surface. 

 

Fig. 5. Ratio of outflow energy to inflow energy. 

(a) A plate loaded with water on both surfaces and (b) a plate loaded with water on a single 

surface. 

 

Fig. 6. Calculation region for transient wave analysis. 

 

Fig. 7. Waveforms of dynamic loading on the upper surface at z=0 used in this study. 

 

Fig. 8. Dispersion curves for an aluminum plate with water on a single surface. 

(a) Phase velocity , (b) group velocity and (c) attenuation. 

 

Fig. 9. Waveforms at six positions and displacement distributions for input loading of 

=cf 0.125. (a) Displacement in the y direction, (b) snapshot at 75=t and =z 90 - 110, 
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and (c) snapshot at 188=t  and =z 90 - 110. 

 

Fig. 10. Waveforms at six positions and displacement distributions for input loading of 

=cf 0.25. (a) Displacement in the y direction, (b) snapshot at 119=t and =z 190 - 210, 

and (c) snapshot at 424=t  and =z 190 - 210. 

 

Fig. 11. Waveforms at six positions and displacement distributions for input loading of 

=cf 0.5. (a) Displacement in the y direction, (b) snapshot at 424=t and =z 190 - 210, 

and (c) snapshot at 1058=t  and =z 490 - 510. 

 

Fig. 12. Waveforms at six positions and displacement distributions for input loading of 

=cf 1. (a) Displacement in the y direction, and (b) snapshot at 179=t and =z 190 - 210. 
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Fig.1.  
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Fig. 2. 

  

Eq. (5)

4N+2 eigenvalues
ξym

2N Outgoing modes

2N Incoming modes

2 quasi-Scholte modes

2N Outgoing forward modes 
2N Outgoing backward modes 
2N Incoming forward modes   
2N Incoming backward modes 
2 quasi-Scholte forward modes        
2 quasi-Scholte backward modes   

Eq. (7)
+ξzm
–ξzm
+ξzm
–ξzm
+ξzm
–ξzm
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Fig. 6.  
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Fig. 7.  
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Fig. 8.  
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Fig. 9.  
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Fig. 10.  
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