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1 Introduction

In general, bigravity, i.e., the gravitational model that contains two gravitons interacting
with each other, was known to be suffered from an unavoidable ghost mode, which is called
Boulware-Deser (BD) ghost [1]. Recently, however, the restriction of the interaction to
the specific form of non-derivative coupling proposed by de Rham, Gabadadze and Tolley
(dRGT) in massive gravity [2, 3] is found to evade the BD ghost problem also in the ghost-
free bigravity [4–6]. This ghost-free bigravity allows us to investigate many applications
of bigravity to building a cosmological model, which revealed that the ghost-free bigravity
can be consistent with the observation of the current universe [7–25], although there exists
some constraints on the model construction to avoid the gradient instability in cosmological
perturbation at the early epoch [8, 11, 12, 26]. As a challenge to the viability of the model
there are also discussions about the superluminality and acausality pointed out in the context
of massive gravity [27–30], or the stability of the tuning of the ghost-free interaction against
radiative corrections [31, 32].

The interaction between two metrics different from the dRGT form must be suppressed
to realize a viable model, but we do not know the mechanism that realizes such fine tuning.
In order to find a clue to this fine-tuning problem and also to give a UV completion of the
ghost-free bigravity model, we attempted to derive the ghost-free bigravity as a low-energy
effective theory starting with a healthy braneworld setup, which is naturally expected to be
free from BD ghost [33]. In order to derive bigravity from the braneworld setup, we have to
realize the mass hierarchy between the lowest massive Kaluza-Klein (KK) mode and the other
KK modes. We considered Dvali-Gabadadze-Porrati (DGP) 2-brane model [34], because
the Einstein-Hilbert terms localized on the branes effectively trap graviton modes on the
respective branes, and as a consequence only the lowest and the second lowest masses of KK
towers of gravitons, which correspond to these two localized modes, can be made to be light
by tuning the contributions of the brane localized Einstein-Hilbert terms to be large compared

with the bulk one [33, 35]. This tuning is achieved by setting ∆y/r
(±)
c ≪ 1, where ∆y is

the brane separation and r
(±)
c := M

(±)2
pl /2M3

5 with M
(±)
pl and M5 being the 4-dimensional

Planck masses for the brane localized Einstein-Hilbert terms and 5-dimensional Planck mass,
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respectively. An alternative way to lead to bigravity by discretizing the extra-dimension has
been investigated in ref. [36].

In this paper, we do not introduce any radion stabilization mechanism which fixes
the brane separation, and hence there exists a scalar radion corresponding to the degree of
freedom of the brane separation. Namely, the low-energy effective action should consist of
two gravitons and one scalar radion. This model is even simpler to analyze because we do
not have to employ the stabilization mechanism. Nevertheless, since the radion couples to
both induced metrics on branes, there is a possibility that the low-energy effective theory
derived from DGP 2-brane model may naturally give a non-trivial ghost-free doubly-coupled
matter model different from the previously proposed ones [37–43]. Here, we should recall
that DGP 2-brane model has two branches: the self-accelerating branch inevitably has either
the Higuchi ghost or the radion ghost, while the normal branch is free from ghost when de
Sitter universe is investigated [44, 45]. In order to get the ghost-free branch, we need to set

the model parameters to satisfy 1 − 2r
(±)
c (nµ(±)∂µ log a) > 0 on the respective branes [33],

where a is the background bulk warp factor and nµ(±) is the unit normal vector pointing
toward the bulk on each brane. If we assume that the values of the extrinsic curvature on
both branes are approximately the same, i.e., K ≈ K+ ≈ K− ≈ ∓4(nµ(±)∂µ log a), the above

condition requires |K| . 1/r
(±)
c . Combining the condition ∆y/r

(±)
c ≪ 1, the region of the

model parameters of our interest is restricted to

|K∆y| ≪ 1 . (1.1)

Since our interest is in the regime with small K∆y, we use the gradient expansion [46] to
construct the bulk solution. We can systematically expand the action with respect to the
small quantity, K∆y. Since the higher-order terms in the gradient expansion cannot cancel
the lower-order ones, we naively expect that the action at each order is kept free from ghost.
In this paper we consider the lowest order truncation of the gradient expansion. In order to
obtain the action of the low-energy effective theory written in terms of the metrics on the

(±)-branes, g
(±)
µν , we solve the bulk equations for given boundary metrics g

(±)
µν at the lowest

order of the gradient expansion, and then we integrate out the bulk degrees of freedom by
substituting back the obtained bulk solution into the action and performing the integration
along the extra dimension. Our method using the gradient expansion will not always give a
ghost-free effective action even if we start with a healthy higher dimensional model because
the higher order corrections in the gradient expansion would naturally derive higher-derivative
terms in the effective action which seem to introduce extra degrees of freedom including ghost
modes in addition to the expected ones, which are two graviton modes and one scalar radion in
the present case. We should interpret that the appearance of such extra degrees of freedom is
responsible for the other bulk degrees of freedom with higher masses, which are in the present
setup the massive KK gravitons with the mass squared of O(∆y−1) or higher. Therefore,
the appearance of extra degrees of freedom itself will not directly indicate the breakdown of
the gradient expansion. Although it would be unsatisfactory if such higher derivative terms
remain even in the final result of the low-energy effective action, they should be understood
to be treated by means of the method of order reduction, then.

Besides the fine-tuning problem of the ghost-free interaction form, the extension of
the ghost-free bigravity to braneworld setup may solve the issue of gradient instability in
cosmology and acausality, since both of them seem to be absent in the braneworld setup.
The main difference between bigravity and the brane model will originate from the presence

– 2 –
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of the extra massive graviton modes in the braneworld setup, which are inactive at low
energies but will play a crucial role at high energies. Also, we expect that the stability
against radiative corrections might be understood well from the viewpoint of the braneworld
setup. However, our study presented in this paper is not matured yet to address these issues.

This paper is organized as follows: in section 2, we introduce the braneworld model that
we consider in this paper and explain the strategy to obtain the effective action. In section 3,
we start with the derivation of the effective action to the quadratic order in perturbation
around a de Sitter brane background solution, and show that the obtained effective action
contains the expected two gravitons and one scalar radion. In section 4, we analyze the
equation of motion derived from the effective action obtained in section 3 with source energy
momentum tensor and investigate the positivity of the action when we integrate out all the
gravitational field degrees of freedom. In section 5 we extend the method to obtain the
effective action to the nonlinear level. In section 6, we summarize the result and discuss
possible future extension of the current work.

2 Model

We consider DGP two-brane model without the radion stabilization, whose action is
written as

S = Sb +
∑

σ=±

Sσ , (2.1)

where

Sb :=
1

2

M2
pl

2r
(+)
c

∫

d5x
√

−5g

(

5R− 12

ℓ2Λ

)

, (2.2)

S+ :=
M2

pl

2

∫

d4x
√

−g(+)

(

R(+) − 2σ+
)

, (2.3)

S− :=
χM2

pl

2

∫

d4x
√

−g(−)

(

R(−) − 2σ−
)

, (2.4)

where 5gµν ,
5R, g

(±)
µν , R(±) are the 5-dimensional metric, 5-dimensional Ricci scalar, 4-dimen-

sional metrics and Ricci scalars induced on (±)-branes, respectively. Mpl is the 4-dimensional

Planck mass on (+)-brane, whileM2
pl/2r

(+)
c and χM2

pl are the 5-dimensional bulk Planck mass
cubed and 4-dimensional Planck mass squared on the (−)-brane, respectively. σ± are the 4-
dimensional cosmological constants on the respective branes, while 6/ℓ2Λ is the 5-dimensional
cosmological constant. The equation of motion in the bulk spacetime is given as

5Rµν −
1

2
5R 5gµν +

6

ℓ2Λ
= 0 . (2.5)

Here, we assume the Z2 symmetry across each brane. We adopt S1/Z2 orbihold identification
where the left hand side and right hand side with respect to each brane are identical. Then,

the extrinsic curvatures on the (±)-branes, K
(±)
µν , are determined by the Israël’s junction

conditions:
K(±)

µν −K(±)g(±)
µν = ±r(±)

c

(

G(±)
µν + σ±g

(±)
µν

)

, (2.6)

where r
(−)
c := r

(+)
c χ.

– 3 –
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We will derive the low-energy effective action from (2.1), by solving the bulk metric
for given boundary metrics on the branes and integrating out the bulk degrees of freedom.
In this paper, we employ the gradient expansion to find the bulk metric, assuming that the
brane separation is sufficiently small compared with the 5-dimensional curvature scale, and
hence the metrics on the both branes are identical at the leading order of the small separation
expansion. Here, we describe the strategy to obtain the effective action in more detail. At
the lowest order of the expansion, we can set the following ansatz:

ds2 = N2(x)dy2 + gµνdx
µdxν , (2.7)

while the (±)-branes locate at y = y±, respectively. We use the gauge degrees of freedom
to choose the lapse N and the shift Nµ in the above form. Namely, we imposed ∂yN = 0

and Nµ = 0. For given boundary geometries specified by g
(+)
µν (x)dxµdxν and g̃µν(x̃)dx̃

µdx̃ν

(g
(−)
µν (x) is reserved for later use) on the respective branes, we should be able to find an ap-

propriately interpolating bulk solution by solving the bulk equation of motion. Decomposing
the bulk equations (2.5) with respect to the y = constant hypersurfaces under the above
gauge fixing condition (2.7), we obtain

∂ỹKµν = −2Kρ
µKρν +KKµν +

4

ℓ2Λ
gµν −Rµν +

N;µν

N
, (2.8)

Kµν = −1

2
∂ỹgµν , (2.9)

K2 −Kµ
νK

ν
µ = −12

ℓ2Λ
+R , (2.10)

K;µ −Kν
µ;ν = 0 , (2.11)

where we define ∂ỹ ≡ 1
N
∂y. Kµν and Rµν are the extrinsic curvature and the 4-dimensional

Ricci tensor evaluated on each y-constant surface, respectively. Here, we stress that gµν and
Kµν are defined not on the ỹ ≡ Ny = constant hypersurface, but on the y = constant one.
f;µ is the covariant derivative of the field f associated with the 4-dimensional metric gµν (We
reserve ∇µ for later use). The indices are raised and lowered also using gµν .

Once we fix the way how to relate the 4-dimensional coordinates on one brane with
those on the other by the gauge choice of the bulk metric, the coordinates on the other brane
is specified. If we adopt the above bulk metric ansatz (2.7), the way of connecting between
two branes is completely specified. In these specific coordinates, the metric is given by

g(−)
µν (x) =

∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃) , (2.12)

and g
(−)
µν (x) cannot be chosen arbitrarily. If we solve eqs. (2.8)–(2.10) (excluding (2.11)) with

the boundary metrics g
(+)
µν and g

(−)
µν , the coordinate transformation x̃α(x) is constrained by

the momentum constraint (2.11). Using the gradient expansion, we can expand gµν around
the middle point ȳ = 0 in the bulk as

g(±)
µν = ḡµν + ∂ỹgµν ỹ

± +
1

2
∂ỹ 2gµν(ỹ

±)2 + · · · , (2.13)

where ḡµν := gµν(0), and ỹ
± ≡ N(x)y±. As we set ȳ = 0, the values of ỹ on the respective

branes are related with each other as ỹ− = −ỹ+. Since the positions of the (±)-branes in y

– 4 –
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are fixed at ∓y0, respectively, we have

ỹ+ = −Ny0 < 0 , ỹ− = Ny0 > 0 . (2.14)

Using the expression (2.13) and the evolution equations (2.8) and (2.9), we can obtain ḡµν

and K̄µν in terms of g
(±)
µν and ỹ+, and then the Hamiltonian constraint (2.10) determines ỹ+

and hence N in terms of g
(±)
µν . The effective action written in terms of g

(±)
µν should be given

by substituting the bulk solution into the action

S =
M2

pl

2r
(+)
c

∮

d5x
√−g

(

R+K2 −Kµ
νK

ν
µ − 12

ℓ2Λ

)

+
M2

pl

2

∫

d4x
√

−g(+)

(

R(+) − 2σ+
)

+
χM2

pl

2

∫

d4x
√

−g(−)

(

R(−) − 2σ−
)

, (2.15)

where the 5-dimensional Einstein-Hilbert action is also decomposed into the 4+1 form with
respect to the y = constant hypersurfaces. Since the integrand of eq. (2.15) does not include
any second derivative of the metric in the y-direction, the boundary Gibbons-Hawking terms
on the branes are unnecessary in this expression. The integral along y-direction reduces
to integrals of simple powers of y by expanding the integrand at y = 0 with the aid of
the gradient expansion. We do not manifestly impose the momentum constraints, because
they are automatically imposed later. As long as the extrinsic curvatures evaluated on the

branes, K
(±)
µν , for the obtained bulk solution, agree with the ones that are derived from the

variation of the effective action with respect to g
(±)
µν , as is expected, we obtain the junction

conditions (2.6) from the variation of the effective action. By taking the divergence of the
junction conditions (2.6), the right hand side identically vanishes, and hence we find that the
momentum constraints (2.11) are imposed.

3 Perturbation around de Sitter spacetime

First, we consider the perturbation around a de Sitter brane solution with the comoving
curvature H and calculate the effective action quadratic in the perturbation, as a warm-up.
The background spacetime is given by

ds2 = dy2 + a2(y)γµνdx
µdxν , (3.1)

where we set N = 1, a(y = 0) = 1 and γµν is the 4-dimensional de Sitter metric with
the expansion rate H. Then the background solution is determined by the Hamiltonian
constraint (2.10) and the junction condition (2.6):

H :=
∂ya

a
= ±

√

− 1

ℓ2Λ
+
H2

a2
, (3.2)

∓H± = r(±)
c

(

−σ±
3

+
H2

a2±

)

, (3.3)

where H± := H (y = ∓y0) and a± := a (y = ∓y0). As we choose the convention that H(y =
0) > 0, the (+)-brane should have a positive tension (σ+ > 0). Then, eq. (3.2) is solved as

H = − 1

ℓΛ
tan

(

y

ℓΛ
+A

)

, (3.4)

– 5 –
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which is the background value of −K/4, with the integration constant

A = − arccos

(

1

ℓΛH

)

(< 0) . (3.5)

Then we obtain

a = B cos

(

y

ℓΛ
+A

)

, (3.6)

with the integration constant
B = ℓΛH . (3.7)

Using the above expression, we find

H± := H (∓y0) =
1

ℓ̃Λ
±H2y0 +

1

ℓ̃Λ
O(H2y20), (3.8)

where we define ℓ̃Λ by

ℓ̃−1
Λ := H(y = 0) =

√

−ℓ−2
Λ +H2 . (3.9)

We represent the perturbation around this background as

g(±)
µν = a2(∓y0)

(

γµν + h(±)
µν

)

, (3.10)

N = 1 + x , i.e. , ỹ± = ∓y0(1 + x) . (3.11)

Here we note that the value of y-coordinate at the location of the perturbed (+)-brane
remains to be y = −y0 in our coordinate system. To make the calculation easier, we define
new variables as

Gµν (y) := a−2(y)gµν(y) , (3.12)

Kµν (y) := a−2(y)

(

Kµν(y) +
H(y)

N
gµν(y)

)

, (3.13)

so as to isolate the y-dependence related to the background warp factor a(y). Then, with
these new variables, eqs. (2.8)–(2.11) become

∂ỹKµν = −2Kρ
µKρν +KKµν −

H
N

KGµν − 4
H
N

Kµν

+

(

4

ℓ2Λ
+ 4

H2

N2
+
∂ỹH
N

)

Gµν − a−2Rµν + a−2N;µν

N
, (3.14)

Kµν = −1

2
∂ỹGµν , (3.15)

K2 − 6
H
N

K −Kµ
νKν

µ = R− 12

(H2

N2
+

1

ℓ2Λ

)

. (3.16)

We expand G(±)
µν as

G(±)
µν = Ḡµν + ∂yGµν ỹ

± +
1

2
∂2yGµν(ỹ

±)2 + · · ·

= Ḡµν − 2K̄µν ỹ
± − ∂ỹKµν(ỹ

±)2 + · · · , (3.17)

where the overbar denotes the value evaluated at y = 0.

– 6 –
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In the following, we only keep the lowest order in the gradient expansion, i.e., the leading
order of

ǫ := |Ky0| , (3.18)

and calculate the effective action up to the quadratic order of the metric perturbation. We

want to investigate the parameter region with 1∓2r
(±)
c H± > 0, in which both radion and the

massive gravitons are healthy [33]. Under the gradient expansion ǫ≪ 1, namely, |K| becomes

O
(

1/r
(±)
c

)

at most. We are also interested in the regime in which the mass squared of the

lowest mode of massive gravitons is comparable to the 4-dimensional momentum squared.
In ref. [33], the mass squared of the lowest mode of massive gravitons is evaluated as

m2 ≃ 1

2r
(+)
c y0

(

1 +
1

χ

)

∼ O
(

|K|2/ǫ
)

, (3.19)

at the lowest order of the gradient expansion. Therefore, H2 and the 4-dimensional momen-
tum squared become O

(

|K|2/ǫ
)

, and then ℓ−2
Λ should be tuned so that ℓ̃−2

Λ = −ℓ−2
Λ +H2 ∼

O
(

K2
)

is much smaller than H2 ∼ O
(

|K|2/ǫ
)

. This requires the tuning of the background
expansion rate H to ≈ ℓ−1

Λ , the value determined by the bulk cosmological constant. Fur-
thermore, the Hamiltonian constraint (2.10) requires that R − 12ℓ−2

Λ ∼ O
(

K2
)

. Also the
junction conditions (2.6) will imply that the traceless part of Rµν becomes O

(

K2
)

, while

the trace part of R
(±)
µν cancels with the brane tension σ± at the leading order of the gradient

expansion in eq. (2.6). Therefore Rµν is given as

Rµν ∼ 3ℓ−2
Λ gµν +O

(

K2
)

. (3.20)

From these conditions, the amplitudes of the matter energy momentum tensors on the re-
spective branes are severely restricted, which does not allow us to use the present model to
describe the system in which the background energy scale varies by a large amount.

With this understanding, we evaluate Kµν at the middle point y = 0 from eq. (3.17) as

K̄µν = −G(+)
µν − G(−)

µν

4ỹ+
+ · · ·

=

(

x

ℓ̃Λ
γµν +

1

4y0
∆hµν

)

(1− x) +O (ǫhK) , (3.21)

assuming that x ∼ O
(

ǫ0h
)

, which will be confirmed later. Here we define

∆hµν := h(+)
µν − h(−)

µν ∼ O (ǫh) . (3.22)

The first term in the parentheses in eq. (3.21) comes from the factor a−2(y) in the definition
of Gµν (3.12). In order to raise the subscript of K̄µν as well as to compute R̄, we also need
Gµν evaluated at the middle point, which is also computed from (3.17) as

Ḡµν =
1

2

(

G(+)
µν + G(−)

µν

)

+ ∂ỹKµν(ỹ
+)2 + · · ·

= γµν + h̃µν + 2H2xy20γµν +H2 (xy0)
2 γµν

+ (1 + x) (∇µ∇νx) y
2
0 +O

(

ǫ2, ǫh
)

, (3.23)

– 7 –
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where ∇µ is the covariant differentiation associated with γµν and we define

h̃µν :=
1

2

(

h(+)
µν + h(−)

µν

)

. (3.24)

Here we also use eq. (3.14) but only its last three terms where ℓ−2
Λ and R̄µν are replaced

by H2 and 3H2ḡµν , respectively, contribute to (3.23) at the order of the present approxi-
mation. At the 1st order of the metric perturbation h, the Hamiltonian constraint (3.16)
determines x(1) as

x(1) = − ℓ̃Λ
16y0

∆h− ℓ̃2Λ
24
R̄(1) +O (ǫh) =: − ℓ̃Λ

16y0
Φ+O (ǫh) , (3.25)

where x and R̄ are expanded as A = A(1) + A(2) + · · · with respect to order of the metric
perturbation h. The last equality defines a new variable Φ, which represents the rescaled
perturbation of the brane separation. R̄(1) is obtained from eq. (3.23) as

R̄(1) = Lµν
(

h̃µν + 2H2y20x
(1)γµν

)

+O
(

ǫhK2
)

=
1

1− Ĥ2�̂
Lµν

(

h̃µν −
Ĥ2

4
∆hγµν

)

+O
(

ǫhK2
)

, (3.26)

where we define

Lµν := ∇µ∇ν −
�

4
γµν −

3

4

(

�+ 4H2
)

γµν , � := ∇µ∇µ , (3.27)

and

α :=
y0ℓ̃Λ
2

, Ĥ2 := αH2 , �̂ := α
(

�+ 4H2
)

.

To arrive at the last expression in eq. (3.26), we formally solved the differential equation
obtained by substituting eq. (3.25) into the first equality in eq. (3.26), and we also use the
identity

Lµν∇µAν = 0 , (3.28)

which holds for an arbitrary vector Aν . Here, we need to discuss the boundary conditions
for the inverse of the differential operator 1 − Ĥ2�̂. One may think that the non-local
operator (1 − Ĥ2�̂)−1 may bring an extra degree of freedom corresponding to the pole at
�̂ = Ĥ−2. However, we know that there is no physical mode at �̂ = Ĥ−2 from the linear
perturbation analysis [33, 45]. In order to avoid the appearance of such an unphysical degree
of freedom, we should understand that the non-local operator (1−Ĥ2�̂)−1 is to be expanded
as 1 + Ĥ2�̂ + Ĥ4�̂2 + · · · by restricting the energy scale to Ĥ2�̂ < 1. When H ≈ m

and the normal branch is chosen: 1 ∓ 2r
(±)
c H± > 0, the allowed energy region where our

approximation is justified is estimated as

�+ 4H2 . O
(

K2 r
(+)
c

y0

)

. O
(

m2
)

, (3.29)

which is marginally consistent with the energy scale we wish to discuss. Interestingly, we
will find later that, even if we keep this pole at �̂ = Ĥ−2, its contribution to the metric
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perturbation is not sourced by the matter energy momentum tensors localized on the branes.
Substituting eq. (3.26) into eq. (3.25), we obtain

Φ = −16y0

ℓ̃Λ
x(1) = ∆h+

4α

3

1

1− Ĥ2�̂
Lµν

(

h̃µν −
Ĥ2

4
∆hγµν

)

. (3.30)

Equipped with the solution to the linear order in ǫ, we can evaluate the Hamiltonian
constraint (3.16) at the 2nd order of h as

− 6

ℓ̃Λ

[

4x(2)

ℓ̃Λ
−
(

∆h

4y0
+

4x(1)

ℓ̃Λ

)

x(1)

]

− 12x(1) 2

ℓ̃2Λ
− x(1)∆h

2ℓ̃Λy0
− ∆hµν∆hµν

16y20
+O

(

ǫh2K2
)

= R̄(2) , (3.31)

where R̄(2) can be more explicitly expressed using eq. (3.23) as

R̄(2) = y20Lµν

[

x(1)∇µ∇νx
(1) +H2

(

x(1)
)2
γµν + 2H2x(2)γµν

]

+O
(

ǫh2K2
)

. (3.32)

Then, as in the case of x(1), x(2) is solved as

x(2) =
1

1− Ĥ2�̂

ℓ̃2Λ
384y20

[

∆h2 −∆hµν∆hµν −
3

4
Φ2 + 4αΦR̄(1)

−α
2

4
Lµν

(

Φ∇µ∇νΦ+H2Φ2γµν
)

]

+O
(

ǫh2
)

. (3.33)

Therefore, the total second-order effective action

S =
M2

pl

2

[

1

2r
(+)
c

∮

d5x2
√−g

(

R− 12

ℓ2Λ

)

+

∫

d4x
√

−g(+)

(

R(+) −
6H2

a2+

)

+ χ

∫

d4x
√

−g(−)

(

R(−) −
6H2

a2−

)

]

, (3.34)

is expressed in terms of g
(±)
µν as

1

2r
(+)
c

∮

d5x2
√−g

(

R− 12

ℓ2Λ

)

=
1

r
(+)
c

∫ −y+0

y+0

Ndy

∫

d4x2
√−γ

{

12

ℓ̃2Λ
+ Lµν

(

ḡµν − ỹ2∂ỹKµν

)

+O
(

ǫh2K2
)

}

=
1

r
(+)
c

∫

d4x 2
√−γ

{

2Ny0

(

12

ℓ̃2Λ
+ R̄(1) + R̄(2)

)

− 2

3
Ny30Lµν

(

N∇µ∇νN +N2H2γµν
)

+O
(

ǫ2h2K
)

}

=

∫

d4x
√−γ 1

8r
(+)
c y0

(

384

(

y0
ℓΛ

)2
(

1− 4Ĥ4
)

x(2) − 4αΦR̄(1) +O
(

ǫ3h2
)

)

=

∫

d4x
√−γ m2

∗

{

∆h2 −∆hµν∆hµν −
3

4
Φ
(

1− Ĥ2�̂
)

Φ+O
(

ǫ3h2
)

}

, (3.35)
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where we define

m2
∗ :=

1

8r
(+)
c y0

. (3.36)

In the first equality in eq. (3.35), R(y)− 12ℓ−2
Λ is expanded around y = 0 as

R(y)− 12

ℓ2Λ
= 12H2 + Lµνgµν(y)−

12

ℓ2Λ
+O

(

ǫK2
)

=
12

ℓ̃2Λ
+ Lµν

(

ḡµν − 2ỹK̄µν − ỹ2∂ỹKµν + · · ·
)

+O
(

ǫK2
)

, (3.37)

where the linear term in ỹ is integrated to be zero in the integral. In the third equality
in eq. (3.35), we use eqs. (3.28) and (3.32) and neglect the total derivative terms. The
action (3.34) contains (1− Ĥ2�̂)−1 through Φ defined by eq. (3.30). As mentioned above, we
treat the apparently non-local operator (1−Ĥ2�̂)−1 as a local one by imposing the restriction
presented in eq. (3.29).

In the extreme limit of self-accelerating branch αm2
∗ → 0, which corresponds to the limit

r
(+)
c H+ → ∞, Φ is reduced to ∆h and the bulk contribution in the effective action (3.35)
becomes

M2
plm

2
∗

2

∫

d4x
√−γ

(

1

4
∆h2 −∆hµν∆h

µν

)

,

which differs from the form of the ghost-free dRGT mass terms. Therefore, the system
possesses an extra scalar mode in addition to the two gravitons and a BD ghost appears.
In the self-accelerating branch of DGP 2-brane model, we know that either the extra scalar
mode corresponding to the radion or the helicity-0 mode of the massive graviton becomes
ghost [44, 45]. We refer to them as the radion ghost and the Higuchi ghost, respectively.
The appearance of a BD ghost here seems to be exactly corresponding to the inevitable
existence of either the radion ghost or the Higuchi ghost. When the mass squared of the
massive graviton is smaller than 2H2, the ghost in the DGP model is the Higuchi ghost, and
the parameter region with such a small graviton mass is not excluded. Hence, this example
shows that the BD ghost can be the Higuchi ghost. The existence of the Higuchi ghost may
not be so harmful as a usual scalar ghost, as discussed in ref. [47].

Now we return to the case without taking the limit αm2
∗ → 0, and show in general that

the system described by the total effective action (3.34) consists of one massless graviton,
one massive graviton, and one scalar. We rewrite the action (3.34) so that the rescaled
perturbation of the brane separation, Φ, is manifestly treated as an independent degree of
freedom, radion. For this purpose, we introduce a Lagrange multiplier λ to impose the
constraint Φ = ∆h+ 4α

3 R̄
(1) as

S =
M2

pl

2

[∫

d4x
√−γ m2

∗

{

∆h2 −∆hµν∆hµν −
3

4
Φ
(

1− Ĥ2�̂
)

Φ+λ

(

Φ−∆h− 4α

3
R̄(1)

)}

+

∫

d4x
√

−g(+)

(

R(+) −
6H2

a2+

)

+ χ

∫

d4x
√

−g(−)

(

R(−) −
6H2

a2−

)]

. (3.38)

Taking the variation with respect to Φ, we obtain a simple expression for λ written in
terms of Φ:

λ =
3

2

(

1− Ĥ2�̂
)

Φ . (3.39)
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Then, substituting this λ back into the action (3.38), the action written in terms of h
(±)
µν and

Φ is obtained as

S =
M2

pl

2

[∫

d4x
√−γ m2

∗

{

∆h2 −∆hµν∆hµν −
3

4
α2H2Φ

(

�+ 4H2
)

Φ

+
3

4
Φ (Φ− 2∆h)− 2αΦLµν h̃µν

}

+

∫

d4x
√

−g(+)

(

R(+) −
6H2

a2+

)

+ χ

∫

d4x
√

−g(−)

(

R(−) −
6H2

a2−

)]

. (3.40)

In this step, 1−Ĥ2�̂ in eq. (3.39) cancels out the apparently non-local operator (1−Ĥ2�̂)−1

in R̄(1). After rewriting the effective action into this form, we can obtain the ghost-free
Fierz-Pauli model even in the limit αm2

∗ → 0, by setting the radion Φ to 0, assuming
some steep stabilization potential for Φ by hand. The last term in the second line of
eq. (3.40) can be absorbed into the induced gravity terms by the conformal transformations

g
(+)
µν = exp

(

m2
∗αΦ

)

ĝ
(+)
µν and g

(−)
µν = exp

(

[m2
∗α/χ]Φ

)

ĝ
(−)
µν . Then, the action becomes

S =
M2

pl

2

[∫

d4x
√−γ m2

∗

{

∆h2 −∆hµν∆hµν +
3

4
Φ (Φ− 2∆h)

+
3

2
α2

(

m2
∗

(

1 +
1

χ

)

− 1

2
H2

)

Φ
(

�+ 4H2
)

Φ

}

+

∫

d4x
√

−ĝ(+)

(

R̂(+) −
6H2

a2+

)

+ χ

∫

d4x
√

−ĝ(−)

(

R̂(−) −
6H2

a2−

)]

, (3.41)

where R̂(+) and R̂(−) are the Ricci scalars for the metrics ĝ
(+)
µν and ĝ

(−)
µν , respectively. Here,

two gravitons interact with each other through the Fierz-Pauli mass term and the radion field
Φ, which is now an independent field, couples to both metrics, but its kinetic term couples
to the metrics only through the combination γµν . To be honest, at the current level of our
approximation in which all the terms higher order in ǫ are neglected, we cannot discriminate
to which metric the radion field is coupled. Therefore the model described by this effective
action satisfies the BD-ghost-free conditions for doubly coupled fields in bigravity [37, 38].
Since the action (3.41) does not suffer from higher derivatives nor BD ghost problem, this
system contains only two gravitons and one scalar radion. Because of the presence of the
constraints for ∆hµν , it cannot be immediately confirmed by the action (3.41) whether the
helicity-0 mode of the massive graviton and the scalar radion are healthy or not, which will
be discussed in the next section by writing down the effective action in terms of the matter
energy-momentum tensor, integrating out the gravitational degrees of freedom.

4 Equations of motion and coupling to the matter energy momentum

tensors on the branes

Now we analyze the equations of motion derived from the action (3.34) with additional matter
fields localized on the branes. We confirm that the system contains only two gravitons and
one scalar mode whose ghost-free condition is equivalent to the one discussed in ref. [33], by
investigating the poles of the propagators and their coefficients. Taking the variations of the
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action (3.34) with respect to h
(±)
µν , we obtain the equations of motion:

χ±Eαβ
µν h

(±)
αβ ± 2m2

∗ (∆hµν −∆hγµν)

+
3

2
m2

∗

[

±γµν +
2

3
αLµν

](

∆h+
4

3
αR̄(1)

)

=M−2
pl T

(±)
µν , (4.1)

where we define χ+ = 1, χ− = χ, and

Eαβ
µν hαβ := −1

2

(

�hµν +∇µ∇νh− 2∇(ν∇σh
σ
µ) − γµν�h+ γµν∇α∇βh

αβ

− 2H2hµν −H2γµνh
)

, (4.2)

is the linearized Einstein equations derived from the variation of the four-dimensional local-
ized Einstein-Hilbert part of the action. In the above expression, we set a± = 1. In the
present order of approximation, it is no use to distinguish a± from unity. Here, we impose
the gauge conditions

∇µ

(

h̃µν −
1

4
γµν h̃

)

= 0 , (4.3)

on the averaged part of the metric perturbation (3.24), so that the traceless part of h̃µν
becomes transverse. On the other hand, we decompose the difference of the metric pertur-
bations (3.22) as

∆hµν = ∆h(TT )
µν +

1

4
φγµν +

(

∇µ∇ν −
�

4
γµν

)

ψ , (4.4)

where ∆h
(TT )
µν is the transverse-traceless part of ∆hµν . Using the identities, (3.28) and

∇µEαβ
µν Hαβ = 0 , (4.5)

∇µ

(

∇µ∇ν −
�

4
γµν

)

Ψ =
3

4
∇ν

(

�+ 4H2
)

Ψ , (4.6)

∇µLµνΨ = 0 , (4.7)

where Ψ and Hαβ are arbitrary scalar and tensor, respectively, one can take the divergence
of eq. (4.1). Then, the two equations derived from the divergence of eq. (4.1) give the same
equation, from which ψ is determined as

ψ =
α

2
Z , (4.8)

where

Z :=
(

1− Ĥ2�̂
)−1 (

2h̃− 2Ĥ2φ
)

. (4.9)

Here, we ignore the homogeneous solution that satisfies
(

�+ 4H2
)

ψ = 0 because it degen-

erates with the transverse-traceless mode ∆h
(TT )
µν by the identity (4.6). One may think that

ψ is not uniquely determined because of the pole at �̂ = Ĥ−2. However, such a possible
ambiguity has been already eliminated by imposing the restriction (3.29). By substituting
eq. (4.8), eq. (4.1) gives

χ±Eαβ
µν h

(±)
αβ ± 2m2

∗∆h
(TT )
µν +m2

∗αLµν

[

φ±
(

1∓ �̂

2

)

Z

]

=M−2
pl T

(±)
µν . (4.10)
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On the other hand, the trace of the metric perturbation on each brane h(±) after elimi-
nating the terms proportional to ∇µ∇νψ, which can be erased by a 4-dimensional gauge

transformation from h
(±)
µν , are found to be given by

2h(±) := 2h̃± (φ−�ψ)

=
(

2Ĥ2 ± 1
)

[

φ±
(

1∓ �̂

2

)

Z

]

, (4.11)

where in the second equality we use eq. (4.9) again. Using this equality and eq. (3.8), the

equations of motion for h
(±)
µν (4.10) are simplified as

χ±Eαβ
µν h

(±)
αβ ± 2m2

∗∆h
(TT )
µν +

(

±8r(+)
c H±

)−1
Lµνh

(±) =M−2
pl T

(±)
µν . (4.12)

The trace part of eq. (4.12) becomes

h(±) =
4M−2

pl

3

(

χ± ∓ 1

2r
(+)
c H±

)−1
1

�+ 4H2
T (±) . (4.13)

Diagonalizing the traceless part of eq. (4.12) with respect to the mass eigenvalues, we obtain

the equations of motion for the transverse-traceless part of the massless mode h
(0)
µν ,

h(0)µν := (1 + χ)−1
(

h(+)
µν + χh(−)

µν

)

, (4.14)

and that of the massive mode h
(m)
µν

h(m)
µν := (1 + χ)−1∆hµν , (4.15)

as

(

�− 2H2
)

h(0)TT
µν =

−2M−2
pl

1 + χ

[

T (0)
µν − 1

4
T (0)γµν

+
1

3

(

∇µ∇ν −
�

4
γµν

)

1

�+ 4H2
T (0)

]

, (4.16)

(

�− 2H2 −m2
)

h(m)TT
µν =

−2M−2
pl

1 + χ

[

T (m)
µν − 1

4
T (m)γµν

+
1

3

(

∇µ∇ν −
�

4
γµν

)

1

�+ 4H2
T (m)

]

, (4.17)

where m2 is defined in eq. (3.19) and we define

T (0)
µν := T (+)

µν + T (−)
µν , (4.18)

T (m)
µν := T (+)

µν − T
(−)
µν

χ
. (4.19)

Using the identity
(

∇µ∇ν −
�

4
γµν

)

1

�+ 4H2
Ψ =

1

�− 4H2

(

∇µ∇ν −
�

4
γµν

)

Ψ , (4.20)
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which holds for an arbitrary scalar Ψ, h
(0)
µν and h

(m)
µν are found to be rewritten as

h(0)TT
µν =

−2M−2
pl

1 + χ

[

1

�− 2H2

{

T (0)
µν − 1

4
T (0)γµν +

1

3 (−2H2)

(

∇µ∇ν −
�

4
γµν

)

T (0)

}

− 1

3 (−2H2)

(

−�

4
γµν

)

1

�+ 4H2
T (0)

]

, (4.21)

h(m)TT
µν =

−2M−2
pl

1 + χ

[

1

�− 2H2 −m2

{

T (m)
µν − 1

4
T (m)γµν

+
1

3 (m2 − 2H2)

(

∇µ∇ν −
�

4
γµν

)

T (m)

}

− 1

3 (m2 − 2H2)

(

−�

4
γµν

)

1

�+ 4H2
T (m)

]

, (4.22)

where we eliminate some terms which can be erased by a 4-dim gauge transformation as

in eq. (4.11). If we set T
(−)
µν = 0, for simplicity, the coefficient of the pole (�+ 4H2)−1 in

h
(+)
µν = h

(0)
µν + χh

(m)
µν is extracted as

h(+)
µν ⊃

M−2
pl

3

[

2r
(+)
c H+

2r
(+)
c H+ − 1

+
1

1 + χ

(

−1 +
2χH2

m2 − 2H2

)

]

1

�+ 4H2
T (+)γµν . (4.23)

When we integrate out the scalar degree of freedom, the contribution of the pole at � = −4H2

to the effective action is written in terms of T
(+)
µν as

−
∫

d4x
√−γ h(+)

µν T
µν

(+) ⊃
M−2

pl

3
β+

∫

d4x
√−γ T (+) 1

�+ 4H2
T (+) , (4.24)

where

β+ :=
1

1− 2r
(+)
c H+

− χ

1 + χ

m2

m2 − 2H2
, (4.25)

is the minus of the part embraced by the square brackets in eq. (4.23). The sign of β+
determines whether the scalar degree of freedom is ghost or not. When β+ is negative, the

scalar degree of freedom is ghost. When the condition 1− 2r
(+)
c H+ > 0, which is one of the

two ghost-free branch conditions derived in ref. [33], is satisfied, the first term in the square
brackets in eq. (4.25) is positive and greater than unity. If H+ is positive, for sufficiently large
m2, the absolute value of the second term becomes less than unity, and hence β+ becomes

positive in total. When 1 − 2r
(+)
c H+ < 0, the positiveness of β+ imposes m2 − 2H2 < 0,

namely, Higuchi ghost appears.

A similar discussion applies to the case where T
(+)
µν = 0. The coefficient of the pole

(�+ 4H2)−1 in h
(−)
µν becomes

−
∫

d4x
√−γ h(−)

µν T
µν

(−) ⊃
M−2

pl

3
β−

∫

d4x
√−γ T (−) 1

�+ 4H2
T (−) , (4.26)

where

β− :=
1

χ

[

1

1 + 2r
(−)
c H−

− 1

1 + χ

m2

m2 − 2H2

]

. (4.27)
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Thus, the contribution of the pole at � = −4H2 to the effective action is positive and free

from Higuchi ghost when 1+2r
(−)
c H− > 0 and the first term is larger than the second term in

magnitude. The first condition is identical to the other ghost-free-branch condition derived
in ref. [33], as is expected.

Suppose that for sufficiently large m2, the ghost-free conditions are satisfied. If we set
m2 is larger than and close to 2H2, both β+ and β− necessarily become negative. Hence,
there should be critical values of m2 at which β+ or β− cross zero. Since the scalar mode
couples to both traces of the energy momentum tensors, T(+) and T(−), we expect that the
signatures of β+ and β− should flip simultaneously. In fact, at the leading order of the
gradient expansion, we can rewrite β± using eqs. (3.8) and (3.19) as

β± =
1

1 + χ

m2

m2 − 2H2

1± 2r
(∓)
c H∓

1∓ 2r
(±)
c H±

. (4.28)

Then, we find that the condition β± > 0 is equivalent to 1± 2r
(∓)
c H∓ > 0, when m2 > 2H2

and 1 ∓ 2r
(±)
c H± > 0. This simultaneous sign flip occurs at the transition from the ghost-

free normal branch to the self-accelerating branch. At the transition point in the parameter
space, either β+ or β− diverges. (If we assume H+ ≈ H− > 0, β− never diverges. Then, the
divergent is necessarily β+.) Therefore, the transition between two branches is accompanied
by the divergence of metric perturbation and the perturbative approach breaks down at the
branch crossing point.

Let us examine how one can construct the background spacetime that satisfies the

conditions for the normal branch. Using the normal-branch conditions 1∓ 2r
(±)
c H± ≥ 0 and

eqs. (3.8) and (3.19), we obtain a constraint for ℓ̃Λ as

− 1 + (1 + χ)
H2

m2
<

2r
(−)
c

ℓ̃Λ
< χ− (1 + χ)

H2

m2
. (4.29)

In order to satisfy this constraint, −1+(1 + χ)H2/m2 < χ−(1 + χ)H2/m2 must be satisfied.
Thus, the mass squared of the massive graviton (3.19), which can be adjusted by changing
y+0 , must be tuned to be above the Higuchi bound, i.e., m2 > 2H2. When m2 > 2H2,

eq. (4.29) can be achieved by tuning ℓ̃Λ depending on H/m and r
(±)
c .

The physical meaning of the normal branch conditions can be made clear in the following
way. Eliminating H2/a2± from eq. (3.3) with (3.2), we obtain the relations among H±, σ±
and ℓΛ as

H2
± ∓ H±

r
(±)
c

+
1

ℓ2Λ
− σ±

3
= 0 . (4.30)

Then, we find that there are two solutions for H± as

1− 2r(+)
c H+ = ±

√

1− 4r
(+) 2
c

(

1

ℓ2Λ
− σ+

3

)

, (4.31)

1 + 2r(−)
c H− = ±

√

1− 4r
(−) 2
c

(

1

ℓ2Λ
− σ−

3

)

, (4.32)

when (r
(±)
c )−2−4

(

ℓ−2
Λ − σ±/3

)

> 0. As is discussed above, the solution that takes the positive
sign on both branes corresponds to the normal branch. If either of the above solutions takes
negative sign, the whole setup is in the self-accelerating branch. If we have chosen that H is
always positive, the sign in eq. (4.32) is guaranteed to be positive by assumption. The above

two solutions (4.31) degenerate to one double root when (r
(±)
c )−2 − 4

(

ℓ−2
Λ − σ±/3

)

= 0, and
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consequently we have 1∓ 2r
(±)
c H± = 0 in this case. For 1− 2r

(+)
c H+ = 0 (1+ 2r

(−)
c H− = 0),

the radion strongly couples to the source on the (+)-brane ((−)-brane) as is seen in eq. (4.25)
(eq. (4.27)). This can be understood as a consequence of the perplexity about the branch
choice by the system.

5 Nonlinear generalization

We extend the above method, with which we succeeded in reproducing a healthy action for
bigravity with a scalar corresponding to the radion as a low-energy effective theory concerning
the perturbation around a de Sitter spacetime, to the nonlinear perturbation, although the
gradient expansion is not extended to the higher order. Here we assume that

ǫ := |Kỹ+| , (5.1)

is small as before with g
(±)
µν ∼ O(1), ∆gµν := g

(+)
µν −g(−)

µν ∼ O (ǫ), and ∇2 ∼ ℓ−2
Λ ∼ O

(

|K|2/ǫ
)

.
Furthermore, the Hamiltonian constraint (2.10) and the junction conditions (2.6) imply
eq. (3.20), as is discussed in section 3. As in section 3, we obtain K̄µν and ḡµν from
eq. (2.13) as

K̄µν =
∆gµν
4Φ

, (5.2)

ḡµν = g̃µν +Φ∇µ∇νΦ+
Φ2

ℓ2Λ
gµν +O

(

ǫ2
)

, (5.3)

where

Φ := Ny0 , (5.4)

g̃µν :=
g
(+)
µν + g

(−)
µν

2
. (5.5)

The Hamiltonian constraint (2.10) becomes

R̄− 12

ℓ2Λ
=

∆g2 −∆gµν∆g
µν

16Φ2
, (5.6)

where the tensor indices are raised by g̃µν . The bulk action is given as

Sb =
M2

pl

2

1

2r
(+)
c

∮ √−gd4xNdy
(

5R− 12

ℓ2Λ

)

=
M2

pl

2

1

r
(+)
c

∫

d4xN

∫ y0

−y0

dy







√−ḡ
(

R̄− 12

ℓ2Λ

)

+ y
δ
(√−g

(

R− 12
ℓ2Λ

))

δgµν
∂ygµν

+
y2

2
∂y





δ
(√−g

(

R− 12
ℓ2Λ

))

δgµν
∂ygµν



+ · · ·







=
M2

pl

2

1

r
(+)
c

∫

d4xN

[

2y0
√−ḡ

(

R̄− 12

ℓ2Λ

)

−2y30
3

δ
(√−g

(

R− 12
ℓ2Λ

))

δgµν
N2

(

1

Φ
∇̃µ∇̃νΦ+

1

ℓ2Λ
g̃µν

)

+O
(

|K|ǫ2
)

]

, (5.7)
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where we use the Hamiltonian constraint (2.10) in the second equality. In the third equality,
the linear term in y in the integral is integrated to be zero, the term in which differentia-
tion with respect to y operates on δ

(√−g
(

R− 12ℓ−2
Λ

))

/δgµν becomes higher order of the

gradient expansion, and we use eq. (2.8) and R̃µν = 3ℓ−2
Λ g̃µν + O

(

|K|2
)

. The operator

δ
(√−g

(

R− 12ℓ−2
Λ

))

/δgµν is obtained as

∫

d4x
δ
(√−g

(

R− 12
ℓ2Λ

))

δgµν
hµν =

∫

d4x
(

√

−g̃L̃µνhµν +O
(

|K|2
)

)

, (5.8)

for an arbitrary tensor hµν . Here we defined L̃µν as

L̃µν := ∇̃µ∇̃ν −
(

�̃+
3

ℓ2Λ

)

g̃µν , (5.9)

where ∇̃ is the covariant differentiation associated with g̃µν . Using the Hamiltonian constraint
eq. (5.6), the bulk action becomes

Sb =
M2

pl

2

2

r
(+)
c

∫

d4x
√

−g̃
[

∆g2 −∆gµν∆g
µν

16Φ
+

Φ

3
L̃µν

(

(

∇̃µΦ
)(

∇̃νΦ
)

− Φ2

ℓ2Λ
g̃µν

)

+O
(

|K|ǫ2
)

]

, (5.10)

where we use L̃µν∇̃µAν = 0 for an arbitrary vector Aν at the leading order of the expansion
in ǫ. The analysis in the linear regime suggests that in order to examine the structure of the

interaction between g
(+)
µν and g

(−)
µν , it is convenient to treat the radion Φ as an independent

variable. Therefore we consider

Sb =
M2

pl

2

2

r
(+)
c

∫

d4x
√

−g̃
[

∆g2 −∆gµν∆g
µν

16Φ
+

Φ

3
L̃µν

(

(

∇̃µΦ
)(

∇̃νΦ
)

− Φ2

ℓ2Λ
g̃µν

)

+λ

(

R̄− 12

ℓ2Λ
− ∆g2 −∆gµν∆g

µν

16Φ2

)]

, (5.11)

by imposing the Hamiltonian constraint with a Lagrange multiplier λ, and take the variation
with respect to Φ to eliminate λ using the equation of motion for Φ. R̄−12ℓ−2

Λ is computed as

R̄− 12

ℓ2Λ
= R̃− 12

ℓ2Λ
+ L̃µν

(

Φ∇̃µ∇̃νΦ+
Φ2

ℓ2Λ
g̃µν

)

+O (|K|ǫ) . (5.12)

By taking the variation of eq. (5.11) with respect to Φ and using the identity L̃µν∇̃µ∇̃νΨ =
∇̃µ∇̃νL̃µνΨ = 0 for an arbitrary scalar Ψ at the leading order of the expansion in ǫ, the
equation of motion for Φ is given in an extremely simple form as

2Lλλ = LλΦ , (5.13)

where

Lλ :=

(

∇̃µ∇̃νΦ+
Φ

ℓ2Λ
g̃µν

)

L̃µν +
∆g2 −∆gµν∆g

µν

16Φ3
. (5.14)
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We ignore the homogeneous solution Lλλ = 0 by treating L−1
λ as a local operator as in the

case of (1− Ĥ2�̂)−1 in section 3. The condition that allows such expansion depends on
Φ and is difficult to express explicitly. Hence, here we just assume that the energy scale
is low enough to satisfy this condition. Substituting λ = Φ

2 into eq. (5.11), we obtain the
4-dimensional effective action from the bulk action as

Sb =
M2

pl

2

2

r
(+)
c

∫

d4x
√

−g̃
[

∆g2 −∆gµν∆g
µν

32Φ
+

Φ

2

(

R̃− 12

ℓ2Λ

)

−Φ

6
L̃µν

(

(

∇̃µΦ
)(

∇̃νΦ
)

− Φ2

ℓ2Λ
g̃µν

)]

+O(ǫ2)

=
M2

pl

2

2

r
(+)
c

∫

d4x
√−g

[

∆g2 −∆gµν∆g
µν

32Φ
− 1

2ℓ2Λ
Φ2

(

�+
4

ℓ2Λ

)

Φ+
Φ

2

(

R̃− 12

ℓ2Λ

)

−1

6
(∇µΦ) (∇νΦ) (∇µ∇ν − gµν�−Rµν) Φ

]

+O(ǫ2) , (5.15)

where ∇ is the covariant differentiation associated with gµν , which is indistinguishable from

g
(±)
µν and g̃µν at the leading order of gradient expansion and we use Rµν = 3ℓ−2

Λ gµν+O
(

|K|2
)

in the second equality. The non-derivative interaction terms between two metrics takes
the Fierz-Pauli form ∆g2 − ∆gµν∆g

µν , which is rewritten in terms of dRGT mass term,

Vn := ǫν1···νnµ1···µn

Uµ1
ν1 · · · Uµn

νn for Uµ
ν :=

√

gµρ(+)g(−) ρν , as

∆g2 −∆gµν∆g
µν =

4

J

∑

n

cnVn . (5.16)

Here we define J := −1
2 (c1 + 4c2 + 6c3) and the coefficients cn are constrained by the condi-

tion that both g
(+)
µν and g

(−)
µν recover Minkowski metric and ∆gµν → 0 in the limit where the

energy densities of matter on the branes and the brane tensions are sent to zero,

c4 = − 1

24
(c1 + 6c2 + 18c3) ,

c0 = −3 (c1 + 2c2 + 2c3) . (5.17)

We wrote the interaction between two gravitons in terms of dRGT ones, however, we cannot
determine the form of mass interactions at higher order of Uµ

ν − δµν ∼ O (ǫ) at the order of
the present approximation. Absorbing ΦR̃ term into the induced gravity terms by conformal

transformations for g
(±)
µν , as in section 3, the action for Φ in the second line in eq. (5.15) is

a cubic Galileon [48, 49], and hence the whole action Sb + S+ + S− describes a well-known
ghost-free system that contains two interacting metrics and one scalar which couples only
to one of the metrics [4]. In order to investigate the coupling of radion as a doubly coupled
matter, we have to step into the higher order of the gradient expansion. At the higher order
of the gradient expansion, however, higher derivative terms will appear and hence the system
may inevitably contain extra degrees of freedom corresponding to the other massive KK
gravitons. Therefore, it may not be allowed to obtain doubly coupled matter model using
our method, because at the leading order of the gradient expansion the couplings to two
metrics is indistinguishable, and the radion may couple to more than two tensor modes if we
expand to higher order.
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6 Summary

In this paper, we intended to obtain the ghost-free bigravity action with a single scalar field
from DGP 2-brane model with an unstabilized radion, by solving the bulk equations for given

boundary metrics g
(±)
µν at y = ∓y0 and integrating out the bulk degrees of freedom under the

approximation that g
(+)
µν − g

(−)
µν ∼ |KNy0| ≪ 1. As a result, we obtained an action written

in terms of g
(±)
µν as a 4-dimensional effective theory of DGP 2-brane model, which is reduced

to a healthy bigravity model with a scalar field, as expected. Truncating the result at the
leading order of the gradient expansion, we obtained the Fierz-Pauli quadratic mass term as
the interaction between two gravitons, though we worked on non-linear perturbation. The

scalar field couples to only one of the metrics g
(±)
µν and its equation of motion does not contain

higher-order time derivative. To realize such a setup of the model, we need to tune the brane
tension, so that |K| is sufficiently small. Since this tuning is easily broken by additional
matter fields, the energy density of the matter fields on the branes must be small enough.

We succeeded in obtaining the Fierz-Pauli mass interaction naturally from DGP 2-brane
model at the lowest order of the gradient expansion. However, it is difficult to extend this
method to the higher order of the gradient expansion and to obtain the nonlinear dRGT
mass terms, because it will produce complex and higher-derivative interaction terms. Such
interaction terms seem to lead extra degrees of freedom in addition to two gravitons and one
scalar radion, which will correspond to the appearance of other bulk degrees of freedom. It
will be possible to investigate only the higher-order mass interactions between two metrics by
taking the limit αm2

∗ → 0, although in this case the mass interaction obtained from the bulk
action should be different from the dRGT one. This is because the self-accelerating branch is
chosen and radion ghost or Higuchi ghost appears. If ghost appears, the interaction between

two metrics g
(±)
µν will not take the dRGT form, as is shown in section 3. However, it might

be suggestive that the Fierz-Pauli mass term was recovered by fixing the radion by hand
in section 3. The investigation of the higher-order mass interactions by considering more
extended models is left for future work.
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