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We propose an accurate anisotropic vector play model that uses the decomposition of vector shape functions. The parallel and 

perpendicular components of the magnetic field H to the magnetic flux density B are independently identified in constructing the 
decomposed shape functions. We further propose a method to reconstruct the perpendicular component from the one-dimensional 
measurement of the parallel component based on a magnetic energy approach. This method accurately reconstructs the vector 
hysteretic properties of silicon steel under alternating and rotating magnetic flux conditions. 
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I. INTRODUCTION 
DVANCED magnetic field analyses of three-phase electric 
machinery require precise descriptions of the vector 

hysteretic property of the magnetic field at junctions of 
magnetic flux. The vector play model [1]–[4] is one of the 
most accurate and efficient models in representing the vector 
hysteretic property of silicon steel sheets. 

Using the isotropic vector play model and the anisotropy 
matrix, Ref. [4] describes a successful approximation to the 
anisotropic vector hysteresis of non-oriented silicon steel 
sheets including the elliptic rotational field. In representing the 
dynamic vector hysteretic property, the model provides a base 
model of the dynamic model [5] or it is applied to the finite 
element eddy-current analysis [6]. However, because of the 
simple construction of the anisotropy matrix, the 
representation may not be highly accurate when the anisotropy 
becomes strong. Another drawback of this model is the need to 
measure the alternating magnetic property using a 2D or 
rotational single sheet tester (SST) [7], where precise 
waveform control is needed to maintain the B-vector along its 
specified direction. 

For an accurate anisotropy representation, this paper 
proposes anisotropic shape functions that represent the 
perpendicular component of the magnetic field H to the 
magnetic flux density B independently of its parallel 
component. Based on a magnetic energy approach [8], [9], we 
further propose a method to reconstruct the perpendicular 
component without its direct measurement using only the 1-D 
measurement of the parallel component. 

II. VECTOR PLAY MODEL 
From the magnetic flux density B as input, the anisotropic 

vector play model provides the magnetic field H as output: 
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where f is the anisotropic vector shape function, pζ is the 
vector play hysteron having radius ζ, pζ0 is the vector pζ at the 
previous time-point, and BS is the saturation magnetic flux 
density. Ref. [4] proposed a simple form for the shape function, 
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where W is the anisotropy matrix, θB the azimuth angle of B, 
and f0 the isotropic vector shape function. 

We propose two more accurate representations of the vector 
shape function, 
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where θp is the azimuth angle of pζ, f|| and f⊥ are the shape 
functions for the parallel and perpendicular component of H to 
pζ, and ep|| and ep⊥ denote the parallel and perpendicular unit 
vectors to pζ (see Fig. 1). For the anisotropy representation, the 
shape functions, (4) and (5), depend on the azimuth angles of 
B and pζ, respectively. 
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Fig.1. Vector play hysteron and vector shape function. 
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The shape functions f|| and f⊥ are determined from the 
measured parallel and perpendicular components of H = (H||(B, 
θB), H⊥(B, θB)) using the identification method for a scalar 
play model [10]. 

III. MAGNETIC ENERGY APPROACH 

A. Magnetic energy and 2-D magnetic property 
The vector components of (H||(B, θB), H⊥(B, θB)) are 

measured under the alternating flux condition along the θB-
direction. The measurement of H⊥(B) requires the 2-D SST, 
where a sophisticated waveform control is required to 
maintain B along its specified direction. In contrast, H||(B, θB) 
can be measured by the conventional 1-D SST or the Epstein 
frame using strip samples cut along the θB directions. 

Refs. [8] and [9] proposed a useful method to determine 
H⊥(B, θB) without its measurement using the magnetic energy. 
The magnetic energy density F is defined as 

( )∫∫ =⋅=
B

BB BBHdBF
0

||
0

d,),( θθ
B

BH . (6) 

It is assumed that H and B have no hysteretic relation and that 
the integration is independent of the path. Using the magnetic 
energy (6), the components of H are given as  
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As (7) is derived without hysteresis, it cannot be used directly 
to determine f⊥ but can be obtain with a method developed 
below via two magnetization curves without hysteresis, the 
normal magnetization curve and the anhysteretic curve, to be 
applied in (6) and (7) 

B. Derivation from normal magnetization curve 
The normal magnetization curve is obtained by the 

measurement of symmetric B−H loops under the alternating 
magnetic flux condition. The play model does not distinguish 
the normal magnetization curve from the initial magnetization 
curve. For the alternating input of amplitude Bm along the θB-
direction, the input B = BmeB|| gives 
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where eB|| is the unit vector parallel to B. Assuming f||(ζ, 0, θ) = 
f⊥(ζ, 0, θ) = 0, Hm(BmeB||) = (Hm||, Hm⊥) is given by 
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From (6) and (9), the magnetic energy density F is represented 
as 
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where the integral domain is shown in Fig. 2(a). From (7) and 
(11), Hm⊥ is given as 
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From a comparison of (10) with (12), f⊥ is estimated as 
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Equation (13) is rewritten as 
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C. Derivation from anhysteretic curve 
The anhysteretic curve is obtained by applying the decaying 

alternating magnetic flux with biased direct magnetic flux 
density Bb. The resultant pζ(BbeB||) is given by 
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Consequently, Hb(BbeB||) = (Hb||, Hb⊥) is written as: 
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From (6) and (16), F is written as 

   
Fig. 2. Integral domains for the normal magnetization and anhysteretic 

curves 

 
 
Fig. 3. Simulated B−H⊥ loops for θB = π/6 using the shape functions 

(3) and (4), where f⊥ in (4) is identified from measured data. 
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the domain of integration is shown in Fig. 2(b). From (7) and 
(18), Hb⊥ is given as 
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By comparing (17) with (19), f⊥ is estimated from 
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IV. SIMULATION RESULTS 
We now compare simulation results of the anisotropic 

vector models with the measured static magnetic property for 
the non-oriented silicon steel sheet JIS: 35A230 under the 
alternating and rotational magnetic flux condition. 

A. Alternating magnetic flux condition 
Fig. 3 shows simulated B−H⊥ loops using the shape 

function (4) for alternating flux with θB = π/6, where f⊥ in (4) 
is identified from the measured H⊥. The shape function (5) is 
equivalent to (4) for the alternating input because θp = θB. Fig. 
4 shows simulated B−H⊥ loops with θB = π/6 and π/3 using f⊥ 
determined from (14) and (20) without using the measured B–
H⊥ loops. 

The proposed vector model using (4) represents B–H⊥ loops 
more accurately than the simple model using (3). The shape 
function f⊥ identified from the measured H⊥ gives very 
accurate B–H⊥ loops. The shape function f⊥ determined from 
(20) obtains more accurate B–H⊥ loops than f⊥ determined 
from (14). Fig. 4 implies that the 2-D anisotropic vector 
hysteretic property can be reconstructed from the B–H loops 
measured with the 1-D SST using the proposed anisotropic 
vector play model and the magnetic energy approach. 

Fig. 5 shows the simulated iron loss per cycle for the 
alternating input with θB = 0, π/6, π/4, π/3. This simulated loss 
agrees with the measured loss. 

B. Rotating magnetic flux condition 
Figs. 6 and 7 portray the simulated loci of H for the 

clockwise (CW) rotational input of B where the amplitude Ba 
= 0.7, 1.0, 1.2, 1.3, 1.4 T; the vector shape functions (4) and 
(5) are used with the shape function f⊥ determined from (20). 
The loci of H for rotational inputs of B are reconstructed from 
the B–H loops measured with the 1-D SST. The vector shape 
function (5) is more accurate than (4) when the amplitude of B 
is small. 

If the measured rotational hysteresis loss is available, it is 
possible to adjust the simulated rotational hysteresis loss to the 
measured value by decomposing the vector shape function (5), 

( )
( ){ }
( ){ }
( ){ }
( ){ }

⊥⊥⊥

⊥

⊥⊥

⋅=

⋅=

⋅=

⋅=

+++=

⊥⊥⊥

⊥⊥

⊥

⊥⊥⊥⊥

BBpp

BBpp

BBpp

BBpp

p

f

f

f

f

eeeBpf

eeeBpf

eeeBpf

eeeBpf

ffffBpf

θζ

θζ

θζ

θζ

θζ

ζ

ζ

ζ

ζ

ζ

,)(,

,)(,

,)(,

,)(,

),(,

_

||_

||_||

||||_||

_||__||||_||

||||

||

||||||  (21) 

  

 
Fig. 5. Alternating hysteresis loss 

 
Fig. 4. Simulated B−H⊥ loops using the shape function f⊥ 
determined from magnetic energy using (14) and (20). 
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where eB⊥ is the unit vector perpendicular to B. The alternating 
property depends on f||_|| and f⊥_⊥ whereas f||_⊥ and f⊥_|| do not 
appear for the alternating input because ep||⋅ eB⊥ = ep⊥⋅ eB|| = 0. 
The rotational hysteresis loss is affected by f||_⊥ and f⊥_⊥. To 
adjust the rotational loss without affecting its alternating 
property, f||_⊥ is modified to 
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where L⊥_⊥ and L||_⊥ are simulated losses associated with f||_⊥ 
and f⊥_⊥, and Lmea is the measured loss. This adjustment 
requires the measurement under the rotating magnetic flux 
condition using the 2D-SST, where the waveform control is 
relatively easy compared with the measurement under the 
alternating magnetic flux condition. 

Fig. 8 shows the adjusted simulated iron loss per cycle of 
JIS:35A230 for the rotational input, which agrees with the 
measured loss. 

V. CONCLUSION 
The 2-D anisotropic vector hysteretic property can be 

reconstructed from the B−H loops measured with the 1-D SST, 
using the proposed anisotropic vector play model and the 
magnetic energy approach. 
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Fig. 6. Loci of H vector for rotational magnetic flux using (4). 

 
Fig. 8. Rotational hysteresis loss using (5). 

 
Fig. 7. Loci of H vector for rotational magnetic flux using (5). 
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