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Abstract

Ultracold quantum gases in an optical lattice enable us to study a strongly
correlated system. The single-site-resolved imaging and the single-site address-
ing technique, called a quantum gas microscope (QGM), are the very useful
tool for studying this system and furthermore for control of single atoms which
will have great impacts to a quantum information processing. In fact, a lot
of interesting experiments are reported using these techniques. The present
QGM techniques, however, have been realized with alkali-metal atoms except
for a recent work [1] and it is worth while to extend the applicability of these
techniques to atomic species beyond alkali-metal atoms for a further revolu-

tion.

In this thesis, we successfully demonstrate a site-resolved imaging of indi-
vidual bosonic ytterbium (}1**Yb) atoms in a Hubbard-regime two-dimensional
optical lattice with a short lattice constant of 266 nm using two imaging meth-
ods — fluorescence and Faraday imaging. In both methods, the strong 'S,-1 P
transition of the wavelength A = 399 nm is used for high-resolution imaging
and the intercombination 1Sy-*P; transition of the wavelength A\ = 556 nm is
simultaneously applied as a narrow-line laser cooling for suppression of the
heating by probe light.

In fluorescence imaging, we measure the temperature after imaging process
and we successfully achieve a low temperature of T'= 7.4(13) uK, correspond-
ing to a mean oscillation quantum number along the horizontal axis of 0.22(4)
during imaging process. we detect on average 200 fluorescence photons from
a single atom within 400 ms exposure time. We also succeed in preserving
atoms at the same optical lattice sites during imaging process and estimate
the detection fidelity of 87(2)%. The realization of a QGM of Yb atoms in a
Hubbard-regime optical lattice with enough fidelity opens up the possibilities
for studying various kinds of quantum many-body systems such as Bose and
Fermi gases, and their mixtures, and also long-range-interacting systems such

as Rydberg states.

In Faraday imaging, we detect the polarization rotation of probe light of
single atoms with a polarizing beam splitter placed in front of CCD camera.
we successfully demonstrate a site-resolved imaging with the Faraday effect
and the observed Faraday rotation angle reaches 3.0(2) degrees for a single

atom. Differently from a fluorescence imaging, a site-resolved imaging using



the Faraday effect enables us to suppress the heating by the probe light at a
large detuning of the probe light and the linearly increasing feature of the ratio
of Faraday signal strength S to photon scattering rate [, at a large detuning
is observed. In addition, we perform the different type of site-resolved imaging
such as dark field Faraday imaging (DFFI) and absorption imaging and we
reveal the different feature of the spatial distribution of single atoms in these
imaging methods. With DFFI which enables us to obtain a back-ground-free
signal like a fluorescence imaging, we estimate the detection fidelity of 84(17)%
and this detection fidelity is almost the same quality of that of fluorescence
imaging. The realization of the non-destructive Faraday QGM will open up the
possibilities for quantum control and quantum feedback of individual atoms
in a quantum many-body system which will have great impacts to not only
the physics of quantum many-body system but also the quantum information

processing.
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Chapter 1

Introduction

1.1 Ultracold atoms

The technique of cooling free atoms with radiation pressure of laser beams was first
proposed by D. J. Wineland and H. Dehmelt [2], and T. W. Hansch and A. L.
Schawlow [3]. Thanks to the significant performance improvement of a laser system,
ions were first trapped by laser cooling technique in 1978 [4,5]. After that, the
laser cooling technique also enabled us to trap neutral atoms in 1985 [6]. Due to
the development of methods to cool and trap atoms with laser light, Steven Chu,
Claude Cohen-Tannoudji, and William D. Phillips won the Nobel prize in physics
in 1997.

Using this laser cooling technique we can cool atoms at very low temperature,
typically ~ pK, and we expected to realize quantum degeneracy, that is, Bose-
Einstein condensate (BEC) and Fermi degeneracy (FD). Temperature we can reach
by laser cooling is, however, limited by photon recoil energy, typically ~ 100 nK, and
experimentally reached temperature is ~ K. Moreover, when atom density is much
high like BEC, the loss induced by laser light is increased and the creation of BEC
with only laser cooling is quite difficult. For solving this problem, cooling lights
are cut off after cooling atoms until sufficiently low temperature and then atoms
are loaded into a magnetic trap. Atoms are further cooled by selective removal of
atoms with high energy and subsequent thermal equilibrium (evaporative cooling
technique). As a result, a BEC of dilute quantum gases was first realized in 1995
[7-9] and due to this achievement, Eric A. Cornell, Wolfgang Ketterle, and Carl E.
Wieman won the Nobel prize in physics in 2001. A BEC is also realized using an
optical dipole trap with a far off-resonant laser light, enabling to trap atomic species
other than alkali atoms (e.g. alkaline-earth atom). Note that in contrast with the
BEC of liquid helium which is realized under the strongly interacting system, the
realized BEC with ultracold dilute gases enables us to study physics of weakly

1



CHAPTER 1. INTRODUCTION 2

Table 1.1: List of the realized quantum degeneracy in each atom species. Left:
Realized Bose-Einstein condensate in each atom species. Right: Realized Fermi
degeneracy in each atom species.

Year Atom

1995 8TRb [7], "Li [8], 2*Na [9]

1998 'H [10]

2000 $5Rb [11] Year Atom
2001 4K [12], *He [13,14] 1999 10K [30]
2003 133Cs [15], 1™YD [16] 2001 6Li [31,32]
2005 52Cr [17] 2007 173Yh [33]
2007 39K [18], '70Yb [19] 2010 '"YD [34], 87Sr [35, 36]
2009 “°Ca [20], "0YDb [21], #*Sr [22,23] 2012 161Dy [37]
2010 86Sr [24], 88Sr [25] 2014 67TEy [38]
2011 168y} [26], 194Dy [27]

2012 168 Ey [28]

2015 160Dy, 162Dy [29]

interacting systems. Similarly, FD is also realized with the same cooling method. I
summarize the atom species of successfully creation of BEC and of FD in table 1.1

so far.

1.2 Quantum simulation in an optical lattice

The realization of quantum degeneracy enables us to study many fascinating physics.
In 1998, P. Zoller’s group first proposed that strongly interacting systems can be
realized with ultracold atoms trapped in periodic potential generated by standing
wave of laser light (i.e. optical lattice), which leads to Hubbard type lattice models
[39]. Although Hubbard model includes only the terms of the on-site interaction U
and the tunneling 7 from one site to the nearest neighbors, this toy model gives us
the tool for studying many fascinating physics such as magnetism including high-T7..
superconductivity. Moreover, we can easily tune the lattice parameters & and J of
Hubbard model by varying the laser intensity of optical lattices and ultracold atoms
in an optical lattice are a versatile tool for the quantum simulation of condensed

matter systems. In fact, ultracold atoms in optical lattices have proven extremely



3 1.3. QUANTUM GAS MICROSCOPE

Figure 1.1: Schematics of an optical lattice. Green arrows and green spheres rep-
resent the laser lights and the trapped atoms, respectively. & and J indicates the
on-site interaction and the tunneling matrix element from one site to the adjacent
site in a Hubbard model.

useful for the study of quantum phases and the dynamical evolutions of strongly
correlated many-body system described by a Hubbard model. Well-known examples
include a quantum phase transition from a superfluid (SF) to a Mott insulator (MI)
for bosonic species [40-42] and a crossover from a metal to a MI for fermionic
species [43,44].

1.3 Quantum gas microscope

To fully exploit the potential of ultracold atoms in an optical lattice as a quantum
simulator, it is great advantage to have access to the in-trap atom distribution with
single-atom resolution. In 2007, a site-resolved imaging was realized in ref. [45].
The lattice spacing in this experiment is, however, 4.9 um which is quite large for
studying physics in a Hubbard model.

In contrast, a quantum gas microscope (QGM) with short lattice spacing which
enables us to study physics in a Hubbard model has been realized with bosonic 8"Rb
for the first time in 2009 [46]. In ensuing year, the site-resolved imaging has been
used to study the SF to MI transition [47,48]. In 2011, a single-site addressing with
a tightly focused beam was realized [49] and this technique enables us to prepare
the arbitrary initial states. Using the realized site-resolved imaging and single-site
addressing technique, many fascinating experiments are reported [50-69].

Site-resolved imaging systems have been realized for other alkaline atomic species
such as fermionic “°K [70-72] and SLi [73, 74] atoms very recently. Fermionic QGM
will give us the platform for studying many fascinating physics such as magnetism.
In fact, the site-resolved observation of metallic, band insulator and Mott insulator
states is reported using these systems [75, 76]. Moreover, single-site-resolved spin
and charge correlations in 1D chain [77] and 2D plane [78,79] are reported.

In table 1.2, I summarize the realized QGM experiments so far.



Table 1.2: List of the realized quantum gas microscopes. Note that NA represents the numerical aperture of an objective and the
values enclosed in parentheses in the column of NA indicate the enhanced NA with solid immersion lens.

Year Group Atom Cooling ~ NA (Effective) Lattice spacing Resolution (FWHM) Ref.
8Rb 1 .
2009 M. Greiner (Boson) PGC 0.55 (0.8) 640 nm  (x) 570 / (y) 630 nm  [46]
(Harvard Univ.) 61,
2015 . RSC? 0.6 (0.87) 569 nm 520 nm (73]
(Fermion)
2010 “'Bb PGC! 0.68 532 nm 700 nm [47]
I. Bloch (Boson) :
2015 (MPQ) °Li RSC? 0 1.15 895 74
(Fermion) 0 -0 pI nm [74]
M. W. Zwierlein 40K 9
2015 (MIT) (Fermion) RSC 0.60 (0.87) 541 nm 640 nm [70]
S. Kuhr 0K 3
2015 (Univ. of Strathelyde) (Fermion) EITC 0.68 532 nm 630 nm [71]
J. H. Thywissen 40K 5
2015 iy, of Toronto) (Fermion) EITC 0.8 526.8 nm 600 nm [72]
M. Kozuma 17yh
2015 (Tokyo Tech) (Boson) - 0.55 (0.81) 544 nm (x) 318 / (y) 310 nm [l
) 174Yb :
2016 This work SC*and DC? 0.75 266 nm 364 nm [80]
(Boson)

! Polarization-gradient cooling [81]

? Raman sideband cooling [32-89)]

3 Electromagnetically-induced transparency cooling [90,91]
* Sideband cooling [92-94]

> Doppler cooling [95]

THHLAVHD
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5 1.3. QUANTUM GAS MICROSCOPE

1.3.1 Quantum gas microscope of ytterbium atom

Extending the applicability of a QGM technique to atomic species beyond alkali-
metal atoms is an important step for a further revolution. In particular, a successful
application of a QGM technique to two-electron atoms such as alkali-earth metal and
ytterbium (Yb) atoms is remarkable because it offers many unique possibilities for
the quantum simulation and quantum information researches. In fact, recent studies
demonstrate that a system of two-electron atoms in an optical lattice is an ideal plat-
form for the study of SU(N') physics [96-99], two-orbital SU(N') physics [100-103],
and topological physics [104]. In addition, a variety of stable isotopes, 5 bosonic and
2 fermionic isotopes in the case of Yb atoms for example, enables us to study vari-
ous kinds of many-body systems such as ultracold Bose and Fermi gases and Bose-
Bose [26,105], Bose-Fermi [36,105,106], and Fermi-Fermi [97] mixtures in an optical
lattice. The existence of nuclear spin degrees of freedom in the ground state 'Sy
and long-lived metastable states 3P, and P, offers unique possibilities for quantum
memory and quantum computation [107-110]. Additionally we can tune interatomic
interactions between the 'Sy and ? P, states by an anisotropy-induced magnetic Fes-
hbach resonance [111,112]. Furthermore, a high-resolution laser spectroscopy of
atoms in an optical lattice using the ultranarrow 1Sy-2Py and 1Sy-3 P, optical transi-
tions is also demonstrated both for bosons and fermions, revealing the novel behavior
of the atomic interaction of the system [101-103,111,113,114]. There has been also
considerable interest in high-lying Rydberg states of two-electron atoms [115, 116]
in an optical lattice [117] because of an additional degrees of freedom for probing
and manipulation provided by the remaining valence electron of a singly excited
Rydberg state. The successful application of a QGM technique to these systems
will definitely enhance our understanding of the physics described in the above.
The important progress towards this direction has been reported quite recently
in ref. [1], in which a site-resolved imaging system has been realized without cool-
ing process for bosonic '™Yb atoms in a two-dimensional (2D) optical lattice with
a lattice constant of 544 nm. The achieved resolution of ~ 310nm (full width at
half maximum, FWHM) is impressively small. A further study is still necessary,
however, to successfully perform the above mentioned interesting researches for Yb
atoms using a QGM. First, a crucial aspect of QGM is the high-fidelity of the imag-
ing process characterized by pinned, loss, and hopping rates during the fluorescence
imaging, which should be evaluated by comparing two successive images taken for
the same atoms. Second, the Hubbard-regime optical lattice needs a shorter lattice
constant, especially for heavier atoms of Yb. These conditions should be simultane-
ously satisfied with the single-site resolved imaging and single-atom sensitivity.

In this work, I achieve site-resolved imaging of individual '™Yb atoms in a 2D
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Figure 1.2: QGM with fluorescence imaging. (a) Schematic of site-resolved imaging
system for fluorescence imaging. (b) One illustrative example of a QGM with dense
atom sample.

optical lattice with a short lattice constant of 266 nm which ensures the Hubbard-
regime [118]. To keep atoms at the same lattice sites during the fluorescence
imaging, I simultaneously cool atoms by additionally applying narrow-line optical
molasses with the 1So-3P; transition (A = 556 nm, the Doppler limit temperature
Tp = 4.4 uK, natural linewidth I'/2r = 182kHz), resulting in a low temperature
of T'= 7.4(13) uK, corresponding to a mean oscillation quantum number along the
horizontal axis 0.22(4) during imaging process. In particular, the careful tuning of
the relative angle between an applied magnetic field and a polarization of lattice
laser beams realizes the cancellation of the inhomogeneity of the light-shifts, which
enhances a cooling efficiency of narrow-line laser cooling, both for sideband cool-
ing along the horizontal direction and Doppler cooling along the vertical direction.
The realization of such high efficient cooling makes possible to suppress the heating
due to the probe light using the 1Sy-1 P transition (A = 399 nm, the Doppler limit
temperature Tp = 690 K, natural linewidth I'/27 = 29 MHz) for high-resolution
imaging. We achieve a lifetime 7 > 7s of atoms during fluorescence imaging much
longer than a typical imaging time of 400 ms, enabling to take multiple images for the
same atomic sample and to successfully estimate the imaging fidelity to be 87(2)%.
The realization of a QGM with enough fidelity for Yb atoms in a Hubbard-regime
optical lattice opens up the possibilities for studying various kinds of quantum many-
body systems such as Bose and Fermi gases, and their mixtures in an optical lattice,

and also long-range-interacting systems such as Rydberg states.
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1.3.2 Site-resolved imaging with the Faraday effect

In the currently developed QGM methods, atoms are measured by detecting fluores-
cent photons from atoms irradiated with near resonant probe light, resulting in the
destruction of the quantum state of atoms such as internal spin states. In addition,
the measurement inevitably induces considerable recoil heating, requiring elaborate
cooling scheme in a deep optical lattice.

An ultimate quantum measurement and control such as quantum non-demolition
(QND) measurement and quantum feedback control is, on the one hand, demon-
strated for a single mode of field state with a cavity-quantum-electrodynamics
(QED) system [119,120], for a collective spin ensemble by a dispersive atom-light
interaction [121-127], and also for a superconducting quantum bit by a circuit QED
system [128]. In order to realize an ultimate quantum measurement and control for
each atom in an optical lattice, we need to develop a new detection method of QGM
which does not rely on the destructive fluorescent measurement. Promising results
along this line were already reported on the detection of a single atom trapped
with a tightly-focused laser beam and a single ion in an ion-trap with a dispersive
method in ref. [129] and ref. [130], respectively. Here I note that, although the use
of an optical cavity provides an intriguing sensitivity for a single atom [131-133],
this cannot be simply combined with a QGM technique because a cavity spatial
mode determines the spatial resolution and therefore the single-site resolution is not
expected.

We report the development of a new detection method of QGM using the dis-
persive Faraday effect (Faraday QGM), and achieve a site-resolved imaging of single
isolated atoms in an optical lattice. The observed Faraday rotation angle reaches
3.0(2) degrees for a single atom. We demonstrate the non-destructive feature of this
Faraday imaging method by comparing the detuning dependence of the Faraday
signal to that of the photon scattering rate. In addition, we also demonstrate an
absorption imaging and a dark field Faraday imaging (DFFI) of QGM, and reveal
the different shapes of the point spread functions (PSFs) for these methods, which
are fully explained by theoretical analysis. Our result is an important first step to-
wards an ultimate QND measurement and quantum feedback control of a quantum
many-body system with a single-site resolution, which will have significant impacts
on quantum information processing and the physics of quantum many-body sys-
tem [134].

1.4 Outline of thesis

e In chapter 1, I introduce the background and the goal of this thesis.
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Figure 1.3: QGM with the dispersive Faraday effect. (a) Schematic of site-resolved
imaging system for Faraday QGM. (b) One illustrative example of Faraday QGM
with dense atom sample.

In chapter 2, I describe basic properties of ytterbium atoms.

In chapter 3, I describe theoretical backgrounds for this work.

In chapter 4, I describe the method for realization of a QGM of bosonic 17Yb

atom with fluorescence imaging and estimate the performance of the realized

QGM.

In chapter 5, I describe a new site-resolved imaging method using the dispersive

Faraday effect and discuss the performance of the proposed method.

In chapter 6, I conclude the thesis and discuss prospects on future experiments.



Chapter 2

Ytterbium atom

Ytterbium (Yb) atom is one of rare-earth atoms and the fourteenth element in
the lanthanide series. The atomic number of Yb is Z = 70. “Ytterbium” was
named after the village of “Ytterby” in Sweden. In 1878, Jean Charles Galissard
de Marignac discovered a component of Yb and another rare-earth atom, lutetium.
In 1907, this component was separated into Yb and lutetium. A pure sample of Yb

was obtained only in 1953.

Stable isotopes

Yb atom has rich stable isotopes (seven stable isotopes), differently from alkali
atoms. Five of them are bosonic isotopes (!¥Yb, Yb, 12YDh 17Yh, and 175YDb)
and two of them are fermionic isotopes ("'Yb and ™Yb). The mass, abundance,
nuclear spin I, and magnetic moment p of each isotope are summarized in table 2.1.
So far, all bosonic isotopes except for "?Yb which has a large negative s-wave
scattering length and is unstable of BEC are reached in BEC [16, 19,21, 26]. FD
is also realized in both "™YDb [34] and '™YDb [33]. Moreover, the several types
of quantum gas mixture (Bose-Bose, Bose-Fermi, and Fermi-Fermi mixtures) are

realized in same experimental setup, and, in fact, have been conducted.

Energy levels

The electron configuration of the ground-state Yb atom is denoted as [Xe]4 f46s?
and Yb atom has two valence electrons. The low-lying energy levels of Yb atom
are shown in figure 2.1. The properties of optical transitions for laser cooling and
imaging are listed in table 2.2. Likewise, the properties of optical transition for

ultranarrow laser spectroscopy are listed in table 2.3.

9
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______________ WY (636p)°S;

Figure 2.1: Low-lying energy levels of ytterbium atom. Dotted lines indicate the
branching of each energy level.

s-wave scattering length

A s-wave scattering length plays quite important role in an ultracold atom experi-
ment because the s-wave scattering length characterize the elastic collisional prop-
erty between ultracold atoms. Elastic collision is indispensable to evaporative cool-
ing, which is an essential part of generating quantum degenerate gases. Moreover, in
the case that s-wave scattering length is negative, BEC is unstable. The s-wave scat-
tering lengths of all Yb isotopes are experimentally determined by a high-resolution
two-color photoassociation spectroscopy and mass-scaling law [136] and listed in
table 2.4.
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Table 2.1: Atomic data for ytterbium [135].

Isotope Mass (m,) Abundance Nuclear Spin I Magnetic moment u (py)

18Yh  167.933894 0.13% 0
0Yh  169.934759 3.05% 0
Yb  170.936323 14.3% 1/2 0.4919
I2Yb  171.936378 21.9% 0
I3Yh  172.938208 16.12% 5/2 -0.6776
Myb  173.938859 31.8% 0
16Yh  175.942564 12.7% 0

Table 2.2: Relevant optical transitions for laser cooling and imaging.

Symbol ISO—lpl 150—3P1 Unit

Wavelength A 398.9 555.8 nm
Lifetime T 5.5 875 ns
o r 1

Natural linewidth — = — 28.9 0.182 MHz
2 27T
hel’

Saturation intensity [, = % 59.6 0.138  mW /cm?

. hI’

Doppler cooling limit Tp = T 694 4.4 nK
B

Landé g-factor 97 1.035  1.49285
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Table 2.3: Relevant optical transitions for ultranarrow spectroscopy.

150> Py .
Symbol Unit
Boson !"'Yb 1Yh
Wavelength A 507.35 nm
Lifetime T 15 6.3 7.2 s
o r 1
Natural linewidth — =—— 10.6 25 22 mHz
2r 27T
. . whel’ s 9
Saturation intensity I3 = 5 1.1 2.5 22 x107® mW/cm
Landé g-factor g7 1.50

Symbol 3P0—351 3P1—351 3P2—381 Unit

Wavelength A 649 680.0 769.9 nm
Lifetime T 648 233 170 ns
o r 1
Natural linewidth —— = — 1.54 2.33 5.89 MHz
2t 2nT
. . whel’ )
Saturation intensity [, = ———  0.738 1.79 1.69 mW/cm

33




Table 2.4: Calculated s-wave scattering lengths in nm for Yb isotopic combinations [136].

168YT, 170yt 171y 172yY, 173y 174y, 176y,
168y} | 13.33(18)  6.19(8)  4.72(9)  3.44(10)  2.04(13)  0.13(18)  -19.0(1.6)
170y, 3.38(11) 1.93(13)  -0.11(19)  -4.30(36) -27.4(2.7) 11.08(12)
171y -0.15(19)  -4.46(36)  -30.6(3.2)  22.7(7)  7.49(8)
172y, -31.7(3.4)  22.1(7)  10.61(12)  5.62(8)
173y 10.55(11)  7.34(8)  4.22(10)
174y, 5.55(8)  2.88(12)
176y, -1.28(23)

€l






Chapter 3

Theoretical background

3.1 Optical dipole trap

An optical dipole trap with a far-off resonant laser beam is very important tool for
trapping neutral atoms and generating quantum degenerate gases. For two-level
atom with a resonant frequency wy, the optical dipole trap with a laser frequency w

is given by [137]

Lo (w — ) I(r) = _Eal T
(wd — w?)* + (w¥/w})’ I ) (r), (3.1)

U(r) = —3nc?

where I', «, and I(r) represent a natural linewidth, a polarizability, and a laser
intensity, respectively. For Yb atoms, the polarizability of the ground state 'Sy with
a wavelength A = 532nm is calculated as o, = 37.9Hz/(W /cm?). Note that the
calculated polarizability a, includes the contribution from the ' P, and 3Py states.
In most experiment, a Gaussian beam is used for optical dipole trap and its

intensity profile is given by

I(r) = —22 exp {—2 r } (3.2)

Tw?(z) w?(z2)

where P is a laser power and w(z) = woy/1 + (2/zr)? a beam waist at position z,
respectively. Here wg and zgp = 7w2/\ indicate a beam waist at focal plane and
a Rayleigh length, respectively. By expanding I(r) around focus position, we can

obtain the trap frequency as

AU, 2U
Wy =4/ 0w, = g. (3.3)
mawg \/ mz3,

Here Uy = haly/4 and Iy = 2P/mwd.

15
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3.2 Optical lattice

The intensity profile of two laser beams interfered at an angle 6 (see figure 3.1) is

given by
L2012ty L2024y
foutr) = 22— e R e
a w?(X(0/2)) w?(X(=0/2))
- [_ 20/ + v 7(-0/2) + y?}
- wA(X(0/2))  w(X(-6/2))
+2 cos(kzsinf/2) WX (0/2)0(X (=0/2)) ,(3.4)
where X(0) = zcos@ + zsinf, Z(#) = —xsinf + zcosfh. Note that I assume a

laser power, a beam waist, and a focus position of two beams are the same. Using

equation (3.1) and (3.4), we can describe the potential of an optical lattice.

Similarly, trap frequency of optical lattice along each axis is also described as

( 8U, 20/2  2in20/2

wy — \/ °<C°SQ/ + 81“2/), (3.5)
m 22 wk
16U,

w= e (3.6)
8Uy 1 ., 0  2cos?0/2

\WZ: \/W{(%—f—kz)snlzé—’—w—g . (37)

In the case of # = m, the two laser beams are counterpropagating and the trap

Beam |

-
g

— >9

Beam 2
-
. i

Figure 3.1: Intensity profile of two laser beams interfered at an angle 6.
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frequency along each axis can be written as

[ 16U,
Wy = Wy = m—U):)Q)’ (38)
8Uy (1 2FER
L= — | 5 + k) =2 —/s. 3.9
w \/ - (212% + ) Vs (3.9)

Here Uy = sEr/4 and Er = h2k? /2m is the recoil energy of lattice beam. For Yb
atoms, the recoil energy with a wavelength A = 532 nm is given by Fr = h x4kHz =
kg x 200nK.

3.3 Light shift (AC Stark shift)

When the hyperfine-structure interaction is much larger than the Zeeman splitting

and the Stark interaction, the Stark interaction can be described as [13§]

VEE = —%] {04;2] — iozxj—[u* XQ;} J
p 3w J)(u-J)+ (u-J) (u - J) —2J7
+ 272 1) }, (3.10)

where o, oY, and ol are the conventional dynamical scalar, vector, and tensor
polarizabilites of the atom in the fine-structure level |n.J), respectively. Furthermore,
when the Zeeman splitting is much larger than the light shift and the mixing of

different magnetic sublevels m; can be discarded, the light shift is given as

h m 3m2 — J(J +1)
AE=-"1(a8 V.l _ Dal, "
4 (anJ + C&nJ 2.] Qg 2J(2J _ 1) )

(3.11)
where C' = |u_1|* — |u1|* and D = 1 — 3 |ug|* with the spherical tensor components
u41 and ug of u. Note that the linearly polarized laser light is applied in most exper-
imental situations and thus C' = 0 and D = 1— 3 cos? § where @ is the angle between
the quantization axis (parallel to external magnetic field) and the polarization of a
laser beam.

The experimentally measured scalar and tensor polarizabilities of the excited
3P, and 3P, states of Yb atoms are summarized in table 3.1. With these measured
values, the ratio of the polarizability of each excited state to that of the ground state

1Sy in each angle 6 can be calculated (see figure 3.2).
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Table 3.1: Experimentally measured scalar and tensor polarizabilities of excited
states of Yb atoms in a wavelength A = 532nm. All values in table are de-
rived using the theoretically calculated polarizability of the ground state 1S
o, = 37.9Hz/(W/cm?). The values of ®P, state are measured by T. Tomita [139].

Symbol (6s6p)>P;  (6s6p)3 P Unit
Scalar a’ 22.4(2 46.0(16
Tensor  al, -7.6(1) 7.5(22)
(a) (®)
1 T T T T T T T T n| 1.5
09
S 08 f SE
~ >
S S
éﬁ 0.7 r _o-- El é‘
2 2
T 06 f NG 3
2 o5t 7 s
04 F---7 -7
03 L A I 1 S T T A T
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
6 (degree) 6 (degree)

Figure 3.2: Ratio of the theoretically calculated polarizability of each excited state
to that of the ground state for bosonic Yb atoms. (a) Ratio of the theoretically
calculated polarizability of the 3P; state to that of the 1S, state. A red solid and
a blue dashed curves represent the polarizabilities of magnetic sublevel m; = 0 and
|my| = 1, respectively. (b) Ratio of the theoretically calculated polarizability of the
3P, state to that of the 1S, state. A red solid, a blue dashed, and a green dotted
curves represent the polarizabilities of magnetic sublevel m; = 0, |m | = 1, and
|m | = 2, respectively. a, and a. represent the polarizability of the ground and the
excited states, respectively. 6 indicates the angle between the quantization axis and
the polarization of a laser beam.
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3.4 Photon collection efficiency

For estimation of the fluorescence signal of single atoms, a photon collection effi-
ciency 7 is required. In this section, I calculate the photon collection efficiency in
two following cases. Here 6 is defined as the angle between z-axis and the direction
of scattered light, and ¢ as the angle between z-axis and the projection of scattered

light into z-y plane, schematically shown in figure 3.3(a).

Isotropic radiation

An isotropic radiation pattern is quite simple and the photon collection efficiency is

N = /dQ B0, p) = % (1 V- NA2> , (3.12)

where the radiation probability ®(0,¢) = (47)7!, the numerical aperture NA =

given as

nsin 6y, and n the index of refraction of the medium.

Dipole radiation

In a dipole radiation pattern, the radiation probability @(6, ¢) can be described as

3 (1 —sin®fcos’ ),  (dLé.) (3.13)
2(0,0) =2 A
& (1—cos*d), (d | é.) (3.14)

where d represents the unit vector of the electric dipole moment. With these equa-

tion, the photon collection efficiency 7 is given by

1 {1 —/1-NA? (1 - N4A2>} (dLle)  (3.15)

2

l[l_m(HNfﬂ (de) (3.16)

2

1= [ a0 0.4 -

The lines in figure 3.3 indicate the calculated results of equation (3.12), (3.15),
and (3.16).

3.5 Point spread function

In this section, I introduce a point spread function (PSF) of a single atom. The
discussion of resolution of single atom is quite important for a single-site-resolved
imaging. Here many textbooks (e.g. ref. [140]) explain the diffraction theory and,



CHAPTER 3. THEORETICAL BACKGROUND 20
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Figure 3.3: Photon collection efficiency. (a) Schematic of coordinate of the point. 6,
indicates the maximum angle of photon collection. (b) Calculated photon collection
efficiency with NA. A red solid curve indicates the photon collection efficiency with
an isotropic radiation. A blue dashed and a green dotted line show the photon
collection efficiencies with a dipole radiation of d_Lé, and d || é,, respectively. Here
d represents the unit vector of the electric dipole moment.

in incoherent scattered light, an electric field at imaging plane can be described as

2J1 (]{NAT)

E(r) o —Nar

(3.17)
where Ji(z) represents Bessel function of the first kind and k the wavenumber of
the incident light with a wavelength A, respectively. Thus, a PSF of single atoms

can be given by

(3.18)

PSF(r) o |E(r? o (w)

kNAr

On the other hand, a PSF can be well approximated by a Gaussian function as

2
PSF(r) = exp {—T‘Q} , (3.19)
where 0 ~ 0.349 x Ay ~ 0.213 x A\/NA. In table 3.2, I summarize the definition
of diffraction-limited resolution and the resolutions calculated with A = 399 nm and
NA = 0.75. Here the Reyleigh’s and Sparrow’s definitions indicate the resolution of
the first zero-crossed point and of the FWHM, respectively. The profiles of equa-
tion (3.18) and (3.19) are shown in figure 3.4.
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Table 3.2: Diffraction-limited resolution. The resolutions calculated with A =
399nm and NA = 0.75 are shown in right column.

Definition Symbol Resolution
Reyleigh 2A 1.220 A 649
e ~ 1.220—
ylelg 0 NA nm
A
Sparrow (FWHM) 24, &~ 0.515M 274nm
) A
Gaussian o ~0.349 x A0 ~ 0.213— 113nm
NA
| . . -
[ \\
e N
E075F N\ .
o \
g A\
g 05— 1
% R te— Sparrow's definetion 4,
£ 025 \ ]
o \
Z L
0 ke - e -
Reyleigh's definetion 4, - . . .

0 025 05 075 1 125 15 175 2
r/A,

Figure 3.4: Theoretically calculated point spread function (PSF). A red solid and
a blue dashed lines show the ideal PSF of equation (3.18) and the approximated
Gaussian function of equation (3.19).






Chapter 4

Site-resolved fluorescence imaging

4.1 Experimental setup and atom preparation

Our experiment starts from loading bosonic !™Yb atoms into a magneto-optical
trap (MOT) in a metal chamber and transferring the atoms into a glass cell (Schott
AG BOROFLOAT) using an optical tweezer (OT). The detail of the MOT and OT
setup is described in ref. [141]. The position of atoms in the glass cell is about
5.5 mm below the surface of the glass cell, and just 6.23 mm under a high-resolution
objective with numerical aperture of NA = 0.75 (Mitutoyo G Plan Apo HR50x
(custom)), which is schematically shown in figure 4.1(b). After creating a BEC
of 5 x 10* atoms after 10s evaporative cooling in a crossed optical trap formed by
the OT beam and another 532nm beam, we load the BEC into a vertical lattice
generated by the interference of two laser beams with the wavelength of A = 532nm
propagating at a relative angle of & = 6.2°. The vertical lattice has a spacing of
A/2sin(a/2) = 4.9 um and the trap frequency along the vertical axis (z-axis) of
w, = 27 x 2kHz at this loading stage, as explained in detail in ref. [142].

The atoms just after being loaded into the vertical lattice spread over several,
typically three, layers, as shown in the left panel of figure 4.2(a). In this situation,
although we can focus on the atoms in one selected layer with an objective depth of
less than 1 um, we always have contributions from the atoms in other layers which
considerably blur the image. To observe a clear image for the atoms in only one layer,
we blow away the atoms in unnecessary layers. This is done by alternately exciting
the atoms into the 3Py(m; = —1) state under a bias magnetic field B, = 1.4G
and a magnetic field gradient AB = 6.2mG/um, corresponding to the Zeeman
shift AE7eeman = h X 64 kHz/layer, followed by the rapid inelastic collisional decay
and repumping back the atoms into the ground state (see figure 4.2(b)). Here the
ultranarrow optical transition of 150—3P2(m ;J = —1) with the resonant wavelength

of 507nm and natural linewidth I'/2r = 10mHz is used for the excitation and

23
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(@ (b)

High-resolution objevtive, NA = 0.75
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Figure 4.1: (a) Low-lying energy levels of 1™Yb atoms relevant for imaging and
cooling scheme. The 1Sy-! P, transition is used for high-resolution imaging and the
1Sy-3P; transition for high efficient cooling. n and n’ show the vibrational level of
the 1Sy and Py (m; = 0) states, respectively. wy and w}; show the trap frequency
along the horizontal lattice of the 1Sy and 3Py(m; = 0) states, respectively. (b)
Experimental setup for high-resolution imaging in a deep optical lattice. Dark and
light green and blue arrows show the direction of lattice, 556 nm cooling molasses,
and 399 nm probe molasses beams, respectively. Red arrows show the polarization
of each laser beam. The high-resolution objective with NA = 0.75 is just above the
glass cell, made of plates with 3 mm thickness. The wavelength of all lattice beams
is 532nm and the beam waists of lattice beams along z, y, and z directions are
(W, wy, w,) = (23,23,15) pm, respectively.

3Py(my = —1)-35; and 3Py-35; for repumping (see figure 4.2(c)). As a result, we
successfully prepare the atoms in only a single layer, as shown in the right panel of
figure 4.2(a).

Finally, we load the 2D atom cloud in a single layer into horizontal 2D optical lat-
tices (x- and y-axes) by simultaneously ramping up the potential of the vertical and
horizontal optical lattices, where the wavelength of horizontal lattices is A = 532 nm
and the lattice spacing is 266 nm. The vibrational frequencies along the three axes
at the fluorescence imaging stage are (w,wy, w,) = 27 x (300, 300, 15.7) kHz, corre-
sponding to the lattice depths of (U,, Uy, U,) = kg x (300, 300, 250) xK, respectively.

Before observation of isolated atoms, we adjust the tilt of the objective using
visibility of Moiré pattern between horizontal optical lattices and cooling beams.
Here Moiré pattern results from the difference of spacing of two standing waves.
We show the result of tilting adjustment of the objective in figure 4.3. Note that
we install the tilting adjustment system of the objective and the schematics of the

holding jig for imaging system is shown in appendix E.
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150 % =4.7 pm _ ]
o AE~hx64kHz |§ Repump . s
T 1009 . (770 nm & 649 nm)
S o — \— —
st
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Figure 4.2: Pick up a single layer. (a) Spectroscopy of atoms in the vertical lattice
using the 1S5->Py(m; = —1) transition at a bias magnetic field B, = 1.4G and
a magnetic field gradient AB = 6.2mG/um. The left and right panels show the
spectrum without and with blowing away atoms in the additional (1%* and 3™)
layers, respectively. A layer separation of Az = 4.9 um corresponds to the Zeeman
shift AE7eeman = h X 64kHz. The arrow with g shows the direction of gravity. (b)
Sequence of preparing only atoms in a single-layer (2"¢ layer). We blow away the
atoms trapped in the 15 and 3" layers by alternately exciting the atoms into the
3P, state followed by the rapid inelastic collision decay and repumping back them
into the 1Sy state. The blast time is typically 250 ms. (c¢) Low-lying energy levels of
1Yb atoms relevant for blast.

(b)

10 pym

Figure 4.3: Visibility of Moiré pattern between 532 nm optical lattices and 556 nm
cooling beams. (a) Misalign of the tilt of objective. The image is blurred. (b)
Correctly align of the tilt of objective. Note that we modulate the phase of the
standing wave of the 556 nm optical molasses along x-axis by modulating its retro-
reflecting mirror.
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4.2 Narrow-line laser cooling in an optical lattice

An important prerequisite for realizing a QGM is to preserve the atoms at their
sites during fluorescence imaging. The 'S,-1P; transition provides high-resolution
imaging with the diffraction limited resolution of a FWHM of 274 nm in our system.
The high Doppler cooling limit temperature Tp = 690 uK, however, makes quite
difficult to preserve atoms at their sites. In addition, the lack of hyperfine structure
in the ground state 1.S; of bosonic Yb atoms makes impossible to apply sub-Doppler
cooling techniques such as polarization-gradient cooling and Raman sideband cool-
ing. To resolve this difficulty, we simultaneously cool the atoms with Doppler and
sideband cooling using the 1Sy-3 P, narrow-line transition.

To efficiently cool all the atoms in an optical lattice with the narrow-line transi-
tion 1Sy-3P;, we need to suppress the inhomogeneity of light shift between the 15,
and 3P, states, otherwise the detuning for cooling is not optimized simultaneously
for all atoms. Homogeneous light shifts of the ground and excited states enable us
to excite the state from (g,n) to (e,n — 1) with any oscillation quantum number n,
that is, we can efficiently cool atoms by sideband cooling technique, schematically

shown in figure 4.4(a). Note that (g,n) and (e, n) indicate the ground and excited

(a) (b)
\ /
nt2
E: Z+1; \ / & "ﬁg\\ . //
’ A, e,n
e ¥ ) t 7/
N :
I : r X
(g, n+2)\\ : E // (g, n+2)\\ : //
(g n+1) M| (g n+1) :
(g n (g n

Figure 4.4: Cooling efficiency of sideband cooling with or without potential inhomo-
geneity between the ground state and excited state. (a) oy = a.. The (g,n) state
with any oscillation quantum number n can be excited to the (e,n — 1) state with
the same laser frequency. (b) ay > .. Only the (g,n + 1) state with a certain os-
cillation quantum number n can be excited to the (e, n) state. Note that (g,n) and
(e,n) indicate the ground and excited states with the oscillation quantum number
n, respectively.
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states with the oscillation quantum number n, respectively. On the other hand, fig-
ure 4.4(b) shows the energy levels with the inhomogeneity of light shift between the
ground and excited states. In this case, we can only excite the state from (g,n + 1)
to (e,n) with a certain oscillation quantum number n, resulting in the low cooling

efficiency of sideband cooling.

The light shift in the ground state 'Sy is given by AE} = —(h/4)ayI, where I
is the laser intensity of the wavelength A = 532nm and o, = 37.9 Hz/(W /cm?) is
the calculated scalar polarizability in the 1S, state. The light shift in the magnetic

sublevel m of the 3P state is given as [138]
L h
AE = —Zae(mJ,Q) I, (4.1)

where Y
ae(my,0) = o — Off%

Here 6 is the angle between the quantization axis and the polarization of laser

(3m3 — 2). (4.2)

beams, o and ol are the scalar and tensor polarizabilities in the Py state, respec-
tively. Importantly, equation (4.2) provides the possibility of tuning the polarizabil-
ity a.(my,0) to coincide with «, by choosing an appropriate angle 6 for m, thus
canceling the light-shift effects of the 1.5y-3P; transition.

For this possibility we perform a laser spectroscopy with the 1.S;-3Py(m; = 0)
transition for two different horizontal optical lattice potentials of 500 and 1250 Egr
with angles # and measure the resonant frequency shift A f of two horizontal optical
lattice potentials. One example of the performed laser spectroscopy is shown in

figure 4.5(a). Using equation (4.1), the resonant frequency difference Af can be

_ T50Eg (ac(m;=0,0)
Af === ( - —1). (4.3)

written as

In figure 4.5(b), we show the measured resonant frequency shift Af with several
angles 6 and the fit result with equation (4.3). As a result, we accurately determine
of and ol as 22.4(2) and —7.6(1) Hz/(W /cm?), respectively. With these values, our
current setup of the polarizations of all the lattice beams parallel to the vertical axis
provides a(my = 0,6 = 0)/a, = 0.99. In our experiment, however, we slightly tilt a
magnetic field from the vertical direction by an angle 6.1° which gives a.(m; = 0,0 =
6.1°)/a, = 0.98. This setup enables us to excite the atoms into the *Py(m; = 0)
state, when the polarizations of the 556 nm cooling light along the horizontal axes
are set to vertical, and those along the vertical axis horizontal (see figure 4.1(b)).
Note that the light shift of the 1Sy-'P; transition for probing is smaller than the

natural linewidth of this transition of 29 MHz, and so it is not a problem. The total
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intensities of 399 nm and 556 nm beams correspond to the saturation parameters of
5399 ~ 1 x 1073 and ss56 ~ 1, respectively. With this dual molasses, Moiré patterns
of about 6 ym pitch are observed as a result of the interference between the cooling
molasses beam of 556 nm and the optical lattice of 532nm. To erase this unwanted
Moiré pattern, we modulate the phase of the standing wave of the 556 nm optical
molasses by modulating retro-reflecting mirrors via the attached piezo transducers,
as explained in detail in ref. [142].

The fine tuning of the relative angle between a magnetic field and lattice laser
polarizations indeed gives us a reasonably narrow resonance of the 'So-3P;(m; = 0)
transition for atoms in the optical lattice during fluorescence imaging. Figure 4.6(a)
shows the spectra of atoms in our deepest horizontal optical lattices of U, = U, =
1500 Egr, where Exr = h?/2mA2 = kg x 200nK is recoil energy of lattice beam.
The top panel shows the fluorescence counts of 399 nm probe molasses light as a
function of a frequency of 556 nm cooling molasses beams along the horizontal axes,
in which we simultaneously apply the probe light and weak cooling molasses lights,
S399 ~ 1 x 1073 and s556 ~ 0.6, and we can observe many fluorescence counts during
a 400 ms exposure time only when the cooling is efficient at favorable detunings.
We obtain the optimal frequency fr = —337(18) kHz with the width of 318(12) kHz
(FWHM). The bottom panel shows the optical density measured by absorption
imaging with a 556 nm beam irradiated along the horizontal axis as a function
of a frequency of the 556 nm probe light. In this measurement we do not apply
399nm and 556 nm molasses beams. Note that we set a zero frequency detuning as
the resonance frequency of this spectrum. We determine the optimal detuning of
cooling beam along the horizontal axes d555/2m = fr = —337(18) kHz. The same
measurements are done at several horizontal lattice depths of 250 to 1500 Er, as
shown in figure 4.6(b). In our lattice system, Lamb-Dicke parameters are 7, =

hk?/(2mw,) = (0.11,0.11,0.48), where k is a wavevector of 556 nm light, and
= xz,y, z. Although the frequency separation between the cooling sideband fr and
the carrier transition f = 0, corresponding to the trap frequencies w, and w,, is not
large enough compared with the natural linewidth of 184 kHz for the 556 nm cooling
transition, the responsible cooling mechanism along the x- and y-axes should be
sideband cooling because the optimal detuning of cooling beam along the horizontal
axis depends on the horizontal lattice trap depth and is consistent with the trap

frequency along the horizontal axis, as shown in figure 4.6(c).
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Figure 4.5: Resonant frequency shift Af of the 'Sy->P;(m; = 0) transition in two
different horizontal optical lattices with angles #. (a) Laser spectroscopy with the
1S0-3P1(my = 0) transition for two different horizontal optical lattice potentials of
500 Eg (red circles) and 1250 Eg (blue squares). A red and blue curves show a fit
to the data. (b) Measured resonant frequency shift Af of the 1.S;-3Py(my; = 0)
transition with various angles 6. A red curve is a fit with equation (4.3) and yields
af =22.4(2)Hz/(W/cm?) and ol = —7.6(1) Hz/(W /cm?).
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Figure 4.6: Optimal detuning of cooling beam along horizontal axis. (a) Spectra
of atoms in a deep optical lattice with U, = U, = 1500 Er as a function of the
detuning 0556/27 of 556 nm cooling molasses along horizontal axes. The top panel
(blue squares) shows the fluorescence counts of 399 nm probe molasses with cool-
ing of 556 nm molasses beam along the horizontal axis. The bottom panel (grey
circles) shows the optical density measured by absorption imaging with a 556 nm
beam irradiated along the horizontal axis. The lines in graphs show fit to the data.
(b) Spectra as a function of the detuning ds56/27 of 556 nm cooling molasses along
horizontal axes in the horizontal lattice potential depths Uy, of 250 to 1500 Eg.
Solid lines in a graph show fits. (¢) Dependence of the optimal detuning of 556 nm
cooling molasses on horizontal optical lattice depths. Red circles show the experi-
mental data. A dashed red line shows the calculated trap frequency in an horizontal
optical lattice with equation (3.9).
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Figure 4.7: Cooling temperature evaluation by ultranarrow laser spectroscopy.
Laser spectroscopy of atoms using the ultranarrow 'Sy->P, (m; = 0) transition
after cooling by sideband (horizontal axis) and Doppler (vertical axis) cooling of
556 nm. The line shows fit to the data. The ratio of the red to the blue side-
band peaks Sg/Sp is 0.32(6), and the mean oscillation quantum number along hor-
izontal axis (n) = 0.22(4), corresponding to the temperature along horizontal axis
Ty = 7.4(13) uK. The error in the determination of the mean vibrational occupation
number (n) comes from a fitting error of the peak heights of red- and blue-sidebands
(Sr and Spg).

The temperature of the atoms during the fluorescence imaging is accurately mea-
sured by a laser spectroscopy using the ultranarrow transition 1.Sy-3Py(my = 0). Fig-
ure 4.7 shows the spectrum obtained, which clearly shows three peaks corresponding
to the red- and blue-sidebands and the main carrier. From the ratio of the red to the
blue sideband peaks Sg/Sp = 0.32(6), we can evaluate a mean oscillation quantum
number in a horizontal optical lattice (n) = (1 — Sz/Sp)""/* — 1 = 0.22(4), corre-
sponding to the atomic temperature of kgTy = hw/In (1 + (n)™1) = kg x 7.4(13) uK
[92-94].  The value is in good agreement with the theoretical one of kgTy =
hw/In (1 + 16w?/5I'?) = kg x 6.4 uK based on a sideband cooling theory [93]. Note
that this expression is valid for a narrow enough laser linewidth compared to I" and
low enough laser power for no need of considering a saturation effect. The tem-
perature along the vertical direction is measured by a time-of-flight method to be
12(1) pK. The optimal detunings are determined for various lattice depths, and are
independent of the lattice depth, which suggests that the dominant cooling mecha-
nism is Doppler cooling. This is reasonable if we consider the small trap frequency
of 15.7kHz along the vertical direction compared with the linewidth of 184 kHz.

The unique feature of our scheme is the separation of the cooling and probing
processes during the fluorescence imaging. We can therefore study the effect of the

cooling beams alone. Here we study the temporal evolution of the temperature
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Figure 4.8: Temporal evolution of the temperature (a) without and (b) with applying
a PA pulse. In both graphs, temperatures are measured by a time-of-flight method
and the red circles and blue squares show the temperature along the horizontal
and vertical direction, respectively. Note that probe light is not applied in this
measurement. The temperature in (a) is rapidly increased because the atoms in
the multiply-occupied sites are heated through the light-assisted collision process,
where the atomic loss is not dominant (see the main text). Although the similar
trend in (b) as that in (a) could come from the heating by light-assisted collision
of a small number of atoms remaining in multiply-occupied sites which was not
removed by the PA pulse, it is difficult to discuss the detail of the behavior due to
the fluctuations of the data, especially at the temperature lower than 10 uK. Note
that the PA pulse is well detuned from atomic resonance and there is essentially no
effect on the temperature of the remaining atoms. The error bars show the total
error including a fitting and an estimation error.

with narrow-line laser cooling, especially at the early stage of cooling, to investigate
what happens during the cooling process. This is especially interesting because the
atom loss rate for the light-assisted collision associated with the 1Sy + 3P, states is
small [143] and the atoms in multiply-occupied sites would be heated without loss,
differently from the case of alkali atoms. In this measurement, the temperature is
measured by a time-of-flight method with absorption imaging. To correctly estimate
the temperature along the horizontal axis, we numerically calculate the size of the
atom cloud after a time-of-flight, assuming an initial Boltzman occupation of the
each vibrational level and a ballistic expansion of the cloud. Figure 4.8(a) shows
the results of the measurements. The temperatures rapidly increase within several
milliseconds followed by the rather slow decrease towards the steady-state value
obtained by the ultranarrow line laser spectroscopy of figure 4.7(c). This behavior
is explained as an effect of a light-assisted collision due to the near-resonant cooling
light. Namely, atoms in multiply-occupied sites should be heated by release of the
kinetic energy subsequent on a light-assisted collision. This is confirmed by further

measurements with applying a photoassociation (PA) pulse for removal of multiply-
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occupied sites before imaging, shown in figure 4.8(b). In spite of the fluctuation of
data, it is clear that the behavior of the temperatures of figure 4.8(b) is different
from that of figure 4.8(a). Although all the following single-site resolved imaging
data presented in this chapter are measured without the application of PA light,
this initial heating effect is negligible because the multiply-occupied sites are almost

absent in sparse atomic samples used for our QGM measurement.

4.3 Site-resolved imaging

We image the atomic fluorescence onto the EMCCD camera (Andor iXon™ Blue).
In figure 4.9(a) we show one illustrative example of the obtained images. Note that,
just before the fluorescence imaging, we intentionally select only about 2% of the
atoms for easier evaluation of the performance of the QGM. Such dilution of the
atoms is done by performing a weak excitation with the 'Sy-> Po(m; = —1) transi-
tion, and then returning the atoms back into the ground state 'Sy. Figure 4.9(b)
shows our measured PSF, obtained by averaging over 10* fluorescence images of
individual atoms. We find that our PSF can be well approximated by a double

Gaussian:

PSF(r)=A

(b)
4000
4000 .
L]
3000f ©
3000 K
a 8 X
5 S 2000F &
=1 3 .
2000 @ X
1000 *
1000 e
0 ) ) 1900000000004
0 025 05 075 1
0 Radius (um)

Figure 4.9: Site-resolved fluorescence imaging (a) Site-resolved imaging of ™Yb
atoms on a sparsely-filled 266 nm-period optical lattice. (b) The measured PSF
averaged over 10* individual single atoms and azimuthal average of the PSF. The line
is a fit with a double Gaussian of equation equation (4.4) and yields A = 3850(10)
counts, o1 = 154(1)nm, oo = 153(10)nm, ry = 516(9)nm, B = 0.068(2), and
C = 89(4) counts.
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Figure 4.10: Determination of lattice configurations. (a) and (b) The histogram of
the mutual distances in the coordination rotated by an angle ¢ = 0.8° and 0.5°,
respectively. (c) Determination of lattice angle and spacing. The red dashed line
is a fit by o(¢) = o9 [1 + {1 —cos(v(¢ — ¢o))}] and yields a minimum width at
rotation angle of ¢y = 0.482(3)°.

with widths o1, 09, main and relative amplitudes A, B, a spatial offset ry, and
an overall count offset C'. The fit result shows our PSF is well described with
o1 = 154(1)nm and o9 = 153(10) nm, and also has a FWHM of 364 nm, and we
detect on average 200 photons per atom within 400 ms fluorescence time. In our
imaging system, the spherical aberration remains, making the resolution of PSF
worse than ideal one. Our system has a total fluorescence collection efficiency of
6.0%, given by the objective’s solid angle of /47 = 17%, 51% total transmission
through the imaging optics, and quantum efficiency of 70% of our EMCCD camera.
The corresponding atomic fluorescence rate of ~ 8300 photons/s is large enough to
unambiguously identify the presence or absence of an atom for each lattice site. Note
that the maximum number of detected photons is limited by the cooling rate of the
narrow transition [142]. Although the resolution of measured PSF is about 1.4 times
larger than the lattice spacing, we successfully determine the atomic distribution by
deconvolution of images.

For reconstructing an atom distribution from our obtained image, we first deter-
mine a lattice angle and spacing from the isolated, single-site resolved signals [47].
Our lattice axes are oriented approximately along the vertical and horizontal axes
with respect to the images. The histogram of the mutual distances in the coordina-
tion rotated by a small angle ¢ is shown in figure 4.10(a) and (b). We fit a periodic
array of Gaussians to the observed histogram. Figure 4.10(c) shows the width of the
Gaussians in the histogram as a function of a coordinate rotation angle. The red
dotted line is a fit by o(¢) = 0o [1 + B{1 — cos (7 (¢ — ¢o))}]. The minimum width
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of the histogram is obtained at the coordinate rotation angle of 0.482(3)° and the
lattice constant of 2.66(1) pixels on CCD plane corresponding to the lattice constant
of 266 nm. From the same analysis of the other lattice axis, we also obtain the co-
ordinate rotation angle of —0.664(4)° and lattice constant of 2.65(1) pixels on CCD
plane corresponding to the lattice constant of 266 nm. Thus, the magnification ratio
of our imaging system is 159.7(4) and one pixel of our CCD camera corresponds
to 100.2(3) nm on the objective plane. These values are used for the deconvolution

analysis of our images.

Here we breifly describe the deconvolution procedure of our fluorescence image
[144]. First step is to determine a PSF, a lattice spacing, and a coordinate rotation
angle from the isolated, single-site resolved signals, as is explained in the above.
From the determined PSF of equation (4.4) and the location of lattice sites, we next

calculate a trial image

Ip(r,0) =Y @, PSF (|r — 7)) | (4.5)

where 7 represents a position in an image plane, 7, a position of a lattice site
n, a, a fitting parameter corresponding to a probability of finding an atom at a
lattice site n, and o = (a1, a9, a3, -+ , ;). Note that «,, represents a fitted value
of a peak fluorescence count at the n-th lattice site. Finally we determine the
parameters a by minimizing a quantity A(a) = 3 (L () — Leg (7, @))?, where
Layw (7) is a raw fluorescence image. Figure 4.11(a) shows a raw image of the limited
region of Figure 4.9(a) with grid lines showing lattice separation and orientation.
In figure 4.11(b), we show a reconstructed atom distribution where red circles and
black dots represent the atoms and the lattice sites, respectively. In figure 4.11(c),
we also show the reconstructed atom distribution convoluted with the model PSF of
equation (4.4), which is compared with the raw image of figure 4.11(a). As a typical
example of this deconvolution procedure, we show in figure 4.11(d) a histogram of

a,, determined in several regions of 9 x 9 sites picked up from raw images.

An important aspect of QGM is the high-fidelity of the imaging process charac-
terized by loss and hopping rates during the fluorescence imaging. For this purpose,
we take two successive images of the same atoms with 400 ms exposure time and
300ms delay between the two images, and observe the change in the atom distri-
bution. We precisely tune the detuning g of cooling molasses along the horizontal
axes, and evaluate the loss and hopping rates during the fluorescence image from
the two successive images. Figure 4.12(a) and (b) show the results of reconstructed
atom distributions at dy/2m = —394 and —206 kHz, respectively. For optimized pa-
rameters, we achieve loss rates of 6.5(18)% and hopping rates of 6.7(15)% for 400 ms
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exposures of clouds with fillings of ~ 0.02 (see figure 4.12(c)). These rates, which
include reconstruction errors, give a detection fidelity of 87(2)% for sparse clouds.
Here we discuss the origins of the measured loss and hopping rates. The ther-
mal hopping cannot explain the observed rates since the average occupation number
during the fluorescence imaging is as low as 0.22. Instead, several possible mecha-
nisms can be considered such as the branching from the ' P; to lower states [145], a
vibrational quantum number-changing transition during the absorption and fluores-
cence cycle of the 1Sy-1 P, transition, and the photon scattering from the 3P, state
due to the 532nm lattice beams. The loss rate estimated with the lifetime about
10s during fluorescence imaging is 6.8%. This value is in good agreement with the
measured loss rates, shown in figure 4.13. We also note that one of the limiting

factors of the lifetime is the irradiation of the 399 nm probe light itself.
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Figure 4.11: Deconvolution of fluorescence imaging. (a) Raw image of sparsely filled
lattice with grid lines showing lattice separation and orientation. (b) Reconstructed
atom distribution. Red circles and black dots represent the atoms and the lattice
sites, respectively. (c) Numerically reconstructed atom distribution on lattice sites.
The image is convoluted with the model PSF of equation (4.4) and reconstructed
atom distribution of (b). (d) Histogram of normalized fitting parameters & as a
result of deconvolution. The left peak corresponds to empty sites, the right peak
to those occupied by a single atom. Note that & show the fitting parameters o
normalized by a maximum value of I, (7).
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Figure 4.12: Detection fidelity of fluorescence imaging. (a) and (b) Reconstructed
atom distributions at 0y /27 = —394 and—206 kHz, respectively. Red circles and
blue squares in the panels show the lattice sites occupation of the first and second
image, respectively. (c) The pinned, lost, and hopping fractions. The fraction of
pinned atoms (blue circles) shows the number of atoms preserved at the same lattice
sites in the two successive fluorescence images (400 ms exposure time, 300 ms delay
between the two images). The fraction of lost atoms (red squares) shows difference
of the number of atoms between the two images. The fraction of hopping atoms
(green triangles) shows the number of atoms appearing on a previously empty site
in the second image. All fractions are normalized to the number of atoms in the
first image.
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Figure 4.13: Dependence of lifetime on 399 nm probe saturation parameter ssgg.
Left panel shows the dependence of lifetime on intensity of probe beam. Right
panel shows the loss rate in each intensity of probe light. A red dotted line in figure
shows a fit to the data. Note that we apply 556 nm cooling beam with saturation
parameter Sssg ~ 1.
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4.4 Conclusion

In conclusion, we demonstrate a bosonic Yb QGM in a 2D optical lattice with
a short lattice constant of 266 nm. The atoms are preserved in the lattice sites
during fluorescence imaging by narrow-line laser cooling which successfully combines
Doppler cooling and sideband cooling. The resulting temperature is T = 7.4(13) uK,
corresponding to a mean oscillation quantum number along the horizontal axes
0.22(4). The PSF has a reasonably small width comparable to the ideal value,
enabling the identification of the presence and absence of atoms by the deconvolution
analysis. The high fidelity of the imaging process, which is an important aspect of
QGM, is confirmed by the measurement of loss rate of 6.5(18)% and hopping rate
of 6.7(15)% for 400 ms exposure time.

While we perform the experiment with bosonic ™Yb atoms, our method is
applicable for a QGM for other Yb isotopes, including fermionic "*Yb and "Yb.
In fact, our preliminary result shows that we can successfully obtain site-resolved
images for fermionic '"'Yb atoms. In addition, the sideband cooling demonstrated
in this work can be straightforwardly applied to other alkaline-earth atoms such as
strontium, especially for an optical lattice with magic wavelength. The realization of
a QGM with enough fidelity for Yb atoms in a Hubbard-regime optical lattice opens
up the possibilities for studying various kinds of quantum many-body systems, and

also long-range-interacting systems such as Rydberg states.



Chapter 5

Faraday quantum gas microscope

5.1 Experimental setup for Faraday quantum gas

microscope

In chapter 4, we demonstrate the site-resolved fluorescence imaging of single isolated
atoms with a dual molasses technique. In this chapter, instead of fluorescent pho-
tons, we detect a polarization rotation of a linearly polarized probe light transmitted
through atoms in a 2D optical lattice with a polarizing beam splitter (PBS) placed
in front of a camera, which is schematically shown in figure 5.1. Here 6 and é4 are
defined as the angle of a PBS with respect to the incident probe polarization and

its unit vector, respectively.

Probe light E,, . o
Objective / Scattered light E.
7%Yb atoms ]
x [
_ PBS ¢
Magnetic field B z 4—11»)/ CCD Camera

Figure 5.1: Experimental setup for Faraday QGM. We detect a polarization rotation
of a linearly polarized probe light of 399 nm transmitted through '"Yb atoms in a
2D optical lattice with a PBS placed in front of a CCD camera. The high-resolution
objective with NA = 0.75 is just above the glass cell. The PBS angle 6 is set to be
7/4 for the Faraday imaging, and is 7/2 and 0 for DFFI and absorption imaging,
respectively.

41
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Figure 5.2: Low-lying energy levels of 1™ Yb atoms relevant for the dispersive Fara-
day effect. Note that Jy and . represents the detuning of a probe laser beam with
respect to the 'Sp-'Py(m; = 0) and the 'Sp-' Py(m; = +1) transition, respectively,
and 6p = gyup|B|/h is a Zeeman shift in the 'Py(m; = 41) state due to the
magnetic field B.

Low-lying energy levels associated with probing of Faraday imaging are shown in
figure 5.2. We apply a magnetic field B for inducing a Faraday effect and B is almost
parallel to the z-axis which is the propagation direction of a probe beam, shown in
figure 5.1. In figure 5.2, The detuning of a probe laser beam with respect to the ' Sp-
1P (my = £1) transition is 1 = §oFdp. Here dy represents the detuning of the probe
laser beam with respect to the 1Sy-' P(m; = 0) transition and 6 = gsup|B|/h
is a Zeeman shift in the 'P;(m; = +1) state due to the magnetic field B, g; the
Landé g-factor of 1P, state (see table 2.2), and up a Bohr magneton. Since the
applied magnetic field is almost parallel to z-axis, we have negligible excitation for
LSo-1Pi(my = 0) transition.

Note that we use bosonic ™Yb atoms loaded into a single layer of 2D optical
lattice for Faraday QGM and, to achieve a better signal-to-noise ratio of Faraday
QGM, the probe beam has a strong intensity which causes the residual heating effect

so that we simultaneously apply cooling beams during imaging process.

5.2 Faraday imaging

In this section, I describe Faraday imaging with the PBS angle § = +7/4 where
half of the probe light is reflected and the other half is transmitted. In this setup,

we can detect a polarization rotation of a linearly polarized probe light with high
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sensitivity.

5.2.1 Optical spectrum

We apply a magnetic field of 40 G and measure an optical spectrum of Faraday
imaging. The signal amplitude corresponds to the ensemble average of atoms. The
Faraday imaging shows a dispersive frequency dependence around the 'So-! Py (m; =

+1) resonances (09 = £27 x 58 MHz), which can be fitted with a following equation:

2

(Eprobe + Esc(éo)) i ég , (51)

Eprobe . é9

Api(do) = ’

where

Ewcl(90) o (1 + i2(50+— o)/ T T z‘2(50:r (53)/F) ‘ (52)

Here E,one represents a linearly polarized input probe light and E.(dp) an induced
scattered electric field. In figure 5.3, ared (blue) curve shows a fit with equation (5.1)
with the PBS angle 0 = 7 /4 (—7/4).

—_ = =
— N W

Faraday signal

0.9
0.8
0.7
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Figure 5.3: Spectrum of Faraday imaging (f = £7/4). A magnetic field of a 40 G is
applied for Faraday imaging. A red (blue) curve shows a fit with equation (5.1) with
the PBS angle 6 = w/4 (—m/4). The signal strength in each spectrum is derived by
the analysis of the ensemble average. The resonance positions are indicated by grey
dashed lines.

5.2.2 Site-resolved imaging

A polarization rotation due to the Faraday effect for a single atom can be understood

as an interference effect between a linearly polarized input probe beam Epope(T)



CHAPTER 5. FARADAY QUANTUM GAS MICROSCOPE 44

and an induced scattered electric field by a single atom. Based on a diffraction
theory [140] and a scattering theory [146], a scattered field E.(r) at a detector is
described as

E.(r)=

_\/%NAQJl(k:NAT) E, (1 &y e )  53)
—i

> FNAr 265/T) " T+i(205/T)

where Ej represents the amplitude of electric field of input probe light, 1 the photon
collection efficiency described in equation (3.15), NA the numerical aperture of ob-
jective, Ji(x) the Bessel function of the first kind, & the wavenumber of probe light,
and ey the polarization unit vector for circularly polarized light oy, respectively.
Note that we set the PBS angle # = 7/4 and the detuning 6y = 0. The total detected
field Egetect (1) after a PBS is given as Egetect (1) = [Eprobe(r) + Fse(r)] - €9. Here, in
our experimental setup, the beam waist of the probe light is ~ 37 ym, much larger
than the experimentally measured resolution oo, = (kNAep) ' = 130nm with
NAep = 0.49, enabling to consider the distribution of the probe light as uniform.
Note that the theoretically predicted resolution oiges = 85 nm with NA = 0.75. A
Faraday image, normalized as one for the background level, can be described as
o(r) = | B (1) (Eo/ VD)

S—UNA 1+ (265/I") 2J,(kNAr)
2 14 (205/I)° KkNAr

2
1—

(5.4)

It is worthwhile to note that this spatial profile of an image of a single atom, namely
the PSFE of Faraday imaging, is different from that of the ordinary fluorescence

imaging which is given by

1 2.J; (ENAr)\?
I o 1+(25B/r)2( KNAF ) ' (5:5)

The difference clearly comes from the presence or absence of the interference between
the probe light E . and the scattered light Ey. The interference is absent in a
fluorescence image. On the other hand, the interference term 2.J;(x)/x is dominant
at the PBS angle § = +7/4 for a Faraday image.

For easier evaluation of the performance of the site-resolved Faraday imaging,
we intentionally select only several percent of the atoms by ultranarrow-line laser
spectroscopy of the 1Sy-2 P, transition and prepare a sparse atom cloud for the mea-
surement. In figure 5.4(a), I show one illustrative example of the Faraday imaging
and figure 5.4(b) shows the measured PSF, obtained by averaging about 30 iso-

lated individual atoms. We find that our measured PSF of Faraday imaging is well



45 5.2. FARADAY IMAGING

~
=)
—~

1.1 T T T
1.05 1
1.05 s
S
o 17)
Lo 2095
23
0.95%' ks 0.9
09 0.85
0 05 1 1.5 2
0.85 Distance (um)

Figure 5.4: Site-resolved Faraday image. (a) One illustrative example of the Faraday
imaging. The detuning of the probe beam is 27 x 56 MHz with the saturation
parameter s3g9 = 0.84 x 1072. The measurement duration is 400 ms. (b) Measured
PSF averaged about 30 individual single atoms and azimuthal average of PSF. The
blue line is a fit with equation (5.4) with NA = 0.49(2).

fitted with the theoretical formula of equation (5.4) shown as a blue solid line in
figure 5.4(b). Note that our Faraday imaging method, if applied to an atomic en-
semble, is equivalent to the phase-contrast polarization imaging method developed

in ref. [147] and exploited for non-destructive probing of a BEC.

5.2.3 Faraday rotation angle for a single atom

Iri(r) given in equation (5.4) is also given by Ipi(r) = [V2cos(m/4 + qb(r))]2, by
introducing a position-dependent Faraday rotation angle ¢(r) defined as

et e, 4 em0e_

Eiia(r) = Eoone + Eue(r) = E 5.6
total () = Epron (r) = Eo 7 (5.6)
Therefore, ¢(r) can be calculated with a following equation:

$(r) = cos™* [ IFI(T’)/Z] — /4. (5.7)

From the data of figure 5.4(b) and equation (5.7), we evaluate the spatial distribution
of the Faraday rotation angle of a single atom and its azimuthal average shown in
figure 5.5. The observed Faraday rotation angle reaches 3.0(2) degrees for a single
atom with the detuning of 27 x 56 MHz.
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Figure 5.5: Faraday rotation angle of single atom. (a) Schematics of Faraday rota-
tion angle. Note that we can detect only ]Edetect\z in our present imaging system.
(b) Azimuthal average of Faraday rotation angle evaluated with equation (5.7). In-
set: Spatial distribution of Faraday rotation angle. The detuning of the probe light
is 27 x 56 MHz with the saturation parameter ssg9 = 0.84 x 1073. A peak Faraday
rotation angle reaches 3.0(2) degrees.

5.2.4 Deconvolution of Faraday imaging

For non-destructive measurement with single-site resolution, it is quite important to
determine the atom distribution by deconvolution of a Faraday image. We demon-
strate the decision of the atom distribution by deconvolution of a Faraday image
and successfully determine the atom distribution. Here the basic procedure of the
deconvolution is the same as that on fluorescence imaging of QGM, with a PSF of
equation (5.4) being the main difference.

In the same condition of figure 5.4, we show a raw image of Faraday imaging in
figure 5.6(a), and the reconstructed atom distribution convoluted with the model
PSF is shown in figure 5.6(b). A histogram of the fitted amplitudes of the scattered
field E(r) in each site is shown in figure 5.6(c) and a black dashed line indicates
the chosen threshold value.

On the other hand, we also demonstrate the decision of the atom distribution by
deconvolution process of a Faraday image with the detuning of 27 x 10 MHz with
respect to the 15y-3P; (my = —1) resonance under the magnetic field of 40 G. This

deconvolution result is shown in figure 5.7.
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Figure 5.6: Deconvolution result of Faraday QGM. (a) Raw Faraday image of
sparsely filled atoms in a 2D optical lattice. Note that the detuning of probe light
is 2m x 56 MHz with the saturation parameter s3g9 = 0.84 x 1073. (b) Numerically
reconstructed atom distribution on lattice sites. The image is convoluted with the
model PSF of equation (5.4) and reconstructed atom distribution. Red squares and
grey dotted lines represents the atoms and the lattice separations, respectively. (c)
Histogram of the fitted amplitudes of the scattered field Ey.(r) in each site. A black
dashed line shows the threshold of the presence or absence of atoms.
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Figure 5.7: Deconvolution result of Faraday QGM with the near resonance light.
(a) Raw Faraday image of sparsely filled atoms in a 2D optical lattice. Note that,
differently from the data in figure 5.4(a), this image is taken with the detuning of
2m x 10 MHz with respect to the 'Sy-3P;(m; = —1) resonance under the magnetic
field of 40 G. (b) Numerically reconstructed atom distribution on lattice sites. The
image is convoluted with the model PSF of equation (5.4) and reconstructed atom
distribution. Red squares and grey dotted lines represents the atoms and the lattice
separations, respectively. (c) Histogram of the fitted amplitudes of the scattered
field E.(r) in each site. A black dashed line shows the threshold of the presence or
absence of atoms.
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5.3 Dark field Faraday imaging

In this section, I describe a dark field Faraday imaging (DFFI) with the PBS angle
0 = 7/2. In this case, all of the probe light is reflected by the PBS and only the
scattered light can be transmitted through and detected at a detector. Thus, this
configuration of DFFI [148] enables us to obtain a back-ground-free signal like a

fluorescence imaging.

5.3.1 Optical spectrum

We apply a magnetic field of 40 G and measure an optical spectrum of DFFI. The
signal of DFFI can be described by

1 1 2
1+i2(80 — 65) /T 1+4i2(6 + 65)/T

Aprri(60) o< | Ex(dp) - €] o (5.8)
A green solid and a blue dashed lines in figure 5.8 show fits with equation (5.8) and
a Lorentzian function, respectively. The green solid line is in better agreement with
the experimental data than the blue dashed line.
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Figure 5.8: Spectrum of DFFI (§ = 7/2). A magnetic field of a 40 G is applied
for DFFI. A green solid and a blue dashed lines show fits with Eq. (5.8) and a
Lorentzian function, respectively. The signal strength in each spectrum is derived
by the analysis of the ensemble average. The resonance positions are indicated by
grey dashed lines.
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5.3.2 Site-resolved imaging

For easier evaluation, only several percent of the atoms are selected and cooling
beams are applied to suppress the heating effect and to keep atoms within the
respective lattice sites. Figure 5.9(a) shows the DFFI signal of site-resolved image
of single atoms. Here the detuning is 27 x 56 MHz, which is the same as figure 5.4(a)
of the Faraday imaging. Although this DFFI signal looks quite similar to that of
fluorescence imaging, the DFFT signal originates from a dispersive interaction just
like a Faraday signal. Figure 5.9(b) shows the measured PSF, obtained by averaging
about 30 individual atoms. We find that the measured PSF is well fitted with the

theoretical formula given as

Topmi(r) o< (1 + (205/T)2  kNAr

and a green solid line in figure 5.9(b) shows a fit with equation (5.9). Note that we
set the detuning 6y = 0.
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Figure 5.9: Site-resolved DFFI (§ = 7/2). (a) One illustrative example of DFFL.
The detuning of the probe beam is 27 x 56 MHz with the saturation parameter
s399 = 1.1 x 1073, (b) Measured PSF averaged about 30 individual single atoms
and azimuthal average of PSF. The green solid line shows a fit with equation (5.9)
with NA = 0.52(1). This measurement takes the duration of 400 ms.

5.3.3 Detection fidelity

We measure the detection fidelity of Faraday QGM in the same way of fluorescence
imaging. Here the images of DFFT are used for measurement of the detection fidelity
because DFFI gives us a back-ground-free image which has a high signal-to-noise
ratio. We show the intensity dependence of the detection fidelity in figure 5.10 and
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the detuning dependence of cooling lights is shown in figure 5.11. In every mea-
surement, we can reach the detection fidelity of ~ 80% with the proper parameters
and the detection fidelity of 84(17)% is obtained with the optimal intensities and
detunings of the probe and cooling beams. This detection fidelity is almost the same

quality of that of fluorescence imaging.
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Figure 5.10: Intensity dependence of the detection fidelity of Faraday imaging. (a)
Intensity dependence of the probe light. (b) Intensity dependence of the cooling
light along horizontal axis with the saturation parameter of the probe beam s399 =
1.1 x 1073. (c) Intensity dependence of the cooling light along vertical axis with the
saturation parameter of the probe beam s399 = 1.1 x 1073. Blue circles, red squares,
and green triangles in figure indicate the fraction of pinned, lost, and hopping atoms.
Note that the detuning of the probe beam is 27 x 56 MHz in all measurements.
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Figure 5.11: Cooling laser detuning dependence of the detection fidelity of Fara-
day imaging. (a) Detuning dependence of the cooling light along horizontal axis.
(b) Detuning dependence of the cooling light along vertical axis. Blue circles, red
squares, and green triangles in figure indicate the fraction of pinned, lost, and hop-
ping atoms. Note that the detuning of the probe beam is 27 x 56 MHz with the
saturation parameter ssg9 = 1.1 x 1072 in all measurements.
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5.4 Absorption imaging

In this section, I describe a absorption imaging with the PBS angle # = 0. This

configuration is the standard set up for an ensemble measurement.

5.4.1 Optical spectrum

We measure an optical spectrum of absorption imaging with a magnetic field of
8 G. The absorption imaging shows a resonant character, which can be fitted with
—log [Ar1(dp)] with the PBS angle 6 = 0 shown in figure 5.12.
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Figure 5.12: Spectrum of absorption imaging (6 = 0). A magnetic field of a 8 G is
applied for absorption imaging. The signal strength in each spectrum is derived by
the analysis of the ensemble average. The resonance positions are indicated by grey

dashed lines.

5.4.2 Site-resolved imaging

For easier evaluation of the performance of the site-resolved absorption imaging, we
intentionally select only several percent of the atoms and prepare a sparse atom
cloud for the measurement. Here the detuning is taken as 27 x 11 MHz within the
linewidth of the probe transition. In this case, similarly to the Faraday imaging,
a probe light makes destructive (and also constructive) interference with scattered
light. In figure 5.13(a), we show one illustrative example of the absorption imaging,
which clearly shows a site-resolved image of single atoms. Figure 5.13(b) shows the
measured PSF, obtained by averaging about 60 individual atoms, which reveals the

interference feature like the Faraday imaging. Again we find that our measured PSF
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Figure 5.13: Site-resolved absorption imaging (6 = 0). (a) One illustrative example
of the absorption imaging. The detuning of the probe beam is g = 27 x 11 MHz
with the saturation parameter szg9 = 2.9 x 1072, (b) Measured PSF averaged about
60 individual single atoms and azimuthal average of absorption image. The yellow
solid line shows a fit with equation (5.10) with NA = 0.46(2). This measurement
takes the duration of 400 ms.

is well fitted with the theoretical formula given by

2
NN NN 1 2 2.J1 (kNAr) (5.10)
27 1+ (265/1)°  kNAr

Iar(r) = —log

and a yellow solid line in figure 5.13(b) shows a fit with equation (5.10). A peak
optical density of the PSF reaches 0.20(2) corresponding to the absorption rate
18(1)%. This value is much larger than that of the previous work of single atoms
and ions [149, 150].

5.5 Non-destructive nature of Faraday imaging

The inherent non-destructive nature of the Faraday imaging method originates from
the dispersive character of a Faraday effect, represented by the detuning dependence
of the signal expressed by equation (5.4). The Faraday signal, which is the interfer-
ence term of equation (5.4), is inversely proportional to the detuning (< 1/§) at a
large detuning limit. This should be compared with the destructive effect of photon
scattering rate I'y. by probe light, which is expressed by equation (5.5) and propor-
tional to 1/ at a large detuning limit. Therefore, by taking a large detuning, we
can improve the ratio of the signal strength to the destructive effect of the photon
scattering in Faraday imaging. In figure 5.14, we plot the detuning dependence of

the ratio of the Faraday imaging signal strength S to the photon scattering rate
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Figure 5.14: Ratio of signal strength S to photon scattering rate [, for Faraday
imaging. The green squares represent the data obtained from the signals of isolated
atoms, and red circles represent the ensemble measurements. A red dashed line
shows a theoretically fitted curve.

I, in arbitrary units. Note that we represent the Faraday imaging signal strength
S by the averaged signal of the isolated atoms in the Faraday imaging. On the
other hand, the averaged signal of the isolated atoms in fluorescence imaging taken
in the same condition is used as a measure of the photon scattering rate I,.. The
ratios obtained in this way are denoted by green squares. We also plot the ratios
obtained by ensemble measurements as red circles. The experimental results are
in good agreement with the theoretical prediction represented by a red dashed line
and in particular show the linear increase with the detuning, indicating that the
Faraday imaging realizes a single-atom observation with a reduced effect of photon
scattering. In fact, the saturation parameter at the detuning of 0 = 27 x 70 MHz
corresponding to 0.6 x 1073, almost half of the value of the typical fluorescence
imaging. This is to be contrasted with the case of the fluorescence imaging where

the ratio is constant on the detuning, and is not improved.

On the other hand, the signal of DFFI has a detuning dependence of o 1/§% at
a large detuning limit, and has no non-destructive nature. The experimental results
in figure 5.15 show the saturation of the ratio of the signal strength of DFFT S to
the photon scattering rate I, at larger detunings, consistent with the theoretical
prediction. This indicates that the DFFI has no merit to realize a single-atom

observation with a reduced effect of photon scattering.
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Figure 5.15: Ratio of signal strength S to photon scattering rate Iy, for DFFI. The
blue squares represent the ensemble measurements. A blue dashed line shows a
theoretically fitted curve.

5.6 Effect of the probe light for Faraday quantum

gas microscope

Usually the fidelity of the imaging can be evaluated by taking two successive images
of the same atoms and comparing the atom distributions. The fidelity deduced
from such a method includes the fidelity of the deconvolution procedure, which
will make a large contribution in the current Faraday imaging, especially at low
probe intensities. Here, in order to purely extract the effect of the probe light for
Faraday imaging, we apply a probe pulse with the same detuning as the Faraday
imaging and with varying intensities during the 400 ms interval between the two
images. The timing of taking two consecutive images and applying the probe beam
is schematically shown in figure 5.16(a). The consecutive two images to determine
the atom distributions are taken by setting the PBS angle to 7/2 (DFFI) so that
we can get the background-free image similar to the fluorescence images. Note that
the cooling light is also applied to suppress the residual heating effect as in the
Faraday imaging. In figure 5.16(b), we show the fidelity normalized by that without
the probe light during two images. We find almost no change of pinned, loss, and
hopping fractions when the probe intensity is below 2 x 1072 times the saturation
intensity. Above this intensity, we find almost linear increase of the loss and hopping
fractions. This behavior is reasonable when considered in terms of the saturation
parameter. The observed critical intensity corresponds to the saturation parameter

of s399 ~ 1072 which is consistent with that observed in the previous experiment,
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Figure 5.16: Effect of the probe light for Faraday QGM. (a) Timing of taking two
consecutive images and varying the probe intensity. The duration of the exposure
and the interval time is 400ms. (b) Measured fidelity normalized by the fidelity
without probe light is plotted for various probe intensities [;,;. Below the intensity
Lt = 2 x 1072 x I,, the normalized fidelity takes almost the same one. Note that
I represents the saturation intensity of the probe beam.

where the cooling is balanced with the heating effect of the probe beam.

5.7 Current limitation of Faraday quantum gas

microscope

In this section, I discuss the current limitation of the Faraday imaging method and
its possible solutions. The Faraday signal is obtained as a result of the interfer-
ence between the scattered and the probe light beams. The background level of
the Faraday signal is, thus, sensitive to the temporal fluctuation and the spatial
inhomogeneity of the intensity and the polarization of the probe beam, resulting
in a relatively poor signal-to-noise ratio. This problem can in principle be solved
by careful stabilization of the probe beam for its intensity, polarization, and spatial
profile. In the present experiment, to achieve a better signal-to-noise ratio with only
intensity stabilization, the probe beam has a strong intensity which causes the resid-
ual heating effect so that cooling during the imaging is required. An interferometric
detection of a weak light using a strong local oscillator for a homodyne detection
scheme, similar to ref. [129], would enhance the detection sensitivity with a reduced
photon scattering rate. The polarization-squeezed light is also useful for the sup-
pression of the polarization noise below the standard quantum limit [151,152]. The
realization of non-destructive limit of the Faraday QGM would significantly relax
the experimental hurdle for a QGM setup, such as the necessity of an elaborate cool-

ing scheme in an extremely high optical lattice depth during the imaging. This will
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even open the possibilities of various atomic species and even molecules for quantum
gas microscopy as well as the occupancy-resolved measurement beyond the current

parity measurement.

5.8 Conclusion

In conclusion, we successfully demonstrate site-resolved imaging of single atoms with
the Faraday effect. The observed Faraday rotation angle reaches 3.0(2) degrees for
a single atom. We demonstrate the non-destructive feature of this Faraday imaging
method by investigating the detuning dependence of the signal. In addition, we
demonstrate absorption imaging and DFFI of QGM, and reveal the different shapes
of PSF's for these imaging methods, which are fully explained by theoretical analy-
sis. Our result is an important step towards an ultimate QND measurement with a
single-site resolution. It will furthermore open up the possibilities for quantum feed-
back control of individual atoms in a quantum many-body system which will have
significant impacts on quantum information processing and the physics of quantum

many-body system.



Chapter 6

Conclusion and outlook

6.1 Conclusion

This thesis presents the realization of a QGM of Yb atoms with both a fluorescence

and a Faraday imaging methods.

e Fluorescence imaging (Chapter 4)

We precisely determine the scalar and tensor polarizabilities of the 3P, state
and successfully reduce the inhomogeneity of light shift between the 1S, and
3P, states, resulting in efficiently cooling atoms in a 2D optical lattice with
Doppler and sideband cooling and suppressing the heating by probe light with
the 1Sp-!P; transition. The measured lifetime of imaging reaches over 7s
and the resulting temperature is 7' = 7.4(13) uK, corresponding to a mean
oscillation quantum number along horizontal axis of 0.22(4) during the imaging
process. In addition, we precisely tune the tilt of objective and successfully
realize the high-resolution imaging system where the resolution of imaging
system is a FWHM of 364 nm. We detect on average 200 fluorescence photons
from a single atom within 400 ms exposure time. Thanks to these results,
we successfully demonstrate a site-resolved imaging of individual '™Yb atoms
in a 2D optical lattice with fluorescence imaging. Furthermore, taking two
successive site-resolved images enables us to estimate the detection fidelity and
we achieve the high detection fidelity of 87(2)% with the optimal intensity and

detuning of the probe and cooling beams.

e Faraday imaging (Chapter 5)

We successfully demonstrate a site-resolved imaging with the Faraday effect
and the observed Faraday rotation angle reaches 3.0(2) degrees for a single

atom. Differently from a fluorescence imaging, a site-resolved imaging using

29
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the Faraday effect enables us to suppress the heating by the probe light at
a large detuning of probe light. In fact, we observe the linearly increasing
feature of the ratio of Faraday signal strength S to photon scattering rate I,
at a large detuning. In addition, we perform the different type of site-resolved
imaging such as DFFI and absorption imaging and we reveal the different
feature of the spatial distribution of single atoms in these imaging methods,
which are fully explained by theoretical analysis. In absorption imaging, the
peak optical density of the PSF reaches 0.20(2) and this value is much larger
than that of previous works for single atoms and ions. We also estimate the
detection fidelity of 84(17)% using DFFI which enables us to obtain a back-
ground-free signal like a fluorescence imaging. This detection fidelity is almost

the same quality of that of fluorescence imaging.

6.2 Outlook

The fluorescence imaging with single-site resolution developed in this thesis is appli-
cable for a QGM of other Yb isotopes including fermionic '"™'Yb and ™®Yb atoms.
The QGM of fermionic '"™'Yb and YD atoms provides us to a platform for study-
ing many fascinating physics such as SU(N') physics with single-site resolution. In
addition, our imaging method where we simultaneously cool atoms with sideband
cooling is straightforwardly applied to other alkaline-earth atom species (e.g. stron-
tium atoms). The realization of a QGM with enough fidelity for Yb atoms in a
Hubbard-regime optical lattice opens up the possibilities for studying various kinds
of quantum many-body systems such as Bose and Fermi gases, and their mixtures,
and also long-range-interacting systems such as Rydberg states.

We successfully demonstrate the site-resolved imaging with the dispersive Fara-
day effect. In our present setup, however, we need the strong probe beam for
site-resolved imaging to compensate for a large noise due to the temporal fluctu-
ation and the spatial inhomogeneity of the intensity and the polarization of the
probe beam. Thus, we need to simultaneously cool atoms during Faraday imaging.
The interferometric detection of a weak light with a strong oscillator for a homo-
dyne detection and the polarization-squeezed light are quite useful for suppression
of the instability of the probe beam. This suppression will enable us to reduce
the unfavorable heating, that is, the destructive effect by probe light, resulting in
relaxing the experimental hurdle for QGM setup and enabling us to perform the
nondestructive Faraday QQGM of various atomic species and even molecules as well
as occupancy-resolved measurement in each site beyond the current parity measure-

ment. Furthermore, the realization of the nondestructive Faraday QGM will open up
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the possibilities for an ultimate quantum control and feedback of individual atoms
in a quantum many-body system which will have great impacts on not only the

physics of quantum many-body system but also quantum information processing.
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Appendix A

Physical constants

This appendix summarize physical constants in table A.1.

Table A.1: Physical constants taken from ref. [153].

Physical constant Symbol Value Unit
Speed of light in vacuum c 2.997 924 58 x 10% ms!
Magnetic constant Lo 47 x 1077 NA-2
Electric constant €0 8.854187817 x 1072  Fm™!
Plank constant h 6.626 06957 x 10734 Js
Dirac constant h 1.054 571726 x 10734 Js
Elementary charge e 1.602176 565 x 10719 C
Electron mass Me 9.10938291 x 10~3¢ kg
Proton mass m, 1.672621 777 x 10727 kg
(Unified) atomic mass unit  m, 1.660 538 921 x 10~%7 kg
Boltzmann constant kg 1.380648 8 x 102 JK!
Acceleration of gravity n 9.806 65 ms—?2
Bohr magneton 1B 927.400 968 x 1026 JT-1
Nuclear magneton LN 5.05078353 x 10727 JT~!
Bohr radius a 0.52917721092 x 10~1° m
Electron g-factor Je —2.002 319304 361 53
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Appendix B

Towards a quantum gas
microscope of fermionic ytterbium

atoms

In this appendix, current status of a QGM of fermionic "*Yb atoms with fluorescence

imaging is described.

B.1 Atom preparation

The s-wave scattering length of fermionic "'Yb atoms is —0.15nm and quite small
for efficient evaporative cooling. For efficient evaporative cooling of 1"'Yb atoms,
we simultaneously load bosonic '™Yb atoms and perform sympathetic evaporative
cooling. Here the interspecies scattering length between "*Yb and '™Yb atoms is
22.7nm, which is large enough for sympathetic evaporative cooling. After sympa-
thetic evaporative cooling, we can obtain ~ 10% '™'Yb atoms with T/Tr ~ 1 and
we load the '™'Yb atoms into a 2D optical lattice by a similar way described in

section 4.1.

B.2 Raman sideband cooling

The YD atoms has a nuclear spin I = 1/2 and thus we can apply sub-Doppler
cooling techniques such as polarization-gradient cooling [81] and Raman sideband
cooling [82-89]. Here we apply Raman sideband cooling technique for a QGM
of fermionic '™Yb atoms, schematically shown in figure B.1. Note that the trap
frequency along vertical axis is quite small, 2 x 15.7kHz, and cooling mechanism

along vertical direction is Doppler cooling.
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Figure B.1: Raman sideband cooling for fermionic 1"'Yb atoms. A Raman transition
drives atoms into the 1Sy(I = 1/2,m; = +1/2), removing one vibrational excitation.
The probe light of the 1Sy-3P; transition is used for the optical pumping. Note that
dpoppler indicates the detuning of 556 nm cooling molasses along vertical axis.



B.3. INHOMOGENEUITY OF LIGHT SHIFTS BETWEEN THE 1S, AND
69 THE 3P, STATES

B.3 Inhomogeneuity of light shifts between the
1S, and the 2P, states

For '"'Yb atoms, the light shift in the magnetic sublevel my of the 3P, state is given
by [138]

h
AEL = —Zae(F, mp,0)I, (B.1)
where
3m% — F(F + 1
ao(F,mp,0) = ad — (1 —3cos®0)al,, 2}}7(2F—1) ), (B.2)
2F2F—1(2F+1) F 2 F
= (=1)F*2 x 35 T (B3
g = (=1) \/ 1)(2F +3) {1 1/2 1}% (B:3)

Here o = 22.4(2) Hz/(W /cm?) and ol = —7.6(1) Hz/(W/cm?) and the notation

{ 21 ‘7,2 ‘7,3 is the Wigner 6-j symbol. Using above equations, the calculated
Ja Js5 Je

polarizabilities with angles 6 is shown in figure B.2. The ratio of a.(F,mp,0)/a,
with any (F, mg,0) is less than 0.8.

B.4 Site-resolved imaging

After the preparation of dilute atoms in a 2D optical lattice, we perform a high-
resolution imaging with a narrow-line laser cooling described above and we success-
fully detect single fermionic !"'Yb atoms with single site resolution. We show one
illustrative example of fermionic QGM in figure B.3 and we can find many atoms
are lost during two successive images. This indicates that the laser cooling during
imaging process is not sufficient because of the large inhomogeneity of light shifts
between the 1S; and the 3P, states described in above section. In fact, the lifetime
of fermionic '™Yb atoms during imaging process is 1.2(1) s and quite shorter than
that of bosonic 1™Yb atoms (see figure B.4). For a QGM of fermionic "'Yb atoms
with high detection fidelity, this problem must be solved.
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Figure B.2: Theoretically calculated polarizability of 3P, state for fermionic "'Yb
atoms. A red solid, a blue dashed, and a green dotted curves represent the calculated
polarizability of |F,mg) = |1/2,£1/2), |3/2,4£1/2), and |3/2, £3/2), respectively.
Here F is the quantum number for the total angular momentum F of '"'Yb atoms
and mp is its magnetic sublevel, respectively.
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Figure B.3: Site-resolved image of fermionic '™'Yb atoms. Note that the exposure
time and the interval time between two successive images are 400 ms and 300 ms,
respectively.
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Figure B.4: Lifetime measurement of fermionic '"*Yb QGM. Red circles shows the
measured data. A red solid line is a fit to the data and yields the lifetime of
fluorescence imaging of "'Yb atoms 7 = 1.2(1) s.






Appendix C

Transmission rate of a glass cell

In this appendix, the transmission rate of a glass cell (Schott AG BOROFLOAT) for
each wavelength is described. A thickness of a glass plate using in this measurement
is 3mm and this thickness is the same as that of a glass cell. The measurement is
done by Solid state spectroscopy group in Kyoto university. The result is shown in
figure C.1 and the transmission rates of the relevant optical transitions of Yb atoms
are summarized in table C.1.

Table C.1: Transmission rate of a glass cell for typical optical transitions of Yb
atoms.

Wavelength A Optical transition Transmission rate (%)
399 nm (652)1Sy — (6s6p)L Py 91.32
507 nm (652)1Sy — (656p)> Py 91.83
556 nm (652)1Sy — (6s6p)3 Py 91.77
578 nm (65?)1Sy — (6s6p)> Ry 91.74
649 nm (6s6p)> Py — (6s6p)3S; 92.00
680 nm (656p)3 P, — (6s6p)3S; 91.99
770 nm (6s6p)3 Py, — (6s6p)>Sy 92.11
493 nm (656p)3 Py — (656d)3 D3 91.79
532 nm (for optical trap and lattice) 91.65
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Figure C.1: Transmission rate of a glass cell (Schott AG BOROFLOAT).
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Appendix D

Control system

In ultracold atom experiments, we need to control a lot of digital and analog devices
with high accuracy. In addition to this requirement, we should prepare a control
system where we can easily change parameters and sequences of experiments be-
cause we have to take data under various conditions. To meet these requests, we
develop the control system for experiments using PXI system (PXIe-1073, National
instruments Corporation) inserting two analog output board (PXI-6733, National
instruments Corporation) and two DAQ board (PXIe-6363, National instruments
Corporation). This PXI system provides us to 64 digital I/O and 24 analog output

channels.
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Figure D.1: Control panel for manually controlling digital and analog outputs. Left
two columns surrounded by a red dotted line show the digital control part and a right
column surrounded by a blue dotted line the analog control part. Note that analog
output values are limited between the setting maximum and minimum values.
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For controlling these devices, we also develop the control program written in
LabVIEW (National instruments Corporation). Figure D.1 shows the panel for
manually controlling digital and analog outputs. Here analog output values are
limited between the setting maximum and minimum values. We can easily change
frequently changing parameters including the duration times and the analog output
values (e.g. the atom loading time and the potential depth of optical lattices),
shown in figure D.2. Using these parameters or directly input control values, we
can construct a timing table of experimental sequence, shown in figure D.3(a). In
addition, various analog output groups (see figure D.3(b)) are available in each
timing of an experimental sequence. Using a TCP/IP connection, we can sweep a
frequency of laser beams, for example cooling beams, after each every sequence (see
figure D.4(a)). We can also sweep a parameter of a time duration and an analog

output value after every sequence (see figure D.4(b) and (c)).
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Figure D.2: Control panel for frequently changing parameters. We can change the
duration time using the left column surrounded by a red line and the analog output
values using the center column surrounded by a blue line.
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Figure D.3: Control panel for a timing table of an experimental sequence and ana-
log outputs in each timing. (a) Control panel for a timing table of experimental
sequence. (b) Control panel for analog outputs in each timing.
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Figure D.4: Selection panel of a frequency sweep and a parameter sweep. (a) A
frequency sweep panel thorough TCP/IP connection. (b) and (c) A parameter
sweep panel for a duration time and an analog output value.



Appendix E

Schematics of the holding jig for
the imaging system
In this appendix, I present a CAD data of the holding jig for a high-resolution

objective with the adjustment system of the tilt of it. Here we use a manual swivel
stage (STO7A-S1IW, Kohzu Precision Co., Ltd.) for the tilting adjustment.
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Figure E.1: Schematic of the adapter for objective.
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SCHEMATICS OF THE HOLDING JIG FOR THE IMAGING

80
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