The 4th KU-NTU student exchange program and workshop on Severe Weather and Climate Research, 16-19 March 2016

Regional-Scale Downscaling of Typhoon Hazards under Changing Climate

Tetsuya Takemi

Disaster Prevention Research Institute, Kyoto University

Assessing typhoon hazards at regional-scales

Typhoon hazard is one of the major meteorological hazards in the western North Pacific region.

Coastal regions/island regions – Storm surge, high wave

Land regions – Heavy rainfall/high wind, often topographically induced

Hazards depend on regional geographical characteristics.

Complex topography, climatology

Quantitative assessment on the impacts from hazards is required for disaster prevention and mitigation.

Amount of rainfall, wind speed – Warning, Controlling flood, inundation, outside operation/activity

Assessment of typhoon impacts under global warming is important for disaster mitigation and adaptation planning.

Changes in the severity of category-5 tropical cyclones and the resulting hazards under global warming

Typhoon has a meso- $\alpha/\beta/\gamma$ -scale structure

How to assess the impacts of typhoon hazards?

Hazards can be assessed by considering worst-class scenarios.

Past disaster-spawning cases are regarded as a baseline for the hazard assessment

Downscaling experiments with a regional numerical weather prediction model are vital for quantitatively representing convective-scale processes.

Cloud-resolving/permitting resolution

Effective use of climate prediction experiments is important.

High-resolution GCM data

Pseudo-global warming (PGW) experiments: worst-case scenario under global warming

Downscaling experiments for worst-class typhoons

Typhoon Haiyan (2013) Typhoon Vera (1959) (Isewan Typhoon) Typhoon Songda (2004)

Super Typhoon Haiyan (2013)

Model and experimental settings

- Model: WRF/ARW Version 3.3.1
- Initial and boundary conditions:
 - Atmosphere: NCEP Final Analysis (FNL)
 - SST: NCEP FNL or JMA MGDSST
- Domain & resolution: 3 km/1 km
 - Domain 1 (3 km): 4000 km x 2000 km
 - Domain 2 (1 km): 2000 km x 700 km, and etc.
 - Vertical levels: 56
 - Model top: 20 hPa
- Simulation period:
 - 0000 UTC 5 Nov 0000 UTC 10 Nov 2013

Typhoon Haiyan (2013): Simulation with WRF

Regional simulation with the Weather Research and Forecasting (WRF) model at 1-km resolution 0000Z 06.11.2013

Simulation of storm surge in Leyte Gulf

Maximum water surface elevation with the use of the WRF outputs

Circle points indicate the measurements.

(Mori et al. 2014)

Effects of climate change on worst storm surge

Takayabu, I., K. Hibino, H. Sasaki, H. Shiogama, N. Mori, Y. Shibutani, T. Takemi, 2015:
Climate change effects on the worst-case storm surge: a case study of Typhoon
Haiyan. *Env. Res. Lett.*, **10**, 064011

Intensity of tropical cyclones

Storm surge

Present climate (w/ global warming)

Natural conditions (w/o warming)

Increase the water level by 10—20 % due to global warming for the worst-case storm surge from a Haiyan-class typhoon

Takayabu, I., et al. 2015, Env. Res. Lett., 10, 064011

Typhoon Vera (1959): "Isewan Typhoon"

- Downscaling experiments with the WRF model
 - Initial and boundary conditions: JRA-55
- Typhoon Vera (1959) "Isewan Typhoon": September 1959
 - Minimum central pressure: 895 hPa
 - Storm surge/high waves in the Ise Bay
 - River discharge in the Yodo River basin
 - The highest resolution of the nested domains: 1km
- Assessing the impacts of global warming
 - Pseudo-global warming (PGW) experiments
 - + Climate change increment between future and present climate simulated by MRI-AGCM3.2S

Pseudo-global warming experiment

Global warming increment

Future changes in temperature, pressure, sea surface temperature from GCM climate prediction data

Increment = (GCM future climate) - (GCM present climate)

Past analysis

Long-term reanalysis dataset: JRA-55 (available from 1958)

Add global warming increment to past analysis fields

Example: Vera-class extreme typhoon under global warming

(Pseudo-global warming climate)

= (Sep 1959 reanalysis) + (Sep monthly mean GW increment)

Climate prediction data

- Climate simulation data by JMA/MRI-AGCM3.2 (Atmospheric General Circulation Model Version 3.2)
 - Present climate: 1979-2003
 - Future climate: 2075-2099 under various Representative Concentration Pathways (RPCs) (CO2 emission scenario)
 - Spatial resolution: 20 km and 60 km

Global warming increment in September

Downscaling experiments

Pseudo-global warming (PGW) experiments

- **CNTL**: Sep 1959 condition; initialized at 5 different times
- **PGW**: Four different SST conditions (Mizuta et al. 2014)
 - CMIP5 multi-model ensemble mean SST
 - Three SST patters from cluster analysis (Cluster 1, 2, and 3)

		Added vars	9/22 12UT	9/22 00UT	9/21 12UT	9/21 00UT	9/20 12UT
1959 Exp (CNTL)			case001	case002	case003	case004	case005
Pseudo-global warming (PGW)	SST MM	SST, T, GHT	case101	case102	case103	case104	case105
		SST, T	case111	case112	case113	case114	case115
		SST	case121	case122	case123	case124	case125
	SST C1	SST, T, GHT		case202			
		SST, T	case211				
	SST C2	SST, T, GHT		case302			
		SST, T	case311				
	SST C3	SST, T, GHT		case402			
		SST, T	case411				

Intensification of Isewan Typhoon under GW

Cf: In Haiyan case, min central pressure decreases by 6.44 hPa.

Changes in typhoon intensity at landfall

Typhoon disaster in northern Japan

Typhoon Marie (1954) "Toyamaru Typhoon"

Shipwreck of "Toyamaru" over the Tsugaru Straits: 1139 deaths

Typhoon Mireille (1991)

Significant damages to agriculture (e.g., apple trees in Aomori Prefecture)

Typhoon Songda (2004)

Forest damages over Hokkaido

Changes in typhoon hazard in northern Japan

Decrease in wind speeds due to typhoon under PGW condition

(Ito et al. 2016)

Environmental control on the typhoon change

Added-values in higher-resolution simulations

$$\sigma_{sso} = \sqrt{\frac{1}{N_{d04}} \sum_{i=1}^{N_{d04}} (h_i - \bar{h})}$$

1 km grid 200 m grid ve: 36. 142*14'24" 142 19/12 Ave: 27.7 Time series of area-mean and variability of wind speed in Region B

1'55'1

(Ito et al. 2016)

Summary

Conduct downscaling numerical experiments of extreme typhoons

Haiyan (2013), Vera (1959), Songda (2004)

Quantitative estimation of the severity of typhoon is important for better assessment of resulting hazards.

Assess impacts of climate change on the severity of typhoons

Pseudo-global experiment is a useful approach to consider how a past extreme typhoon will change under future global warming.

Typhoon hazards under global warming may depend on the latitudinal region

Despite the increased intensity at its mature stage, typhoon may quickly weaken in the northern part of Japan, decreasing the severity of hazard.

Risk assessment of meteorological disasters in SOUSEI-D

Impacts on natural disasters/water resources

確率台風モデルで計算された台風コース

伊勢湾を対象とした擬似温暖化 +最悪コース条件下での高潮氾濫 0.25

Storm Surge