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We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the
ghost-free bigravity model. In this model, because of the modification of dispersion relations, each
polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could
be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process
of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each
polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh
energy cosmic ray is sufficiently suppressed for the graviton’s effective mass less than 100 eV, and the
bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of
high energy cosmic rays.
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I. INTRODUCTION

The LIGO detection of gravitational wave signal from a
pair of merging black holes finally proved the propagation
of gravitational waves [1], and it was reported that the
Einstein theory of gravity is consistent with gravitational
wave observations with high accuracy [2] in addition to
solar-system tests [3]. On the other hand, theoretical and
observational evidences imply that the Universe is under-
going a phase of accelerated expansion at the present
epoch, and one has to introduce an energy component with
negative pressure, dubbed as dark energy, to describe our
Universe [4,5]. Recently, modifications of Einstein’s grav-
ity have attracted considerable attention as a substitute of
dark energy and have been investigated in many literatures
(see for reviews e.g. [6,7]).
One of the simplest modifications of general relativity is

to introduce a graviton mass to general relativity. This
hypothetical massive graviton has been first introduced by
Fierz and Pauli (FP) in the context of linear theory, where
its special structure of the mass term prevents an additional
degree of freedom from appearing in a flat background
space time [8]. One would naively expect that this
linearized theory of massive gravity in the massless limit
reduces to general relativity. However, one gets an order-
one modification of the propagator in the massless limit,
known as the van Dam-Veltman-Zakharov (vDVZ) dis-
continuity [9,10] (see the recent developments in [11,12]).
A solution of this problem by taking into account the
nonlinear effect was proposed by Vainshtein [13], which is
responsible for screening a scalar degree of freedom in
massive graviton. Although nonlinearities are essential to
solve the van Dam-Veltman-Zakharov discontinuity, an

additional 6th degree of freedom, called Boulware-Deser
(BD) ghost, generally appears in such a theory [14].
However, it has been recently shown that the serious
problem in the FP theory can be avoided by carefully
choosing the potential, which consists of an infinite series
of interaction terms determined in such a way that it
eliminates BD ghost at all orders in perturbation theory
[15]. This infinite series of interactions can be expressed in
a compact form [16], referred to as the dRGT mass terms,
and the absence of BD ghost in nonperturbative description
has been shown in [17]. These mass terms added to general
relativity can successfully mimic the cosmological constant
in open Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime [18,19], though this solution involves serious
instabilities in scalar and vector modes [20–22].
An extension of the dRGT theory is a bimetric theory

of gravity, which can be straightforwardly constructed
without reintroducing BD ghost by promoting the refer-
ence metric of the dRGT theory to a dynamical varia-
ble [23,24]. In this theory, referred to as the ghost-free
bigravity, the physical degrees of freedom can be
decomposed into five from the massive spin-2 field
and two from the massless spin-2 field. Although similar
type of FLRW solutions in the dRGT theory suffer from
the catastrophic instabilities stated above, a new healthy
branch of solutions (in the absence of matter field which
couples to the second metric [25] and in the presence of
two matter fields each of which couples to either the first
or second metric [26]) can be obtained in a large fraction
of the model parameter space (see [27–33] about other
cosmological solutions). Although the bare graviton mass
in this type of healthy solution is chosen to be larger than
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the Hubble parameter, one can evade the stringent
constraints from solar-system tests by tuning the param-
eters in such a way that the Vainshtein radius is
sufficiently large [25]. Furthermore, in this background,
because of the modified dispersion relations, the phase
and group velocities for all polarization modes of
graviton deviate from the speed of light.
If a phase velocity of graviton is slower than the speed of

light, a relativistic particle emits gravitational Cherenkov
radiation (GCR), analogous to the electromagnetic
Cherenkov radiation [34–36]. Interestingly, this GCR
process can put a tight constraint on the phase velocity
of graviton from the condition that the damping from GCR
is not significant for ultrahigh energy cosmic rays, and it is
confirmed to be useful in concrete examples of modified
gravity [37,38], such as the new Ether-Einstein gravity
[39,40] and the most general second order scalar-tensor
theory [41–43]. For example, in the latter theory the phase
velocity cT is constrained as c − cT < 2 × 10−15c [37], and
most of parameter space in which at least one phase
velocity is subluminal is not allowed because of significant
energy loss of high energy cosmic rays. Furthermore, the
authors in [44] investigated the constraints on modified
gravity theories with Lorentz-violating modified dispersion
relations [45], ω2 ¼ k2c2s þm2 þ Akα, where cs and m are
the sound speed and the mass of graviton, and α and A are
model parameters. Although the constraint on the graviton
mass is not stringent in this model, the authors found that α
and A can be tightly constrained by observations of high
energy cosmic rays. Constraint on more general modified
dispersion relations including spatial anisotropies was
investigated in Ref. [46]. The ghost-free bigravity model
could be also constrained by the same process of GCR, and
if so, the model parameters should be chosen to be
consistent with observations. To this end, in the present
paper we estimate the emission rate of GCR from a
relativistic particle and derive constraints on the ghost-
free bigravity model from observations of high energy
cosmic rays.
The rest of the present paper is organized as follows. In

Sec. II we briefly review the ghost-free bigravity theory and
its FLRW cosmology. Then, in Sec. III we derive the
emission rate of the gravitational Cherenkov radiation of
the tensor and the vector modes. In Sec. IV we discuss
consistency with observations of high energy cosmic rays.
Section V is devoted to conclusion.
Throughout the paper, we use units in which the speed of

light and the Planck constant are unity, c ¼ ℏ ¼ 1, and we
follow the metric signature convention ð−;þ;þ;þÞ.

II. FLRW BACKGROUNDS

In this section we briefly review the ghost-free bigravity
model and spatially homogeneous and isotropic cosmo-
logical solutions, investigated in detail in [26]. The action
for the ghost-free bigravity is written as

S ¼ M2
g

2

Z
d4x

ffiffiffiffiffiffi
−g

p
R½g� þ κM2

g

2

Z
d4x

ffiffiffiffiffiffi
−f

p
R½f�

þm2M2
g

Z
d4x

ffiffiffiffiffiffi
−g

p X4
i¼0

αiLi þ Sm½g� þ Sm½f�; ð2:1Þ

where gμν and fμν are, respectively, the physical and the
hidden metrics, Mg is the 4-dimensional bare Planck mass
for the physical metric gμν, κ represents the ratio of the
squared bare Planck masses for gμν and fμν, and αi are
dimensionless model parameters. Sm½g� ðSm½f�Þ is the
action of a matter field that couples only to gμνðfμνÞ,
which is referred to as g-matter (f-matter). The interaction
Lagrangian Li (dRGT mass terms) is given by

L0¼ 1; L1¼ ½K�;

L2¼
1

2
ð½K�2− ½K2�Þ; L3 ¼

1

6
ð½K�3−3½K�½K2�þ2½K3�Þ;

ð2:2Þ

L4 ¼
1

24
ð½K�4 − 6½K�2½K2� þ 8½K�½K3� þ 3½K2�2 − 6½K4�Þ;

ð2:3Þ
where we introduce

Kμ
ν ¼ δμν − ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þμν; ð2:4Þ

and ½Kn� ¼ TrðKnÞ. We consider the cosmological back-
ground described by the following flat FLRW metrics:

gμνdxμdxν ¼ −dt2 þ a2δijdxidxj; ð2:5Þ

fμνdxμdxν ¼ −n2dt2 þ α2δijdxidxj; ð2:6Þ

where we set the lapse function for the physical metric to
unity, n ¼ nðtÞ is the lapse function for the hidden metric,
and a ¼ aðtÞ and α ¼ αðtÞ are the scale factors for the
respective metrics. The background equations are given by

3H2 ¼ m2ρ̂m;g þ
ρg
M2

g
; ð2:7Þ

3H2
f ¼ m2

κ
ρ̂m;f þ

ρf
κM2

g
; ð2:8Þ

2 _H ¼ m2ξJð~c − 1Þ − ρg þ Pg

M2
g

; ð2:9Þ

2
_Hf

n
¼ −

m2

κξ2 ~c
ξJð~c − 1Þ − ρf þ Pf

κM2
g

; ð2:10Þ

and the energy conservation laws for g-matter and f-matter.
Here, we defined H ≡ _a=a, Hf ≡ _α=ðnαÞ, an overdot as
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the differentiation with respect to t, and ρg, Pg, ρf and Pf as
the energy density of g-matter, the pressure of g-matter, the
energy density of f-matter and the pressure of f-matter,
respectively. Also, we introduced

ρ̂m;g ≡UðξÞ − ξ

4
U0ðξÞ; ð2:11Þ

ρ̂m;f ≡ 1

4ξ3
U0ðξÞ; ð2:12Þ

JðξÞ≡ 1

3

�
UðξÞ − ξ

4
U0ðξÞ

�0
; ð2:13Þ

where 0 is the differentiation with respect to ξ and

ξ≡ α

a
; ~c≡ na

α
; ð2:14Þ

UðξÞ≡ −α0 þ 4ðξ − 1Þα1 − 6ðξ − 1Þ2α2
þ 4ðξ − 1Þ3α3 − ðξ − 1Þ4α4: ð2:15Þ

A constraint is given by the divergence of the equation of
motion for gμν (or equivalently by the divergence of the
equation of motion for fμν) as

JðH − ξHfÞ ¼ 0: ð2:16Þ

In this paper we focus on the healthy branch of solutions
with H ¼ ξHf, equivalently ~cα _a − a _α ¼ 0 [25,26]. Then,
from Eqs. (2.7) and (2.8), we obtain

ρ̂m;gðξÞ −
ξ2

κ
ρ̂m;fðξÞ ¼ −

ρg
m2M2

g
þ ξ2ρf
κm2M2

g
: ð2:17Þ

For convenience, we define ΓðξÞ and the time-dependent
effective graviton mass μðξÞ,

ΓðξÞ≡ ξJðξÞ þ ð~c − 1Þξ2
2

J0ðξÞ; ð2:18Þ

μ2ðξÞ≡ 1þ κξ2

κξ2
m2ΓðξÞ: ð2:19Þ

As is seen in the next section, μ corresponds to the effective
mass in the long wave length limit.
Since we are interested in the late-time cosmology,

we take the low energy limit, ρg=ðμ2M2
gÞ ≪ 1 and

ξ2ρf=ðκμ2M2
gÞ ≪ 1. In this limit, from Eq. (2.17), we find

that ξ converges to a constant ξc determined by

ρ̂m;gðξcÞ −
ξ2c
κ
ρ̂m;fðξcÞ ¼ 0: ð2:20Þ

Expanding Eq. (2.17) around ξc, ξ is given by

�
3m2ð1þ κξ2cÞJðξcÞ

κξc
− 2Λ

�
ξ − ξc
ξc

≈ −
ρg
M2

g
þ ξ2cρf
κM2

g
;

ð2:21Þ

as a function of ρg and ρf, where Λ is defined as

Λ≡m2ρ̂m;gðξcÞ: ð2:22Þ

At least in the low energy limit, the ξ parameter is
monotonic, which can be seen from Eq. (2.21), since ρg
and ρf are also monotonic. Then, the modified Friedmann
equation for the physical metric gμν can be written as

3H2 ≃ ρg þ ~κ−1ρf
~M2
g

þ Λ for

���� Λμ2
���� ≪ 1; ð2:23Þ

where ~M2
g ¼ ð1þ κξ2cÞM2

g and ~κ ¼ 1=ξ4c, and Λ turns out to
be the effective cosmological constant.
The equation that determines the evolution of ~c can be

derived from the equation of motion for fμν as

~c ¼ 1þ 1

2WM2
g

�
ρg þ Pg −

~cξ2

κ
ðρf þ PfÞ

�
; ð2:24Þ

where we define

W ≡ ð1þ κξ2ÞJ
2κξ

m2 −H2

¼ 1

2

�
μ2 −

~c − 1

2

ð1þ κξ2ÞJ0
κ

m2 − 2H2

�
: ð2:25Þ

In the low energy limit, we obtain

~c≃ 1þ 1

M2
gðμ2 − 2H2Þ

�
ρg þ Pg −

ξ2

κ
ðρf þ PfÞ

�
:

ð2:26Þ

Assuming that W > 0, which is required to avoid the
Higuchi ghost [26], a matter field that satisfies ρg þ Pg <
ξ2ðρf þ PfÞ=κ implies ~c < 1 and vice versa. We will show
that the tensor modes of graviton possess subluminal phase
velocity when ~c < 1 in Sec. III. It is naively expected
that cosmic-ray observations will prohibit the dominance of
f-matter because it leads to the gravitational Cherenkov
radiation. Also, we investigate the gravitational Cherenkov
radiation of the vector modes of graviton. The vector modes
can possess subluminal phase velocity for any ~c, which will
be seen in Sec. IV. Therefore, even when g-matter domi-
nates, the allowed parameter region of the ghost-free
bigravity can be potentially considerably restricted.
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III. GRAVITATIONAL CHERENKOV RADIATION
OF TENSOR MODES

In this section we investigate the gravitational
Cherenkov radiation of the tensor modes in bigravity
model. The tensor perturbations for the respective
metrics can be introduced as small deviations from the
background metrics (2.6), δgij ¼ a2ðhþεþij þ h×ε×ijÞ and
δfij ¼ α2ð ~hþεþij þ ~h×ε×ijÞ, where εþij and ε×ij denote the
polarization tensors for plus and cross modes. We normal-

ize the polarization tensors as εμνðλÞεðλ
0Þ

μν ¼ δλλ0 . Hereafter
we omit the index þ=× since the equations of motion are
identical for both polarizations. The quadratic action for the
tensor modes is given by [26]

ST ¼ M2
g

8

Z
d4x

�
_h2 − ð∂lhÞ2 −m2Γðh − ~hÞ2

þ κξ2c
~c
ð _~h2 − ~c2ð∂l

~hÞ2Þ
�
: ð3:1Þ

Here, we assumed that the leading effect of nonflat back-
ground is due to the deviation of ~c from unity and neglected
the other cosmic expansion effects.1 Then, the equations of
motion are given by

ḧ −△hþm2Γðh − ~hÞ ¼ 0; ð3:2Þ

̈~h − ~c2△ ~hþ ~cm2Γ
κξ2c

ð ~h − hÞ ¼ 0: ð3:3Þ

One can find eigenfrequencies ω1;2 from the above
equations of motion as

ω2
1;2

k2
¼ 1þ 1 − ~c

x

"
1 − x ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − xÞ2 þ 4κξ2c

1þ κξ2c
x

s #

þOðð1 − ~cÞ2Þ; ð3:4Þ

where the upper (lower) sign is for ω1 (ω2), k is the wave
number, i.e., △ ¼ −k2, and x is defined as2

x ¼ 2k2ð1 − ~cÞ
μ2

: ð3:5Þ

Here, the expression inside the square root in Eq. (3.4) is
always positive, meaning ω2

1 ≠ ω2
2, and we define ω1;2 so

that the mode labeled with 1 becomes massless while ω2
2

reduces to μ2 in the long wave length limit k → 0. When

~c > 1, x becomes negative and both modes always have
superluminal phase velocities, i.e., ω1;2 > k. On the other
hand, when ~c < 1, the phase velocity of the mode labeled
with 1 becomes subluminal while that labeled with 2 is
superluminal, for any x. In order to study the gravitational
Cherenkov radiation, we investigate the case with ~c < 1, in
which the mode labeled with 1(2) corresponds to ~h (h) in
the high energy limit k → ∞.3 The orthogonalized action is
given by

ST ¼ M2
g

8

Z
dtd3k

X
A¼1;2

ðj _hAj2 − ω2
AjhAj2Þ; ð3:6Þ

where the eigenfunctions h1 and h2 are given by

h1 ¼ cos θghþ sin θg

ffiffiffi
κ

p
ξcffiffiffi
~c

p ~h; ð3:7Þ

h2 ¼ − sin θghþ cos θg

ffiffiffi
κ

p
ξcffiffiffi
~c

p ~h; ð3:8Þ

with the mixing angle,

θg ¼
1

2
cot−1

�
−

1þ κξ2c
2

ffiffiffi
κ

p
ξc

ffiffiffi
~c

p xþ ~c − κξ2c
2

ffiffiffi
κ

p
ξc

ffiffiffi
~c

p
�
; ð3:9Þ

defined as a continuous function of x with 0 < θg < π=2.
Now, we are ready to quantize the tensor modes, and the

field operators can be expanded as

hAμν ¼
ffiffiffiffiffiffiffi
4

M2
g

s X
λ

Z
d3k

ð2πÞ3=2 ½ε
ðλÞ
μν â

ðλÞ
AkuAkðtÞeik·x

þ εðλÞμν â
ðλÞ
Ak

†u�AkðtÞe−ik·x�; ð3:10Þ

where A ¼ 1, 2, and âðλÞAk
† and âðλÞAk are the creation and

annihilation operators, which satisfy the commutation

relation ½âðλÞAk; â
ðλ0Þ
A0k0

†� ¼ δAA0δλλ0δðk − k0Þ, and the mode
function

uAkðtÞ ¼
e−iωAðkÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωAðkÞ

p ; ð3:11Þ

satisfies

�
d2

dt2
þ ω2

AðkÞ
�
uAkðtÞ ¼ 0; ð3:12Þ

and _u�AkðtÞuAkðtÞ − _uAkðtÞu�AkðtÞ ¼ i.
1One might think the other cosmic expansion effects become

important at k < H0. However, our results will not change as long
as H0 < μ. Otherwise, the estimation of Eq. (3.34) could be
altered.

2Here the sign of x is different from the one in Ref. [26].

3In the case where g-matter is dominant and hence ~c > 1, on
the contrary, the mode labeled with 1(2) reaches h ( ~h) when
k → ∞.
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We are interested in the GCR from a high energy particle,
e.g., a high energy proton. For simplicity, we consider a
complex scalar field with the action

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−gμν∂μψ
�∂νψ −M2ψ�ψ �; ð3:13Þ

instead of a Dirac fermion. Neglecting the cosmic expan-
sion and the coupling to the metric perturbation, the free
part of ψ can be quantized as

ψ̂ðt;xÞ ¼
Z

d3p

ð2πÞ3=2 ½b̂pψpðtÞeip·x þ ĉ†pψ�
pðtÞe−ip·x�;

ð3:14Þ

where b̂p and ĉ
†
p are the annihilation and creation operators

of the particle and antiparticle, respectively, which satisfy
the commutation relations ½b̂p; b̂†p0 � ¼ δðp − p0Þ, ½ĉp; ĉ†p0 � ¼
δðp − p0Þ, and the mode function

ψpðtÞ ¼
1ffiffiffiffiffiffiffiffiffi
2Ωp

p e−iΩpt; ð3:15Þ

obeys

�
d2

dt2
þ p2 þM2

�
ψpðtÞ ¼ 0; ð3:16Þ

with Ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The interaction part of the action

(3.13) is given by

SI ¼ −
Z

dtd3xhij∂iψ∂jψ
�; ð3:17Þ

and the interaction Hamiltonian is

HI ¼
Z

d3xhij∂iψ∂jψ
�: ð3:18Þ

(Strictly speaking, all time derivatives must be replaced by
means of the conjugate momenta in the Hamiltonian.)
In order to evaluate the total energy of the gravitational

Cherenkov radiation, we adopt the method developed in
[47,48]. (Note that the gravitational Cherenkov radiation
can be also derived classically as in the case of the
electromagnetic Cherenkov radiation [36].) Based
on the in-in formalism [49], at the lowest order of the
expectation value of the number operator of graviton is
given by

hâ†ðλÞAk âðλÞAki ¼ i2
Z

t

tin

dt2

Z
t2

tin

dt1hinj½HIðt1Þ;

½HIðt2Þ; â†ðλÞAk âðλÞAk��jini ð3:19Þ

for the initial state with one scalar particle with the
momentum, pin, i.e., jini ¼ b̂†pin

j0i. This gives the tran-
sition probability of the process in which one graviton
with the momentum k is emitted from a scalar particle
with the initial momentum pin as shown in Fig. 1.
Equation (3.19) can be rewritten as [50]

hâ†ðλÞAk âðλÞAki ¼ 2ℜ
Z

t

tin

dt2

Z
t2

tin

dt1

× hinjHIðt1Þâ†ðλÞAk âðλÞAkHIðt2Þjini: ð3:20Þ

Hereafter, we omit the tensor mode labeled with 2, whose
phase velocity is always superluminal. Then, the total
radiation energy emitted from the scalar particle into the
tensor mode labeled with 1 can be estimated as

E ¼ P
λ

P
k ωkhâ†ðλÞAk âðλÞAki, which leads to

ET ¼
Z

d3k
ð2πÞ3 ω1

����
Z

t

tin

dt1

ffiffiffiffiffiffiffi
4

M2
g

s
u1kðt1Þψpf

ðt1Þψ�
pin

× ðt1ÞεðλÞij p
i
inp

j
f

����2cos2θg; ð3:21Þ

where pf þ k ¼ pinðpi
f þ ki ¼ pi

inÞ. With the aid of the

relation
P

λjεðλÞij p
i
inp

j
f j2 ¼ p4

insin
4θ=2, we have

ET ¼ 1

2

Z
d3k
ð2πÞ3 ω1p4

insin
4θ

����
Z

t

tin

dt1

ffiffiffiffiffiffiffi
4

M2
g

s
u1kðt1Þ

× ψpf
ðt1Þψ�

pin
ðt1Þ

����2cos2θg: ð3:22Þ

After plugging the mode functions into (3.22), the total
radiation energy (3.22) reduces to

ET ≃ 1

4M2
g

Z
d3k
ð2πÞ3

p4
insin

4θ

ΩfΩin
2πTδðΩin −Ωf − ω1Þcos2θg;

ð3:23Þ

where Ωin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
in þM2

p
and Ωf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpin − kÞ2 þM2

p
,

and we used

FIG. 1. Feynman diagram for the process.
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����
Z

t

tin

dt1 exp ½iðΩin −Ωf − ω1Þðt1 − tinÞ�
����2

≃ 2πTδðΩin −Ωf − ω1Þ; ð3:24Þ

assuming the long time duration of the integration, where
T ¼ t − tin. Then, we have the expression in the relativ-
istic limit of the scalar particle, pin ≫ M,

dET

dt
¼ p3

in

4M2
g

Z
∞

0

dkk2

2π

Z
1

−1
dðcos θÞ sin

4θ

Ωf

× cos2θgδðΩin −Ωf − ω1Þ: ð3:25Þ

Now, we consider the delta function, which can be
written as

δðΩin −Ωf − ω1Þ ¼ 2ΩfδðΩ2
f − ðΩin − ω1Þ2ÞΘðΩin − ω1Þ;

ð3:26Þ

where ΘðyÞ is the Heaviside function. Using the identity
(3.26), we may write

δðΩin−Ωf −ω1Þ¼
Ωf

pink
δ

�
cosθ−

k
2pin

�
1−

ω2
1

k2

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p2
in

s
ω1

k

�
ΘðΩin−ω1Þ: ð3:27Þ

Integration over θ in Eq. (3.25) makes a nontrivial
contribution when

cos θ ¼ k
2pin

�
1 −

ω2
1

k2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p2
in

s
ω1

k
≤ 1; ð3:28Þ

which is a necessary condition for GCR to arise.
Assuming M=pin ≪ 1 and 1 − ω2

1=k
2 ≪ 1, the above

condition can be rewritten as

cos θ ≈ 1þ M2

2p2
in

−
pin − k
2pin

�
1 −

ω2
1

k2

�
≤ 1: ð3:29Þ

From the presence of ΘðΩin − ω1Þ, the possible range of k
is restricted to k≃ ω1 ≲ pin, and hence we reconfirm that
ω2
1 < k2 is a necessary condition for GCR. Then, the

condition (3.29) leads to

1 −
ω2
1

k2
≥

M2

pinðpin − kÞ : ð3:30Þ

As we will see soon, the left-hand side of the above
inequality is approximated as 1 − ω2

1=k
2 ∼Oð1 − ~cÞ for

any k. Thus, the condition for emitting GCR is simply
given by 1 − ~c≳M2=p2

in ∼ 10−22 for a ultrahigh energy

cosmic-ray proton with pin ∼ 1011 GeV and M ∼ 1 GeV.
Although M2=p2

in term could be important when
1 − ~c ∼M2=p2

in, the effect of mass merely reduces the
GCR efficientcy. We will find later that the constraint is
always weak even if we neglect the proton mass to
discuss the constraints from the tensor GCR. Therefore
we can safely ignore M2=p2

in term in this context. Then,
the condition (3.30) is understood as the one that the
effective refractive index exceeds unity, nA ¼ k=ωA > 1.
Thus, GCR is emitted only through the mode labeled with
1 when 1 − ~c > 0.
We integrate Eq. (3.25) by adopting the small

angle approximation θ ≪ 1, and we have4

dET

dt
¼ 1

8πM2
g

Z
pin

0

dkk

�
ðpin − kÞ

�
1 −

ω2
1

k2

��
2

cos2θg:

ð3:31Þ

Because of the complex k dependence in 1 − ω2
1=k

2 and
cos θg, one cannot simply integrate Eq. (3.31). To approx-
imately estimate dET=dt, we consider the limiting cases
with jxj ≪ 1 and jxj ≫ 1. In both limits, 1 − ω2

1=k
2 is

estimated from Eq. (3.4) as

1 −
ω2
1

k2
≃

(
2κξ2c
1þκξ2c

ð1 − ~cÞ þOðxÞ; ðx ≪ 1Þ;
2ð1 − ~cÞ þOðx−1Þ; ðx ≫ 1Þ:

ð3:32Þ

Also, we estimate cos2 θg from Eq. (3.9) as

cos2θg ≃
8<
:

1
1þκξ2c

þOðxÞ; ðx ≪ 1Þ;
κξ2c

ð1þκξ2cÞ2 x
−2 þOðx−3Þ; ðx ≫ 1Þ:

ð3:33Þ

Then, we can now estimate dET=dt using the approximate
expressions (3.32) and (3.33). Denoting the wave number
at x ¼ 1 as kD ≡ μc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ~cÞp

, we discuss two cases:
kD < pin and kD > pin, one by one. For the case with
kD < pin, we can estimate dET=dt by dividing the
interval of the integral into two at x ¼ 1, and we get5

4Contrary to the vector case, which will be seen in the next
section, the condition (3.28) does not impose the lower limit of
the integration. This is because the subluminal mode labeled with
1 corresponds to the massless mode in the limit k → 0.

5Since the dominant contribution to the integral (3.34) lies at
x ∼ 1, the expression (3.34) does not smoothly connect with
(3.35) at kD ∼ pin. However, it is sufficient to understand the
dependence of dET=dt on μ and 1 − ~c for our present purpose.
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dET

dt
≃ 1

8πM2
g

Z
kD

0

dk

�
k

�
ðpin−kÞ

�
1−

ω2
1

k2

��
2

cos2θg

�
jxj≪1

þ 1

8πM2
g

Z
pin

kD

dk

�
k

�
ðpin−kÞ

�
1−

ω2
1

k2

��
2

cos2θg

�
jxj≫1

≃ 1

8πM2
g

κξ2cð1þ2κξ2cÞ
ð1þκξ2cÞ3

p2
inμ

2ð1− ~cÞ: ð3:34Þ

If kD ≥ pin, we only need to consider x ≪ 1 region, and
then dET=dt can be approximated as

dET

dt
≃ 1

8πM2
g

Z
pin

0

dk

�
k

�
ðpin−kÞ

�
1−

ω2
1

k2

��
2

cos2θg

�
jxj≪1

≃ 1

8πM2
g

κ2ξ4c
3ð1þκξ2cÞ3

p4
inð1− ~cÞ2: ð3:35Þ

IV. GRAVITATIONAL CHERENKOV RADIATION
FROM VECTOR MODES

In this section we investigate the gravitational
Cherenkov radiation of the vector modes of graviton in
the ghost-free bigravity. We introduce vector perturbations
around the cosmological background as δg0i ¼ aBi,
δf0i ¼ nαbi, δgij ¼ a2∂ðiEjÞ, and δfij ¼ α2∂ðiSjÞ, where
Bi, bi, Ei and Si are transverse vectors. Following the
discussion in Ref. [26], the effective action for the vector
modes is written in terms of one dynamical vector variable
for each polarization, while the other vectors are con-
strained or left unspecified corresponding to gauge degrees
of freedom. The quadratic action for the vector mode
expanded in vector harmonics is given as

SV ¼ M2
−

8

Z
dtd3ka3A

�
_Ei _E�

i −
�
k2

a2
c2V þm2

V

	
EiE�

i

�
;

ð4:1Þ

where

Ei ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κξ2

κξ2

s
kðEi − SiÞ; ð4:2Þ

A≡ κξ2

1þ κξ2

�ð~cþ 1ÞΓk2
2a2μ2ξJ

þ ~cþ κξ2

1þ κξ2

�−1
; ð4:3Þ

M2
− ≡ κξ2

1þ κξ2
M2

g; ð4:4Þ

c2V ≡ ð~cþ 1ÞΓ
2ξJ

; ð4:5Þ

m2
V ≡ ~cþ κξ2

1þ κξ2
μ2: ð4:6Þ

Bi and bi are nondynamical degrees of freedom and written
in terms of Ei and Si by means of the constraints as

Bi ≡ a

�
_Ei

2
−
A
2
ð _Ei − _SiÞ

�
; ð4:7Þ

bi ≡ a
�
_Si
2~c

−
A

2κξ2c
ð _Ei − _SiÞ

�
: ð4:8Þ

In the low-energy limit where ξ≃ ξc, c2V is written as

1 − c2V ≃ 1 − ~c
2

ð1þ CÞ; ð4:9Þ

where we define C≡ ξcJ0ðξÞ=JðξÞ. Then, subluminal phase
velocity can be achieved when 1þ C > 0 for f-matter
dominant case ð1 − ~c > 0Þ or 1þ C < 0 for g-matter
dominant case ð1 − ~c < 0Þ. Imposing the positivity of
the effective mass squared, μ2 > 0 and J > 0, and the
absence of gradient instability c2V ≥ 0, the conditions that
cV is subluminal are given by

�
C<−1∩1< ~c<

−2þC
C

�
∪
�
C>−1∩−1þC

1þC
< ~c< 1

�
:

ð4:10Þ

According to [25], the Vainshtein radius is given by

rV ¼ O
��jCjrg

μ2

�
1=3

�
; ð4:11Þ

where rg is the gravitational radius of the star. Therefore, jCj
need to be sufficiently large for the Vainshtein mechanism
to work. One can find such parameter spaces in the region
(4.10) for small j1 − ~cj, and the smallness of j1 − ~cj is also
consistent with the background equation (2.26). Therefore,
c2V can be significantly subluminal both in the g-matter
dominant and f-matter dominant cases.
Then, we obtain the quantized vector gravitational

perturbation:

Êi ¼
1

a

X
λ

Z
d3k

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffi
2

AM2
−

s
½εðλÞi âðλÞVkuVkðηÞeik·x

þ εðλÞi âðλÞVk
†u�VkðηÞe−ik·x�; ð4:12Þ

where εðλÞi is the polarization vector, which is normalized as

εμðλÞεðλ
0Þ

μ ¼ δλλ0 , â
ðλÞ
Vk

† and âðλÞVk are the creation and anni-
hilation operators, which satisfy the commutation relation

½âðλÞVk; â
ðλ0Þ
Vk0

†� ¼ δλλ0δðk − k0Þ. Neglecting the effect of cos-
mic expansion and considering a≃ 1, the mode function
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uVkðtÞ ¼
e−iωVðkÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωVðkÞ

p ð4:13Þ

satisfies �
d2

dt2
þ ω2

VðkÞ
�
uVkðtÞ ¼ 0; ð4:14Þ

and _u�VkðtÞuVkðtÞ − _uVkðtÞu�VkðtÞ ¼ i with

ω2
VðkÞ ¼ c2Vk

2 þm2
V: ð4:15Þ

The coupling between the vector graviton and the
complex scalar field ψ is given as

Iint ¼ −
Z

dtd3xhμν
�
∂μψ∂νψ

�

−
1

2
ημνð∂λψ∂λψ

� þ 2M2ψψ�Þ
�
: ð4:16Þ

Since the whole action is invariant under a coordinate
transformation, we impose a convenient gauge fixing
condition

Si ¼
A − 1

A
Ei; ð4:17Þ

so that h0i components vanish. In this gauge, Ei is written in
terms of Ei as

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κξ2c

1þ κξ2c

s
A
k
Ei; ð4:18Þ

and the Hamiltonian for the interaction between the
graviton and scalar field becomes

Hint ¼
Z

d3x∂ðiEjÞ∂iψ∂jψ�: ð4:19Þ

As in Sec. III, we calculate the gravitational radiation
energy emitted from the process shown in Fig. 1 as

EV ¼
X
λ

Z
d3k
ð2πÞ3 ωV

����
Z

t

tin

dt1

ffiffiffiffiffiffi
2A

p

Mg
uVkðt1Þψpf

ðt1Þψ�
pin

× ðt1Þk̂ðiεðλÞjÞ p
i
inp

j
f

����2

¼
Z

d3k
ð2πÞ3 ωV

A
4M2

g
p2
insin

2θð2pin cos θ − kÞ2

×

����
Z

t

tin

dt1uVkðt1Þψpf
ðt1Þψ�

pin
ðt1Þ

����2; ð4:20Þ

where we define a unit vector parallel to k, k̂i ≡ ki=jkj, and
θ as the angle between pin and k, and use pin ¼ kþ pf .

Assuming the long time duration of the time integration
(3.24), EV is estimated as

EV ¼ t − tin
32π2M2

g

Z
d3kAsin2θ

p2
inð2pin cos θ − kÞ2

ΩinΩf

× δðΩin −Ωf − ωVÞ: ð4:21Þ

Since the delta function in the above equation is the same
expression as in the tensor case, we get the same condition
(3.28) by replacing ω1 to ωV. Assuming M=pin ≪ 1, the
condition can be rewritten by solving the quadratic inequal-
ity as

1 −
ωV

k
≥

M2

2pinðpin − kÞ : ð4:22Þ

The condition for the vector GCR emission is therefore
given by 1 − cV ≳M2=p2

in. For the same reason as in the
tensor case, we can safely ignore M2=p2

in in the present
paper. Then, Eq. (4.22) determines the lower limit of the
integration,

kmin;V ≡ mVffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2V

p ; ð4:23Þ

and thus Eq. (4.3) can be written as

A ¼ κξ2c
1þ κξ2c

μ2

k2

�
1 − ð1 − c2VÞ

�
1 −

k2min;V

k2

��−1
: ð4:24Þ

Then, we find the contribution from k≃ kmin;V in Eq. (4.21)
is not dominant. Assuming k ≫ kmin;V, we finally obtain an
approximation to the energy emission rate of the vector
GCR,

dEV

dt
≃ 1

4πM2
g

κξ2c
1þκξ2c

p2
inμ

2ð1−c2VÞ

×
Z

pin

kmin;V

dk
1

k

�
1−

k
pin

cV−
k2

4p2
in

ð1−c2VÞ
�

×

�
1−

k
2pin

cV

�
2

≃ 1

4πM2
g

κξ2c
1þκξ2c

p2
inμ

2ð1−c2VÞ ln
�

pin

kmin;V

�
: ð4:25Þ

Here, we used m2
V ≃ μ2 at low energies, and we only kept

the leading contribution for pin ≫ kmin;V in the last line.

V. CONSTRAINTS FROM HIGH ENERGY
COSMIC RAYS

In this section we derive the condition that the damping
due to GCR is not significant for an ultrahigh energy
cosmic ray with initial energy pin during time t, i.e., the
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condition that dEtotal=dt < pin=t is satisfied, where
Etotal ¼ ET þ EV þ ES. Because of the complexity of the
scalar perturbation, we only focus on the vector and tensor
GCR discussed in Sec. III. We assume that the origins of
high energy cosmic rays are located at a cosmological
distance, ct ≳ 1 Mpc, and the initial momentum of the high
energy cosmic rays of our concern is pin ∼ 1011 GeV.
Let us first examine the cosmological solution intro-

duced in Sec. II. The deviation of ~c from unity is related to
the effective graviton mass μ through Eq. (2.26) as
1 − ~c ∼H2

0=μ
2. Then, the condition for the tensor GCR

to occur can be simply given by μ ≲ 10−31 GeV. In this
case we always have kD < pin, and the energy emission
rate of the tensor GCR is therefore given by Eq. (3.34).
Assuming κξ2c ∼Oð1Þ, we have

dET

dt
∼
p2
inH

2
0

M2
g

≪
pin

t
: ð5:1Þ

Since the energy loss of a high energy cosmic ray due to the
tensor GCR is extremely small, there is no conflict with
observations, as we have anticipated earlier.
Let us next consider the vector GCR. Assuming κξ2c ∼

Oð1Þ and lnðpin=kmin;VÞ ∼Oð1Þ, we have

dEV

dt
∼
p2
inμ

2

M2
g
ð1 − c2VÞ: ð5:2Þ

The constraint on the effective graviton mass is now
given by

μ ≲ 100ð1 − c2VÞ−1=2 eV; ð5:3Þ

which will allow the whole range of the graviton mass of
our interest. Therefore the ghost-free background solutions
introduced in Sec. II are consistent with observations of
high energy cosmic rays.

Owing to the relation 1 − ~c ∼H2
0=μ

2, the tensor GCR
emission is suppressed by H2

0=M
2
g. Relaxing this relation,

we now consider the constraint on ~c and μ assuming as if
they could be independently determined. The shaded
region in the left panel of Fig. 2 shows the excluded region
in the μ − ð1 − ~cÞ plane obtained by the constraint from the
tensor GCR. The lower and the left boundaries are,
respectively, determined by the estimates of the emission
rate (3.34) and (3.35). One can see that the cosmological
solution in Sec. II, which lies at 1 − ~c ∼H2

0=μ
2 (black

dashed line), is far from the excluded region. Even if we
independently treat 1 − ~c and μ, the tightest constraint on
the effective graviton mass is μ≲ 100 eV. In the right
panel of Fig. 2, we present the excluded region in the μ −
ð1 − c2VÞ plane obtained by the constraint from the vector
GCR. The lower and the upper boundaries are, respectively,
determined by the emission rate (4.25) and the condition
kmin;V < pin. Also in the vector case the tightest constraint
on the effective graviton mass is μ ≲ 100 eV similarly to
the tensor case. Hence, this model is consistent with
observations of ultrahigh energy cosmic rays.

VI. CONCLUSION

In this paper, we studied the consistency of the ghost-free
bigravity model with observations of ultrahigh energy
cosmic rays. The GCR can be emitted from a relativistic
particle when a phase velocity of graviton is slower than the
speed of light. If such a process is possible, a high energy
cosmic ray reduces its energy during its propagation to the
Earth, and a subluminal phase velocity of graviton could be
strongly constrained. In the ghost-free bigravity model that
we considered in this paper [26], the light speed in the
hidden metric becomes subluminal or superluminal and
then the graviton can possess a subluminal phase velocity.
We confirmed that a relativistic particle emits the GCR in
this model and derived the conditions for such a process to
occur. The energy emission rate of the GCR of the tensor

FIG. 2. Left: The excluded region in the μ − ð1 − ~cÞ plane obtained by the constraint from the tensor GCR. The black dashed line
shows the line ð1 − ~cÞ ¼ H2

0=μ
2, and κξ2c ¼ 1. Right: The excluded region in the μ − ð1 − c2VÞ plane obtained by the constraint from the

vector GCR for κξ2c ¼ 1.
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mode and the vector mode was estimated, and it turned out
to be suppressed as far as the effective graviton mass is
sufficiently small to satisfy μ≲ 100 eV, which will cover
most of the parameter region that is interesting when we
consider gravity modification relevant at a late epoch.
Although we did not derive the emission rate of the

scalar GCR due to the complexity of the dispersion
relations, we think it natural to assume the emission rate
of the scalar GCR is also suppressed for the following
reason. In Ref. [51] the coupling between the scalar mode
of a simple FP massive graviton and a real conformal scalar
field in de Sitter background was computed, and the
coupling squared, which is proportional to the transition
amplitude, was reported to be suppressed by the factor
μ2ðμ2 − 2H2Þ= ~M2

gk2. (We use ~M2
g instead of M2

g since the
only option here is the effective gravitational constant in the
context of the FP massive graviton.) Although this com-
putation was done not in the context of bigravity without
taking into account the coupling between g- and f-matters
and graviton, the factor mentioned above is, in a naive
sense, the quantity to be compared with the vector mode
counterpart

κξ2c
1þ κξ2c

k2A
M2

−
≈

κξ2c
1þ κξ2c

μ2

c2VM
2
g
; ð6:1Þ

in the present setup. Neglecting the factor related to κξ2c and
the deviation of c2V from unity, we find that the coupling
between the scalar mode of massive graviton and the
incident high energy particle is as suppressed as in the
case of the vector mode. On the other hand, the propagation
speed of the scalar mode of graviton in bigravity has been
calculated in Ref. [25], and the obtained expression is
similar to the vector case at low energies [Eq. (88) in [25]].
When we consider nonconformal field, we need to keep

the trace part of the metric perturbation, which was
neglected in the computation in Ref. [51]. This neglected

contribution gives a coupling to the trace part of the energy
momentum tensor, which is absent as long as we consider
conformally invariant matter fields. As is expected from the
presence of the vDVZ discontinuity, the trace part of the
energy momentum tensor will couple to the scalar mode of
massive graviton without any suppression even in the
massless limit. However, such a nonconformal component
of the matter energy momentum tensor will be suppressed
by the degree of violation of the conformal invariance, i.e.,
by the ratio of mass to momentum squared, M2=p2

in, in the
case of a Dirac fermion, instead of the suppression by
μ2=p2

in. As a result, the transition amplitude should have a
suppression factor proportional to ðM2=p2

inÞ2. Then, based
on the dimensional argument, the GCR emission rate would
be, at most, given by dE=dt ≈M4=M2

g. When ultrahigh
energy cosmic-ray protons are concerned, the fraction of
the energy that is lost by the GCR after traveling a
cosmological distance is much less than unity.
Therefore, we expect that the scalar GCR will be harmless
and conclude that the ghost-free bigravity with a suffi-
ciently small mass is consistent with the observations of
high energy cosmic rays, although confirmation by an
explicit computation for scalar mode is needed to obtain a
conclusive answer.
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