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10B + α states with chain-like structures in 14N
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I investigate 10B + α-cluster states of 14N with a 10B + α-cluster model. Near the α-decay threshold energy, I
obtain Kπ = 3+ and Kπ = 1+ rotational bands having 10B(3+) + α and 10B(1+) + α components, respectively.
I assign the bandhead state of the Kπ = 3+ band to the experimental 3+ at Ex = 13.19 MeV of 14N observed
in α scattering reactions by 10B and show that the calculated α-decay width is consistent with the experimental
data. I discuss an α-cluster motion around the 10B cluster and show that the Kπ = 3+ and Kπ = 1+ rotational
bands contain an enhanced component of a linear-chain 3α configuration, in which an α cluster is localized in
the longitudinal direction around the deformed 10B cluster.

DOI: 10.1103/PhysRevC.92.064326 PACS number(s): 27.20.+n, 21.10.Tg, 21.60.Gx

I. INTRODUCTION

It is known that cluster structures appear in various nuclei
including unstable nuclei (for instance, Refs. [1–5] and refer-
ences therein). For cluster states having an α cluster around a
core nucleus, well-known examples are 16O + α states in 20Ne
and 12C + α states in 16O [6]. Recent experimental and theo-
retical studies have revealed many cluster resonances in highly
excited states near the α-decay threshold also in unstable nu-
clei, for instance, A−4He + α states in Be isotopes [1,4,7–26],
10Be + α states in 14C [27–31], 14C + α states in 18O and their
mirror states [32–41], and 18O + α states in 22Ne [39–46].

Multi-α-cluster states such as cluster gas and linear-chain
states of nα systems are also interesting topics. The α-cluster
gas was proposed by Tohsaki et al. to describe the 3α-cluster
structure of 12C(0+

2 ) [47] and extended to excited states of
12C and other nuclei [48–50]. The linear-chain nα state was
originally proposed for 12C(0+

2 ) by Morinaga in the 1950s
and 1960s [51,52]. However, in the 1970s, this picture was
excluded at least for 12C(0+

2 ) having a larger α-decay width
than the one expected from the linear-chain structure [53].
Despite many discussions for several decades, the existence
of linear-chain nα states has not yet been confirmed and it
is still an open problem to be solved. It is naively expected
that the linear-chain configuration is not favored in an nα
system because it costs much kinetic energy to keep α clusters
in a row. This means that some mechanism is necessary to
form the linear-chain structure. In the 1990s and 2000s, it was
proposed for neutron-rich C isotopes that excess neutrons may
stabilize the linear-chain structure [1,8]. Itagaki et al. analyzed
the stability of a 3α-chain configuration surrounded by excess
neutrons in molecular orbitals against the bending motion and
suggested that the linear-chain structure can be stable in 16C
but unstable in 12C and 14C [54]. More recently, Suhara and I
predicted a rotational band with a linear 3α-chain configuration
in excited states of 14C near the α-decay threshold [31]. They
pointed out that the orthogonal condition to lower states is
important for the stability of the linear-chain structure. The
linear-chain structure is expected to be more favored in high-
spin states because of the stretching effect in rotating systems
as suggested in 15C [1] and 16O [55].

According to analysis in Refs. [31,56], linear-chain states
of 14C are found to have a 2α + 2n correlation and are

interpreted as 10Be + α structures, where the 10Be cluster
is a prolately deformed state containing a 2α core and an
additional α cluster is located in the longitudinal direction
of the 10Be cluster. Similarly, the linear-chain state of 15C
suggested in Ref. [1] also shows a 11Be + α-cluster structure
with a prolately deformed 11Be cluster and an α cluster in the
longitudinal direction. This means that, the linear-chain states
in these neutron-rich C tend to have the 2α correlation, and
therefore 3α linear-chain structures are expected to be found
in Be + α-cluster states.

In this paper, I focus on 10B + α-cluster states in excited
states of 14N. In experimental energy levels of 14N near the α-
decay threshold, Jπ = 3+ and 1+ resonances were observed by
α elastic scattering by 10B [57]. These resonances are expected
to be 10B + α-cluster states because of significant α-decay
widths. In analogy to 10Be + α-cluster states, it is interesting
to investigate whether 10B + α-cluster states with the dominant
linear-chain structure exist. The ground state (3+) and the first
excited state (1+) of 10B can be described by the deformed state
with a 2α core surrounded by pn as discussed in Refs. [7,58].
If a 10B + α-cluster state has an α cluster in the longitudinal
direction of the deformed 10B cluster, the 10B + α-cluster state
can be interpreted as a kind of linear-chain state that contains
dominantly 3α clusters arranged in a row.

My aim is to study 10B + α-cluster states of 14N near the
threshold energy and discuss 3α configurations, in particular,
the linear-chain component in the 10B + α-cluster states. I
calculate 10B(3+) ⊗ Lα and 10B(1+) ⊗ Lα components and
evaluate partial α-decay widths of 10B + α-cluster states. To
discuss stability of the linear-chain 10B + α structure, I analyze
the angular motion of an α cluster around the deformed 10B
cluster, i.e., rotation of the 10B cluster.

This paper is organized as follows. In Sec. II, I explain the
formulation of the present 10B + α-cluster model. In Sec. III,
calculated positive-parity states and E2 transition strengths of
14N are shown. I discuss α-cluster motion around 10B(3+) and
10B(1+) in Sec. IV. Finally, a summary is given in Sec. V.

II. FORMULATION OF THE 10B + α-CLUSTER MODEL

A. Description of the 10B cluster

For the 10B cluster in the present 10B + α-cluster model,
I adopt a 2α + (pn) wave function which can reasonably de-
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scribe features of the ground (Jπ = 3+) and first excited (1+)
states of 10B as discussed in Ref. [58]. The 2α + (pn) wave
function is given by a three-body cluster wave function, where
α clusters and a dinucleon (pn) cluster are written by (0s)4

and (0s)2 harmonic oscillator configurations, respectively, as

�2α+pn(R1,R2,R3) = A{�α(R1)�α(R2)�pn(R3)}, (1)

�α(R) = ψp↑(R)ψp↓(R)ψn↑(R)ψn↓(R), (2)

�pn(R) = ψp↑(R)ψn↑(R), (3)

ψσ (R) = ϕ0s(R)χσ , (4)

where A is the antisymmetrizer for all nucleons, ϕ0s(R) is the
spatial part of the single-particle wave function of the 0s orbit
around R,

ϕ0s(R) =
(

2ν

π

)3/4

exp{−ν(r − R)2}, (5)

and χσ is the spin-isospin wave function for σ = p↑, p↓,
n↑, and n↓. For the 10B cluster, I set two α clusters in the z
direction as R1 − R2 = (0,0,d2α) with d2α = 3 fm and a spin-
aligned pn cluster on the x-y plane at the distance d from the
2α center as R3 − (R1 + R2)/2 = (d cos φ,d sin φ,0). I write
the 10B wave function localized around XB ≡ (4R1 + 4R2 +
2R3)/10 as �10B(XB ; d,φ) with the center position XB and
the distance and angle parameters, d and φ, for the pn-cluster
position. In the 10B + α-cluster model, I superpose the 10B
wave functions with d = 1 and 2 (fm) and φj = π

4 (j − 0.5)
(j = 1, . . . ,8).

B. 14N wave function in the 10B + α model

A 10B + α wave function is written using the 10B wave
function �10B(XB ; d,φ) and the α-cluster wave function
�α(Xα) as

�10B+α(Dα,θα; d,φ) = A{�10B(XB ; d,φ)�α(Xα)}, (6)

where Rα ≡ Xα − XB is written as Rα = (Dα sin θα,
0,Dα cos θα). The center-of-mass position is taken to be
4Xα + 10XB = 0 so as to decouple the center-of-mass motion
and the intrinsic wave function. It should be commented that
�10B+α(Dα,θα; d,φ) is equivalent to a Brink cluster model
wave function [59] of three α clusters and a deuteron cluster,
which is a typical multicenter cluster wave function where
clusters are localized around certain positions. In this wave
function, the α-cluster wave function relative to the 10B cluster
is expressed by a localized Gaussian exp[−να(r − Rα)2]
(να = 20ν/7) with the center position Rα . This means that
the parameters Rα , i.e., the parameters Dα and θα , indicate
the Gaussian center position and can be interpreted as an
α-cluster position though they are not classical coordinates
in a strict meaning. Here, Dα and θα are the distance and angle
parameters of the α-cluster position relative to the deformed
10B cluster (see Fig. 1).

Wave functions for the nthJπ states (Jπ
n ) of 14N

are expressed by superposition of the Jπ -projected wave

α

α

α

10B

d

x

y

z

αD
αθ

φ

FIG. 1. Schematic figure for a 10B + α configuration for the
parameters in Eq. (6).

functions as

�14N(Jπ
n ) =

∑
K

∑
Dα,θα

∑
d,φ

C(K,Dα,θα,d,φ)

× P̂ Jπ
MK�10B+α(Dα,θα; d,φ), (7)

where P̂ Jπ
MK is the parity and total angular momentum projec-

tion operator. Coefficients C(K,Dα,θα,d,φ) are determined
by diagonalizing Hamiltonian and norm matrices. I take
Dα = {2, . . . ,6} (fm), θα = {0,π/4,π/2,3π/4,π}, d = {1,2}
(fm), and φ = π

4 (j − 0.5) (j = 1, . . . ,8). In the practical
calculation, the θα = 0 − π summation can be reduced to the
θα = 0 − π/2 summation because of the reflection symmetry
of the 10B cluster. In the present paper, I calculate positive-
parity (π = +) states of 14N.

In Eq. (7), the φ superposition is equivalent to the Iz

mixing of the 10B cluster [Iz is the z component of the angular
momentum (spin) I of the 10B cluster]. The coupling of I (the
spin of the 10B cluster) and Lα (the orbital angular momentum
of the α cluster relative to the 10B cluster) is implicitly
described by the Jπ projection, K mixing, and θα and φ
summations. Lα couples with I to the total angular momentum
J = Lα + I . The z component, Jz = Iz + Lαz, is the so-called
K quantum, which takes K = −J, . . . , + J . Note that, in the
present definition, the orientation of the aligned intrinsic spin
of the pn cluster is chosen to be the +z direction as Sz = +1,
and therefore K can be a negative value when the z component
of the total orbital angular momentum is less than −1, meaning
that the total orbital angular momentum is in the direction
opposite to the intrinsic spin orientation. Strictly speaking,
Lα = 0,2 (S,D-wave) mixing is approximately taken into
account by the summation of θα = {0,π/4,π/2,3π/4,π} but
higher Lα(�4) mixing cannot be controlled in the present
calculation because of the finite number of mesh points for θα .

C. Overlap function and α-cluster probability

To investigate 10B + α components, I introduce specific
10B + α wave functions for the α cluster at a channel radius
(Dα) and take their overlap with the 14N wave function
[�14N(Jπ

n ) in Eq. (7)]. In the present analysis, I mainly discuss
the angular motion of the α cluster around the 10B cluster
using two kinds of 10B + α wave functions based on the strong-
coupling and weak-coupling pictures. One is the 10B + α wave
function having the α cluster at a certain orientation θα . In
this case, the state has a specific geometry and contains large
mixing of Lα eigen states, which corresponds to a so-called
strong coupling state. The other is the 10B + α wave function
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having the α cluster in an Lα eigen state, which corresponds to
a weak coupling state, where the angular momentum Lα of the
α cluster weakly couples with the spin Iπ of the 10B cluster.

1. Overlap with specific geometric configurations based on the
strong-coupling picture

I consider the Iπ
z projection for the 10B cluster of the 10B +

α wave function �10B+α(Dα,θα; d,φ) [defined in Eq. (6)] as

�10B(Iπ
z )+α(Dα,θa) =

∑
j

cj�10B+α(Dα,θα; d = 2,φj ), (8)

with cj = exp[i(Iz − 1)φj ], Iz = {1,3}, π = +, and φj =
π
4 (j − 0.5) (j = 1, . . . ,8). Iz, the z component of the total
angular momentum I of 10B, is given by the sum of the z
component of the intrinsic spin (Sz = +1) and that (Iz − 1)
of the orbital angular momentum for the φ rotation of the pn
cluster. The Iz projection is approximately performed, whereas
the parity π projection of 10B is exactly done because of the
reflection symmetry of the 10B cluster. For simplicity, I fix
d = 2 fm in the present analysis. �10B(Iπ

z )+α(Dα,θa) in Eq. (8)
stands for the wave function for the α cluster at (Dα,θa) around
the Iπ

z -projected 10B cluster.
I calculate the squared overlap of the JK-projected state

P̂ Jπ
MK�10B(Iπ

z )+α(Dα,θa) of �10B(Iπ
z )+α(Dα,θa) with the 14N

wave function �14N(Jπ
n ),

P
[
JK; 10B

(
Iπ
z

)
; Dα,θα

]

=
∣∣〈P̂ Jπ

MK�10B(Iπ
z )+α(Dα,θa)

∣∣�14N(Jπ
n )

〉∣∣2

〈
P̂ Jπ

MK�10B(Iπ
z )+α(Dα,θa)

∣∣P̂ Jπ
MK�10B(Iπ

z )+α(Dα,θa)
〉 , (9)

which indicates the α-cluster probability at (Dα,θα)
around the Iπ

z -projected 10B cluster. The probability
P [JK; 10B(Iπ

z ); Dα,θα] is useful to analyze the α-cluster
motion and helpful to discuss geometric configurations of 3α
clusters in 10B + α-cluster states in the strong-coupling pic-
ture. For instance, P [JK; 10B(Iπ

z ); Dα,θα] for θα ∼ 0 means
the component of the “longitudinal” configuration, where the α
cluster is localized in the longitudinal direction of the deformed
10B(Iπ

z ) cluster. This configuration corresponds to the linear-
chain structure as three α clusters are arranged in a row as
shown in Fig. 2(b). For θα ∼ π/2, P [JK; 10B(Iπ

z ); Dα,θα]
indicates the component of the “transverse configuration”
for the α cluster in the transverse direction of the deformed
10B(Iπ

z ) cluster [see Fig. 2(c)]. Schematic figures for angular
momentum coupling of Lα , I , and J in the JK-projected state
P̂ Jπ

MK�10B(Iπ
z )+α(Dα,θa) for a given configuration Dα,θa are

shown in Fig. 2. Note that, in the JK-projected state, Iz, Lαz,
and J , as well as K = Iz + Lαz, are eigen values, but Lα and I
are not eigen values. This means that the state contains various
Lα and I states coupling to total J states. The longitudinal
configuration contains only the K = Iz (Lαz = 0) component
meaning that Lα is always perpendicular to the z axis because
of the axial symmetry. The transverse configuration contains
K �= Iz components as well as the K = Iz component. In
particular, the JK-projected state for K > Iz corresponds to
the alignment of Lα to the z axis.

At a given channel radius Dα , P [JK; 10B(Iπ
z ); Dα,θα]

shows the θα dependence of the α-cluster probability. If a 14N
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FIG. 2. Schematic figures for �10B(Iπ
z )+α

(Dα,θa) in Eq. (8) and

those for Lα orientation in the JK-projected states. (a) Left: A
configuration for �10B(Iπ

z )+α
(Dα,θa) in Eq. (8) for the α cluster at

(Dα,θa) around the Iπ
z -projected 10B cluster. Right: Angular momenta

in the JK-projected state of �10B(Iπ
z )+α

(Dα,θa). (b) Same as panel

(a) but for the longitudinal configuration (θα ∼ 0). K is restricted
to be K = Iz because of the axial symmetry. (c) Left: Transverse
configuration for θα ∼ π/2. Middle: Angular momenta in the JK-
projected state of the transverse configuration for the nonaligned
(K = Iz) case. Right: Angular momenta in the JK-projected state of
the transverse configuration for the aligned (K > Iz) case.

state is a weak coupling state dominated by a 10B(Iπ ) ⊗ Lα

component, the probability is distributed widely in the entire θα

region without the concentration in a certain θ region. In other
words, if the probability of a 14N state is not distributed widely,
but concentrates on a certain θ region, this means that the state
is a strong-coupling state containing an enhanced component
of the corresponding geometric configuration rather than a
weak-coupling state.

2. 10B(Iπ ) ⊗ Lα components based on the weak-coupling picture

I evaluate 10B(3+) ⊗ Lα and 10B(1+) ⊗ Lα components by
the Lα projection. I consider the LαLαz-projected 10B(Iπ

z ) + α
wave function,∣∣J ; 10B

(
Iπ
z

)
; Dα,LαLαz

〉
= n0

∑
θα

ω(θα)yLα

Lαz
(θα)P̂ Jπ

MK=Iz+Lαz
�10B(Iπ

z )+α(Dα,θa),

(10)
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with Xα − XB = (Dα sin θα,0,Dα cos θα) and 4Xα +
10XB = 0. yλ

μ(θ ) is the θ -dependent part of the spherical
harmonics Yλ

μ(θ,φ) and is given as yλ
μ(θ ) = e−iμφY λ

μ(θ,φ).
The parity π in the projection operator P̂ Jπ

MK is the same as
that of Iπ

z and is positive (π = +) in the present paper. n0

is determined from the normalization condition 〈J ; 10B(Iπ
z );

Dα,LαLαz|J ; 10B(Iπ
z ); Dα,LαLαz〉 = 1. In Eq. (10), the

Lαz projection is done by the K projection in the
projection operator P̂ Jπ

MK with K = Iz + Lαz. The Lα

projection is approximately performed by the summation
θα = π

Nθ
i (i = 0, . . . ,Nθ ) with the weight function ω(θα) =∫ max[θα+π/2Nθ ,π]

min[θα−π/2Nθ ,0] sin θdθ . I perform only Lα = 0 and Lα = 2
projections because Lα � 4 projections are not possible for
the present Nθ = 4 case. I calculate the squared overlap
of the 14N wave function with the above wave function,
|〈J ; 10B(Iπ

z ); Dα,LαLαz|�14N(Jπ
n )〉|2. Assuming that the 3+

1

and 1+
1 states of the 10B cluster are approximately described

by the Iπ
z -projected 10B wave functions, 10B(Iπ

z = 3+) and
10B(Iπ

z = 1+), respectively, I approximately estimate the
10B(Iπ ) ⊗ (Lα = 0,2) components in the 14N wave function
�14N(Jπ

n ) as

P10B(Iπ )⊗Lα
(Dα) ≈

∑
Lαz

|〈JK|IIzLαLαz〉
〈
J ; 10B

(
Iπ
z

)
;

×Dα,LαLαz

∣∣�14N(Jπ
n )

〉∣∣2
, (11)

with Iz = I and K = Iz + Lαz, where 〈JK|IIzLαLαz〉 is the
Clebsch-Gordan coefficient.

If a 14N state is a weak-coupling state dominated by a
10B(Iπ ) ⊗ Lα component, the probability is concentrated on
the corresponding Lα state. If a 14N state is a strong-coupling
state, the probability is fragmented into various Lα components
reflecting the large Lα mixing.

III. RESULTS

I adopt the two-body effective nuclear interactions used in
Ref. [58] that are adjusted to describe low-lying energy levels
of 10B. Namely, I use the Volkov central force [60] with the
Bartlett, Heisenberg, and Majorana parameters b = h = 0.006
and m = 0.60, the G3RS spin-orbit force [61] with the strength
uI = −uII = 1300 MeV, and the Coulomb force approxi-
mated by 7-range Gaussian. Using these interactions, energies
of 10B are obtained to be −53.3 MeV for the ground state
(3+) and −52.2 MeV for the first excited state (1+) with the
2α + pn-cluster model by superposing

∑
Iz,d

P̂ Iπ
MIz

�10B(XB =
0; d,φ = 0) with d = 1 and 2 (fm). Though the calculation
underestimates the experimental binding energy (64.75 MeV),
it reproduces the spin-parity of the ground state [10B(3+

g.s.)],
and also the calculated excitation energy Ex = 0.9 MeV of the
1+ state reasonably agrees with the experimental value Ex =
0.72 MeV for 10B(1+

1 ). Properties of 10B(3+
g.s.) such as the

magnetic moment (μ), the electric quadrupole moment (Q),
and the rms radius of proton distribution (rp) are calculated
to be μ = 1.83 (μN ), Q = 8.1 (e fm2), and rp = 2.35 (fm),
which are in reasonable agreement with the experimental data,
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FIG. 3. Positive-parity energy levels of 14N obtained by the
10B + α-cluster model compared with experimental levels taken from
Ref. [62]. 10B + α-cluster states in the Kπ = 3+ band and those in the
Kπ = 1+ band are labeled by asterisks and down-triangle symbols,
respectively. The dotted lines indicate the α-decay threshold.

μ = 1.80 (μN ), Q = 8.472(56) (e fm2), and rp = 2.25(5) (fm)
reduced from the charge radius.

Using the 10B + α-cluster wave function in Eq. (7), I
calculate positive-parity states of 14N. Properties of the
ground state 14N(1+

g.s.) are reasonably reproduced by the
present calculation. Namely, the calculated values, the binding
energy B.E. = 102.6 MeV, μ = 0.36 (μN ), Q = 2.4 (e fm2),
and rp = 2.38 (fm) of 14N(1+

g.s.), reasonably agree with the
experimental data [B.E. = 104.66 MeV, μ = 0.4038 (μN ),
Q = 1.93(8) (e fm2), rp = 2.39(1) (fm)]. The calculated en-
ergy spectra are shown in Fig. 3. The α-decay threshold is
much higher in the present calculation than the experimental
threshold. In other words, the ground and some low-lying
states of 14N show too deep binding from the α-decay
threshold compared with the experimental data. The significant
overestimation of the α-decay threshold is a general problem in
microscopic calculations with density-independent two-body
effective interactions as found for 14C and O isotopes [6,31,33].
One of the origins of this problem is a difficulty in reproducing
systematics of binding energies in a wide mass-number region
with such effective interactions. In the present calculation,
only the 14N states that can be approximately described by the
model space of the present (2α) + (pn) + α-cluster model are
obtained but states such as other spin configuration states and
single-particle excitations may be missing.

In this paper, I mainly investigate 10B + α-cluster states
near the α-decay threshold and discuss their features. In the
calculated energy levels near the threshold, I obtain several
excited states having significant component of a spatially
developed α cluster around the 10B cluster. From remarkable
E2 transitions, I assign the 10B + α-cluster states to a Kπ =
3+ band of Jπ = 3+, 4+, and 5+ states and a Kπ = 1+ band
of Jπ = 1+, 2+, 3+, 4+, and 5+ states. The former and
the latter bands are shown by asterisks and down-triangle
symbols in Fig. 3. The Kπ = 3+ band has the significant
10B(3+) + α component, whereas the Kπ = 1+ band contains
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FIG. 4. (Color online) E2 transition strengths calculated by the
10B + α-cluster model for (a) J + → J + − 1 and (b) J + → J + −
2 transitions with B(E2) � 15 e2 fm4. Asterisks and down-triangle
symbols show 10B + α-cluster states in the Kπ = 3+ and Kπ = 1+

bands, respectively.

the 10B(1+) + α component. More details of the structure of
these states are discussed in the next section.

Figure 4 shows E2 transitions with B(E2) � 15 e2 fm4 for
J → J − 1 and J → J − 2 transitions. In-band transitions
for the Kπ = 3+ and Kπ = 1+10B + α bands are rather
strong because of the developed cluster structures, though E2
strengths are somewhat fragmented into neighboring states.

IV. DISCUSSION

We calculate the α-cluster probability in the obtained
14N(Jπ ) wave functions [�14N(Jπ

n ) in Eq. (7)] and find that
10B + α-cluster states in the Kπ = 3+ and Kπ = 1+ bands
have maximum amplitudes of α-cluster probability around
Dα = 5 fm as shown later. In this section, I focus on the
angular motion of the α cluster at Dα = 5 fm. I first investigate
10B(Iπ ) ⊗ Lα components based on the weak-coupling picture
and estimate α-decay widths. Then, I discuss geometric
configurations of 10B + α-cluster states in the strong-coupling

picture by analyzing the θα dependence of the α-cluster
probability around the 10B cluster.

A. Fixed-Dα calculation

In the present calculation, radial motion of the α cluster is
described by superposing 10B + α wave functions for Dα =
2, . . . ,6 fm. Instead of the full model space in Eq. (7) including
Dα = 2, . . . ,6 fm wave functions, I also perform a similar
calculation using the Dα-fixed model space

�
Dα=5
14N(Jπ

n ) =
∑
K

∑
θα

∑
d,φ

C(K,θα,d,φ)

× P̂ Jπ
MK�10B+α(Dα = 5,θα; d,φ), (12)

where I fix Dα = 5 fm and take θα = {0,π/8, . . . ,π}, d =
{1,2} (fm), and φ = π

4 (j − 0.5) (j = 1, . . . ,8). Coefficients
C(K,θα,d,φ) are determined by diagonalizing Hamiltonian
and norm matrices. �

Dα=5
14N(Jπ

n ) given in Eq. (12) is the wave

function for the 14N(Jπ
n ) state obtained by the truncated model

space with the fixed Dα (Dα = 5 fm), and �14N(Jπ
n ) given

in Eq. (7) is that obtained by the full model space with the
Dα superposition. I call the former with the fixed Dα “the
fixed-Dα calculation” and the latter with the Dα superposition
“the full-Dα calculation.” I analyze the 14N wave functions,
�

Dα=5
14N(Jπ

n ) and �14N(Jπ
n ), obtained by the fixed-Dα and the full-Dα

calculations, respectively, by calculating two kinds of the
α-cluster probabilities, P (JK; 10B(Iπ

z ); Dα,θα) in Eq. (9) and
P10B(Iπ )⊗Lα

(Dα) in Eq. (11), for each of �
Dα=5
14N(Jπ

n ) and �14N(Jπ
n ),

to understand how the 10B + α-cluster states emerge in the
angular motion of the α cluster in the fixed-Dα calculation and
how the angular motion and decay width are affected by the
Dα superposition in the full-Dα calculation.

In the fixed-Dα calculation, I find the states near the
threshold energy corresponding to 10B + α-cluster states in
the Kπ = 3+ and Kπ = 1+ bands, but do not obtain lower
states below the threshold because of the truncation of the
model space. Energy levels of the Kπ = 3+ and Kπ = 1+
bands obtained with the full-Dα and fixed-Dα calculations
are shown in Fig. 5. The calculated energies are measured
from the α-decay threshold. The experimental levels observed
by α elastic scattering by 10B are also shown in the figure.
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FIG. 5. Energies of 10B + α-cluster states obtained by the full-Dα

and fixed-Dα calculations and those observed by the experiment of
10B(α,α)10B reactions [57]. Energies are measured from the α-decay
threshold.
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FIG. 6. 10B(Iπ ) ⊗ Lα components [P10B(Iπ )⊗Lα
(Dα) in Eq. (11)]

for 10B + α-cluster states in the Kπ = 3+ and Kπ = 1+ bands
obtained by the full-Dα calculation. The Dα dependencies of the
dominant components for (a) J π = 3+(Kπ = 3+) and 5+(Kπ = 3+)
and for (b) J π = 1+(Kπ = 1+), J π = 3+(Kπ = 1+), and 5+(Kπ =
1+) are shown.

The level structures of the Kπ = 3+ and Kπ = 1+ bands
are essentially consistent between the full-Dα and fixed-Dα

calculations, though about a 2-MeV global shift is found for
the Kπ = 3+ band between two calculations.

B. α-cluster probability and α-decay widths

I show in Fig. 6 10B(Iπ ) ⊗ Lα components [P10B(Iπ )⊗Lα
(Dα)

in Eq. (11)] for 10B + α-cluster states in the Kπ = 3+ and
Kπ = 1+ bands obtained by the full-Dα calculation. The
probability for the dominant channel shows the maximum
amplitude at Dα ∼ 5 fm. In Table I, I show P10B(Iπ )⊗Lα

(Dα)
at Dα = 5 fm in 10B + α-cluster states obtained by the full-
Dα and fixed-Dα calculations. In the result of the fixed-
Dα calculation, Kπ = 3+ band states are dominated by
the 10B(3+) ⊗ Lα component, whereas Kπ = 1+ band states
contain dominantly the 10B(1+) ⊗ Lα component. In the result
of the full-Dα calculation, the dominant channel of each
state in the Kπ = 3+ and Kπ = 1+ bands is essentially
consistent with that in the fixed-Dα calculation, except for
the 1+(Kπ = 1+) state, though the absolute amplitude of
the dominant component decreases because of radial motion
and state mixing. Namely, the Kπ = 3+ and Kπ = 1+ band
states except for the 1+(Kπ = 1+) state contain significant
10B(3+) ⊗ Lα and 10B(1+) ⊗ Lα components, respectively,
also in the full-Dα calculation. The 1+(Kπ = 1+) state
obtained by the full-Dα calculation shows a feature quite
different from that obtained by the fixed-Dα calculation, which
has almost the pure 10B(1+) ⊗ (Lα = 0) component showing
a weak-coupling feature. That is, the 1+(Kπ = 1+) state in
the full-Dα calculation has 10B(1+) ⊗ (Lα = 0), 10B(1+) ⊗
(Lα = 2), and 10B(3+) ⊗ (Lα = 2) components with the same
order showing a strong-coupling feature.

TABLE I. 10B(Iπ ) ⊗ (Lα = 0,2) components, P10B(Iπ )⊗Lα
(Dα =

5 fm), of 10B + α-cluster states in the Kπ = 3+ and Kπ = 1+ bands
obtained by the full-Dα and fixed-Dα calculations.

J π P10B(3+)⊗Lα
P10B(1+)⊗Lα

Lα = 0 Lα = 2 Lα = 0 Lα = 2

Full-Dα cal.
3+(Kπ = 3+) 0.21 0.10 0.04
4+(Kπ = 3+) 0.23
5+(Kπ = 3+) 0.14
1+(Kπ = 1+) 0.03 0.05 0.09
2+(Kπ = 1+) 0.02 0.25
3+(Kπ = 1+) 0.00 0.02 0.37
4+(Kπ = 1+) 0.01
5+(Kπ = 1+) 0.14

Fixed-Dα cal.
3+(Kπ = 3+) 0.57 0.25 0.01
4+(Kπ = 3+) 0.73
5+(Kπ = 3+) 0.75
1+(Kπ = 1+) 0.02 0.89 0.05
2+(Kπ = 1+) 0.01 0.78
3+(Kπ = 1+) 0.10 0.13 0.74
4+(Kπ = 1+) 0.00

Figure 7 shows Lα components (P10B(Iπ )⊗Lα
) at Dα = 5 fm

of Jπ states in the 14N spectra obtained by the full-Dα

calculation. The 10B(3+) ⊗ (Lα = 0) and 10B(3+) ⊗ (Lα =
2) components concentrate at the 3+(Kπ = 3+) and 4+(Kπ =
3+) states, respectively, though the components are fragmented
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FIG. 7. 10B(Iπ ) ⊗ (Lα = 0,2) components, P10B(Iπ )⊗Lα
(Dα =

5 fm), in positive-parity states of 14N obtained by the 10B + α cluster
model. Asterisks and down-triangle symbols show 10B + α-cluster
states in the Kπ = 3+ and Kπ = 1+ bands, respectively.
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into other states. The 5+(Kπ = 3+) state shows rather strong
state mixing. The 10B(1+) ⊗ (Lα = 2) component concen-
trates at the 2+(Kπ = 1+) and 3+(Kπ = 1+) states, whereas,
the 10B(1+) ⊗ (Lα = 0) component feeds lower 1+ states
of 14N.

In the experiment of 10B(α,α)10B reactions [57], the 3+
state at Er = 1.58 MeV (Ex = 13.19 MeV) with the width
� = 0.065 MeV is strongly populated. In the analysis of
Ref. [57], this state is described well by the dominant
(almost 100%) S-wave α-decay indicating the significant
10B(3+) ⊗ (Lα = 0) component of the 3+ state. The 1+ state
at Er = 2.11 MeV (Ex = 13.72 MeV) is weakly populated in
10B(α,α)10B reactions, whereas its α decay into the first excited
state of 10B(1+) was observed in 10B(α,α′γ )10B reactions [63].
These experiments suggest that the 1+ state would contain
10B(1+) ⊗ (Lα = 0) and 10B(3+) ⊗ (Lα = 2) components.

From the experimental α-decay properties, I tentatively
assign the theoretical 3+(Kπ = 3+) and 1+(Kπ = 1+) states
having 10B + α-cluster structures to the experimental 3+
(Eexp

r = 1.58 MeV) and 1+ (Eexp
r = 2.11 MeV) states, though

the bandhead energies Er (3+; Kπ = 3+) = −1.2 MeV and
Er (1+; Kπ = 1+) = 1.0 MeV obtained by the full-Dα calcu-
lation do not necessarily agree with the experimental energies
(see Fig. 5). I estimate partial α-decay widths for 10B(Iπ ) ⊗ Lα

channels from P10B(Iπ )⊗Lα
(Dα = a) (a is the channel radius)

as follows. Using the approximate evaluation of the reduced
width amplitude proposed in Ref. [64], the reduced width
γ 2

α (a) is calculated as

γ 2
α (a) = �

2

2μa

(
ν

2π

A1A2

A1 + A2

)1/2

P10B(Iπ )⊗Lα
(Dα = a), (13)

and the partial α-decay width �10B(Iπ )+α for Lα = l is calcu-
lated as

�10B(Iπ )+α = 2Pl(a)γ 2
α (a), (14)

Pl(a) = ka

F 2
l (ka) + G2

l (ka)
, (15)

where k = √
2μE/� with the reduced mass μ, and Fl and Gl

are the regular and irregular Coulomb functions, respectively.
Here I use the momentum k of the energy E = E

(adjust)
r , which

is phenomenologically adjusted to the experimental energy
position because it is difficult to quantitatively predict the
energy position in the present calculation. Namely, I adjust
the bandhead energies of the Kπ = 3+ and Kπ = 1+ bands to
the experimental energy positions E

exp
r (3+) = 1.58 MeV and

E
exp
r (1+) = 2.11 MeV by a constant shift for each band as

E(adjust)
r (J+; Kπ = 3+)

= Er (J+; Kπ = 3+) − Er (3+; Kπ = 3+) + Eexp
r (3+),

(16)

E(adjust)
r (J+; Kπ = 1+)

= Er (J+; Kπ = 1+) − Er (1+; Kπ = 1+) + Eexp
r (1+).

(17)

TABLE II. Partial α-decay widths of 10B + α-cluster states in the
Kπ = 3+ and Kπ = 1+ bands obtained by the full-Dα calculation.
The channel radius is chosen to be a = 5 fm. Energies of the bandhead
states of the Kπ = 3+ and Kπ = 1+ bands are adjusted to the
experimental resonance energies of the 3+ state at 1.58 MeV and the
1+ state at 2.11 MeV. The sum [�10B+α(Lα � 2)] of the partial widths
of the decay channels 10B(3+) ⊗ (Lα � 2) and 10B(1+) ⊗ (Lα � 2)
is also shown. The unit is MeV.

J π �10B(3+)+α �10B(1+)+α �10B(3+)+α

E
(adjust)
r Lα = 0 Lα = 2 Lα = 0 Lα = 2 (Lα � 2)

3+(Kπ = 3+) 1.58 0.04 0.00 0.00 0.05
4+(Kπ = 3+) 2.43 0.06 0.06
5+(Kπ = 3+) 3.87 0.16 0.16
1+(Kπ = 1+) 2.11 0.00 0.01 0.00 0.01
2+(Kπ = 1+) 3.35 0.02 0.09 0.11
3+(Kπ = 1+) 3.23 0.00 0.01 0.12 0.13
4+(Kπ = 1+) 4.60 0.01 0.01
5+(Kπ = 1+) 6.31 0.36 0.36

Calculated partial α-decay widths obtained by the full-Dα

calculation are shown in Table II. I calculate widths for Lα = 0
and Lα = 2 channels for the channel radius a = 5 fm. The
α-decay width of the 3+(Kπ = 3+) state is �α = 0.05 MeV
with the dominant 10B(3+) ⊗ (Lα = 0) decay, which is quan-
titatively consistent with the experimental observation [�α ∼
� = 0.065(10) MeV] [57]. For the 1+(Kπ = 1+) state, I obtain
a small α-decay width �α = 0.01 MeV with the dominant
10B(1+) ⊗ (Lα = 0) decay. This result seems consistent with
the weak population in the α elastic scattering [57] and the fact
that the 1+ state was observed in the 10B(α,α′γ )10B reaction
[63]. However, experimental information of partial α-decay
widths is not enough to confirm the present assignment of the
1+(Kπ = 1+) state. The calculated α-decay width is much
smaller than the experimental total width, � = 0.16(2) MeV,
of the 1+ state at 2.11 MeV. I should comment that, because
the 10B(1+) ⊗ (Lα = 0) component is fragmented into neigh-
boring states as shown in Fig. 7, an effectively large width
could be observed for the 1+(Kπ = 1+) state.

C. Angular motion of the α cluster around
the deformed 10B cluster

I here discuss angular motion of the α cluster around
the deformed 10B cluster by analyzing the θα dependence
of α-cluster probabilities. Discussions in this section are
based on the strong-coupling picture, which is somehow
different from the previous discussion based on the Lα

decomposition in the weak-coupling picture. I show energies
of �10B(Iπ

z )+α
(Dα,θa), in which the α cluster is localized at

(Dα,θα) around the Iπ
z -projected 10B cluster. In Fig. 8, intrinsic

energies before parity and angular momentum projections of
�10B(Iπ

z )+α
(Dα,θa) for Iπ

z = 3+ and 1+ are plotted on the

(x,z) = (Dα sin θα,Dα cos θα) plane. The energy curves for
Dα = 5 fm are also shown as functions of θα . In the Dα � 5 fm
region, the contour of the energy surface on the (x,z) plane
is deformed in the longitudinal (θα = 0) direction because of
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FIG. 8. (Color online) Intrinsic energies of 10B(Iπ
z = 3+) + α

and 10B(Iπ
z = 1+) + α before the parity and angular-momentum

projections. Energies for (a) 10B(Iπ
z = 3+) + α and (b) 10B(Iπ

z =
1+) + α plotted on (x,z) = (Dα sin θα,Dα cos θα), and (c) those at
Dα = 5 fm plotted as functions of θα .

the prolate deformation of the 10B cluster, meaning that the α
cluster at the fixed distance Dα = 5 fm feels an attraction in the
longitudinal direction. In other words, in the intrinsic system,
the α cluster at Dα = 5 fm energetically favors the longitudinal
direction to form the linear 3α configuration rather than the
transverse direction to form the triangle 3α configuration. In
the Dα � 3 fm region, the α cluster feels an effective repulsion
in the longitudinal direction because of the Pauli blocking from
the 10B cluster, whereas it feels an attraction in the transverse
(θα = π/2) direction.

In contrast to the intrinsic energy behavior, the θα de-
pendence of the Jπ projected energy is not trivial because
the energy is affected by not only potential energy but also
by the kinetic energy of angular motion, i.e., rotational
energy. Figure 9 shows energies of JK-projected states
[P̂ Jπ

MK�10B(Iπ
z )+α

(Dα,θa)] of �10B(Iπ
z )+α

(Dα,θa) at Dα = 5 fm

for K = Iz, which corresponds to the Lαz = 0 projection.
In high-J states, the longitudinal direction (|θα| � π/8)
is energetically favored more than the transverse direction
(|θα − π/2| � π/8) because the longitudinal configuration has
a moment of inertia (m.o.i.) larger than that of the transverse
configuration for the Lαz = 0 projection. However, in the
lowest-spin state (JK = 11), the energy almost degenerates
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FIG. 9. Energies of the JK-projected �10B(Iπ
z )+α

wave function

P̂ Jπ
MK�10B(Iπ

z )+α
(Dα,θa) with K = Iz for (a) 10B(Iπ

z = 3+) and (b)
10B(Iπ

z = 1+). Energies for Dα = 5 fm are plotted as functions of θα .

in a wide region of θα because the kinetic energy for the
transverse configuration is smaller than that for the longitu-
dinal configuration because of the phase-space factor sin θα

in the Lαz = 0 projection. This energy degeneracy results in
the Lα = 0 (S-wave) dominance in the 1+(Kπ = 1+) state
obtained by the fixed-Dα calculation.

Figures 10 and 11 show energies of JK-projected states
at Dα = 5 fm for K �= Iz. Note that the K �= Iz projection
corresponds to the Lαz �= 0 projection, and K > Iz means the
Lα alignment to the z direction [see Fig. 1(c)]. For instance, the
Lα-aligned state for Lα = 2 (D-wave) is the K = Iz + 2 state.
As shown in Figs. 10(a)–10(c) and 11(a)–10(d), Lα-aligned
states energetically favor the transverse configuration because
its m.o.i. is larger than that of the longitudinal configuration in
the Lαz = 2 projection.

Figures 10 and 11 also show the α-cluster probability
P (JK;10 B(Iπ

z ); Dα,θα) at Dα = 5 fm in the 10B + α-cluster
states obtained by the fixed-Dα and full-Dα calculations. Let
me first discuss the result obtained by the fixed-Dα calculation
[Figs. 10(d)–10(f) and 11(e)–10(h)]. In the Kπ = 3+ band
states [Figs. 10(d)–10(f)], the Jπ = 3+ state contains domi-
nantly the longitudinal configuration (|θα| � π/8) rather than
the transverse configuration (|θα − π/2| � π/8) as expected
from the JK-projected energy curve for K = Iz. As the spin
(J ) goes up to J = 5, the Lα-aligned component (K = 5) of
the transverse configuration becomes large corresponding to
the alignment of the orbital angular momentum Lα of the α
cluster to Iz = 3 [the spin of (pn) cluster in the 10B cluster]. In
the Kπ = 1+ band states [Figs. 11(e)–11(h)], the Jπ = 1+
state shows the α-cluster probability distributed widely in
the 0 � θα � π/2 region indicating the dominant Lα = 0 (S-
wave) component. As J increases, the longitudinal component
becomes dominant compared with the transverse component.
The alignment of Lα (the orbital angular momentum of the
α cluster) and Iz is not so remarkable for 10B(Iπ

z = 1+)
differently from 10B(Iπ

z = 3+).
Next, I look into the α-cluster probability in the full-Dα

calculation shown in Figs. 10(g)–10(i) and 11(i)–11(l). The
full-Dα calculation shows features of the angular distribution
similar to those of the fixed-Dα calculation, except for the
Jπ = 1+ (Kπ = 1+) state, though the absolute values of
the probability decrease by about a factor of 2. In other
words, the 10B + α-cluster states obtained by the fixed-Dα
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FIG. 10. (a)–(c) Energies of the JK-projected �10B(Iπ
z )+α

wave function P̂ Jπ
MK�10B(Iπ

z )+α
(Dα,θa) for 10B(Iπ

z = 3+). (d)–(f) α-cluster

probability P (JK; 10B(Iπ
z ); Dα,θα) for Iπ

z = 3+ at Dα = 5 fm in the 10B + α-cluster states in the Kπ = 3+ band obtained by the fixed-Dα

calculation, and (g)–(i) that obtained by the full-Dα calculation.

calculation retain their features in the full-Dα calculation
despite the radial motion and state mixing. Compared with
the fixed-Dα calculation in more detail, it is found that
transverse components tend to be relatively more suppressed
than longitudinal components in the full-Dα calculation. In
particular in the Jπ = 1+ (Kπ = 1+) state obtained by the
full-Dα calculation, the transverse component is significantly
suppressed differently from the fixed-Dα calculation. Note that
the 1+ (Kπ = 1+) state obtained by the fixed-Dα calculation
contains 90% of the 10B(1+) ⊗ (Lα = 0) component, in which
the α cluster is moving in almost an S wave, as discussed
previously. Comparing Fig. 11(i) with Fig. 11(e), it is found
that the 1+ (Kπ = 1+) state contains the relatively enhanced
longitudinal component and the suppressed transverse com-
ponent as well as the 3+ (Kπ = 3+) state, though the absolute
amplitude itself decreases in the full calculation because of the
radial motion.

Here, it should be noted that the angular distribution of the
α-cluster probability contains the θα-dependent phase-space
factor. In the classical picture, the phase-space factor is sin θα .
In the present model, the α-cluster wave function is localized
around the position Rα = (Dα sin θα,0,Dα cos θα) with a
localized Gaussian form, fRα

(rα) = (2ν/π )3/4 exp[−να(r −
Rα)2]. When the antisymmetrization effect is omitted, the
phase-space factor for the positive-parity and Lαz = 0 pro-
jected state in the strong-coupling limit is estimated by
the squared overlap between the positive-parity Lαz = 0

component and the S-wave component of the localized
Gaussian as

Npf(Dα,θα)

=
∫
d�′∫ 2π

0 dφα

∣∣〈fR′
α

∣∣P̂ +fRα

〉∣∣2

∫
d�′ ∫ d�

〈
fR′

α

∣∣fRα

〉 ∫ 2π

0 dφ′′
α

∫ 2π

0 dφα

〈
P̂ +fR′′

α

∣∣P̂ +fRα

〉
,

(18)

where Dα , θα , and φα are the spherical coordinates for Rα ,
and Dα = D′

α = D′′
α and θα = θ ′′

α are chosen. As shown in
Fig. 12, the phase-space factor Npf is relatively larger in the
|θα − π/2| � π/4 region for the transverse configuration than
in the |θα| � π/4 region for the longitudinal configuration. In
Fig. 12, I show the ratio to Npf of the α-cluster probability
P̂ Jπ

MK�10B(Iπ
z )+α

(Dα,θa) for K = 3 and Iπ
z = 3+ at Dα = 5 fm

in the 3+ (Kπ = 3+) state and that for K = 1 and Iπ
z = 1+ in

the 1+ (Kπ = 1+) state obtained by the full-Dα calculation.
The ratios show that the θα = 0 component is remarkably
enhanced, whereas the θα = π/4 and π/2 components are
relatively suppressed, indicating a feature of the elongated
chain-like structure of the 10B + α-cluster bands. What I call
the “chain-like configuration” is the structure that has relatively
enhanced longitudinal components with suppressed transverse
components. It should be pointed out that it is different from the
ideal linear configuration of a classical picture but it has some
quantum fluctuation in the radial and angular (θα) motion.
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FIG. 11. (a)–(d) Energies of the JK-projected �10B(Iπ
z )+α

wave function P̂ Jπ
MK�10B(Iπ

z )+α
(Dα,θa) for 10B(Iπ

z = 1+). (e)–(h) α-cluster

probability P (JK; 10B(Iπ
z ); Dα,θα) for Iπ

z = 1+ at Dα = 5 fm in the 10B + α-cluster states in the Kπ = 1+ band obtained by the fixed-Dα

calculation, and (i)–(l) that obtained by the full-Dα calculation.

The origin of the suppression of transverse components
in 10B + α-cluster states in the full-Dα calculation can be
described by orthogonality to lower states which contain
transverse components with Dα < 5 fm. As shown in Fig. 8
for the energy surface on the (Dα,θa) plane, an energy pocket
exists in the transverse direction (θα ∼ π/2) around Dα ∼ 2,
and therefore, transverse components contribute to low-lying
14N states. Although the low-lying states are compact states
containing mainly configurations with small Dα , transverse
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FIG. 12. Ratio of the α-cluster probability to the phase-space
factor Npf . The ratio of the probability P̂ Jπ

MK�10B(Iπ
z )+α

(Dα,θa) for

K = 3 and Iπ
z = 3+ at Dα = 5 fm in the 3+ (Kπ = 3+) state and

that for K = 1 and Iπ
z = 1+ in the 1+ (Kπ = 1+) state obtained by

the full-Dα calculation are shown. The phase-space factor Npf for
Dα = 5 fm is also shown.

components with Dα = 5 fm somewhat feed the low-lying
states. As a result of the feeding of lower states, transverse
components in the 10B + α-cluster states near the threshold are
suppressed. Figures 13 and 14 show the α-cluster probability
P [JK; 10B(Iπ

z ); Dα,θa] for θα = 0 at Dα = 5 fm and that for
θα = π/4 and π/2 at Dα = 4 fm. (Here Dα = 4 fm is chosen
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FIG. 13. α-cluster probability P [JK; 10B(Iπ
z ); Dα,θa] for Iπ

z =
3+. Dα is taken to be Dα = 5 fm for θα = 0 and Dα = 4 fm for
θα = π/4 and π/2. Asterisks and down-triangle symbols show 10B +
α-cluster states in the Kπ = 3+ and Kπ = 1+ bands, respectively.
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FIG. 14. α-cluster probability P [JK; 10B(Iπ
z ); Dα,θa] for Iπ

z =
1+. Dα is taken to be Dα = 5 fm for θα = 0 and Dα = 4 fm for
θα = π/4 and π/2. Asterisks and down-triangle symbols show 10B +
α-cluster states in the Kπ = 3+ and Kπ = 1+ bands, respectively.

for θα = π/4 and π/2 just to show the feeding low-lying states
of the transverse components at small Dα , but the probability
at Dα = 5 fm is qualitatively consistent with Dα = 4 fm
except for the scaling factor.) As seen in Figs. 13(a)–13(c)
for 10B(Iπ

z = 3+), the longitudinal (θα = 0) component of
10B(Iπ

z = 3+) + α shows the largest amplitude at the Kπ =
3+ band states (labeled by asterisks) and some fragmentation
into neighboring states. Similarly, the longitudinal component
of 10B(Iπ

z = 1+) + α concentrates on the Kπ = 1+ band
states [see Figs. 14(a)–14(e)]. On the other hand, transverse

components feed states lower than the 10B + α-cluster states
as seen in Figs. 13(d) and 13(f) and Figs. 14(f) and 14(g).
Consequently the α cluster in 10B + α-cluster states near
the threshold tends to avoid transverse configurations so as
to satisfy orthogonality to lower states. This mechanism is
consistent with the discussion of Ref. [31] for linear-chain 3α
states in 14C.

V. SUMMARY

I calculated positive-parity states of 14N with the 10B + α-
cluster model and investigated 10B + α-cluster states. Near
the α-decay threshold energy, I obtained the Kπ = 3+ and
Kπ = 1+ rotational bands having the developed α cluster with
the 10B(3+) and 10B(1+) cores, respectively. I assigned the
3+(Kπ = 3+) state in the present result to the experimental
3+ at Er = 1.58 MeV observed in α scattering reactions by
10B and showed that the calculated α-decay width agrees with
the experimental width.

I analyzed the component of the longitudinal configuration
having an α cluster in the longitudinal direction of the
deformed 10B cluster, which corresponds to a linear-chain 3α
structure with valence nucleons. In the spectra of 14N, the
linear-chain component concentrates at the 10B + α-cluster
states in the Kπ = 3+ and Kπ = 1+ bands. However, the
10B + α-cluster states are different from the ideal linear
configuration of a classical picture but they show significant
quantum fluctuation in the angular (θα) motion and are
regarded as the chain-like configuration that has relatively
enhanced longitudinal components and suppressed transverse
components. The orthogonality to low-lying states plays an
essential role in the suppression of the transverse component.

The present model with the effective interaction cannot
quantitatively reproduce the α-decay threshold energy and the
low-energy spectra of 14N. The influence of the low-lying
states on the 10B + α-cluster states near the α-decay should be
checked in more sophisticated calculations that can reproduce
well the low-energy spectra and the α-decay threshold.
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192, 1 (2012).

[6] Y. Fujiwara et al., Prog. Theor. Phys. Suppl. 68, 29
(1980).

[7] M. Seya, M. Kohno, and S. Nagata, Prog. Theor. Phys. 65, 204
(1981).

[8] W. von Oertzen, Z. Phys. A 354, 37 (1996); 357, 355 (1997);
110, 895 (1997).

064326-11

http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1143/PTPS.142.205
http://dx.doi.org/10.1143/PTPS.142.205
http://dx.doi.org/10.1143/PTPS.142.205
http://dx.doi.org/10.1143/PTPS.142.205
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1016/S1631-0705(03)00062-8
http://dx.doi.org/10.1093/ptep/pts001
http://dx.doi.org/10.1093/ptep/pts001
http://dx.doi.org/10.1093/ptep/pts001
http://dx.doi.org/10.1093/ptep/pts001
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.68.29
http://dx.doi.org/10.1143/PTPS.68.29
http://dx.doi.org/10.1143/PTPS.68.29
http://dx.doi.org/10.1143/PTPS.68.29
http://dx.doi.org/10.1143/PTP.65.204
http://dx.doi.org/10.1143/PTP.65.204
http://dx.doi.org/10.1143/PTP.65.204
http://dx.doi.org/10.1143/PTP.65.204
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1007/s002180050010
http://dx.doi.org/10.1007/s002180050255
http://dx.doi.org/10.1007/s002180050255
http://dx.doi.org/10.1007/s002180050255
http://dx.doi.org/10.1007/BF03035924
http://dx.doi.org/10.1007/BF03035924
http://dx.doi.org/10.1007/BF03035924


YOSHIKO KANADA-EN’YO PHYSICAL REVIEW C 92, 064326 (2015)

[9] K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, Phys. Rev. C 54,
132 (1996).

[10] A. Dote, H. Horiuchi, and Y. Kanada-En’yo, Phys. Rev. C 56,
1844 (1997).

[11] Y. Kanada-En’yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60,
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