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Isovector and isoscalar dipole excitations in 9Be and 10Be are investigated in the framework of antisymmetrized
molecular dynamics, in which angular-momentum and parity projections are performed. In the present method,
1p-1h excitation modes built on the ground state and a large amplitude α-cluster mode are taken into account. The
isovector giant dipole resonance (GDR) in E > 20 MeV shows the two-peak structure, which is understood from
the dipole excitation in the 2α core part with the prolate deformation. Because of valence neutron modes against the
2α core, low-energy E1 resonances appear in E < 20 MeV, exhausting about 20% of the Thomas-Reiche-Kuhn
sum rule and 10% of the calculated energy-weighted sum. The dipole resonance at E ∼ 15 MeV in 10Be can
be interpreted as the parity partner of the ground state having a 6He + α structure and has remarkable E1
strength because of the coherent contribution of two valence neutrons. The isoscalar dipole strength for some
low-energy resonances is significantly enhanced by the coupling with the α-cluster mode. For the E1 strength of
9Be, the calculation overestimates the energy-weighted sum (EWS) in the low-energy (E < 20 MeV) and GDR
(20 < E < 50 MeV) regions by a factor of 1.6 and underestimates the width of the GDR, whereas it reasonably
describes the GDR energy and also the ratio of the EWS in the low-energy region to that of the GDR region.
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I. INTRODUCTION

In neutron-rich nuclei, various exotic phenomena appear
because of excess neutrons. One of the current issues con-
cerning exotic excitation modes in neutron-rich nuclei is low-
energy dipole excitations [1–77]. For stable nuclei, isovector
giant dipole resonances (GDRs) have been systematically
observed in various nuclei by measurements of photonuclear
cross sections (for example, see Ref. [78] and references
therein). The GDR is understood as an opposite oscillation
between protons and neutrons and microscopically described
by coherent 1p-1h excitations. Peak structure of the strength
function of the GDR has been often discussed in relation
to nuclear deformation. In neutron-rich nuclei, low-energy
dipole resonances have been suggested to appear because of
excess neutron motion against a core. The so-called soft dipole
resonance, which is the enhanced E1 strength observed in the
extremely low-energy (E � 2–3 MeV) region in neutron halo
nuclei such as 6He and 11Li, has been intensively studied
by experimental and theoretical groups and often discussed
in relation to the two-neutron correlation [1–8,13–30]. More
generally the low-energy E1 strength typically in the 5 � E �
15 MeV region is predicted in various nuclei in a wide mass
region, and the one decoupled from the GDR is called the
pigmy dipole resonance. The role of excess neutrons and the
collectivity of these low-energy dipole excitations are topics
of interest in theoretical studies. The low-energy E1 strength
has been also discussed in relation to neutron skin thickness
and the density dependence of the symmetry energy, though
their correlation is under debate [46,48,60–63,72,77].

The experimental measurements of the low-energy E1
strength in 9Be by photodisintegration have been performed
mainly for astrophysical interests [79–83]. In recent years,
precise data of the E1 strength for low-lying positive-parity
states of 9Be have been reported [83]. Moreover, the recently
measured photodisintegration cross sections of 9Be indicate

the significant low-energy E1 strength around E = 10 MeV
exhausting about 10% of the Thomas-Reiche-Kuhn (TRK)
sum rule [84], consistent with the bremsstrahlung data [81].
The experimental data of the E1 strength of 9Be are
available in a wide energy region from low energy to high
energy: the E1 strength for the positive-parity states in E �
5 MeV [83], the significant E1 strength around E = 10 MeV
[81,84], and the E1 strength in E > 20 MeV for the GDR
[85].

Our aim is to investigate isovector and isoscalar dipole
strengths in 9Be and 10Be to understand the low-energy
dipole modes. I try to clarify the role of excess neutrons
and the decoupling mechanism of the low-energy dipole
modes from the GDR. The low-lying states of 9Be are
understood by 2α + n cluster structures as discussed in cluster
models [86–90]. The photodisintegration cross sections in
the very low-energy region of 9Be have been theoretically
investigated by two-body ( 8Be +n) and three-body (2α + n)
cluster models with continuum states [91–97]. However, such
cluster models are not able to describe the high-energy dipole
strength of the GDR, to which coherent 1p-1h excitations
may contribute. To investigate the pygmy and giant dipole
resonances in general nuclei, shell model and mean-field
approaches were applied. The former may not be suitable for
such largely deformed nuclei as Be isotopes having cluster
structures. The latter is usually based on the random phase
approximation (RPA) with and without continuum. Although
the RPA calculation is successful for a variety of collective
excitations in heavy mass nuclei, it is a small amplitude
approximation neglecting large amplitude motion. Moreover,
in most current mean-field approaches, the RPA calculation is
based on a parity-symmetric mean field in a strong coupling
picture without the angular-momentum and parity projections,
and the coupling of single-particle excitations in the mean
field with rotation and parity transformation is not taken into
account microscopically.
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To take into account the coherent 1p-1h excitations and
the large amplitude cluster mode as well as the angular-
momentum and parity projections, we develop a method
of antisymmetrized molecular dynamics (AMD) [98–103].
The time-dependent AMD, which was originally developed
for study of heavy-ion reactions [98,99], was applied to
investigate E1 and monopole excitations [39,104]. However,
in the time-dependent AMD approach, the angular-momentum
and parity projections are not performed, and, therefore,
ground state structures and the coupling of single-particle
excitations with the rotational motion are not sufficiently
described. Instead of the time-dependent AMD, we superpose
the angular-momentum and parity-projected wave functions
of various configurations including the 1p-1h and cluster
excitations. We first perform the variation after the angular-
momentum and parity projections in the AMD framework
(AMD+VAP) [105–107] to obtain the ground state wave
function. Then we describe small amplitude motions by taking
into account 1p-1h excitations on the obtained ground state
wave function with the shifted basis AMD method as done
in Ref. [108] for monopole excitations of 16O. To take into
account the large amplitude cluster motion, we combine the
generator coordinate method (GCM) with the shifted basis
AMD by superposing 5,6He + α cluster wave functions. The
angular-momentum and parity projections are performed in the
present framework. Applying the present method, I investigate
the dipole transitions 8Be(0+

1 ) → 8Be(1−), 9Be(3/2−
1 ) →

9Be(1/2+,3/2+,5/2+), and 10Be(0+
1 ) → 10Be(1−).

This paper is organized as follows. The present method
of AMD is formulated in Sec. II, and Sec. IV discusses
the ground state structures and the E1 and isoscalar dipole
(ISD) excitations in Be isotopes. The paper concludes with a
summary in Sec. V.

II. FORMULATION OF AMD FOR DIPOLE EXCITATIONS

I apply the AMD+VAP method to obtain A-nucleon wave
functions for the ground states of 8Be, 9Be, and 10Be. To
investigate dipole excitations, I use the shifted basis AMD to
describe the 1p-1h excitation modes built on the ground state.
I also perform the α-cluster GCM calculation combined with
the shifted basis AMD to see how the α-cluster mode affects
the dipole excitations. In this section, I explain the formulation
of the AMD+VAP, the shifted basis AMD, and the α-cluster
GCM calculations and also describe the definition of the dipole
strengths.

A. AMD wave function

An AMD wave function is given by a Slater determinant,

�AMD(Z) = 1√
A!

A{ϕ1,ϕ2, . . . ,ϕA}, (1)

where A is the antisymmetrizer. The ith single-particle wave
function ϕi is written by a product of spatial, spin, and isospin
wave functions as

ϕi = φX i
χiτi, (2)

φX i
(rj ) =

(
2ν

π

)4/3

exp{−ν(rj − X i)
2}, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓, (4)

where φX i
and χi are the spatial and spin functions, re-

spectively, and τi is the isospin function fixed to be up
(proton) or down (neutron). The width parameter ν is fixed
to be the optimized value for each nucleus. To separate the
center-of-mass motion from the total wave function �AMD(Z),
the following condition should be satisfied:

1

A

∑
i=1,...,A

X i = 0. (5)

In the present calculation, I keep this condition and exactly
remove the contribution of the center-of-mass motion.

Accordingly, an AMD wave function is expressed by a set of
variational parameters, Z ≡ {X1, . . . ,XA,ξ1, . . . ,ξA}, which
specifies centroids of single-nucleon Gaussian wave packets
and spin orientations for all nucleons. In the AMD framework,
the existence of clusters is not assumed a priori because
Gaussian centroids, X1, . . . ,XA, of all single-nucleon wave
packets are independently treated as variational parameters.
Nevertheless, a multicenter cluster wave function can be
described by the AMD wave function with the corresponding
configuration of Gaussian centroids. It should be noted that
the AMD wave function is similar to the wave function used
in fermionic molecular dynamics calculations [109,110].

B. AMD + VAP

In the AMD+VAP method, the parameters Z = {X1,X2,
. . . ,XA,ξ1,ξ2, . . . ,ξA} in the AMD wave function are deter-
mined by the energy variation after the angular-momentum
and parity projections (VAP). It means that X i and ξi for the
lowest Jπ state are determined so as to minimize the energy
expectation value of the Hamiltonian for the Jπ -projected
AMD wave function:

δ

δX i

〈�|H |�〉
〈�|�〉 = 0, (6)

δ

δξi

〈�|H |�〉
〈�|�〉 = 0, (7)

� = P Jπ
MK�AMD(Z), (8)

where P Jπ
MK is the angular-momentum and parity projection

operator. After the VAP calculation, the optimized parameters
ZJπ

VAP for the lowest Jπ state are obtained. For the ground state,
the VAP with Jπ = 0+ and K = 0 is performed for 8Be and
10Be, and that with Jπ = 3/2− and K = 3/2 is done for 9Be.
I denote the parameters ZJπ

VAP obtained by the VAP for the
ground state as Z0 = {X0

1, . . . ,ξ
0
1 , . . .}.

C. Shifted AMD

To take into account 1p-1h excitations, I consider the
small variation of single-particle wave functions in the ground
state wave function �AMD(Z0) by shifting the position of the
Gaussian centroid of the ith single-particle wave function,
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X0
i → X0

i + εeσ , where ε is a small constant and eσ is a unit
vector with the label σ . In the present calculation, e1, . . . ,e8

for eight directions are adopted to obtain the approximately
converged result for the E1 and ISD strengths. Details of the
adopted unit vectors eσ (σ = 1, . . . ,8) are described in Sec. IV.
For the spin part, I consider the spin-nonflip single-particle
state χi and the spin-flip state χ̄i (〈χ̄i |χi〉 = 0),

χ̄i =
(

1

2
+ ξ̄i

)
χ↑ +

(
1

2
− ξ̄i

)
χ↓, (9)

where ξ̄i = −1/4ξ ∗
i . For all single-particle wave functions, I

consider spin-nonflip and spin-flip states shifted to eight direc-
tions independently and prepare 16A AMD wave functions,
�AMD(Z0

nonflip(i,σ )) and �AMD(Z0
flip(i,σ )), with the shifted

parameters

Z0
nonflip(i,σ ) ≡ {

X0
1
′
, . . . ,X0

i

′

+ εeσ , . . . ,X0
A

′
,ξ 0

1 , . . . ,ξ 0
i , . . . ,ξ 0

A

}
, (10)

Z0
flip(i,σ ) ≡ {

X0
1
′
, . . . ,X0

i

′

+ εeσ , . . . ,X0
A

′
,ξ 0

1 , . . . ,ξ̄ 0
i , . . . ,ξ 0

A

}
. (11)

Here X0
j

′
is chosen to be X0

j

′ = X0
j − εeσ /(A − 1) to take

into account the recoil effect so that the center-of-mass motion
is separated exactly. Those shifted basis AMD wave functions
�AMD(Z0

(non)flip(i,σ )) and the original wave function �AMD(Z0)
are superposed to obtain the final wave functions for the ground
and excited states,

�sAMD
Be(Jπ

k )

=
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD(Z0)

+
∑

i=1,...,A

∑
σ

∑
K

c1
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

nonflip(i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

flip(i,σ )
)
,

(12)

where the coefficients c0, c1, and c2 are determined by
diagonalization of the norm and Hamiltonian matrices. I
call this method the “shifted basis AMD” (sAMD). The
spin-nonflip version of the sAMD was applied to investigate
monopole excitations of 16O in Ref. [108].

I choose a small enough value of the spatial shift ε, typically
ε = 0.1 fm, so as to obtain ε-independent results. The model
space of the sAMD contains the 1p-1h excitations that are
written by a small shift of a single-nucleon Gaussian wave
function of the ground state wave function. In the intrinsic
frame before the angular-momentum and parity projections,
the ground state AMD wave function is expressed by a Slater
determinant, and, therefore, the sAMD method corresponds
to the RPA in the restricted model space of the linear
combination of shifted Gaussian wave functions. However,
since the projected states are superposed in the sAMD, the
coupling of the 1p-1h excitations with the rotation and parity
transformation is properly taken into account. Therefore, the

sAMD contains, in principle, higher correlations beyond the
RPA in mean-field approximation.

It is clear from the Taylor expansion of a Gaussian that
the shift X i → X i + εeσ of the Gaussian wave packet can be
expressed by a linear combination of harmonic oscillator (HO)
orbits around X i ,

φX i+εeσ
∝

∑
k=0

1

k!
(−2ε)k(r · eσ )kφX i

. (13)

In terms of the HO orbits around X i , the O(ε0), O(ε1),
O(ε2), and O(ε3) terms cover 0s, {0p}, {1s,0d}, and {1p,0f }
orbits, respectively. The O(ε) term contains rφX i

excited by
the E1 operator, whereas the O(ε3) term contains r2rφX i

configurations excited by the ISD operator. Therefore, in the
small ε limit, the number of independent vectors eσ necessary
to exactly cover the excited configurations rφX i

for E1 is
three, and that (r2rφX i

) for ISD is 19 = 3 + 6 + 10. Thus, the
model space of the shifted Gaussian for each single-particle
wave function is rather trivial; however, the model space of the
sAMD is not trivial because of the recoil effect. Moreover, it
is expected that, in the sAMD framework, the configurations
excited by the E1 and ISD operators should be efficiently
covered by a smaller number of eσ because of the effects of
the antisymmetrization and the angular-momentum and parity
projections. To save the computational cost, I checked the
convergence of the dipole strengths for the number of eσ and
chose a set of eight vectors as mentioned previously. Note
that, when the recoil effect is omitted, the sAMD can be
regarded as an extended AMD method, in which higher HO
orbits are described as well as the default 0s orbit at X i for
the ith single-particle wave function. In the particular case of
σ = x,y,z, it can be called the “p-wave AMD.”

D. α-cluster GCM

In the ground state wave functions obtained by the
AMD+VAP for 8Be, 9Be, and 10Be, an α cluster is formed
even though any clusters are not a priori assumed in the
framework. Consequently, Gaussian centroids X0

i for two
protons and two neutrons are located at almost the same
position. The intercluster motion of 5He +α and 6He +α
structures in 9Be and 10Be can be excited by the dipole
operators. To take into account the large amplitude α-cluster
mode, we perform the α-cluster GCM (αGCM) calculation
with respect to the intercluster distance. For simplicity, we
label four nucleons composing the α cluster as i = 1, . . . ,4 and
other nucleons as i = 5, . . . ,A. The center-of-mass position of
the α cluster is localized around Rα = 1

4 Re[X0
1 + X0

2 + X0
3 +

X0
4]. The intercluster distance Dα is written as

Dα ≡
∣∣∣∣∣∣Re

⎡
⎣1

4

∑
i=1,...,4

X0
i − 1

A − 4

∑
i=5,...,A

X0
i

⎤
⎦

∣∣∣∣∣∣ = A

A − 4
Rα

(14)

with Rα ≡ |Rα|. To perform the αGCM calculation based
on the ground state wave function �AMD(Z0), I changed the
intercluster distance Dα → Dα + �D by shifting positions of
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single-nucleon Gaussian centroids X0
i → X0

i,Dα
(�D) by hand

as

X0
i,Dα

(�D) = X0
i + A − 4

A
�D R̂α (i � 4), (15)

X0
i,Dα

(�D) = X0
i − 4

A
�D R̂α (i > 4), (16)

and superposing the wave functions with different �D values.
I combined the αGCM with the sAMD and express the total
wave function as

�sAMD+αGCM
Be(Jπ

k )

=
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD(Z0)

+
∑

i=1,...,A

∑
σ

∑
K

c1
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

nonflip(i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

flip(i,σ )
)

+
∑
�D

∑
K

c3
(
Jπ

k ; �D,K
)
P Jπ

MK�AMD
(
Z0

Dα
(�D)

)
, (17)

where Z0
Dα

(�D)≡{X0
1,Dα

(�D), . . . ,X0
A,Dα

(�D),ξ1, . . . ,ξA}.
The coefficients are determined by diagonalization of the norm
and Hamiltonian matrices.

III. ISOVECTOR AND ISOSCALAR DIPOLE
TRANSITIONS

The E1 operator M(E1; μ) is given by the isovector dipole
operator as

M(E1; μ) = N

A

proton∑
i

riY
1
μ(r̂ i) − Z

A

neutron∑
i

riY
1
μ(r̂ i). (18)

The ISD operator M(IS1; μ) is defined as

M(IS1; μ) =
∑

i

r3
i Y 1

μ(r̂ i), (19)

which excites the compressive dipole mode. The E1 and ISD
strengths for the transition g.s. → Jk are given by the matrix
elements of the dipole operators as

B(E1; g.s. → Jk) = 1

2Ig.s. + 1
|〈Jk||M(E1)||g.s.〉|2, (20)

B(IS1; g.s. → Jk) = 1

2Ig.s. + 1
|〈Jk||M(IS1)||g.s.〉|2, (21)

where Ig.s. is the ground state angular momentum. The energy-
weighted sum (EWS) of the E1 and ISD strengths is defined
as

S(E1) ≡
∑
Jk

EJk
B(E1; g.s. → Jk), (22)

S(IS1) ≡
∑
Jk

EJk
B(IS1; g.s. → Jk), (23)

where EJk
is the energy of the Jk state. If the interaction

commutes with the E1 operator, S(E1) is identical to the TRK
sum rule:

S(TRK) ≡ 9�
2

8πm

NZ

A
. (24)

Since the nuclear interaction does not commute with the E1
operator, S(E1) is usually enhanced from S(TRK).

In the present framework, all excited states are discrete
states without escaping widths because the outgoing condition
in the asymptotic region is not taken into account. I calculate
the E1 and ISD strengths for discrete states and smear the
strengths with a Gaussian by hand to obtain dipole strength
functions as

dB(E1)

dE
=

∑
J

∑
k

√
π

γ
e
− (E−EJk

)2

γ 2 B(E1; g.s. → Jk), (25)

dB(IS1)

dE
=

∑
J

∑
k

√
π

γ
e
− (E−EJk

)2

γ 2 B(IS1; g.s. → Jk), (26)

where γ is the smearing width. The photonuclear cross section
is dominated by E1 transitions and related to the E1 strength
function as

σ (E) = 16π3

9

e2

�c
E

dB(E1)

dE
. (27)

IV. RESULTS

A. Effective nuclear interactions

I used an effective nuclear interaction consisting of the
central force of the MV1 force [111] and the spin-orbit force
of the G3RS force [112,113] and the Coulomb force. The
MV1 force is given by a two-range Gaussian two-body term
and a zero-range three-body term. The G3RS spin-orbit force
is a two-range Gaussian force. The Bartlett, Heisenberg, and
Majorana parameters for case 1 of the MV1 force are b =
h = 0 and m = 0.62, and the strengths of the G3RS spin-orbit
force are uI = −uII ≡ uls = 3000 MeV. These interaction
parameters are the same as those used in Refs. [105–107],
in which the AMD+VAP calculation describes well the
properties of the ground and excited states of 10Be and 12C.

B. Ground states

I performed the AMD+VAP calculation to obtain the
ground state wave functions for 8Be(0+

1 ), 9Be(3/2−
1 ), and

10Be(0+
1 ). For comparison, I also applied it to 4He(0+

1 ).
The width parameter was chosen to be ν = 0.20 fm−2 for
8Be and 9Be, ν = 0.19 fm−2 for 10Be, and ν = 0.21 fm−2

for 4He to minimize the ground state energy. Figure 1(a)
shows the intrinsic density distribution of the obtained wave
functions �AMD(Z0) for the ground states of Be. As seen in the
density, the α + α, 5He + α, and 6He + α cluster structures are
developed in 8Be, 9Be, and 10Be, respectively. Considering
that the 5He and 6He clusters have α + n and α + 2n structures,
the ground states of 9Be and 10Be are regarded as the 2α cluster
core with valence neutrons, 2α + n and 2α + 2n, in which the
valence neutrons are localized around one of the 2α.
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10        Be9       Be  8        Be

−2(fm   )

10        Be9       Be  8        Be

−2(fm   )

10        Be9       Be  8        Be

0.8

0

0.4

(c) variation w/o spin−parity
0.8

0

0.4

(b) variation w parity w/o spin

0.8

0

0.4

−2

(a) variation w spin−parity

(fm   )

FIG. 1. Density distribution of the intrinsic wave functions of the
ground states of 8Be, 9Be, and 10Be obtained by (a) the AMD+VAP
(variation after the angular-momentum and parity projections), (b) the
variation after the parity projection without the angular-momentum
projection, and (c) the variation without the angular-momentum and
parity projections. The density integrated over the x axis is shown on
the z-y plane in the |z| � 5 fm and |y| � 5 fm region.

As given in Eq. (1), an AMD wave function is expressed
by a single Slater determinant. However, the projected state
P Jπ

MK�AMD(Z0) for the ground state wave function contains
higher correlations beyond mean-field approximations, which
is efficiently described by the VAP calculation. Indeed, cluster
structures are remarkable in the present VAP result but they are
relatively suppressed in calculations without the projections.
For comparison with the present result obtained by the VAP
(variation after the angular-momentum and parity projections),
the result obtained by the variation without the angular-
momentum and parity projections and that after the parity
projection without the angular-momentum projection are also
demonstrated in Figs. 1(b) and 1(c), respectively. It is clearly
seen that the result of 10Be obtained by the variation without
the projections shows weak clustering with a parity-symmetric
intrinsic structure [see the right-hand panels of Figs. 1(b) and
1(c)]. This indicates that the angular-momentum and parity
projections in the energy variation are essential to obtain the
parity-asymmetric structure with the 6He +α correlation in
10Be.

The root mean square radii of point-proton distribution
of 8Be, 9Be, 10Be, and 4He calculated by the AMD+VAP
are 2.73, 2.69, 2.43, and 1.64 fm, which are slightly larger
than the experimental values, 2.39, 2.22, and 1.45 fm, of
9Be, 10Be, and 4He reduced from the charge radii. The
calculated magnetic and electric quadrupole moments of 9Be
are μ = −1.06μN and Q = 6.9 e fm2, which reasonably

(c)

1/2

(−1,1,1)/31/2

1/2(−1,−1,−1)/3

(1,−1,−1)/31/2 (1,1,−1)/31/2

(−1,−1,1)/31/2

(−1,1,−1)/31/2

(1,0,0)

(0,1,0)

(0,0,1)

(1,−1,1)/31/2

(−1,1,1)/31/2

1/2(−1,−1,−1)/3

(1,−1,−1)/31/2 (1,1,−1)/31/2

(−1,−1,1)/31/2

(−1,1,−1)/31/2

(1,0,0)

(−1,0,0)

(0,−1,0)

(0,0,−1)

(0,0,1)

(0,1,0)(1,1,1)/31/2

+

(b)

(1,1,1)/31/2

(a)

(1,−1,1)/3

FIG. 2. Schematic figures for the sets of unit vectors (a) eσ=x,y,z,
(b) eσ=1,...,8, and (c) eσ=1,...,14 used in the sAMD calculation.

agree to the experimental values, μ = −1.1778(9)μN and
Q = 5.288(38) e fm2.

C. Excited states

To investigate dipole excitations, I calculated the Jπ = 1−
states of 8Be, 10Be, and 4He, and Jπ = 1/2+, 3/2+, and 5/2+
states of 9Be by applying the sAMD based on the obtained
ground state wave functions. The sAMD + αGCM is also
applied to 9Be and 10Be. For the sAMD, the shift parameter
ε is taken to be ε = 0.1 fm, which is small enough to give
the ε-independent result. For unit vectors eσ , I chose three
sets, eσ=x,y,z, eσ=1,...,8, and eσ=1,...,14, as shown in Fig. 2, and
checked the convergence of the dipole strengths. Here, the
set of 8 vectors is eσ=1,...,8 = (±1/

√
3, ± 1/

√
3, ± 1/

√
3),

oriented to 8 corners of a cube, and that of 14 vectors is
eσ=1,...,14 = {eσ=1,...,8,ex,ey,ez, − ex, − ey, − ez}. The x, y,
and z axes are taken to be the principle axes of the inertia of
the intrinsic state that satisfy 〈x2〉 � 〈y2〉 � 〈z2〉 and 〈xy〉 =
〈yz〉 = 〈zx〉 = 0. The E1 and ISD strengths of 9Be and 10Be
calculated by the sAMD in three cases, eσ=x,y,z, eσ=1,...,8, and
eσ=1,...,14, are shown in Fig. 3. As expected, the set eσ=x,y,z

gives the approximately converged result for the E1 strength
but not for the ISD strength. It is found that the set eσ=1,...,8

is practically enough to get a qualitatively converged result
for both the E1 and ISD strengths, and therefore this set is
adopted in the present calculation of the dipole strengths. For
the αGCM calculation, the distance parameter is taken to be
�D = −1,1,2, . . . ,20 fm. In the ground state wave functions
�AMD(Z0) of 9Be ( 10Be), the intercluster distance is Dα ∼ 4
fm (3 fm). Therefore, the choice of �D � 20 fm means that
α-cluster continuum states are treated as discretized states in
the box boundary Dα � 24 fm (23 fm).

The model space of the sAMD + αGCM wave function
given in Eq. (17) covers 1p-1h excitations and α-cluster
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FIG. 3. E1 and ISD strengths of 9Be and 10Be obtained by
the sAMD in the three cases eσ=x,y,z, eσ=1,...,8, and eσ=1,...,14. The
smearing width is γ = 2 MeV.

excitations from the ground state wave function. For a
detailed description of the low-lying energy spectra and
their dipole transition strengths, I mixed additional con-
figurations optimized for the low-lying levels 9Be(1/2+

1 ),
9Be(3/2+

1 ), 9Be(5/2+
1 ), and 10Be(1−

1 ), which are obtained
by the AMD+VAP with Jπ = 1/2+, 3/2+, and 5/2+ for 9Be
and that with Jπ = 1− for 10Be. The final wave function with
these additional VAP configurations (cfg) is given as

�
sAMD+αGCM+cfg
Be(Jπ

k )

=
∑
K

c0
(
Jπ

k ; K
)
P Jπ

MK�AMD(Z0)

+
∑

i=1,...,A

∑
σ

∑
K

c1
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

nonflip(i,σ )
)

+
∑

i=1,...,A

∑
σ

∑
K

c2
(
Jπ

k ; i,σ,K
)
P Jπ

MK�AMD
(
Z0

flip(i,σ )
)

+
∑
�D

∑
K

c3
(
Jπ

k ; �D,K
)
P Jπ

MK�AMD
(
Z0

Dα
(�D)

)

+
∑
J ′π ′

∑
K

c4
(
Jπ

k ; J ′π ′,K
)
P Jπ

MK�AMD
(
ZJ ′π ′

VAP

)
. (28)

The dipole strengths are calculated by the following matrix
elements: 〈

�sAMD
Be(Jπ

k )

∣∣∣∣M∣∣∣∣�sAMD
Be(g.s.)

〉
, (29)〈

�sAMD+αGCM
Be(Jπ

k )

∣∣∣∣M∣∣∣∣�sAMD+αGCM
Be(g.s.)

〉
, (30)

〈
�

sAMD+αGCM+cfg
Be(Jπ

k )

∣∣∣∣M∣∣∣∣�sAMD+αGCM+cfg
Be(g.s.)

〉
. (31)

The calculated dipole strengths with and without the additional
VAP configurations are found to be almost consistent with each
other except for quantitative details of the energy position
and the strengths in E � 10 MeV. In this paper, I mainly
discuss the dipole strengths calculated by the sAMD and the
sAMD + αGCM + cfg wave functions, which I call cal-I
and cal-II, respectively. The former corresponds to the small
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FIG. 4. Energy-weighted E1 strength of 9Be and 10Be obtained
by the sAMD (cal-I) and the sAMD + αGCM + cfg (cal-II). The
smearing width is γ = 2 MeV.

amplitude calculation containing 1p-1h excitations. The latter
contains the large amplitude α-cluster mode in addition to
the 1p-1h excitations described by the sAMD model space.
Namely, the sAMD + αGCM + cfg includes the higher cor-
relation than the sAMD in both the ground and excited states.

D. E1 strength

The energy-weighted E1 strength of 9Be and 10Be obtained
by the sAMD (cal-I) and the sAMD + αGCM + cfg
(cal-II) is shown in Fig. 4. The strength functions of two
calculations (I) and (II) are qualitatively similar to each
other except for broadening of the low-energy strength in
E � 15 MeV of 9Be in cal-II. Figure 5 shows the comparison
of the calculated E1 cross section with the experimental
photonuclear cross sections of 9Be. In Table I, the EWS of
the E1 strength in the low-energy (E < 20 MeV) and the
GDR (20 < E < 50 MeV) regions and the total EWS in 9Be
and 10Be obtained by the sAMD + αGCM + cfg (cal-II)
are shown compared with the experimental values estimated
by the experimental photonuclear cross sections [81,85]. The
GDR energy calculated by the averaged energy in the 20 <
E < 50 MeV region, EGDR = ∫

GDR EdB(E1)/
∫

GDR dB(E1),
is also shown. The calculated total EWS of the E1 strength is
enhanced from S(TRK) by a factor of 1.7. Compared with the
experimental data for 9Be, the calculation overestimates the
EWS in the low-energy and GDR regions by a factor of 1.6 and
underestimates the width of the GDR, whereas it reasonably
describes the GDR energy and also the ratio of the EWS in the
low-energy region to that of the GDR.
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smeared by γ = 2 MeV. The experimental data are taken from the
photonuclear cross sections by Ahrens et al. [85], the bremsstrahlung
data by Goryachev et al. [81], and the photodisintegration cross
sections by Utsunomiya et al. [84].

As shown in the comparison of the sAMD (cal-I) and the
sAMD + αGCM + cfg (cal-II) in Fig. 4, the E1 strength of
9Be and 10Be is not affected so much by the coupling with
the large amplitude α-cluster motion. In the following, I give
a detailed analysis of the E1 strength of 8Be, 9Be, and 10Be
based on the sAMD to discuss the effects of excess neutrons
on the E1 strength in 9Be and 10Be.

Figure 6 shows the E1 strength of 8Be, 9Be, 10Be, and
4He calculated by the sAMD. For 9Be, decomposition of
the transition strength to J = 1/2+, 3/2+, and 5/2+ states is
also shown. The GDR in 8Be shows a two-peak structure in
E = 20–40 MeV in contrast to the single-peak structure of the
GDR in 4He. Also in 9Be, the two-peak structure of the GDR
is seen but it somewhat broadens. In addition to the GDR,
low-lying E1 strength appears in E = 10–20 MeV of 9Be.
In 10Be, the lower peak of the GDR exists at E ∼ 25 MeV,
whereas the higher peak of the GDR is largely fragmented.
Below the GDR, an E1 resonance appears at E ∼ 15 MeV.

The origin of the two-peak structure of the GDR in
Be isotopes is the prolate deformation of the 2α core. To

TABLE I. EWS of the E1 strength in the low-energy (E <

20 MeV) and the GDR (20 < E < 50 MeV) regions and the total
EWS of 9Be and 10Be. The values in parentheses are the ratios
to the TRK sum rule [S(TRK) = 33.0 fm2 MeV for 9Be and
S(TRK) = 35.6 fm2 MeV for 10Be]. The calculated values are those
obtained by the sAMD + αGCM + cfg (cal-II). The GDR energy
is also shown. For 9Be, the data evaluated from the experimental
photonuclear cross sections [81,85] are listed. The unit of S(E1) is
fm2 MeV.

Expt. cal-II

9Be 9Be 10Be

S(E1; E < 20) 3.9 (0.12) 6.1 (0.19) 8.8 (0.25)
S(E1; 20 < E < 50) 29 (0.87) 46 (1.40) 47 (1.31)
S(E1; total) 56 (1.70) 62 (1.74)
EGDR (MeV) 30.9 31.4 29.6
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FIG. 6. Energy-weighted E1 strength of 8Be, 9Be, and 10Be
obtained by the sAMD (σ = 1, . . . ,8) and the sAMD-z (longitudinal
mode, σ = z) calculations. The sAMD and sAMD-z results for
(a) 8Be, (b) 9Be, and (d) 10Be are shown by solid and dashed lines,
respectively. The decomposition of the strengths for J π = 1/2+,
3/2+, and 5/2+ states of 9Be is also shown as well as the total
strength in (c). For comparison, the energy-weighted E1 strength of
4He obtained by the sAMD (σ = 1, . . . ,8) is also shown in (a). The
smearing width is γ = 2 MeV.

distinguish the longitudinal mode in the intrinsic frame, we
calculate the E1 strength in the truncated sAMD model space
by using wave functions shifted only to the longitudinal (z)
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direction, that is, the sAMD with fixed σ = z as

�sAMD-z
Be(Jπ

k ) = c0
(
Jπ

k

)
P Jπ

MK�AMD(Z0)

+
∑

i=1,...,A

{
c1

(
Jπ

k ; i
)
P Jπ

M0�AMD
(
Z0

nonflip(i,z)
)

+ c2
(
Jπ

k ; i
)
P Jπ

M0�AMD
(
Z0

flip(i,z)
)}

, (32)

where the coefficients c0, c1, and c2 are determined by
diagonalization of the norm and Hamiltonian matrices. Here
I omit the K-mixing and fix K = 0 for 8Be and 10Be, and
K = 3/2 for 9Be to take into account only the Y 1

0 mode in the
intrinsic frame. The sAMD with σ = z, which I call “sAMD-
z,” is approximately regarded as the calculation containing
the longitudinal mode but no transverse mode, though two
modes do not exactly decouple from each other because of the
angular-momentum projection. The E1 strength obtained by
the sAMD-z is shown by dashed lines in Figs. 6(a), 6(b), and
6(d). In comparison of the sAMD and sAMD-z results, it is
found that the lower peak of the GDR at E = 20–30 MeV is
contributed by the longitudinal mode of the 2α core, whereas
the higher peak of the GDR comes from the transverse mode.
The higher peak broadens in 9Be and it is largely fragmented in
10Be, indicating that the transverse mode is affected by excess
neutrons. For the low-lying E1 resonances below the GDR,
the strength at E ∼ 10 MeV in 9Be and that at E ∼ 15 MeV in
10Be are mainly contributed by the longitudinal mode. These
low-energy dipole resonances in 9Be and 10Be are understood
by the longitudinal motion of valence neutrons against the 2α
core.

From the above analysis of the E1 strength of 9Be and 10Be
compared with that of 8Be, the effects of excess neutrons on
the E1 strength is understood as follows. The longitudinal and
transverse dipole modes in the 2α core part contribute to the
GDR with the two-peak structure. The valence neutron modes
couple with the transverse dipole mode of the 2α core and they
broaden the higher peak of the GDR. Moreover, the valence
neutron modes against the 2α core contribute to the low-energy
E1 strength. More details of the low-energy dipole excitations
are discussed later.

E. ISD strength and coupling with the α-cluster
mode in 9Be and 10Be

As previously mentioned, the sAMD (cal-I) corre-
sponds to the small amplitude calculation, whereas the
sAMD + αGCM + cfg (cal-II) contains the large amplitude
α-cluster mode. A possible enhancement of the ISD strength
in cal-II relative to cal-I can be a good probe for the dipole
excitation that couples with the α-cluster mode, because the
α-cluster excitation in 9Be and 10Be involves the compressive
dipole mode. The energy-weighted ISD strength of 9Be and
10Be calculated by cal-I and cal-II is shown in Fig. 7. The
strength of the isoscalar GDR in E = 30 ∼ 50 MeV is not
affected by the α-cluster mode, whereas the ISD strength
for some low-energy resonances are significantly enhanced
in cal-II as a result of the coupling with the α-cluster mode. In
9Be, the ISD strength in E < 10 MeV is remarkably enhanced
in cal-II, whereas the resonance at E = 10–15 MeV has the
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FIG. 7. ISD strength of 9Be and 10Be obtained by the sAMD (cal-
I) and the sAMD + αGCM + cfg (cal-II). E1 strength obtained by
the the sAMD + αGCM + cfg (cal-II) is also shown for comparison.
The smearing width is γ = 2 MeV.

weak ISD strength in both cal-I and cal-II. In 10Be, the ISD
strength around E = 15 MeV is enhanced.

F. Low-energy dipole resonances in 9Be and 10Be

From the analysis of the E1 and ISD strengths, the
low-energy dipole excitations below the GDR in 9Be can
be categorized as three resonances in E < 8 MeV, 8 < E <
15 MeV, and 15 < E < 20 MeV, which I label A1, A2,
and A3 resonances, respectively. The A1 resonance contains
the contribution from the low-lying positive-parity states,
9Be(1/2+

1 ), 9Be(3/2+
1 ), and 9Be(5/2+

1 ), which are discussed
in detail later. The EWS in the corresponding energy regions,
S(E1/IS1; A1), S(E1/IS1; A2), and S(E1/IS1; A3), is listed
in Table II as well as the total EWS value. In addition to the
EWS obtained by the sAMD (cal-I) and sAMD +αGCM + cfg
(cal-II), the EWS calculated by the matrix elements

〈
�sAMD

Be(Jπ
k )

∣∣M∣∣�sAMD+αGCM+cfg
Be(g.s.)

〉
(33)

for the transitions from the sAMD + αGCM + cfg initial
states to the sAMD final states (cal-III) and that by the matrix
elements 〈

�
sAMD+αGCM+cfg
Be(Jπ

k )

∣∣M∣∣�sAMD
Be(g.s.)

〉
(34)

for the transitions from the sAMD initial states to the
sAMD + αGCM + cfg final states (cal-IV) are also shown
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TABLE II. EWS of the E1 and ISD strengths for low-energy
resonances: A1 (E < 8 MeV), A2 (8 < E < 15 MeV), and A3 (15 <

E < 20 MeV) in 9Be, and B1 (E < 12 MeV) and B2 (12 < E <

20 MeV) in 10Be. The total EWS is also shown. The strengths are
calculated by the sAMD (cal-I) and the sAMD + αGCM + cfg
(cal-II). The EWS calculated by the matrix elements for the transitions
from the sAMD + αGCM + cfg initial states to the sAMD final states
(cal-III), and that for the transitions from the sAMD initial states to
the sAMD + αGCM + cfg final states (cal-IV) are also listed. The
unit of S(E1) is fm2 MeV and that of S(ISD) is fm6 MeV.

I II III IV

α mode in initial without with with without
α mode in final without with without with

9Be
S(E1; total) 58 56 58 56
S(E1; A1) 0.13 0.43 0.39 0.16
S(E1; A2) 3.3 2.4 2.6 3.5
S(E1; A3) 2.7 3.3 3.3 2.6
S(IS1; total) 15.2 × 103 15.3 × 103 15.2 × 103 15.3 × 103

S(IS1; A1) 93 410 58 124
S(IS1; A2) 108 230 200 131
S(IS1,A3) 490 560 640 520

10Be
S(E1; total) 63 62 63 62
S(E1; B1) 0.09 0.08 0.06 0.10
S(E1; B2) 10.4 8.7 7.6 10.9
S(IS1; total) 12.7 × 103 13.0 × 103 12.7 × 103 13.0 × 103

S(IS1; B1) 162 157 115 187
S(IS1; B2) 56 187 83 74

in the table. Here cal-III contains the α-cluster mode in the
initial states as the ground state correlation but not in the final
states, whereas cal-IV contains the α-cluster mode only in the
final states but not in the initial states. In all the calculations
(cal-I, cal-II, cal-III, and cal-IV), S(E1; A1) is very small,
whereas S(E1; A2) and S(E1; A3) are significantly large as
∼10% of the TRK sum rule. Consequently, the EWS of the
E1 strength in E < 20 MeV exhausts ∼20% of the TRK sum
rule and it is ∼10% of the calculated total EWS.

The α-cluster mode does not affect so much the E1 and
ISD strengths of A2 and those of A3, but it gives significant
enhancement of the dipole strengths of A1. In particular,
S(IS1; A1) is remarkably enhanced by the coupling with the
α-cluster mode. The enhancement is found only in cal-II but
not in other calculations (cal-I, cal-III, and cal-IV). It indicates
that the coupling with the α-cluster mode in the ground state
and that in the A1 resonance coherently enhance S(IS1; A1).
The α-cluster mode also makes S(E1; A1) three times larger
in cal-II than in cal-I, though it is still less than 2% of the TRK
sum rule.

As seen in the EWS of the sAMD + αGCM + cfg
(cal-II) in Table II, the A1 resonance shows relatively strong
ISD and weak E1 transitions, whereas the A2 resonance
shows relatively weak ISD and strong E1 transitions. In
the sAMD + αGCM + cfg, the wave functions for these
resonances are expressed by the linear combination of many
configurations; however, each of the low-lying resonances has
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FIG. 8. Schematic figures of 2α and valence neutrons for the
ground state and the A1 and A2 resonances of 9Be, and those for the
ground state and the B1 and B2 resonances of 10Be.

a dominant component given by the single Jπ -projected AMD
wave function obtained by the AMD + VAP. Based on the
analysis of the single-particle wave functions in the dominant
component, the above-mentioned characteristics of the A1 and
A2 resonances can be understood by the molecular orbital
2α + n picture as follows.

The ground and low-lying states of 9Be are approximately
described by the molecular orbital structure, where the valence
neutron occupies molecular orbitals formed by the linear
combination of p orbits around α clusters as already discussed
in Refs. [86,87,114,115]. Let me consider two α clusters at the
left and right along the z axis (see Fig. 8). I call the left (right)
α “αL(R),” and label single-particle orbits (atomic orbitals)
around each α cluster as [Nnzlzjz]αL(R) . Here N is the total
quantum (node) number, nz is the quantum number for the
z axis, and lz and jz are the z components of the orbital
and total-angular momenta, respectively. The π−

3/2 and π+
3/2

molecular orbitals are given by the linear combination of the
atomic orbitals [101 3

2 ]αL,R
as

π−
3/2 ≡

[
101

3

2

]
MO

=
[

101
3

2

]
αL

+
[

101
3

2

]
αR

, (35)

π+
3/2 ≡

[
211

3

2

]
MO

=
[

101
3

2

]
αL

−
[

101
3

2

]
αR

, (36)

where [Nnzlzjz]MO is the label indicating the quantum num-
bers N , nz, lz, and jz of the molecular orbital around the 2α.
Another molecular orbital is the longitudinal orbital σ+

1/2 given

by the linear combination of [110 1
2 ]αL,R

as

σ+
1/2 ≡

[
220

3

2

]
MO

=
[

110
1

2

]
αL

−
[

110
1

2

]
αR

. (37)
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In the case that the α-α distance is not so large, the molecular
orbital [Nnzlzjz]MO approximately corresponds to the Nilsson
(deformed shell-model) orbit [Nn3�]� with n3 = nz, � = lz,
and � = jz in the prolate deformation. π−

3/2 is the negative-
parity orbital with no node (nz = 0), π+

3/2 is the positive-parity
orbital with one node (nz = 1), and σ+

1/2 is the positive-
parity orbital with two nodes (nz = 2) along the z axis.
For the valence neutron around the 2α, π−

3/2 is the lowest
negative-parity molecular orbital, whereas σ+

1/2 is the lowest
positive-parity orbital.

The ground state of 9Be dominantly has the 2α + n
structure with the π−

3/2 configuration. The A1 resonance is
approximately described by the σ+

1/2 configuration, whereas
the A2 resonance is dominated by the π+

3/2 configuration (see

Fig. 8). The E1 transition for π−
3/2 → π+

3/2, i.e., [101 3
2 ]MO →

[211 3
2 ]MO, is possible because the Y 1

0 operator changes
N → N ± 1 and nz → nz ± 1. However, the E1 transition
for π−

3/2 → σ+
1/2, i.e., [101 3

2 ]MO → [220 1
2 ]MO, is forbidden

because the change nz → nz ± 2 is not possible for the E1
operator. This is the reason why the E1 strength is large for
A2 but it is suppressed for A1. Because of the [211 3

2 ]MO

configuration of the A2 resonance, the E1 strength of A2
shows the K = 3/2 band feature that the contribution from
transitions to Jπ = 3/2+ and 5/2+ states is dominant as seen
in Fig. 6(c). The A1 resonance has the larger node number
nz = 2 along the 2α direction than the A2 resonance (nz = 1)
and, therefore, the spatial development of the 2α clustering
is more prominent in the A1 resonance. As a result of the
developed clustering, the A1 resonance couples rather strongly
with the α-cluster mode. The coupling with the α-cluster mode,
namely, the 5He -α relative motion in A1, enhances the ISD
strength as discussed previously.

In Fig. 9, I show the single-particle wave function of
the valence neutron around the 2α core in the dominant
components of the ground state, A1, and A2 resonances. The
analysis of the single-particle wave functions is similar to
that done in Ref. [106] for 10Be. The dominant components
of the ground state and the A1 resonance of 9Be are
P Jπ

MK�AMD(ZJπ
VAP) obtained by the VAP for Jπ = 3/2− and

Jπ = {1/2+,3/2+,5/2+}, respectively. The A2 resonance is
dominated by the 3/2+ and 5/2+ components projected from
�AMD(Z3/2−

VAP = Z0) obtained by the VAP for the ground
state. It is found that the negative-parity and positive-parity
components of the valence neutron in �AMD(Z0) approxi-
mately correspond to the molecular π−

3/2 and π+
3/2 orbitals [see

Figs. 8(a) and 8(c)], respectively, and the positive-parity com-
ponent of the valence neutron in �AMD(ZJπ

VAP) for Jπ = 1/2+,
Jπ = 3/2+, and Jπ = 5/2+ shows the two-node structure
corresponding approximately to the molecular σ+

1/2 orbital
[see Fig. 8(b)]. These results support the above-mentioned
interpretation of the ground state, A1, and A2 resonances with
the molecular π−

3/2, σ+
1/2, and π+

3/2 orbitals, respectively.

Let me discuss low-energy dipole resonances in 10Be. The
low-energy dipole strength below the GDR can be categorized
as two resonances in E < 12 MeV and 12 < E < 20 MeV,
which I label B1 and B2, respectively. The EWS of the
dipole strengths for the corresponding energy regions are

−

0.6

0

0.3

−2(fm   )

−2(fm   )

−2(fm   )

Be(1/2 ) 9 +

Be(3/2 ) 9 +

Be(5/2 ) 9 +

66% 34%

41% 59%

70% 30%

69% 31%

0.6

0

0.3

0.6

0

0.3

0.6

0

0.3

ρ ρρ
total v(+) v(−)8 −28 (fm   )

Be(3/2 ) 9

FIG. 9. Valence neutron wave functions in the intrinsic wave
functions, �AMD(ZJπ

VAP), of 9Be obtained by the VAP for J π = 3/2−

and J π = {1/2+,3/2+,5/2+}. The distribution of the total density
is shown on the left. The density distributions of the positive- and
negative-parity components of the valence neutron wave function are
shown in the middle and on the right. The total density is normalized
to be the nucleon number A, whereas each of the positive- and
negative-parity components is normalized to be 1 and the factor 8
is multiplied in the illustration. The percentages of the positive and
negative components are also shown. The density integrated over the
x axis is shown on the z-y plane in the |z| � 5 fm and |y| � 5 fm
region.

listed in Table II. The B2 resonance shows the strong E1
transition exhausting more than 20% of the TRK sum rule
and 10% of the calculated total EWS. It also shows the
significant ISD strength enhanced by the α-cluster mode in
cal-II (sAMD + αGCM + cfg). The significant E1 strength
and the strong coupling with the α-cluster mode of the B2
resonance can be understood by two-neutron correlation in the
2α + 2n picture as shown in the schematic figures of Fig. 8.
The configuration in the ground state of 10Be is approximately
described by the positive-parity projected state of the atomic
orbital configuration as

[
101

3

2

]
αL

[
10 − 1 − 3

2

]
αL

+
[

101
3

2

]
αR

[
10 − 1 − 3

2

]
αR

= 1

2

{(
π−

3/2

)2 + (
π+

3/2

)2)}
, (38)
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FIG. 10. E1 strength of 1/2+, 3/2+, and 5/2+ states of
9Be in E < 10 MeV obtained by (a) sAMD (cal-I) and (b)
sAMD + αGCM + cfg (cal-II). The smearing width is γ = 0.1 MeV.

which corresponds to the 6He +α cluster structure in the
intrinsic state of the 10Be ground state. The B2 resonance
has 50% overlap with the negative-parity state P 1−

00 �AMD(Z0)
projected from the intrinsic wave function for the ground state
and, hence, the B2 resonance is interpreted as the parity partner
of the ground state as[

101
3

2

]
αL

[
10 − 1 − 3

2

]
αL

−
[

101
3

2

]
αR

[
10 − 1 − 3

2

]
αR

= 1

2

{
π−

3/2π
+
3/2 + π+

3/2π
−
3/2

}
. (39)

In the transition from the ground state to the B2 resonance,
the coherent contribution of two neutrons enhances the E1
strength. The B2 resonance has also a large overlap with
negative-parity 6He +α cluster wave functions, for instance,
60% overlap with P 1−

00 �AMD(Z0
Dα

(�D = 1 fm)). As a result of
the strong coupling with the α-cluster mode, the ISD strength
of the B2 resonance is enhanced. In other words, the B2
resonance is regarded as the α-cluster excitation on the ground
state which already contains the 6He +α cluster structure. In
contrast to the B2 resonance, the B1 resonance is regarded
as a single-particle excitation with the molecular orbital
configuration π−

3/2σ
+
1/2 from the analysis of the single-particle

wave functions as discussed for 10Be(1−
1 ) in Ref. [106]. This

configuration has no coherent contribution of two neutrons to
the E1 strength. Moreover, the π−

3/2σ
+
1/2 configuration contains

the 5He + 5He and 6He
∗ +α components instead of the

6He +α component and, therefore, it does not couple with
the α-cluster mode.

Finally, I discuss the calculated B(E1) of the 1/2+
1 , 3/2+

1 ,
and 5/2+

1 states of 9Be, which contribute to the dipole strengths
of the A1 resonance. In Fig. 10, I show the E1 strength in
E � 10 MeV of 9Be. Here the smearing width is chosen to
be γ = 0.1 MeV to resolve discrete states. The 1/2+

1 , 3/2+
1 ,

TABLE III. Excitation energy and E1 strength of 9Be(1/2+
1 ),

9Be(3/2+
1 ), 9Be(5/2+

1 ), and 10Be(1−
1 ). The energy (MeV) and B(E1)

(fm2) calculated by the sAMD (cal-I) and the sAMD + αGCM + cgf
(cal-II) are listed compared with the experimental data. The experi-
mental values of 9Be are data measured by the (γ,n) cross sections
in Ref. [83]. The experimental excitation energy of 10Be(1−) is taken
from Refs. [116,117].

cal-I cal-II Expt.

E B(E1) E B(E1) E B(E1)

9Be
1/2+ 3.5 0.002 2.9 0.002 1.731(2) 0.136(2)
3/2+ 6.5 0.014 5.1 0.039 4.704 0.068(7)
5/2+ 3.6 0.008 3.1 0.013 3.008(4) 0.016(2)
10Be
1− 9.8 0.009 8.3 0.010 5.960

and 5/2+
1 states are obtained as discrete states in the sAMD

(cal-I). In the sAMD + αGCM + cfg (cal-II), the 1/2+
1 and

5/2+
1 states are still discrete states; however, the 3/2+

1 state
shows a resonance behavior coupling with the discretized
continuum states in the box boundary at Dα � 24 fm. We
evaluate B(E1) of the 3/2+

1 resonance by a sum of the E1
strength in E < 6 MeV and estimate the excitation energy
by the B(E1) weighted-averaged energy of 3/2+ states in
this energy region. In Table III, I compare the calculated
E1 strength of the 1/2+

1 , 3/2+
1 , and 5/2+

1 states with the
experimental values measured by the (γ,n) cross sections in
Ref. [83]. The excitation energies and B(E1) of 9Be(5/2+

1 ) and
9Be(3/2+

1 ) obtained by the sAMD + αGCM + cfg (cal-II)
reproduce reasonably the experimental data, whereas the
calculated B(E1) of 9Be(1/2+

1 ) is quite small, inconsistently
with the experimental data. The 1/2+

1 state has been suggested
to be a virtual or resonance state of an s-wave neutron [91–97].
However, the present model is insufficient to describe such
a virtual or s-wave resonance state because of the valence
neutron motion far from the 2α. It means that neutron decay
is not taken into account in the model space even though
the calculated one-neutron separation energy (Sn = 0.5 MeV
in the AMD + VAP and Sn = 2.1 MeV in the sAMD) is
not so much different from the experimental value (Sn =
1.67 MeV). In the present calculation, 9Be(1/2+

1 ), 9Be(3/2+
1 ),

and 9Be(5/2+
1 ) dominantly have the 2α + n structure with a

valence neutron in the σ+
1/2 orbital as described previously.

Since the intrinsic structures of the dominant components of
these three states are similar to each other as shown in Fig. 9,
they are approximately regarded as the band members of the
Kπ = 1/2+ rotational band. It should be commented that only
9Be(3/2+

1 ) and 9Be(5/2+
1 ) contribute to the ISD strength of

the A1 resonance because of the coupling with the cluster
mode, but 9Be(1/2+

1 ) gives almost no contribution to the dipole
strengths in the present result.

V. SUMMARY

I investigated the isovector and isoscalar dipole excitations
in 9Be and 10Be with the shifted basis AMD combined with
the α-cluster GCM, in which the 1p-1h excitation modes built
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on the ground state and the large amplitude α-cluster mode are
taken into account. Since the angular-momentum and parity
projections are done, the coupling of excitations in the intrinsic
frame with the rotation and parity transformation is taken
into account microscopically. The low-energy E1 resonances
appear in E < 20 MeV because of valence neutron modes
against the 2α core. They exhaust about 20% of the TRK sum
rule and 10% of the calculated EWS. The GDR shows the
two-peak structure which is understood by the E1 excitations
in the 2α core part with the prolate deformation. The higher
peak of the GDR for the transverse mode broadens in 9Be and
it is largely fragmented in 10Be because of excess neutrons.

By comparing the results of the shifted basis AMD
combined with and without the α-cluster GCM, I investigated
how the E1 and ISD strengths in 9Be and 10Be are affected
by the large amplitude α-cluster mode. The ISD strength is a
good probe to identify the dipole resonances that couple with
the α-cluster mode because the α-cluster mode in 9Be and
10Be involves the compressive dipole mode. It was found that
the ISD strengths for some low-energy resonances in 9Be and
10Be are enhanced by the coupling with the α-cluster mode,
whereas the E1 strength is not so sensitive to the coupling with
the α-cluster mode. In 9Be, the ISD strength of the low-energy
resonance in E < 10 MeV is remarkable. In 10Be, the ISD
strength at E ∼ 15 MeV is enhanced by the coupling with
the α-cluster mode. This resonance at E ∼ 15 MeV in 10Be
is regarded as the α-cluster excitation on the ground state

having the 6He +α structure and can be interpreted as the
parity partner of the ground state. The E1 transition of this
resonance is also strong because of the coherent contribution
of two valence neutrons.

Compared with the experimental E1 strength of 9Be
estimated by the photonuclear cross sections, the calculation
overestimates the EWS in the low-energy (E < 20 MeV) and
GDR (20 < E < 50 MeV) regions by a factor of 1.6 and
underestimates the width of the GDR, whereas it reasonably
describes the GDR energy and also the ratio of the EWS in
the low-energy region to that of the GDR. For the low-lying
positive-parity states of 9Be, the calculated excitation energies
and B(E1) of 9Be(5/2+

1 ) and 9Be(3/2+
1 ) reasonably agree

with the experimental data. However, the calculation fails
to reproduce the experimental B(E1) of 9Be(1/2+

1 ) because
the present model is insufficient to describe the detailed
asymptotic behavior of the s-wave neutron in the 1/2+

1 state.
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