
PHYSICAL REVIEW C 94, 024326 (2016)

Monopole transitions to cluster states in 10Be and 9Li

Yoshiko Kanada-En’yo
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 7 April 2016; revised manuscript received 3 June 2016; published 18 August 2016)

Isoscalar monopole transitions from the ground states to cluster states in 10Be and 9Li are investigated using
6He + α and 6He + t cluster models, respectively. In 10Be, significant monopole strengths are obtained for
6He + α cluster resonances of 10Be(0+

3,4) above the α-decay threshold, whereas the strengths for 6He + t cluster
resonances in 9Li are not enhanced because of the large fragmentation of strengths in the corresponding energy
region. The monopole transition to 10Be(0+

2 ) with the molecular orbital structure is relatively weak compared with
those to 6He + α cluster resonances. Monopole strength distributions do not directly correspond to distributions
of 6He(0+) + α and 6He(0+) + t components but reflect the component of the deformed 6He cluster with a
specific orientation, which is originally embedded in the ground state.
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I. INTRODUCTION

Recently, various exotic cluster states have been discovered
in neutron-rich nuclei. Neutron-rich Be isotopes are typical
examples in which various cluster structures appear in the
ground and excited states (for example, Refs. [1–4] and
references therein). Low-lying states in Be isotopes can be
understood based on a molecular orbital picture in which
valence neutrons in molecular orbitals around a 2α core are
considered [1,3–28]. In highly excited states above the He+He
threshold energy, dinuclear-type He+He resonances (cluster
resonances) are expected to appear as suggested by the cases
of 10Be and 12Be [1,3,4,17,19–49].

The coexistence of molecular orbital structures and cluster
resonances in 12Be has been intensively studied experimentally
and theoretically. The ground state of 12Be is a largely
deformed intruder state, in which two neutrons occupy a longi-
tudinal molecular orbital—the so-called the σ orbital—around
the 2α core. Highly excited states observed in 6He + 6He and
8He + 4He decays above the threshold energies are regarded
to be cluster resonances [46–49]. In theoretical studies using
the generalized two-center cluster model (GTCM), Ito et al.
predicted that 8He + 4He, 6He + 6He, and 7He + 5He cluster
resonances appear in the energy region a few MeV above
the threshold energies [4,24,26,27]. They discussed monopole
transitions from the ground state to the excited states and
showed that the monopole strength for the 8He + 4He cluster
resonance is strongly enhanced, which suggests that monopole
excitations can be a good probe to experimentally observe
cluster resonances.

The coexistence of molecular orbital structures and cluster
resonances has also been investigated for 10Be. Theoretical
works have predicted that the Kπ = 0+

2 band is constructed by
a largely deformed state featuring a molecular orbital structure
with two σ -orbital neutrons around the developed 2α core. In
the experimental energy levels, the 0+

2 state at 6.18 MeV, 2+
state at 7.54 MeV, and 4+ state at 10.2 MeV are assigned to
the Kπ = 0+

2 band [32,34,38,39], although the spin and parity
of the 10.2 MeV state have not yet been established [36].
Above the Kπ = 0+

2 band, 6He +α cluster resonances have
been theoretically predicted [4,50]; however, there is as yet no

experimental evidence of a cluster resonance state above the
6He +α decay threshold in 10Be. A state observed in inelastic
6He +α scattering is a candidate for a 6He(2+) + α resonance
state [42]. There is also an experimental report on a broad
resonance in 10B, which is regarded as the mirror state of a
6He +α cluster resonance [51].

In analogy to 10Be, cluster states in excited states of 9Li have
been theoretically studied using a 6He + t cluster model by the
author and her collaborators [52]. They predicted 6He(0+) + t
cluster resonances in highly excited states above the t-decay
threshold, which can be analogous to 6He(0+) + α cluster
resonances in 10Be. It was also shown that molecular orbital
structures do not appear in 9Li because molecular orbitals are
unfavored around the asymmetric core of α + t , in contrast to
the symmetric core of 2α in 10Be.

In this paper, I investigate monopole excitations from the
ground state to the excited 10Be(0+) and 9Li(3/2−) states.
I focus on the monopole strengths of cluster resonances in
order to determine whether monopole strengths can be probes
for observing cluster resonances. To this end, I adopt the
generator coordinate method (GCM) [53] of the 6He +α and
6He + t cluster models, which was used to investigate cluster
states in 9Li and 10Be in a previous work [52]. I reanalyze
9Li(3/2−) and 10Be(0+) states while focusing on monopole
excitations. This method has been shown to well describe
experimental properties of the ground and the second 0+ bands
in 10Be. In the calculation, resonance states are obtained in a
bound-state approximation. I estimate the cluster decay widths
of cluster resonances by approximating the reduced width
amplitudes at channel radii and by changing the size of the
box boundary. The monopole strengths for transitions from
the ground state to the excited states are also investigated.
Cluster components in the ground and excited states are
calculated, and their relation to monopole excitations is
discussed.

The rest of the paper is organized as follows. In Sec. II, I
explain the formulation of the present calculation. I show the
calculated results in Sec. III and discuss cluster structures and
monopole excitations in Sec. IV. Finally, a summary and an
outlook are given in Sec. V.
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II. FORMULATION

A. 6He + α(t) cluster wave functions

As was done in the previous work [52], the Bloch-Brink
wave functions [54] of 6He +α and 6He + t cluster wave
functions are used here. The 6He and α(t) cluster wave
functions are written using harmonic oscillator (ho) shell-
model wave functions localized at S1 = (0,0, − A2

A
D) and

S2 = (0,0, + A1
A

D), respectively. Here A1 and A2 are the mass
numbers of two clusters and A is the total mass number
A = A1 + A2. D indicates the distance parameter, which is
treated as the generator coordinate in the superposition of basis
wave functions. A common width parameter ν = 1/2b2 =
0.235 fm−2 is used for 6He, α, and t clusters.

The α and t clusters are expressed by the (0s)2
π (0s)2

ν and
(0s)π (0s)2

ν configurations, respectively. For the 6He cluster,
the p-shell configurations of two valence neutrons around
an α cluster, (0s)2

π (0s)2
ν(0p)2

ν , are used. To express p-shell
configurations, I use the hybrid model space of basis wave
functions combining ls and jj coupling schemes as was done
in the previous work. For the configurations favored in the ls
coupling scheme, |pz,n↑〉|pz,n↓〉 and its rotated configura-
tions are used to take into account 6He(0+,2+) states with the
two-neutron intrinsic spin S12 = 0. For configurations favored
in the jj coupling scheme, |p(+),n↑〉|p(−),n↓〉 and its rotated
configurations are adopted to take into account 6He(0+,2+)
states in the p2

3/2 configurations. Here, p(+),pz,p(−) stand for
the ho p orbits with lz = +1,0,−1, respectively (lz is the z
component of the orbital angular momentum l). Note that
the hybrid model space of these ls coupling and jj coupling
configurations for the 6He cluster is equivalent to the full model
space of p-shell configurations for 6He(0+,2+).

The 6He +α and 6He + t cluster wave functions projected
onto parity and total-angular-momentum eigenstates are writ-
ten as

P Jπ
MK |�τ (D)〉 = P Jπ

MKA{|ψ1τ (S1〉|ψ2τ (S1)〉
×|φ(S1)p↑〉|φ(S1)p↓〉|φ(S1)n↑〉|φ(S1)n↓〉
×|φ(S2)p↑〉|φ(S2)p↓〉|φ(S2)n↑〉|φ(S2)n↓〉}

(1)

and

P Jπ
MK |�τ (D)〉 = P Jπ

MKA{|ψ1τ (S1〉|ψ2τ (S1)〉
×|φ(S1)p↑〉|φ(S1)p↓〉|φ(S1)n↑〉|φ(S1)n↓〉
×|φ(S2)p↑〉|φ(S2)n↑〉|φ(S2)n↓〉}. (2)

Here φ(Si) is the 0s wave function shifted to the position
Si , and |ψ1τ (S1)〉 and |ψ2τ (S1)〉 indicate p-shell orbits for
the neutron configurations labeled by τ = {a,b,c,d,e,f } of
the 6He cluster shifted to S1. Schematic configurations for
τ = {a,b,c,d,e,f } are illustrated in Fig. 1.

The ls coupling configurations are given by the configura-
tions τ = a, b, and c, in which two-neutron orbits are written
by rotated configurations of |py,n↑〉S1 |py,n↓〉S1 as

|ψ1τ (S1)〉 = R̂x,S1 (θ )|py,n↑〉S1 , (3)

|ψ2τ (S1)〉 = R̂x,S1 (θ )|py,n↓〉S1 , (4)

(d)

α

α

α

(a)

(b) (e)

(f)(c)

α α

α

FIG. 1. Schematic configurations for (a)–(f) of the 6He cluster in
the 6He + t and 6He + α cluster models. Details are described in the
text. The figure is taken from Ref. [52].

with the rotational angle θ = π/2, θ = π/4, and θ = 0,
respectively. Here, R̂x,S1 (θ ) is the rotation operator around
the x-oriented axis passing through S1.

The p2
3/2 configurations in the jj coupling scheme are

described by the configurations τ = d, e, and f , in which
two neutron orbits are given by rotated configurations of
|p(+),n↑〉S1 |p(−),n↓〉S1 as

|ψ1τ (S1)〉 = R̂x,S1 (θ )|p(+),n↑〉S1 , (5)

|ψ2τ (S1)〉 = R̂x,S1 (θ )|p(−),n↓〉S1 , (6)

where θ = π/2, θ = π/4, and θ = 0 are chosen for d, e, and
f , respectively.

In the GCM calculation, the 6He +α(t) cluster wave
functions are superposed as∣∣�Jπ

k

M

〉 =
∑
D

∑
τ,K

c
(Jπ

k )
D,τ,KP Jπ

MK |�τ (D)〉, (7)

where the coefficients c
(Jπ

k )
D,τ,K are determined by diagonalizing

norm and Hamiltonian matrices. I use the generator coordinate
D � Dmax in order to obtain wave functions for resonance
states as bound-state solutions.

The present model space given by the K-projected wave
functions of six configurations fully covers all p-shell config-
urations of 0+ and 2+ states of the 6He cluster located at an
intercluster distance D. A single configuration has a deformed
6He cluster with a specific orientation, indicating a strong-
coupling cluster structure, in which the angular momenta of the
clusters and that of intercluster motion are strongly coupled.
At moderate distance D, configuration (a) with two neutrons
in the longitudinal direction approximately corresponds to
the molecular orbital σ 2 structure (this is a result of the
antisymmetrization effect), which dominates the 10Be(0+

2 )
state consistently with preceding works [4,6–15,17,20,23]. On
the other hand, in the asymptotic region at a large distance D,
the system goes into a weak-coupling cluster state, in which the
6He subsystem becomes its energy eigenstate with a specific
spin I . The current framework takes the transition from strong-
to weak-coupling cluster structures into account by means of
a linear combination of configurations (a)–(f) projected to the
total angular-momentum eigenstates. This expression is useful
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for analyzing the cluster structures of 6He +α(t) in 10Be(9Li),
in particular in a strong-coupling regime.

The transition between the strong- and weak-coupling
cluster structures of 10Be was presented by Ito et al. [20,23]
using the GTCM; in their formulation, molecular orbital con-
figurations are fully taken into account via channel coupling
(configuration mixing) of the 5He + 5He channel with the
6He +α channel. In this work, I omit the coupling with the
5He + 5He channel in order to reduce the number of basis wave
functions. Despite omitting the 5He + 5He configurations, this
method well describes the experimental energy spectra of the
K = 0+

1 , K = 2+
1 , and K = 0+

2 bands of 10Be as is already
shown in my previous work [52].

In the practical calculation, I express a configuration of
the 6He +α(t) wave functions with a single antisymmetrized
molecular dynamics (AMD) wave function given by a Slater
determinant of single-particle Gaussian wave packets. The
general form of AMD wave functions is described, for
example, in Refs. [2,3,55].

B. Isoscalar monopole transitions

The isoscalar monopole (ISM) operator M(IS0) is defined
as

M(IS0) =
∑

i

(r i − R)2, (8)

where r i is the ith nucleon coordinate and R is the center-
of-mass coordinate R ≡ ∑

i r i/A. The ISM strength from the
ground state to an excited state (Jπ

k ) is given by the reduced
matrix element of the ISM operator as

B
(
IS0; g.s. → Jπ

k

) = 1

2J + 1

∣∣〈g.s.||M(IS0)||Jπ
k 〉∣∣2

. (9)

The energy-weighted sum (EWS) of the ISM strengths is
defined as

S(IS0) ≡
∑

k

(Ek − Eg.s.)B
(
IS0; g.s. → Jπ

k

)
. (10)

If the interaction commutes with M(IS0), then the ISM
energy-weighted sum rule (EWSR)

S(IS0) = 2�
2

m
A〈r2〉g.s. (11)

is satisfied. Here 〈r2〉g.s. is the mean-square radius of the ground
state and is equal to 〈g.s.|M(IS0)|g.s.〉/A.

C. Overlap with reference 6He + α(t) wave functions with D

To analyze the cluster structures of 10Be(0+) and 9Li(3/2−)
obtained by GCM calculation, I calculate overlaps with two
types of reference 6He +α(t) wave functions at a given
distance D: 6He(I+) + α(t) wave functions with angular-
momentum coupling [I ⊗ J ′]J , and the basis wave func-
tions �τ (D) used in the GCM calculation. The former is
a weak-coupling 6He +α(t) wave function, in which the
internal angular momenta of clusters and the orbital angular
momentum of intercluster motion are weakly coupled, whereas
the latter is a strong-coupling 6He +α(t) wave function, in

which a deformed 6He cluster is oriented to a specific angle
from the α(t) direction.

The 6He(I+) + α(t) wave functions are constructed using
the ground and first-excited states 6He(0+) and 6He(2+) of an
isolated 6He cluster described by ho p-shell configurations.
The 6He(I+) + α(t) wave functions at distances D are
given by a linear combination of the basis wave functions
P Jπ

MK |�τ (D)〉 used in the present model and are defined as

�
[I⊗J ′]J
6He + α(t)

(D) = n0A
{
φG(R)γl(D; r)

[
ϕ

6He
I

[
ϕ

α(t)
I ′ Yl(r̂)

]
J ′

]
J

}
,

(12)

γl(D; r) ≡ 4π

(
2ν̃

π

) 3
4

il(2ν̃Dr)e−ν̃(r2+D2), (13)

ν̃ ≡ A1A2

A
ν, (14)

φG(R) =
(

2Aν

π

)
e−Aν R2

, (15)

where il is the modified spherical Bessel function; ϕ
6He
I and

ϕ
α(t)
I ′ represent the internal wave functions of 6He(I+) and

α(t) clusters with the internal angular momentum I and I ′,
respectively; φG is the wave function of the center of mass
motion; and n0 is the normalization factor.

For the strong-coupling 6He +α(t) wave functions, I
consider the Jπ and K projected states of the basis wave
functions �τ (D) with the following specific configurations:

�
(T )
6He +α(t)

(D) ≡ n0P
Jπ
M0(1/2)|�τ=f (D)〉, (16)

�
(A)
6He +α(t)

(D) ≡ n0P
Jπ
M0(1/2)|�τ=a(D)〉, (17)

�
(Iz2)
6He + t

(D) ≡ n0P
Jπ
M,−3/2|�τ=c(D)〉, (18)

where �
(T )
6He +α(t)

(D) is the jj coupling transverse (T) configu-
ration corresponding to the configuration (f) with two neutrons
in the transverse orbits with |jz| = 3/2, and �

(A)
6He + α(t)

(D) is
the ls coupling aligned (A) configuration given by configura-
tion (a) with two neutrons coupling to S = 0 in the aligned orbit
pz. In the short-distance region, �

(T )
6He +α(t)

(D) feels a weaker
Pauli blocking effect than other configurations. Configuration
(a), i.e., �

(A)
6He + α(t)

(D) with a moderate distance parameter D,

corresponds to the molecular σ -orbital structure. �(Iz2)
6He + t

(D) is
the K = −3/2 state projected from the ls coupling transverse
configuration given by configuration (c), where the rotation
of a S = 0 two-neutron pair in the 6He cluster contributes to
Iz = −2.

The defined weak- and strong-coupling reference wave
functions, �

[I⊗J ′]J
6He + α(t)

(D) and �
(T ,A,Iz2)
6He +α(t)

(D), are not orthog-
onal to each other. In Fig. 2, I show squared overlaps of
�

[I⊗J ′]J
6He + α(t)

(D) with �
(T ,A,Iz2)
6He + α(t)

(D). In the short-distance region,
only transverse configurations are Pauli allowed while other
configurations feel strong Pauli blocking due to the antisym-
metrization between valence neutrons and the α(t) cluster. As
a result, both 6He(0+) + α and 6He(2+) + α wave functions,
�

[0⊗0]0
6He + α

(D) and �
[2⊗2]0
6He + α

(D), have dominant overlaps with
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FIG. 2. Squared overlaps between the weak-coupling cluster
wave functions �

[I⊗J ′]J
6He + α(t)

(D) and the strong-coupling cluster wave

functions �
(T ,A,Iz2)
6He + α(t)

(D). The squared overlaps of (a) �
[0⊗0]0
6He + α

(D),

(b) �
[2⊗2]0
6He + α

(D), (c) �
[0⊗3/2]3/2
6He + t

(D), and (d) �
[0⊗3/2]3/2
6He + t

(D) with

�
(T ,A,Iz2)
6He + α(t)

(D) are shown.

the transverse configuration �
(T )
6He +α

(D) but no overlap with

the aligned configuration �
(A)
6He + α

(D). This means that the
6He(0+) + α and 6He(2+) + α wave functions at a short
distance are almost equivalent to the �

(T )
6He +α

(D) wave function

and contain no �
(A)
6He +α

(D) component. As for the 6He + t

wave functions at a short distance D, the 6He(0+) + t wave
function is almost equivalent to �

(T )
6He + t

(D), the 6He(2+) + t

wave function is a mixing of �
(T )
6He + t

(D) and �
(Iz3/2)
6He + t

(D), and

neither contains a �
(A)
6He + t

(D) component. This is a trivial

consequence of the antisymmetrization of the 6He +α cluster
wave functions and indicates that, at short distances, the
weak-coupling 6He +α(t) wave functions have less physical

meaning than the strong-coupling 6He +α(t) wave functions.
At a sufficiently large distance D free from the Pauli blocking
between two clusters, �[I⊗J ′]J

6He + α(t)
(D) with different I and J ′ are

orthogonal to each other and have overlaps with �
(T ,A,Iz2)
6He +α(t)

(D)
in specific ratios.

III. RESULTS

A. Effective nuclear forces

The effective Hamiltonian consists of the single-particle
kinetic terms ti and the two-body forces vij containing the
effective nuclear forces and the Coulomb force:

Heff =
∑

i

ti − TG +
∑
i<j

vij , (19)

where TG, the kinetic energy of the center-of-mass motion,
is subtracted. In terms of the effective nuclear forces, the
Volkov No. 2 force [56] is used as the central force, and
the spin-orbit term of the G3RS force [57] is adopted for
the spin-orbit force, as done in preceding studies on 10Be and
9Li structures [10,13,14,52,58]. The interaction parameters
are (b = h = 0.125,m = 0.60) for the Volkov No. 2 force and
uI = −uII = 1600 MeV for the strength of the spin-orbit force;
these are the same as those used in Refs. [52,58]. The Coulomb
force is approximated by seven-range Gaussians.

B. Energy levels of 9Li and 10Be

As described in Eq. (7), the 6He +α(t) cluster wave
functions |�τ (D)〉 specified by the label τ and the distance
parameter D are superposed. In the default GCM calculation, I
take the generator coordinate, D = 1,2, . . . ,8 fm, which corre-
sponds to a bound-state approximation. To observe resonance
features, I also use a larger model space, D = 1,2, . . . ,15 fm,
to examine the effect of coupling with discretized continuum
states. The six configurations, τ={a,b,c,d,e,f}, are adopted
at each D, and a total of 6 × 8 = 48(6 × 15 = 90) basis
wave functions are superposed in the D = 1,2, . . . ,8 fm
(D = 1,2, . . . ,15 fm) calculation, which I denote the “D � 8
(D � 15)” calculation. In the D � 8 and D � 15 calculations,
K-mixing is taken into account. In addition, I perform the
GCM calculation with a truncated model space using only
the transverse configurations, (c) and (f), which are denoted
as the “(c+f)” calculation. In the (c+f) calculation, the
angular-momentum-projected 6He +α(t) wave functions of
the configurations, (c) and (f), with K = 0(1/2) and D =
1,2, . . . ,8 fm are used.

Figure 3 shows the energy spectra of 10Be(0+) and
9Li(3/2−) obtained using the default D � 8 calculation. The
6He +α and 6He + t threshold energies are shown by dashed
lines. The 10Be(0+

3,4) and 9Li(3/2−
3,4,5) states are obtained above

the 6He +α and 6He + t threshold energies, respectively. The
10Be(0+

3 ) and 10Be(0+
4 ) states have relatively larger 6He(0+) +

α and 6He(2+) + α components, respectively. The 9Li(3/2+
3 )

state is dominated by the 6He(0+) + t component, while
9Li(3/2+

4 ) and 9Li(3/2+
5 ) have dominant 6He(2+) + t compo-

nents. The dominant 6He +α(t) components decrease at the
boundary, D = 8 fm, and therefore these states are regarded
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FIG. 3. Energy levels of 10Be(0+) and 9Li(3/2−) obtained using
the D � 8 calculation. The experimental energy levels of 10Be(0+) are
also shown. The 6He + α and 6He + t threshold energies are shown
as dashed lines.

as resonance states. States higher than the 10Be(0+
4 ) and

9Li(3/2+
5 ) states do not show such resonance features and

are regarded as continuum states. In the low-energy region
of 10Be, the 0+

2 state of 10Be with the molecular σ -orbital
structure is obtained below the threshold energy. This state
is the band-head state of the Kπ = 0+

2 band and is assigned
as the experimental 0+ state at 6.18 MeV. However, in 9Li,
the molecular orbital structure does not appear because the σ -
orbital is unfavored around the α + t core due to the asymmetry
of the core potential as discussed in my previous work. The
9Li(3/2−

2 ) state obtained below the 6He + t threshold energy
is the band-head state of the Kπ = 3/2− band.

In the D � 8 calculation, the resonance states are obtained
as bound-state solutions in the model space of D � 8 fm.
I estimate the partial decay widths �I⊗J ′ of the resonance
states for 6He(I+) + α(t) channels with angular-momentum
coupling [I ⊗ J ′]J from the reduced width amplitude y(a)
at a channel radius a as described in Appendix. Here J ′ is
the resultant angular momentum of the angular momenta I ′
and l, where I ′ is the internal angular momentum of the α(t)
cluster and l is the orbital angular momentum for the relative
coordinate r between centers of mass of two clusters. For
6He(0+) + α and 6He(2+) + α decays of 10Be(0+), S- and D-
wave decays in the [I ⊗ J ′]J = [0 ⊗ 0]0 and [2 ⊗ 2]0 channels
are calculated, respectively. For 6He(0+) + t and 6He(2+) +
t decays of 9Li(3/2−), I consider P -wave decays in three
channels, [0 ⊗ 3/2]3/2, [2 ⊗ 3/2]3/2, and [2 ⊗ 1/2]3/2.

The calculated partial decay widths �I⊗J ′ at channel radii
a = 5, 6, and 7 fm are shown in Table I. Here, the decay
energies (Edecay) are calculated from the theoretical energies
of t , α, 6He(0+,2+), 10Be, and 9Li. The sum �sum of the
partial widths and the dimensionless reduced widths θ2(a) =
(a/3)|ay(a)|2 are also shown in the table. Hereafter, I discuss
the decay widths calculated at the channel radius that gives the
largest �sum for each state. The calculated width of 10Be(0+

3 )
is �sum = 1.6 MeV for the dominant 6He(0+) + α decay
and that of 10Be(0+

4 ) is �sum = 1.0 MeV with comparable
partial widths of 6He(0+) + α and 6He(2+) + α decays. The
calculated widths of 9Li(3/2−

3 ), 9Li(3/2−
4 ), and 9Li(3/2−

5 ) are
�sum = 0.65, 0.75, and 2.0 MeV, respectively. The 9Li(3/2−

3 )

TABLE I. Partial decay widths �I⊗J ′ (MeV) for 6He(I+) + α

of 10Be(0+) and 6He(I+) + t of 9Li(3/2−) obtained by the D � 8
calculation. �I⊗J ′ for S-wave and D-wave decays in [0 ⊗ 0]0 and [2 ⊗
2]0 of 10Be(0+) and P -wave decays in [0 ⊗ 3/2]3/2, [2 ⊗ 3/2]3/2, and
[2 ⊗ 1/2]3/2 of 9Li(3/2−) are shown. The sum (�sum) of the partial
widths and the dimensionless reduced widths θ2(a) = (a/3)|ay(a)|2
are also shown.

a (fm) Edecay (MeV) θ2 �I⊗J ′ (MeV)

5 6 7 5 6 7

6He(0+) + α with [0 ⊗ 0]0
10Be(0+

3 ) 3.2 0.04 0.20 0.38 0.18 0.92 1.55
10Be(0+

4 ) 4.7 0.02 0.01 0.10 0.14 0.05 0.54
6He(2+) + α with [2 ⊗ 2]0
10Be(0+

3 ) 1.3 0.13 0.12 0.08 0.011 0.02 0.02
10Be(0+

4 ) 2.9 0.07 0.19 0.23 0.10 0.34 0.49
6He(0+) + t with [0 ⊗ 3/2]3/2
9Li(3/2−

3 ) 1.4 0.26 0.33 0.29 0.59 0.75 0.65
9Li(3/2−

4 ) 3.2 0.01 0.04 0.06 0.08 0.21 0.30
9Li(3/2−

5 ) 4.6 0.000 0.001 0.004 0.000 0.007 0.02
6He(2+) + t with [2 ⊗ 3/2]3/2
9Li(3/2−

4 ) 1.3 0.13 0.15 0.13 0.30 0.33 0.27
9Li(3/2−

5 ) 2.8 0.06 0.15 0.20 0.33 0.69 0.86
6He(0+) + t with [2 ⊗ 1/2]3/2
9Li(3/2−

4 ) 1.3 0.09 0.10 0.08 0.19 0.21 0.18
9Li(3/2−

5 ) 2.8 0.09 0.20 0.27 0.44 0.93 1.15

Er (MeV) �sum (MeV)
10Be(0+

3 ) 3.2 0.19 0.93 1.6
10Be(0+

4 ) 4.7 0.24 0.39 1.0
9Li(3/2−

3 ) 1.4 0.59 0.75 0.65
9Li(3/2−

4 ) 3.2 0.57 0.75 0.75
9Li(3/2−

5 ) 4.6 0.77 1.6 2.0

state can decay only in the 6He(0+) + t channel because the
6He(2+) + t channel is closed. 9Li(3/2−

4 ) has comparable par-
tial widths of 6He(0+) + t and 6He(2+) + t decays, whereas
9Li(3/2−

5 ) has dominant 6He(2+) + t decays.
To observe the resonance features of these states obtained

above the threshold energies, I perform the D � 15 calculation
with a larger model space than that of the D � 8 calculation.
In a model space that has been enlarged from D � 8 fm to
D � 15 fm, the resonance states |�Jπ

k

D�8〉, which are obtained
as bound-state solutions in the D � 8 calculation, couple
with discretized continuum states and their components are
fragmented into states (|�Jπ

l

D�15〉). In Fig. 4, I show the squared

overlap |〈�Jπ
k

D�8|�Jπ
l

D�15〉|2. The overlap distributions show that
the components of the resonance states obtained by the D � 8
calculation are fragmented into several states in the D � 15
calculation, whereas those of the 10Be(0+

2 ) and 9Li(3/2+
2 )

below the threshold energies are not fragmented. As shown
in the figure, the overlap distributions are consistent with
the Breit-Wigner distributions at the resonance energies with
widths (�sum/2) obtained by the D � 8 calculation. This
result indicates that the decay widths �sum estimated using
the reduced width amplitudes are reasonable.
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FIG. 4. Distributions of the squared overlap |〈�Jπ
k

D�8|�
Jπ
l

D�15〉|2 of
the Jk state obtained by the D � 8 calculation with states obtained
using the D � 15 calculation. Distributions of the Jk = 0+

2 , 0+
3 , and

0+
4 states in 10Be are shown in (a)–(c), and those of Jk = 3/2−

2 , 3/2−
3 ,

3/2−
4 , and 3/2−

5 states in 9Li are shown in (d)–(g). The Breit-Wigner
distributions at energies (Ex) with widths (�sum/2) for the resonances
obtained by the D � 8 calculation are shown by dashed lines. The
largest value of �sum at a = 5, 6, and 7 fm from Table I is adopted for
each state.

Ito et al. investigated 6He +α cluster resonances and
molecular orbital states in 10Be using the GTCM calculation,
which predicts a 6He(2+) + α resonance at the energy Er =
3.6 MeV relative to the 6He +α threshold energy and a
6He(0+) + α state as a broad continuum state in the Er = 1–4
region. My result of 10Be(0+

4 ) with a dominant 6He(2+) + α

component may correspond to the 6He(2+) + α state of the
GTCM. The 10Be(0+

3 ) state obtained in the present result,
which has a dominant 6He(0+) + α component and a larger
width than the 10Be(0+

4 ) state, is likely to correspond to the
6He(0+) + α state of the GTCM.

C. Isoscalar monopole transition strengths

The ISM transition strengths of 10Be(0+) and 9Li(3/2−)
calculated by the (c+f), D � 8, and D � 15 calculations are
shown in Figs. 5 and 6, respectively. The energy-weighted ISM
strengths and their Gaussian smeared distributions are shown
in Fig. 7. The proton and matter radii, EWSR, EWS, and the
ratio EWS/EWSR obtained in the (c+f), D � 8, and D � 15
calculations are listed in Table II. The experimental radii are
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FIG. 5. ISM strength distributions of 10Be(0+) obtained by the
(c+f), D � 8, and D � 15 calculations. Dashed lines in the middle
panel (b) for the D � 8 calculation show 50-fold values of the
strengths.

also shown in the table. In the (c+f) calculation, the model
space is truncated and contains only the configurations (c)
and (f), which corresponds to the transverse configurations
of 6He with two neutrons in px or py orbits. Despite the
truncation of 6He configurations, the EWS of the (c+f) result
is consistent with those of the D � 8 and D � 15 calculations,
as both the ground state |g.s.〉 and its M(IS0) operated state
M(IS0)|g.s.〉 are contained in the truncated model space of
the transverse configurations (c) and (f).

The ISM strength for 10Be, obtained using the (c+f)
calculation, is concentrated on the first excited state at Ex ∼
13 MeV. In the D � 8 result, the ISM strengths are split
by coupling with other configurations (a), (b), (d), and (e).
However, significant strengths remain for the transitions to
10Be(0+

3 ) and 10Be(0+
4 ) states for Ex = 13–15 MeV. In the

D � 15 result, the strengths are fragmented further due to
coupling with the continuum states but are still concentrated
in the Ex = 13–15 MeV region for 10Be(0+

3 ) and 10Be(0+
4 )

states. In the energy-weighted strength distributions shown in
Fig. 7(c), the enhancement of the ISM strengths are found in
this energy region. This result indicates that ISM excitation
can be a good probe for observing 6He +α cluster resonances
in 10Be. The ISM strength for 10Be(0+

2 ) is not as significant as
those in the Ex = 13–15 MeV region.

For 9Li, the ISM strength obtained by the (c+f) calcu-
lation is somewhat concentrated on the first excited state at
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FIG. 7. Energy-weighted ISM strengths (solid lines). Panels
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D � 8, D � 15 calculations, and panels (d)–(f) show the distributions
in 9Li(3/2−). The Gaussian smeared distributions of the energy-
weighted ISM strengths with fixed width 1/

√
π are shown by dashed

lines.

TABLE II. Theoretical values of proton and matter radii (fm),
EWSR (MeV fm4), EWS (MeV fm4), and ratio EWS/EWSR of
the ISM strengths obtained using the D � 8 calculation. The
experimental proton radii reduced from the charge radii [59,60],
and the experimental matter radii deduced from the interaction cross
sections [61] are also shown.

10Be

rp rm EWSR EWS EWS/EWSR

(c+f) 2.31 2.33 4.5 × 102 2.7 × 102 0.60
D � 8 2.31 2.34 4.5 × 102 2.7 × 102 0.61
D � 15 2.31 2.34 4.5 × 102 2.7 × 102 0.61
exp. 2.221(18) 2.30(2)

9Li
(c+f) 2.12 2.23 3.7 × 102 1.68 × 102 0.45
D � 8 2.11 2.22 3.7 × 102 1.68 × 102 0.46
D � 15 2.11 2.22 3.7 × 102 1.68 × 102 0.46
Exp. 2.05(4) 2.32(2)

Ex ∼ 11 MeV, but the magnitude of the strength is not
as significant in the 10Be case. In the D � 8 result, the
strength distributions are fragmented due to the mixing of other
configurations (a), (b), (d), and (e), and in the D � 15 result,
they are strongly scattered due to coupling with continuum
states. The stronger fragmentation of ISM strengths in 9Li
than in 10Be originates in various angular-momentum channels
[I × J ′] and in K-mixing in the total spin-parity Jπ = 3/2−
of final states. Consequently, there is no concentration of ISM
strengths in the 6He + t cluster resonances in 9Li. Indeed,
as shown in Fig. 7(e), the energy-weighted strengths are
widely distributed and the resonance states in 9Li do not have
significant strength. 9Li(3/2−

2 ) has nearly no ISM strength, as
this state is the band-head state of the Kπ = 3/2− band and
is not excited by the ISM operator from the 9Li ground state,
which has the dominant Kπ = 1/2− component.

IV. DISCUSSIONS

In this section, I discuss the cluster structures of 10Be(0+)
and 9Li(3/2−) in connection with ISM excitations. By ana-
lyzing the overlaps of the obtained 10Be(0+) and 9Li(3/2−)
wave functions with the reference 6He +α(t) wave functions,
cluster aspects can be examined from two viewpoints of weak-
and strong-coupling cluster pictures.

A. Cluster structures of 10Be(0+) and 9Li(3/2−)

In order to discern the cluster components of the obtained
10Be(0+) and 9Li(3/2−) states, I calculate the overlaps
with the reference 6He +α(t) wave functions at distances
D, �

[I⊗J ′]J
6He +α(t)

(D), and �
(T ,A,Iz2)
6He + α(t)

(D). Figures 8 and 9 show

the squared overlaps of the 10Be(0+) and 9Li(3/2−) states
obtained using the D � 8 calculation with the 6He +α(t) wave
functions plotted as functions of D.

The 10Be ground state has a dominant overlap with the
transverse configuration �

(T )
6He +α

(D) at D ∼ 3 fm and has

almost no overlap with the aligned configuration �
(A)
6He +α

(D).
10Be(0+

2 ) is dominated by �
(A)
6He + α

(D) at D = 4–5 fm. This is
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FIG. 8. 6He + α components in 10Be(0+) obtained by the D � 8
calculation. [(a)–(d)] Squared overlaps of 10Be(0+) with �

[0⊗0]0
6He + α

(D)

and �
[2⊗2]0
6He + α

(D). [(e)–(h)] Squared overlaps of 10Be(0+) with

�
(T )
6He + α

(D) and �
(A)
6He + α

(D).

consistent with the molecular σ -orbital structure of 10Be(0+
2 ),

as discussed in preceding works. The fact that 10Be(0+
1 ) and

10Be(0+
2 ) can be clearly classified by the strong-coupling

6He +α wave functions indicates that these states have
strong-coupling cluster features rather than weak-coupling
ones. In the strong-coupling cluster picture, the excitation
from 10Be(0+

1 ) to 10Be(0+
2 ) is understood as a rotation of the

deformed 6He-cluster from the transverse configuration to the
aligned configuration with some extent of spatial development
of clustering. Because of the difference in the 6He-cluster
orientation, i.e., the difference in two-neutron configurations,
the ISM transition is suppressed for the transition between
10Be(0+

1 ) and 10Be(0+
2 ), even though the 10Be(0+

2 ) state has
the developed cluster structure.

The 6He +α resonance states, 10Be(0+
3 ) and 10Be(0+

4 ), have
spatially developed cluster structures with significant cluster
components at D = 6–7 fm. These states show intermediate
features between strong- and weak-coupling cluster structures.
The 10Be(0+

3 ) state has the dominant component �(T )
6He + α

(D) at
D = 6–7 fm and is interpreted as a higher nodal state excited
from the ground state in the model space of the transverse
configuration (f). It has a significant 6He(0+) + α component
with a peak at D = 7 fm and can be regarded as a 6He(0+) + α
resonance. Considering that the peak position of the 6He(0+) +
α component shifts from D = 2–3 fm in the 10Be(0+

1 ) state and
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FIG. 9. 6He + t components in 9Li(3/2−) obtained by the D � 8
calculation. Panels (a)–(e) show squared overlaps of 9Li(3/2−) with
�

[0⊗3/2]3/2
6He + t

(D), �
[2⊗3/2]3/2
6He + t

(D), and �
[2⊗1/2]3/2
6He + t

(D). Panels (f)–(j) show

squared overlaps of the 9Li(3/2−) with �
(T )
6He + t

(D), �
(A)
6He + t

(D), and

�
(Iz2)
6He + t

(D).

D = 5 fm in the 10Be(0+
2 ) state to D = 7 fm in the 10Be(0+

3 ),
the 10Be(0+

2 ) and 10Be(0+
3 ) states can be interpreted as the

first and second nodal 6He(0+) + α states built on the ground
state, respectively. 10Be(0+

4 ) has a relatively larger 6He(2+) +
α component at D = 6–7 fm and is regarded as a 6He(2+) + α
resonance.

The bound states 9Li(3/2−
1 ) and 9Li(3/2−

2 ) in 9Li can also
be clearly classified by the strong-coupling 6He + t wave
functions. The 9Li ground state has a dominant overlap
with �

(T )
6He + t

(D) at D = 2–3 fm and almost no overlap with

�
(A)
6He +α

(D), which is suppressed by the Pauli blocking effect at

short distance. The 9Li(3/2−
2 ) state is dominated by �

(Iz2)
6He + t

(D)
at D ∼ 2 fm and can be regarded as the K = 3/2 state.
The resonance states of 9Li(3/2−) have significant cluster
components in the D = 5–7 fm region, indicating a spatially
developed 6He + t clustering. 9Li(3/2−

3 ) has a significant
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6He(0+) + t component and a relatively small 6He(2+) + t
component and is therefore regarded as a weak-coupling
6He(0+) + t cluster resonance. The 9Li(3/2−

4 ) and 9Li(3/2−
5 )

states can be regarded as 6He(2+) + t cluster resonances
because they have significant 6He(2+) + t components and
relatively small 6He(0+) + t components.

The appearance of the weak-coupling 6He(0+) + t cluster
resonance in 9Li(3/2−

3 ) is a specific feature of the 9Li system
and differs from the 10Be system, where each 6He +α cluster
resonance is not a pure weak-coupling 6He(I+) + α state. One
of the key reasons for this difference between 9Li and 10Be is
the presence or absence of the molecular σ -orbital structure
below the threshold energy. In 10Be, the molecular σ -orbital
structure is favored and appears in 10Be(0+

2 ). Note that the
molecular σ -orbital structure corresponds to the 6He(A) + α
wave function in the present model. It is important that
the orthogonal condition of 10Be(0+

2 ) to the ground state
is satisfied by the orthogonality of the orientation of the
deformed 6He cluster. In higher states, the 6He +α clustering
develops, maintaining the orthogonal condition to the lower
states, 10Be(0+

1 ) and 10Be(0+
2 ). The existence of 10Be(0+

2 )
with the aligned configuration 6He(A) + α at a moderate dis-
tance (D = 4–5 fm) somewhat suppresses the weak-coupling
feature of 6He +α cluster resonances because the condition
orthogonal to 10Be(0+

2 ) depends on the orientation of the
deformed 6He cluster. By contrast, the molecular σ -orbital
structure is not favored in 9Li due to the asymmetry of the
α + t core. In the developed cluster states, the rotational
symmetry of the subsystem 6He is restored in the absence
of the molecular σ -orbital structure, and the weak-coupling
6He + t clustering is favored to form the 6He(0+) + t cluster
resonance in 9Li(3/2−

3 ).

B. Isoscalar monopole excitation and its relation
to strong-coupling cluster structures

The enhancement of ISM transitions to cluster states in
stable and unstable nuclei has been discussed [26,62–64].
As discussed by Yamada et al., ISM strengths are enhanced
for transitions from the ground state to cluster excited states
because the ISM operator M(IS0) excites intercluster motion
through the r2 term in M(IS0) [64]. As shown in Ref. [64],
M(IS0) can be rewritten as

M(IS0) = A1A2

A
r2 +

∑
i∈C

(r i − R1)2 +
∑
i∈C ′

(r i − R2)2,

(20)
where R1 and R2 are the center-of-mass coordinates of the first
(C) and second (C ′) clusters, respectively. If antisymmetriza-
tion is ignored, then the first term excites the intercluster
motion while the second and third terms cause the ISM
excitations of C and C ′ clusters.

In ISM excitations, the M(IS0) operated state,
M(IS0)|g.s.〉, is regarded as the doorway state that is initially
produced by ISM excitation. Provided that excitations of the
intercluster motion (cluster mode) are well decoupled from
the internal excitations of the clusters, the ISM strengths
of cluster states are simply distributions of the doorway
state M(IS0)|g.s.〉 projected onto the cluster model space,

 0

 50

 100

 150

 200

 250

 3  4  5  6  7  8

B
(I

S0
) (

fm
4 )

D (fm)

10Be(0+
1):6He(T)
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9Li(3/2-
1):6He(T)

9Li(3/2-
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FIG. 10. ISM strengths B(IS0; g.s. → �
(T ,A)
6He + α(t)

(D)) for the

transitions from the 10Be and 9Li ground states obtained by the D � 8
calculation to �

(T ,A)
6He + α(t)

(D). B(IS0; g.s. → �
(T ,A)
6He + α(t)

(D)) is defined
in Eq. (21).

P̂ (C + C ′)M(IS0)|g.s.〉, which approximately corresponds
to the doorway state excited from the ground state by the
r2 operator. Here P̂ (C + C ′) is the projection operator onto
the C + C ′ cluster model space. In the present case, the ISM
strengths indicate the distributions of the projected doorway
state P̂ (6He +α(t))M(IS0)|g.s.〉 in the 6He +α(t) cluster
model space.

As discussed previously, the low-lying states of 10Be and
9Li can be understood to be strong-coupling cluster structures.
In particular, the ground state is dominated by the transverse
configuration �

(T )
6He +α(t)

(D) at a distance D = 2–3 fm. There-

fore, the projected doorway state P (6He +α(t))M(IS0)|g.s.〉
is approximately included by the subspace with a specific
configuration �

(T )
6He + α(t)

(D) because the ISM operator excites

the intercluster motion through the r2 term but does not
change the orientation of the deformed 6He cluster. Figure 10
shows the ISM strengths for transition from the 10Be and 9Li
ground state to specific configurations, namely, the transverse
configuration �

(T )
6He +α(t)

(D) and the aligned configuration

�
(A)
6He + α(t)

(D). The strengths of the ISM transitions from the
ground state are calculated as

B
(
IS0; g.s. → �

(T ,A)
6He + α(t)

(D)
)

= 1

2J + 1

∣∣〈g.s.||M(IS0)|∣∣�g.s.�
(T ,A)
6He +α(t)

(D)
〉∣∣2

, (21)

�g.s. ≡ 1 − |g.s.〉〈g.s.|, (22)

where the normalizations of the initial and final states are
chosen to be one and the orthogonal condition of the final
state to the initial state is satisfied by the projection operator
�g.s.. As seen in the figure, the calculated ISM strengths show
significant transitions to �

(T )
6He + α(t)

(D) at D = 4–5 fm but

almost no transition to �
(A)
6He + α(t)

(D), as would be expected

from the dominance of the �
(T )
6He + α(t)

(D) component in the
initial state |g.s.〉. This means that the doorway state excited
from the ground state by the ISM operator dominantly contains
the transverse configuration of the 6He cluster.

Let us go back to the IMS strengths obtained by the three
calculations, (c+f), D � 8, and D � 15. As shown in Table II,
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FIG. 11. Distributions of squared overlaps of �
(T )
6He + α

(D) at D =
5 fm for the 10Be(0+) obtained by the (c+f), D � 8, and D � 15
calculations.

the EWS obtained by the (c+f) calculation is almost consistent
with that obtained by the D � 8 calculation with full 6He
configurations. This indicates that the doorway state directly
produced from the ground state by the ISM operator are mostly
contained in the truncated model space of configurations (c)
and (f). As shown in Figs. 5(a) and 6(a), the ISM strengths are
concentrated in a few low-lying states in the (c+f) calculation,
meaning that the doorway state is distributed in these few
states of the truncated model space. However, in the D � 8
calculation of the full configurations of 6He +α(t), the ISM
strengths are somewhat fragmented through the coupling
of the configuration �

(T )
6He +α(t)

(D) with other configurations.
The ISM strengths should reflect the distributions of the
�

(T )
6He + α

(D) and �
(T )
6He + t

(D) components in the resulting
10Be(0+) and 9Li(3/2−). As already shown in Fig. 10, the
�

(T )
6He + α(t)

(D) configuration has a strong ISM transition in
the D = 4–5 fm region, meaning that the doorway state
excited from the ground state by the ISM operator has a large
overlap with this state. Figures 11 and 12 show distributions
of the squared overlaps of 10Be(0+) and 9Li(3/2−) obtained
by the three calculations for �

(T )
6He +α

(D) and �
(T )
6He + t

(D) at
D = 5 fm. Comparing the results of Figs. 5 and 6 with those
of Figs. 11 and 12, the ISM strength distributions can be
qualitatively described by the distributions of the �

(T )
6He + α(t)

(D)
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FIG. 12. Distributions of squared overlaps of �
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6He + t

(D) at D =
5 fm for the 9Li(3/2−) obtained by the (c+f), D � 8, and D � 15
calculations.

component. In the D � 8 and D � 15 calculations of 9Li, the
fragmentation of the �

(T )
6He + t

(D) component due to coupling
with other configurations describes the strong fragmentation of
the ISM strengths for the 6He + t cluster resonances at 10–15
MeV. Compared with 9Li, the fragmentation of the �

(T )
6He + α

(D)
component is relatively weaker in the D � 8 and D � 15
calculations of 10Be, and significant components remain in
the Ex = 13–15 MeV region for the 10Be(0+

3 ) and 10Be(0+
4 )

states.
Let us move to a general discussion of the doorway state

that is excited from the ground state to the cluster states by the
ISM operator. As mentioned previously, the projected doorway
state approximately corresponds to the r2 operated state of
the ground state. In case where the ground state contains
a deformed cluster with a specific orientation, inter-cluster
motion is excited from the ground state to the doorway state
with the orientation of the cluster maintained as it is in the
ground state, because the r2 operator does not induce rotation
in clusters. Schematic illustrations of this are shown in Fig. 13.
When the system consists of two spinless clusters such as
16O +α, in which both clusters are ls-closed shell nuclei,
the projected doorway state can be concentrated on a 16O +α
cluster state, and, therefore, the ISM transition should be strong
for the 16O +α cluster state [Fig. 13(a)]. However, in the cases
of 6He +α and 6He + t cluster states in 10Be and 9Li, the
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FIG. 13. Schematics of ISM excitations to cluster states. (a) A
system of two clusters that are spinless ls-closed shell nuclei.
(b) A system consisting of a deformed cluster and a spinless ls-closed
cluster. (b) A system consisting of a deformed cluster and a finite-spin
cluster.

6He cluster is not an ls-closed shell nucleus but is deformed
in the 10Be and 9Li ground states due to the Pauli blocking
effect between clusters [Figs. 13(b) and 13(c)]. The deformed
6He cluster is a mixed state of different spin states of 6He(I ).
In the asymptotic region at a large intercluster distance, the
deformed cluster is not favored but the angular-momentum
eigenstates 6He(I ) are favored because of the restoration of
the rotational symmetry of the subsystem. Moreover, in the
6He + t system, the second cluster (t) has a finite intrinsic spin
I ′ = 1/2. Therefore, the projected doorway state is fragmented
in 6He + t cluster states through the coupling of the angular
momenta (I and I ′) of the clusters and the orbital angular
momentum of the intercluster motion. As a result, the ISM
strengths can be strongly fragmented. In the 6He +α system,
because the angular-momentum coupling is not so strong for
the spinless α cluster, the fragmentation of the doorway state
can be weaker than that in the 6He + t system. Therefore, the
fragmentation of the ISM strengths to 6He +α cluster states is
not as strong as that to 6He + t cluster states.

C. Weak-coupling cluster resonances

As discussed previously, the cluster resonances 10Be(0+
3 ),

10Be(0+
4 ), 9Li(3/2−

3 ), and 9Li(3/2−
4,5) have significant weak-

coupling cluster components of 6He(0+) + α, 6He(2+) + α,
6He(0+) + t , and 6He(2+) + t , respectively, in the long-
distance region (D = 6–7 fm). Therefore, the weak-coupling
cluster components can serve as more direct probes for
cluster resonances than the ISM strengths, which reflect the
strong-coupling cluster component of the �

(T )
6He + α(t)

.
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FIG. 14. Distributions of 6He(0+) + α and 6He(2+) + α compo-
nents in 10Be(0+). [(a) and (c)] Squared overlaps of 10Be(0+) obtained
by the D � 8 calculation with �

[0⊗0]0
6He + α

(D) and �
[2⊗2]0
6He + α

(D) at D =
7 fm. [(b) and (d)] Same but for the D � 15 calculation.

Distribution of 6He(0+) + α and 6He(2+) + α components
at D = 7 fm in 10Be are shown in Fig. 14. The figure
shows the squared overlaps of �

[I⊗J ′]J
6He + α

(D) with the 10Be(0+)
state obtained using the D � 8 and D � 15 calculations.
In the D � 8 calculation, the 6He(0+) + α component is
concentrated on the 10Be(0+

3 ) state at 13 MeV, whereas the
6He(2+) + α component is significant in the 10Be(0+

4 ) state at
15 MeV [Figs. 14(a) and 14(c)]. In the D � 15 calculation, the
concentration of the 6He(0+) + α component around 13 MeV
and that of the 6He(2+) + α component around 15 MeV can
be seen, although the components are somewhat fragmented
[Figs. 14(b) and 14(d)].

Figure 15 shows the distribution of the 6He(0+) + t and
6He(2+) + t components at D = 7 fm in 9Li. In the D � 8
calculation, the 6He(0+) + t component is concentrated at
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FIG. 15. Distributions of 6He(0+) + t and 6He(2+) + t com-
ponents in 9Li(3/2−). [(a) and (c)] Squared overlaps of 9Li(3/2−)
obtained by the D � 8 calculation with �

[0⊗3/2]3/2
6He + t
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�
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[2⊗1/2]3/2
6He + t

(D) (dashed lines) at D =
7 fm. [(b) and (d)] Same overlaps for the D � 15 calculation.

10 MeV for the 9Li(3/2−
3 ) state [Fig. 15(a)]. Even in the

D � 15 calculation, the significant 6He(0+) + t component
is found in the corresponding energy region around 9 MeV
[Figs. 15(b)], whereas the 6He(2+) + t components are sig-
nificant in the 11- to 14-MeV region [Figs. 15(d)].

Note that the distributions of the 6He(0+) + α and
6He(0+) + t components shown in Figs. 14 and 15 are
not consistent with the ISM strength distributions shown in
Figs. 5 and 6. In particular, despite the significant 6He(0+) + t
component in the 9Li(3/2−) state around 10 MeV, there is no
significant ISM strength in the corresponding energy region.
Thus, there is no one-to-one correspondence between the
ISM excitation and the 6He(0+) + α component, because
the ISM operator more directly excites the specific type of

strong-coupling cluster structures embedded in the ground
state.

As seen in Figs. 14 and 15, the distribution of 6He(0+) + α,
6He(2+) + α, 6He(0+) + t , and 6He(2+) + t components
show enhanced peaks around 12–13 MeV for 10Be(0+

3 ),
14–15 MeV for 10Be(0+

4 ), 9–10 MeV for 9Li(3/2−
3 ), and

11–14 MeV for 9Li(3/2−
4,5). Therefore, resonant elastic and

inelastic scatterings can be better experimental probes than
ISM strengths for identifying each cluster resonance.

V. SUMMARY

The ISM transitions from the ground to the cluster states in
10Be and 9Li were investigated using the 6He +α and 6He + t
cluster models, respectively. In the calculation, the resonance
states were obtained in a bound-state approximation. The
6He +α and 6He + t widths of the resonances were estimated
by using the reduced-width amplitudes obtained from the
calculation for D � 8 fm. The coupling with continuum states
evaluated by changing the boundary size from D � 8 fm to
D � 15 fm showed consistent results with the decay widths
estimated by the bound-state approximation for D � 8 fm.

In 10Be, 6He +α cluster resonances were obtained as the
10Be(0+

3 ) and 10Be(0+
4 ) states above the 6He +α threshold

energy. The significant ISM strengths were obtained for
transitions to these resonances. In 9Li, the 6He + t cluster
resonances were obtained as the 9Li(3/2−

3,4,5) state above
the 6He + t threshold energy. Unlike the 6He +α cluster
resonances in 10Be, the ISM strengths are strongly fragmented
and show no enhancement for these 6He + t cluster resonances.

By analyzing the cluster components of excited states, the
relation of the ISM excitations to the cluster components
were discussed. It was found that the ISM strength distri-
butions do not directly correspond to the distributions of the
6He(0+) + α and 6He(0+) + t components but are distributed
via components of the deformed 6He cluster configuration
with a specific orientation. The ISM strengths of cluster
states are the distributions of the doorway state in the cluster
model space, which is excited from the ground state by the
r2 operator. Because the 10Be and 9Li ground states are
dominated by the transverse configuration of the deformed
6He cluster, the doorway state also dominantly contains the
transverse configuration, as the ISM operator excites the
intercluster motion through the r2 term but does not change
the orientation of the deformed 6He cluster. The doorway state
distributions, which are originally concentrated on the specific
configuration, are fragmented in final states in the full model
space due to mixing with other configurations and angular-
momentum coupling. The above is an interpretation of the
fragmentation of the ISM strengths in 10Be and 9Li. Note that
the ISM excitations more directly reflect the strong-coupling
cluster features that are originally embedded in the ground
state rather than the weak-coupling cluster features. In other
words, the ISM strengths can be a good probe for cluster
states provided that they contain the strong-coupling cluster
component that is directly excited by the monopole operator
from the ground state. For weak-coupling cluster resonances
having weak ISM strengths, resonant elastic and inelastic
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scatterings can be alternative probes for identifying the cluster
states.
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APPENDIX: CALCULATION OF PARTIAL DECAY
WIDTHS IN THE BOUND STATE APPROXIMATION

In the default D � 8 calculation, the resonance states are
obtained as bound-state solutions in the model space of D � 8
fm. In a bound-state approximation, the partial decay width
�I⊗J ′ of a resonance state for 6He(I+) + α(t) channels with
angular-momentum coupling [I ⊗ J ′]J can be estimated from

the reduced width amplitude y(a) of the corresponding channel
at a channel radius a,

�I⊗J ′ = 2ka

F 2
l (ka) + G2

l (ka)
γ 2(a), (A1)

γ 2(a) = �
2

2μa
[ay(a)]2, (A2)

where Fl and Gl are the regular and irregular Coulomb
functions, respectively; k is the momentum of intercluster
motion in the asymptotic region; μ is the reduced mass;
γ 2(a) is the so-called reduced width; and l is the orbital
angular momentum of the relative motion. In the present work,
y(a) is approximately calculated using the overlap with the
6He(I+) + α(t) cluster wave function �

[I⊗J ′]J
6He +α(t)

(D = a) by
means of the method proposed in Ref. [65] as

ay(a) ≈ 1√
2

(
2γ

π

)1/4〈
�Jπ

k

∣∣�[I⊗J ′]J
6He +α(t)

(D = a)
〉
. (A3)
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