Vol. 64, No. 1 (2012) pp. 231–246 doi: 10.2969/jmsj/06410231

Kummer's quartics and numerically reflective involutions of Enriques surfaces

To the memory of Professor Masaki Maruyama

By Shigeru Mukai

(Received Apr. 19, 2010) (Revised July 27, 2010)

Abstract. A (holomorphic) involution σ of an Enriques surface S is said to be numerically reflective if it acts on the cohomology group $H^2(S, \mathbf{Q})$ as a reflection. We show that the invariant sublattice $H(S, \sigma; \mathbf{Z})$ of the anti-Enriques lattice $H^-(S, \mathbf{Z})$ under the action of σ is isomorphic to either $\langle -4 \rangle \perp U(2) \perp U(2)$ or $\langle -4 \rangle \perp U(2) \perp U$. Moreover, when $H(S, \sigma; \mathbf{Z})$ is isomorphic to $\langle -4 \rangle \perp U(2) \perp U(2)$, we describe (S, σ) geometrically in terms of a curve of genus two and a Göpel subgroup of its Jacobian.

An automorphism of an Enriques surface S is said to be numerically trivial if it acts on the cohomology group $H^2(S, \mathbf{Q}) \simeq \mathbf{Q}^{10}$ trivially. By [11] and [10], numerically trivial involutions are classified into three types. An involution of S is called numerically reflective if it acts on $H^2(S, \mathbf{Q})$ as a reflection, that is, the eigenvalue -1 is of multiplicity one. In this article, we shall study numerically reflective involutions as the next case of the classification of involutions of an Enriques surface.

We first explain a construction, with which we started our investigation. Let C be a (smooth projective) curve of genus two and J = J(C) be its Jacobian variety. As is well known the quotient variety $J(C)/\{\pm 1_J\}$ is realized as a quartic surface with 16 nodes in \mathbf{P}^3 , called *Kummer's quartic*. The minimal resolution of $J(C)/\{\pm 1_J\}$ is called the Jacobian Kummer surface of C and denoted by Km C.

Let $G \subset J(C)_{(2)}$ be a $G\"{o}pel$ subgroup which is not bi-elliptic (Definitions 1.4 and 1.6). Then the four associated nodes $\bar{G} \subset J(C)/\{\pm 1_J\}$ are linearly independent in \mathbf{P}^3 (Proposition 5.2). Let (x:y:z:t) be a coordinate of \mathbf{P}^3 such that the four nodes are the four vertices of the tetrahedron xyzt=0. Then the equation of Kummer's quartic $J(C)/\{\pm 1_J\} \subset \mathbf{P}^3$ is of the form

 $^{2010\} Mathematics\ Subject\ Classification.\ \ Primary\ 14J28;\ Secondary\ 14K10,\ 32G20.$

Key Words and Phrases. Enriques surface, Kummer surface, period.

Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006, (S) 19104001, (S) 22224001, (A) 22244003 and for Exploratory Research 20654004.

$$q(xt + yz, yt + zx, zt + xy) + 4xyzt = 0$$

$$\tag{1}$$

for a ternary quadratic form $q(x,y,z) = ax^2 + by^2 + cz^2 + dyz + exz + fxy$ by Hutchinson[7]. The standard Cremona transformation $(x:y:z:t) \mapsto (1/x:1/y:1/z:1/t)$ of \mathbf{P}^3 leaves the quartic invariant and induces a (holomophic) involution of Km C, which we denote by ε_G . As is observed in [8, Section 3], the involution ε_G has no fixed points and the quotient $(\operatorname{Km} C)/\varepsilon_G$ is an Enriques surface (Proposition 5.1 and Remark 5.3).

The projection $(x:y:z:t) \mapsto (x:y:z)$ from the node (0:0:0:1) gives a rational map of degree two from the quartic Km C to \mathbf{P}^2 . The Galois group of this double cover is generated by the involution

$$\beta: (x:y:z:t) \mapsto \left(x:y:z:\frac{q(yz,xz,xy)}{tq(x,y,z)}\right), \tag{2}$$

which commutes with ε_G and descends to an involution σ_G of the Enriques surface $(\operatorname{Km} C)/\varepsilon_G$. Our main purpose of this article is to characterize $((\operatorname{Km} C)/\varepsilon_G, \sigma_G)$ as an Enriques surface with an involution, making use of the following:

Proposition 1. σ_G is numerically reflective.

Let S be an Enriques surface and \tilde{S} the covering K3 surface of S. We denote by ε the covering involution of $\tilde{S} \to S$ and by $H^-(S, \mathbb{Z})$, the anti-Enriques lattice, that is, the anti-invariant part of $H^2(\tilde{S}, \mathbb{Z})$ with respect to the action of ε^* . An involution σ of an Enriques surface S uniquely lifts to a symplectic involution σ_K of \tilde{S} , of which the associated map σ_K^* of $H^-(S, \mathbb{Z})$ acts trivially on $H^{2,0} \subset H^-(S, \mathbb{Z}) \otimes \mathbb{C}$ (Proposition 2.1). We denote by $H(S, \sigma; \mathbb{Z})$ the invariant part of $H^-(S, \mathbb{Z})$ under the action of σ_K^* . Both $H^-(S, \mathbb{Z})$ and $H(S, \sigma; \mathbb{Z})$ carry polarized Hodge structures of weight two.

When the involution σ is numerically reflective, $H(S, \sigma; \mathbf{Z})$ is isomorphic to either a) $\langle -4 \rangle \perp U(2) \perp U(2)$ or b) $\langle -4 \rangle \perp U(2) \perp U$ as a lattice (Proposition 3.2). If σ is σ_G , the involution constructed above, then the case a) occurs, and the converse is also true:

THEOREM 2. Let σ be a numerically reflective involution of an Enriques surface S such that $H(S, \sigma; \mathbf{Z})$ is isomorphic to $\langle -4 \rangle \perp U(2) \perp U(2)$. Then

- 1) there exists a unique curve C of genus two such that $H(S, \sigma; \mathbf{Z})$ and H^2 $(J(C), \Theta; \mathbf{Z})$ are isomorphic polarized Hodge structures (Lemmas 4.2, 4.3), and
- 2) (S,σ) is isomorphic to $((\operatorname{Km} C)/\varepsilon_G,\sigma_G)$, the pair constructed above.

See Remark 5.3 for explicit equations of $(\operatorname{Km} C)/\varepsilon_G$ and an example appear-

ing as a Hilbert modular surface attached to a certain congruence subgroup of $SL_2(\mathscr{O}_{\mathbf{Q}(\sqrt{2})})$. The case b) will be discussed elsewhere.

A Jacobiam Kummer surface Km C is expressed as the intersection of three diagonal quadrics $\sum_{i=1}^{6} x_i^2 = \sum_{i=1}^{6} \lambda_i x_i^2 = \sum_{i=1}^{6} \lambda_i^2 x_i^2 = 0$ in \mathbf{P}^5 for mutually distinct six constants $\lambda_1, \ldots, \lambda_6$. Hence we have 10 fixed-point-free involutions, e.g., $(x_1:x_2:x_3:x_4:x_5:x_6)\mapsto (x_1:x_2:x_3:-x_4:-x_5:-x_6)$, corresponding to the 10 odd theta characteristics of C. A Jacobian Kummer surface Km C has exactly 15 Göpel subgroups. A general Km C is expressed as the quartic Hessian surfaces in six different ways ([6], [3]) and accordingly has six involutions of Hutchinson-Weber type which are also free from fixed points.

Conjecture 3. If the Picard group of J(C) is infinitely cyclic, then a fixed-point-free involution ε of Km C is conjugate to one of the above 31 (= 10 + 15 + 6) involutions¹.

In the situation of the conjecture, the quotient group of $H^-(\operatorname{Km} C, \mathbb{Z})$ by the sum of the transcendental lattice and the anti-invariant Picard lattice is of order four. Our proof of Theorem 2 shows that the conjecture holds true when this abelian group is of type (2,2).

After a preparation on Kummer and Enriques surfaces in Sections 1 and 2, we compute the period of a numerically reflective involution in Sections 3 and 4. In Section 5, we construct a Hutchinson-Göpel involution ε_G of a Jacobian Kummer surface from its planar description. In Section 6, we compute the period of the Enriques surface (Km C)/ ε_G more explicitly, and prove Theorem 2 using an equivariant Torelli theorem for Enriques surfaces (Theorem 2.3).

NOTATIONS. Given an abelian group A, we denote by $A_{(2)}$ the two-torsion subgroup. A free \mathbb{Z} -module with an integral symmetric bilinear form is simply called a lattice. U denotes the lattice of rank two given by the symmetric matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. A_l, D_l and E_l are the negative definite root lattices of rank l of type A, D and E, respectively. For a lattice L and a rational number r, we denote by L(r) the lattice obtained by replacing the bilinear form (\cdot, \cdot) on L by $r(\cdot, \cdot)$.

1. Preliminary.

We recall some basic facts on the cohomology of Kummer surfaces. Let T be a two-dimensional complex torus. The minimal resolution of the quotient $T/\{\pm 1_T\}$ is called the Kummer surface of T and denoted by Km(T). Km(T) contains 16 mutually disjoint (-2) curves $N_a, a \in T_{(2)}$, parametrized by the two-torsion

¹This conjecture has been solved by H. Ohashi [13].

subgroup $T_{(2)} \simeq (\mathbf{Z}/2\mathbf{Z})^4$ of T. We denote by Γ_{Km} the primitive hull of the lattice generated by the 16 N_a 's. Let Λ be the orthogonal complement of Γ_{Km} in $H^2(Km(T), \mathbf{Z})$. Then Λ is the image of $H^2(T, \mathbf{Z})$ by the quotient morphism from the blow-up of T at $T_{(2)}$ onto Km(T). The following is well known ([1, Chapter VIII, Section 5]):

Lemma 1.1. $\Lambda \subset H^2(Km(T))$ is isomorphic to $H^2(T, \mathbb{Z})$ as a Hodge structure and to $H^2(T, \mathbb{Z})(2) \simeq U(2) \perp U(2) \perp U(2)$ as a lattice.

The discriminant group A_{Λ} of Λ is $((1/2)\Lambda)/\Lambda \simeq H^2(T, \mathbb{Z}/2\mathbb{Z})$ and the discriminant form q_{Λ} is essentially the cup product, that is, $q_{\Lambda}(\bar{y}) = (y \cup y)/2 \mod 2$ for $y \in H^2(T, \mathbb{Z})$.

Let $P \subset T_{(2)}$ be a subgroup of order four, or equivalently, a two-dimensional subspace of $T_{(2)}$ over the finite field \mathbf{F}_2 . We put $N_{P'} = \sum_{a \in P'} N_a \in \Gamma_{Km}$ for a coset P' of $P \subset T_{(2)}$. Noting that a one-dimensional vector space over \mathbf{F}_2 is identified with its (unique) basis, we denote the Plücker coordinate of $P^{\perp} \subset T_{(2)}^{\vee}$ by $\pi_P \in \bigwedge^2 T_{(2)}^{\vee} \simeq H^2(T, \mathbf{Z}/2\mathbf{Z})$ and regard it as an element of $\Lambda/2\Lambda$. The following is known ([1, Chaper VIII, Section 5]):

LEMMA 1.2. $(N_{P'} \mod 2) + \pi_P = 0$ holds in $H^2(Km(T), \mathbb{Z}/2\mathbb{Z})$ for every coset P' of $P \subset T_{(2)}$.

Let (A, Θ) be a *principally polarized* abelian surface, that is, Θ is an ample divisor with $(\Theta^2) = 2$. The orthogonal complement of $[\Theta]$ in $H^2(A, \mathbb{Z})$ is equipped with a polarized Hodge structure. We denote it by $H^2(A, \Theta; \mathbb{Z})$. As a lattice it is isomorphic to $\langle -2 \rangle \perp U \perp U$.

PROPOSITION 1.3. A polarized Hodge structure of weight two on the lattice $\langle -2 \rangle \perp U \perp U$ is isomorphic to $H^2(A, \Theta; \mathbf{Z})$ for a principally polarized abelian surface (A, Θ) . Moreover, such (A, Θ) is unique up to isomorphisms.

PROOF. A Hodge structure of weight 2 on the lattice $U \perp U \perp U$ is isomorphic to $H^2(T, \mathbb{Z})$ for a 2-dimensional complex torus T. Moreover, such T is unique up to an isomorphism and taking the dual (Shioda [14]). Our proposition is a direct consequence of these results.

Let $e^{2\Theta}: K(2\Theta) \times K(2\Theta) \to \mathbb{C}^*$ be the Weil pairing with respect to 2Θ ([2, Chaper 6]). The group $K(2\Theta)$ coincides with the two-torsion group $A_{(2)}$ and is naturally identified with $H_1(A, \mathbb{Z}/2\mathbb{Z})$. Via this identification, $e^{2\Theta}(\alpha, \beta) = 1$ is equivalent to ($[\Theta], \alpha \wedge \beta$) = 0, where (,) is the natural pairing between cohomology and homology.

DEFINITION 1.4. A subgroup G of the two-torsion group $A_{(2)}$ is $G\ddot{o}pel$ if it is of order four and totally isotropic with respect to the Weil pairing $e^{2\Theta}$.

Let $P \subset A_{(2)} \simeq H_1(A, \mathbb{Z}/2\mathbb{Z})$ be a subgroup of order four and $\pi_P \in H^2(A, \mathbb{Z}/2\mathbb{Z})$ be the Plücker coordinate of $P^{\perp} \subset H^1(A, \mathbb{Z}/2\mathbb{Z})$. π_P belongs to $H^2(A, \Theta; \mathbb{Z}/2\mathbb{Z})$ if and only if it is perpendicular to $\Theta \mod 2$. Hence we have

LEMMA 1.5. The Plücker coordinate π_P belongs to $H^2(A, \Theta; \mathbb{Z}/2\mathbb{Z})$ if and only if P is Göpel.

The Jacobian J(C) of a curve C of genus two is a principally polarized abelian surface. An involution γ of C is called *bi-elliptic* if the quotient C/γ is an elliptic curve E. In this case, E is embedded into J(C) as the fixed locus of the action of γ on J(C). The two-torsion subgroup $E_{(2)}$ is a Göpel subgroup of J(C), and denoted by G_{γ} .

DEFINITION 1.6. A Göpel subgroup G, or more precisely, a pair (C, G) is bi-elliptic if C has a bi-elliptic involution γ with $G = G_{\gamma}$.

The composite γ' of a bi-elliptic involution γ and the hyper-elliptic involution is again a bi-elliptic involution of C. The Jacobian J(C) contains $E' := C/\gamma'$ as the fixed locus of the action of γ' . The intersection $E \cap E'$ in J(C) coincides with the common two-torsion subgroups $E_{(2)} = E'_{(2)}$. Hence J(C) is the quotient of $E \times E'$ by a subgroup of order four contained in $E_{(2)} \times E'_{(2)}$. The involution γ , or equivalently γ' , induces an involution of the Kummer surface Km C without fixed points outside two \mathbf{P}^1 's:

LEMMA 1.7. Let γ be a bi-elliptic involution of C and $\operatorname{Km} \gamma$ (resp. $J(\gamma)$) be the involution of $\operatorname{Km} C$ (resp. J(C)) induced by γ . Then the fixed locus of $\operatorname{Km} \gamma$ is the union of two \mathbf{P}^1 's which are the images of two elliptic curves $E = \operatorname{Fix} J(\gamma)$ and $E' = \operatorname{Fix} J(\gamma')$.

2. Involutions of Enriques surfaces.

Let S be a (minimal) Enriques surface, that is, a compact complex surface with $H^1(\mathcal{O}_S) = H^2(\mathcal{O}_S) = 0$ and $2K_S \sim 0$. Let \tilde{S} be the universal cover, which is a K3 surface, and let ε be the covering involution of \tilde{S} . Consider the action ε^* on $H^2(\tilde{S}, \mathbb{Z}) \simeq \mathbb{Z}^{22}$. The invariant part coincides with the pull-back of $H^2(S, \mathbb{Z})$ by $\tilde{S} \to S$, and the anti-invariant part $H^-(S, \mathbb{Z})$ is isomorphic to $E_8(2) \perp U(2) \perp U$ as a lattice ([1, Chapter VIII]).

Let σ be a (holomorphic) involution of S. σ is lifted to an automorphism $\tilde{\sigma}$ of the covering K3 surface \tilde{S} . Its square $\tilde{\sigma}^2$ is either the identity or the covering

involution ε . The latter is impossible since, in this case, $\tilde{\sigma}$ is free from fixed points and its order necessarily divides $\chi(\mathscr{O}_{\tilde{S}}) = 2$. Hence σ is lifted to two involutions $\tilde{\sigma}$ and $\tilde{\sigma}\varepsilon$ of \tilde{S} .

An involution of a K3 surface is called *symplectic* (resp. *anti-symplectic*) if it acts trivially (resp. as -1) on the space $H^0(\tilde{S}, \Omega^2)$ of holomorphic 2-forms. Distinguishing the two lifts by their actions on 2-forms, we have

PROPOSITION 2.1. There exist exactly two lifts $\sigma_K, \sigma_R \in \operatorname{Aut} \tilde{S}$ of $\sigma \in \operatorname{Aut} S$, where σ_K is a symplectic involution and σ_R an anti-symplectic one.

Let $H(S, \sigma; \mathbf{Z})$ (resp. $H_{-}(S, \sigma; \mathbf{Z})$) be the invariant (resp. the anti-invariant) part of the action of σ_K^* on $H^{-}(S, \mathbf{Z})$. $H(S, \sigma; \mathbf{Z})$ is endowed with a non-trivial polarized Hodge structure of weight 2, which we regard as the period of (S, σ) . The lattice $H^{-}(S, \mathbf{Z})$ contains the orthogonal direct sum $H(S, \sigma; \mathbf{Z}) \perp H_{-}(S, \sigma; \mathbf{Z})$ as a sublattice of finite index. More precisely, the quotient group

$$D_{\sigma} := \frac{H^{-}(S, \mathbf{Z})}{[H_{-}(S, \sigma; \mathbf{Z}) \oplus H(S, \sigma; \mathbf{Z})]}$$
(3)

is 2-elementary. We call this quotient D_{σ} the patching group of σ .

The global Torelli theorem for K3 surfaces (resp. Enriques surfaces) is generalized to that for pairs of K3 surfaces (resp. Enriques surfaces) and involutions.

Theorem 2.2. Let X and X' be two K3 surfaces and let τ and τ' be involutions of X and X', respectively. If there exists an orientation preserving Hodge isometry $\alpha: H^2(X', \mathbf{Z}) \to H^2(X, \mathbf{Z})$ such that the diagram

$$\begin{array}{ccc} H^2(X',\mathbf{Z}) \stackrel{\alpha}{\longrightarrow} H^2(X,\mathbf{Z}) \\ \downarrow^{\tau'^*} & & \downarrow^{\tau^*} \\ H^2(X',\mathbf{Z}) \stackrel{\alpha}{\longrightarrow} H^2(X,\mathbf{Z}) \end{array}$$

commutes, then there exists an isomorphism $\varphi: X \to X'$ such that $\varphi \circ \tau = \tau' \circ \varphi$.

PROOF. If neither τ nor τ' has a fixed point, this is the global Torelli theorem for Enriques surfaces. The proof in [1, Chapter VIII, Section 21], especially its key Proposition (21.1), works also in our general case as follows.

Let h' be a τ' -invariant ample divisor class of X' and put $h = \alpha(h')$. By our assumption, h is τ -invariant and belongs to the positive cone of $H^{1,1}(X, \mathbb{Z})$. If h is ample, we are done by the global Torelli theorem for K3 surfaces. If not, there exists a (-2) curve $D \simeq \mathbb{P}^1$ with $(h.D) \leq 0$. Since $(h.D + \tau(D)) = 2(h.D) \leq 0$,

 $D + \tau(D)$ is not nef. Hence we have $(D.\tau(D)) = 1,0$ or -2. Replace α with $r_{D+\tau(D)} \circ \alpha$ if $(D,\tau(D)) = 1$, with $r_D \circ r_{\tau(D)} \circ \alpha$ if $(D,\tau(D)) = 0$ and with $r_D \circ \alpha$ if $(D,\tau(D)) = -2$, where r_D is the reflection with respect to a (-2) divisor class D. Then we have $(\alpha(h').D) > 0$. Repeating this process, $\alpha(h')$ becomes ample after a finitely many steps.

Theorem 2.3. Let S and S' be two Enriques surfaces and let σ and σ' be involutions of S and S', respectively. If there exists an orientation preserving Hodge isometry $\alpha: H^-(S', \mathbf{Z}) \to H^-(S, \mathbf{Z})$ such that the diagram

$$H^{-}(S', \mathbf{Z}) \xrightarrow{\alpha} H^{-}(S, \mathbf{Z})$$

$$\downarrow^{\sigma^{*}} \qquad \qquad \downarrow^{\sigma^{*}}$$

$$H^{-}(S', \mathbf{Z}) \xrightarrow{\alpha} H^{-}(S, \mathbf{Z})$$

commutes, then there exists an isomorphism $\varphi: S \to S'$ such that $\varphi \circ \sigma = \sigma' \circ \varphi$.

PROOF. Let \tilde{S} and \tilde{S}' be the covering K3 surfaces. Each has an action of $G := \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. It suffices to show a G-equivariant Torelli theorem for K3 surfaces \tilde{S} and \tilde{S}' . (The remaining part is the same as the usual global Torelli theorem for Enriques surfaces.) The proof goes as the preceding theorem if the G-orbit of D consists of one or two irreducible components. Assume that the G-orbit of D has four irreducible components and let D be the sublattice spanned by them. If D is negative definite, then D is of type D is positive by the Hodge index theorem.

3. Period of a numerically reflective involution.

In this section and the next we assume that σ is numerically reflective and study the patching group D_{σ} (defined by the formula (3)) in detail.

Let $H^2(S, \mathbf{Z})_f$ be the torsion free part of $H^2(S, \mathbf{Z})$. σ acts on $H^2(S, \mathbf{Z})_f$ as a reflection with respect to a class $e = e_{\sigma}$. Since $H^2(S, \mathbf{Z})_f$ is an even unimodular lattice with respect to the intersection form, we have $(e^2) = -2$. Let N_R and N_K be the anti-invariant part of the action of σ_R and σ_K , respectively. Both N_R and N_K contains the pull-back $\tilde{e} \in H^2(\tilde{S}, \mathbf{Z})$ of e. The orthogonal complement of \tilde{e} in N_R is $H(S, \sigma; \mathbf{Z})$, and that in N_K is $H_-(S, \sigma; \mathbf{Z})$. Since N_K is isomorphic to $E_8(2)$ ([9, Section 5], [11, Lemma 2.1]), we have

LEMMA 3.1.
$$H_{-}(S, \sigma; \mathbf{Z}) \simeq E_{7}(2)$$
.

In particular, the discriminant group A_{-} of $H_{-}(S, \sigma; \mathbf{Z})$ is $u(2)^{\pm 3} \perp (4)$, whose underlying group is $(\mathbf{Z}/2\mathbf{Z})^{\oplus 6} \oplus (\mathbf{Z}/4\mathbf{Z})$, in the notation of [12, Section 1]. There are two lattice-types of numerically reflective involutions:

PROPOSITION 3.2. The patching group D_{σ} is of order 2^a and $H(S, \sigma; \mathbf{Z})$ is isomorphic to $\langle -4 \rangle \perp U(2) \perp U(a)$ for a = 1 or 2.

PROOF. The lattice $H_{-}(S, \sigma; \mathbf{Z})$ is not 2-elementary by the above lemma. Since $H^{-}(S, \mathbf{Z})$ is 2-elementary, D_{σ} is not trivial. Let $a \geq 1$ be the length of the patching group D_{σ} . Then we have

$$[\operatorname{disc} H^{-}(S, \mathbf{Z})] \cdot 2^{2a} = [\operatorname{disc} H_{-}(S, \sigma; \mathbf{Z})] \cdot [\operatorname{disc} H(S, \sigma; \mathbf{Z})].$$

The discriminant group of $H^-(S, \mathbb{Z})$ is an abelian groups of type (2^{10}) . By the above lemma, the discriminant of $H(S, \sigma; \mathbb{Z})$ equals $-2^{(2+2a)}$. More precisely, the discriminant group A_+ of $H(S, \sigma; \mathbb{Z})$ is an abelian group of type $(2^{2a}, 4)$. Since $H(S, \sigma; \mathbb{Z})$ is of rank 5, we have $a \leq 2$.

If a=2, then $H(S,\sigma;\mathbf{Z})(1/2)$ is an even (integral) lattice with discriminant -2. Hence $H(S,\sigma;\mathbf{Z}))(1/2)$ is isomorphic to $\langle -2 \rangle \perp U \perp U$ by Kneser's uniqueness theorem for indefinite lattices ([12, Section 1]). If a=1, then we have $H(S,\sigma;\mathbf{Z}) \simeq \langle -4 \rangle \perp U(2) \perp U$ by the uniqueness theorem again.

The lattice $H^-(S, \mathbf{Z})$ is a \mathbf{Z} -submodule of the direct sum $H_-(S, \sigma; \mathbf{Q}) \oplus H(S, \sigma; \mathbf{Q})$. Hence the patching group D_{σ} is a subgroup of the discriminant group $A_- \perp A_+$ of the lattice $H_-(S, \sigma; \mathbf{Z}) \perp H(S, \sigma; \mathbf{Z})$. The discriminant group A_+ is either $u(2)^{\perp 2} \perp (4)$ or $u(2) \perp (4)$.

Both A_{-} and A_{+} contains exactly one copy of $\mathbb{Z}/4\mathbb{Z}$ as their direct summand. Let $\zeta_{\pm} \in A_{\pm}$ be the unique element which is twice an element η_{\pm} of order four. We call $(\zeta_{-}, \zeta_{+}) \in A_{-} \perp A_{+}$ the canonical element.

LEMMA 3.3. D_{σ} contains the canonical element (ζ_{-}, ζ_{+}) .

PROOF. Both $H_-(S, \sigma; \mathbf{Q})$ and $H(S, \sigma; \mathbf{Q})$ are primitive in $H^-(S, \mathbf{Q})$. Hence D_{σ} does not contain $(0, \zeta_+)$ or $(\zeta_-, 0)$. Hence the intersection $D_{\sigma} \cap (2A_- \oplus 2A_+)$ is either 0 or generated by (ζ_-, ζ_+) . We consider the intersection number of an element of D_{σ} and (η_-, η_+) . Since the intersection number of (ζ_-, ζ_+) and (η_-, η_+) is zero (in \mathbf{Q}/\mathbf{Z}), the intersection number with (η_-, η_+) is a linear form on \bar{D}_{σ} , the image of D_{σ} in $A := (A_-)_{(2)}/\{0, \zeta_-\} \oplus (A_+)_{(2)}/\{0, \zeta_+\}$. Since the induced bilinear form on the group A is non-degenerate, there exists an element $(\beta_-, \beta_+) \in A_- \oplus A_+$ whose intersection number with D_{σ} is the same as (η_-, η_+) . It follows that $(\eta_- + \beta_-, \eta_+ + \beta_+)$ is perpendicular to D_{σ} . Since D_{σ}^+/D_{σ} is 2elementary, $2 \times (\eta_- + \beta_-, \eta_+ + \beta_+) = (\zeta_-, \zeta_+)$ is contained in D_σ .

The patching group D_{σ} is generated by the canonical element (ζ_{-}, ζ_{+}) when it is of order two.

LEMMA 3.4. If D_{σ} is of order four, then D_{σ} is generated by the canonical element and an element $(\pi_{-}, \pi_{+}) \in A_{-} \oplus A_{+}$ of order two such that $q_{-}(\pi_{-}) = q_{+}(\pi_{+}) = 0 \in \mathbb{Q}/2\mathbb{Z}$, where q_{\pm} are the quadratic forms on A_{\pm} .

PROOF. $D_{\sigma} \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}$ is generated by (ζ_{-}, ζ_{+}) and an element (π_{-}, π_{+}) . Since D_{σ} is totally isotropic, we have $q_{-}(\pi_{-}) = q_{+}(\pi_{+})$. This common value belongs to $\mathbf{Z}/2\mathbf{Z}$. If it is non-zero, replace π_{\pm} with $\zeta_{\pm} + \pi_{\pm}$. Then we have $q_{-}(\pi_{-}) = q_{+}(\pi_{+}) = 0$.

4. Numerically reflective involution with ord $D_{\sigma} = 4$.

Let σ be a numerically reflective involution of an Enriques surface S and assume that the patching group D_{σ} is of order four. By Propositions 1.3 and 3.2, we have

PROPOSITION 4.1. There exists a principally polarized abelian surface (A, Θ) such that $H(S, \sigma; \mathbf{Z})$ is isomorphic to $H^2(A, \Theta; \mathbf{Z})(2)$ as a polarized Hodge structure.

Let $\pi_+ \in (A_+)_{(2)}$ be as in Lemma 3.4. Since $q_+(\pi_+) = 0$, π_+ is the Plücker coordinate of a subgroup $G_{\sigma} \subset A_{(2)}$ of order four. Since $(A_+)_{(2)}$ is the orthogonal complement of $[\Theta/2]$ in $H^2(A,((1/2)\mathbf{Z})/\mathbf{Z})$, G_{σ} is Göpel (Definition 1.4 and Lemma 1.5).

LEMMA 4.2. (A, Θ) in Proposition 4.1 is not a product of two elliptic curves. In particular, (A, Θ) is the Jacobian of a curve C_{σ} of genus two.

PROOF. Assume that (A, Θ) is the product $E_1 \times E_2$ (as a polarized abelian surface). Then $E_1 \times 0 - 0 \times E_2$, the difference of two fibers, is a (-2)-class in $H^2(A, \Theta; \mathbf{Z})$. Let D_+ be its image in $H(S, \sigma; \mathbf{Z})$. Then $(D_+^2) = -4$ and $D_+/4$ represents an element $\eta_+ \in A_+$ of order four. Hence $D_+/2$ represents the class ζ_+ in the discriminant group A_+ . Let \tilde{e} be the pull-back of $e = e_{\sigma} \in H^2(S, \mathbf{Z})_f$ as in Section 3. Then $\tilde{e} + D_+$ is divisible by two in $H^2(\tilde{S}, \mathbf{Z})$ and $(\tilde{e} + D_+)/2$ is an algebraic (-2)-class in N_R . This is a contradiction since N_R is the anti-invariant part of the involution or σ_R .

LEMMA 4.3. The pair (C_{σ}, G_{σ}) is not bi-elliptic (see Definition 1.6).

PROOF. The proof is similar to the preceding lemma. Assume that (C_{σ}, G_{σ}) is bi-elliptic. Since $(\Theta.E) = 2$, $\Theta - E$ is a (-2)-class in $H^2(A, \Theta; \mathbf{Z})$. Let D_+ be its image in $H(S, \sigma; \mathbf{Z})$. Then $(D_+^2) = -4$ and $D_+/2$ represents the class $\zeta_+ + \pi_+$ in A_+ . $(D_- + D_+)/2$ belongs to $H^-(S, \mathbf{Z})$ if D_- belongs to $H_-(S, \sigma; \mathbf{Z})$ and $D_-/2$ represents $\zeta_- + \pi_-$. Since $q_-(\zeta_- + \pi_-) = 1$ and since $H_-(S, \sigma; \mathbf{Z})$ is isomorphic to $E_7(2)$, there is such a D_- with $(D_-^2) = -4$. For this choice, $(D_- + D_+)/2$ is an algebraic (-2)-class. This is a contradiction since $H^-(S, \mathbf{Z})$ is the anti-invariant part of the involution ε .

Summarizing this section, we have

PROPOSITION 4.4. There exists a unique non-bi-elliptic pair (C_{σ}, G_{σ}) of a curve C_{σ} and a Göpel subgroup G_{σ} of $J(C_{\sigma})$ with the following properties:

- (1) $H(S, \sigma; \mathbf{Z}) \simeq H^2(J(C_{\sigma}), \Theta; \mathbf{Z})(2)$ as a polarized Hodge structure, and
- (2) the patching subgroup D_{σ} is generated by the canonical element and an element (π_{-}, π_{+}) such that π_{+} is the Plücker coordinate of G_{σ} .

In the subsequent sections, we conversely construct a numerically reflective involutions σ_G of an Enriques surface from such a pair (C, G) as above (Proposition 6.4).

5. Hutchinson-Göpel involution.

Hutchinson [7] discovered an equation which implies (1) by means of theta functions. In this section we describe the automorphism ε_G in a more elementary manner without using the equation (cf. Remark 6.3).

Let C be a curve of genus two and J(C) its Jacobian. By the natural morphism $Sym^2 C \to J(C)$ and Abel's theorem, the second symmetric product $Sym^2 C$ of C is the blow-up of J(C) at the origin. Let $\overline{Sym^2}C$ be the quotient of $Sym^2 C$ by the involution induced by the hyper-elliptic involution.

Since C is a double cover of the projective line \mathbf{P}^1 with six branch points, $\overline{Sym^2}\,C$ is the double cover of $Sym^2\,\mathbf{P}^1\simeq\mathbf{P}^2$ with branch six lines l_1,\ldots,l_6 . Moreover, these six lines are tangent lines of the conic Q corresponding to the diagonal $\mathbf{P}^1\hookrightarrow Sym^2\,\mathbf{P}^1$. Note that the double cover has 15 nodes over 15 intersections $p_{i,j}=l_i\cap l_j,\ 1\leq i< j\leq 6$. These correspond to the 15 non-zero two-torsions of J(C). The minimal resolution of this double cover $\overline{Sym^2}\,C$ is the Jacobian Kummer surface Km C.

Three nodes on $\overline{Sym^2} C$ are called $G\"{o}pel$ if they correspond to the three non-zero elements of a G\"{o}pel subgroup of $J(C)_{(2)}$. More explicitly, a triple $(p_{ij}, p_{i'j'}, p_{i''j''})$ of nodes is G\"{o}pel if and only if all suffixes i, j, \ldots, j'' are distinct. Hence the G\"{o}pel subgroups correspond to the decompositions of the six

Weierstrass points of C into three pairs. Therefore, there are exactly 15 Göpel subgroups.

We now construct an involution of $\operatorname{Km} C$ for each Göpel subgroup G. The construction differs a lot according as the Göpel triple is collinear or not. First we consider the non-collinear case, which we are most interested in.

Assume that three points p,q,r on P^2 are not collinear. A birational automorphism $\varphi: P^2 \cdots \to P^2$ is called a Cremona involution with center p,q,r if there is a linear coordinate (x:y:z) of P^2 such that p,q,r is the three vertices of the triangle xyz=0 and that φ is the quadratic Cremona transformation $(x:y:z) \mapsto (x^{-1}:y^{-1}:z^{-1})$. Given a triple $p,q,r \in P^2$, there is a two-parameter family of Cremona involutions with center p,q,r.

PROPOSITION 5.1. Assume that a Göpel triple (p_{14}, p_{25}, p_{36}) of G is not collinear. Then there exists a unique quadratic Cremona transformation φ with center p_{14}, p_{25} and p_{36} which maps the line l_i onto l_{i+3} for i=1,2,3.

PROOF. We choose a linear coordinate (x:y:z) of \mathbf{P}^2 such that p_{14}, p_{25} and p_{36} are the vertices of the triangle xyz=0. Then the six lines are given by

$$l_i: y = \alpha_i x \ (i = 1, 4), \quad l_j: z = \alpha_j y \ (j = 2, 5) \text{ and } l_k: x = \alpha_k z \ (k = 3, 6)$$

for $\alpha_1, \ldots, \alpha_6 \in \mathbb{C}^*$. Let

$$\check{Q}: a'x^2 + b'y^2 + c'z^2 + d'yz + e'xz + f'xy = 0$$

be the dual of the conic Q to which the six lines are tangent. Then we have

$$\alpha_1 \alpha_4 = \frac{a'}{b'}, \quad \alpha_2 \alpha_5 = \frac{b'}{c'}, \quad \alpha_3 \alpha_6 = \frac{c'}{a'}$$

and hence $\prod_{i=1}^6 \alpha_i = 1$. The Cemona involution $(x:y:z) \mapsto (A/x:B/y:1/z)$ satisfies our requirement if and only if $A = \alpha_3 \alpha_6$ and $B = \alpha_2^{-1} \alpha_5^{-1}$.

The Cremona involution φ in the proposition is lifted to two involutions of Km C. One is symplectic and has eight fixed points over the four fixed points of φ . The other has no fixed points (cf. (1) of Remark 5.3). We call the latter the Hutchinson involution associated with the Göpel subgroup G and denote by ε_G . Since the covering involution β commutes with ε_G , it induces an involution of the Enriques surface (Km C)/ ε_G , which we denote by σ_G .

Now we assume that a Göpel triple, say (p_{14}, p_{25}, p_{36}) , lies on a line l. Let p be the point whose polar with respect to the conic Q is l and $\tilde{\gamma}$ be the involution

of P^2 whose fixed locus is the union of l and p. Then $\tilde{\gamma}$ maps Q onto itself and interchanges p_i and p_{i+3} for i=1,2 and 3. $\tilde{\gamma}$ induces involutions of Km C and C. The following is easily verified:

PROPOSITION 5.2. A Göpel triple of nodes is collinear if and only if (C,G) is bi-elliptic. Furthermore, the involution of Km C constructed above is the same as Km γ in Lemma 1.7.

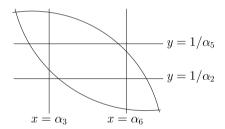
Hence we have constructed an Enriques surface $(\operatorname{Km} C)/\varepsilon_G$ with an involution σ_G for every non-bi-elliptic pair (C,G).

REMARK 5.3. Let $\alpha_1, \ldots, \alpha_6$ be as in the proof of Proposition 5.1.

(1) The Kummer surface $\operatorname{Km} C$ is the minimal resolution of the double cover

$$\bar{S}: \tau^2 = (y - \alpha_1 x)(y - \alpha_4 x)(\alpha_2 y - 1)(\alpha_5 y - 1)(x - \alpha_3)(x - \alpha_6)$$

of $P^1 \times P^1$, where (x, y) is an inhomogeneous coordinate of $P^1 \times P^1$.



The involution

$$\bar{\varepsilon}_G: (\tau, x, y) \mapsto \left(-\frac{AB\tau}{x^2y^2}, \frac{A}{x}, \frac{B}{y}\right), \quad A = \alpha_3 \alpha_6, \ B = \alpha_2^{-1} \alpha_5^{-1}$$

of \bar{S} has no fixed points. The K3 surface \bar{S} has fourteen nodes and $(\operatorname{Km} C)/\varepsilon_G$ is the minimal resolution of the Enriques surface $\bar{S}/\bar{\varepsilon}_G$ with seven nodes.

(2) The Enriques surface $(\operatorname{Km} C)/\varepsilon_G$ is the minimal model of the double plane with branch the plane curve

$$x_1x_2x_3x_4(x_1x_4 - c_1x_2x_3)(x_2x_4 - c_2x_1x_3)(x_3x_4 - c_3x_1x_2) = 0$$

of degree 10 and σ_G is induced by the covering involution, where $(x_1:x_2:x_3)$ is a coordinate of \mathbf{P}^2 , $x_4=-x_1-x_2-x_3$ and we put $c_i=(\sqrt{\alpha_i}-\sqrt{\alpha_{i+3}})^2/(\sqrt{\alpha_i}+\sqrt{\alpha_{i+3}})^2$ for i=1,2,3. In the case $\alpha_1+\alpha_4=\alpha_2+\alpha_5=\alpha_3+\alpha_6=0$, Km C is

the minimal model of the Hilbert modular surface $H^2/\Gamma(2)$ associated with the principal congruence subgroup $\Gamma(2)$ of $SL_2(\mathcal{O}_{\mathbf{Q}(\sqrt{2})})$ for the ideal (2), and ε_G is induced by the matrix $\begin{pmatrix} 1+\sqrt{2} & 0 \\ 0 & -1+\sqrt{2} \end{pmatrix}$ (Hirzebruch [5, Section 4], [4, Chapter 8]).

6. Period of $(\operatorname{Km} C)/\varepsilon_G$.

Returning to the case where (C,G) is not bi-elliptic, we compute the periods of the Enriques surface $(\operatorname{Km} C)/\varepsilon_G$ and the involution σ_G . The Jacobian Kummer surface $\operatorname{Km} C$ is a double cover of the blow-up R of \mathbf{P}^2 at the 15 points p_{ij} , $1 \leq i < j \leq 6$. The pull-back of $H^2(R,\mathbf{Q})$ has $\{h,N_{ij}, 1 \leq i < j \leq 6\}$ as a \mathbf{Q} -basis, where h is the pull-back of a line and N_{ij} is the (-2) curves over p_{ij} .

We assume for simplicity that the Göpel triple is (p_{14}, p_{25}, p_{36}) . Let \bar{R} be the blow-up of P^2 at p_{14}, p_{25} and p_{36} . The Cremona involution φ in Proposition 5.1 acts on the Picard group of \bar{R} as the reflection with respect to the (-2)-class $l - E_{14} - E_{25} - E_{36}$, where E_{14}, E_{25} and E_{36} are the exceptional curves. φ interchanges $p_{i,j}$ with $p_{i+3,j+3}$, and $p_{i,j+3}$ with $p_{j,i+3}$ for $1 \le i < j \le 3$. Hence we have

Proposition 6.1. The action of ε_G on the pull-back of $H^2(R, \mathbf{Q})$ is the composite of the permutation

$$N_{i,j} \leftrightarrow N_{i+3,j+3}, \quad N_{i,j+3} \leftrightarrow N_{j,i+3} \quad (1 \le i < j \le 3)$$

of type $(2)^6$ and the reflection with respect to the (-4)-class $h - N_{14} - N_{25} - N_{36}$.

By the proposition,

$$\{h - N_{14} - N_{25} - N_{36}, N_{ij} - N_{i+3,j+3}, N_{i,j+3} - N_{j,i+3}\},$$
 (4)

with $1 \leq i < j \leq 3$, is a \boldsymbol{Q} -basis of $H_{-}(\operatorname{Km} C/\varepsilon_{G}, \sigma_{G}; \boldsymbol{Q})$. N_{0} , the $(-2)\boldsymbol{P}^{1}$ over the origin, maps onto the conic Q.

Proposition 6.2. $h - N_0$ is invariant by ε_G and anti-invariant by β .

PROOF. There exists a cubic curve D: r(x,y,z)=0 such that $D\cap C$ consists of the 6 tangent points $l_i\cap Q$, $1\leq i\leq 6$. The union of 6 lines is defined by $r(x,y,z)^2-q(x,y,z)s(x,y,z)$ for a suitable quartic form s(x,y,z). Choose a cubic curve D such that it passes the Göpel triple. Then the quartic curve s(x,y,z)=0 is singular at the Göpel triple. By the Cremona symmetry, s(x,y,z) is a constant multiple of q(yz,xz,xy). Hence the double cover $\overline{Sym^2}\,C$ is defined by

$$\tau^{2} = r(x, y, z)^{2} - cq(x, y, z)q(yz, xz, xy)$$
 (5)

for a constant $c \in \mathbb{C}^*$. The rational function $\{r(x,y,z) + \tau\}/\{r(x,y,z) - \tau\}$ on Km C gives a rational equivalence between two divisors $N_0 + \beta \varepsilon_G(N_0)$ and $\varepsilon_G(N_0) + \beta(N_0)$. Hence $\beta(N_0) - N_0$ is ε_G -invariant. Since $\beta(N_0) + N_0$ is linearly equivalent to 2h, we have our proposition.

REMARK 6.3. By (5) the linear system $|h + N_0|$ gives a birational morphism from the double cover $\overline{Sym^2}C$ to the quartic $cq(x,y,z)t^2 + 2r(x,y,z)t + q(yz,xz,xy) = 0$ in \mathbf{P}^3 , which is essentially the equation (1).

By Propositions 6.1 and 6.2,

$$\{h - N_0, h - N_{14}, h - N_{25}, h - N_{36}, N_{ij} + N_{i+3,j+3}, N_{i,j+3} + N_{j,i+3}\},$$
 (6)

with $1 \le i < j \le 3$, is an orthogonal \mathbf{Q} -basis of $\pi^* H^2(\operatorname{Km} C/\varepsilon_G, \mathbf{Q})$. In particular, σ_G acts on $\pi^* H^2(\operatorname{Km} C/\varepsilon_G, \mathbf{Q})$ as the reflection with respect to $h - N_0$. Hence we have

PROPOSITION 6.4. The involution σ_G of the Enriques surface $(\operatorname{Km} C)/\varepsilon_G$ is numerically reflective.

Moreover, the inverse of the correspondence $(S, \sigma) \mapsto (C_{\sigma}, G_{\sigma})$ of Proposition 4.4 is given by this construction $(C, G) \mapsto (\operatorname{Km} C/\varepsilon_G, \sigma_G)$:

Proposition 6.5.

- (1) The polarized Hodge structure $H(\operatorname{Km} C/\varepsilon_G, \sigma_G; \mathbf{Z})$ is isomorphic to $H^2(J(C), \Theta; \mathbf{Z})(2)$.
- (2) The patching group of σ_G is of order four, and generated by the canonical element and (π_-, π_G) , where π_G is the Plücker coordinate of G.

PROOF. By (4) and (6), $H(\operatorname{Km} C/\varepsilon_G, \sigma_G; \mathbf{Z})$ is the orthogonal complement of the lattice generated by the 17 classes h, N_0 and $N_{ij}, 1 \leq i < j \leq 6$, in $H^2(\operatorname{Km} C, \mathbf{Z})$. Let $H \in H^2(\operatorname{Km} C, \mathbf{Z})$ be the (4)-class in Λ corresponding to $\Theta \in H^2(J(C), \mathbf{Z})$ in the way of Lemma 1.1. It is easily checked that $H = h + N_0$. Hence we have (1).

The patching group is order four by (1) and Proposition 3.2 since $H^2(J(C), \Theta; \mathbf{Z})(2) \simeq \langle -4 \rangle \perp U(2) \perp U(2)$. By Proposition 6.1, both $N_{12} - N_{45}$ and $N_{15} - N_{24}$ belong to $H_-(\operatorname{Km} C/\varepsilon_G, \sigma_G; \mathbf{Z})$. Since the two-torsion points p_{12}, p_{45}, p_{15} and p_{24} form a coset of $G \subset J(C)_{(2)}$, ([$(N_{12} - N_{45} + N_{15} - N_{24})/2$], π_G) belongs to the patching group of σ_G by Lemma 1.2.

PROOF OF THEOREM 2. Let σ be a numerically reflective involution of an Enriques surface S and assume that the patching group D_{σ} is of order four. Let

 (C_{σ}, G_{σ}) be as in Proposition 4.4 and σ' be the numerically reflective involution σ_G of the Enriques surface $S' := \operatorname{Km} C/\varepsilon_G$ for $C = C_{\sigma}$ and $G = G_{\sigma}$. By Proposition 6.5, $H(S, \sigma; \mathbf{Z})$ is isomorphic to $H(S', \sigma'; \mathbf{Z})$ as a polarized Hodge structure. Moreover, the A_+ -components of their patching groups are the same. Both are generated by ζ_+ and the Plücker coordinate π_G of G.

Now we look at the A_- -components. Two lattices $H_-(S, \sigma; \mathbf{Z})$ and $H_-(S', \sigma'; \mathbf{Z})$ are $E_7(2)$ by Lemma 3.1. The A_- -components of patching groups are generated by ζ_+ and π_- with $q_-(\pi_-) = 0$. The Weyl group W of E_7 acts on $A_- \simeq u(2)^{\perp 3} \perp (4)$ preserving ζ_- . There are 63 α 's with $q_-(\alpha) = 0$ in $(A_-)_{(2)}$ and W acts transitively on them. Hence a Hodge isometry between $H(S, \sigma; \mathbf{Z})$ and $H(S', \sigma'; \mathbf{Z})$ extends to a $\mathbf{Z}/2\mathbf{Z}$ -equivariant Hodge isometry between $H^-(S, \mathbf{Z})$ and $H^-(S', \mathbf{Z})$. Now the theorem follows from Theorem 2.3.

References

- W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, 1984.
- [2] C. Birkenhake and H. Lange, Complex Abelian Varieties, Springer-Verlag, 2004.
- [3] I. V. Dolgachev and J. H. Keum, Birational automorphisms of quartic Hessian surfaces, Trans. Amer. Math. Soc., 354 (2002), 3031–3057.
- [4] G. van der Geer, Hilbert Modular Surfaces, 2nd ed., Springer-Verlag, 1988.
- [5] F. Hirzebruch, The ring of Hilbert modular forms for real quadratic fields of small discriminant, "Modular functions of one variable VI", Lecture Notes in Math., 627 (1977), 287–323.
- [6] J. I. Hutchinson, The Hessian of the cubic surface, Bull. Amer. Math. Soc., 5 (1899), 282–292: II, ibid, 6 (1900), 328–337.
- [7] J. I. Hutchinson, On some birational transformations of the Kummer surface into itself, Bull. Amer. Math. Soc., 7 (1901), 211–217.
- [8] J. H. Keum, Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J., ${\bf 118}$ (1990), 99–110.
- [9] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math., 75 (1984), 105–121.
- [10] S. Mukai, Numerically trivial involutions of Kummer type of an Enriques surface, Kyoto J. Math., 50 (2010), 889–902.
- [11] S. Mukai and Y. Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math., 77 (1984), 383–397.
- [12] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat., 43 (1979), 111–177 (Russian); Math. USSR-Izv., 14 (1980), 103–167.
- [13] H. Ohashi, Enriques surfaces covered by Jacobian Kummer surfaces, Nagoya Math. J., 195 (2009), 165–186.
- [14] T. Shioda, The period map of abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 25 (1978), 47–59.

Shigeru Mukai

Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502, Japan E-mail: mukai@kurims.kyoto-u.ac.jp