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Abstract

This is a survey of two recent papers [8, 13] in which were introduced new methods for constructing
1-cocycles in the space of knots. The construction from [13] is a natural adaptation of Polyak-Viro’s
formulas for finite-type knot invariants; it is conjectured to give the first combinatorial formulas for $\mathbb{Z}-$

valued Vassiliev 1-cocycles. In [8], the cocycles take values in skein modules associated with quantum
knot invariants; conjecturally, the examples produced detect information regarding the geometry of
knots.

For a broader panorama on this topic, see also [6, 7, 15, 16, 19], Sections 1.6-1.8 of [5], and [9]
which is a sequel to [8],

1 Finite-type 1-cocycles of knots given by Polyak-Viro formulas
[13]

Vassiliev’s cohomology classes were introduced in 1990, at a time when the cohomology of
the space of knots had barely been studied. In the years that followed, two kinds of explicit
formulas were proved to describe all of Vassiliev’s $0$-cocycles, best known as finite-type
invariants: an integral formula, due to Kontsevich [12], and purely combinatorial formulas
due to Polyak-Viro [14] (see also [10]).

In the meantime, in higher degree, only one example was proved to exist, by Teiblum
and Turchin (at the time a student of Vassiliev), and this 1-cocycle $v_{3}^{1}$ waited unti12001
before Vassiliev [19] found how to actually evaluate it, over $\mathbb{Z}_{2}$ , with a combinatorial
formula involving differential geometry. Ten years later, Sakai [15] described a realization
of $v_{3}^{1}$ over $\mathbb{R}$ by means of an integral formula.

The purpose of [13] is to fill the gap of a missing combinatorial formula for $v_{3}^{1}$ over $\mathbb{Z},$

to remove geometric conditions from the computation process, and to find more examples
of 1-cocycles. Just like the original works of Vassiliev [17, 18], this article considers the
space of smooth long knots–i.e., embeddings $\mathbb{R}\mapsto \mathbb{R}^{3}$ that are standard outside of $[0$ , 1 $].$

1.1 Preliminary: Gauss diagram formulas (after [14])

The spirit of Polyak-Viro’s Gauss diagram formulas is to count the subdiagrams of a knot,
with weights. Here, knot diagrams are represented combinatorially using Gauss diagrams
-see Fig.1, and a subdiagram is the result of removing $a$ (possibly empty) set of arrows.

One of the origins of that idea lies in the well-known formula for computing the linking
number of a 2-component oriented link: given a link diagram, $lk(L_{1}, L_{2})$ is the sum of
writhes of all crossings where $L_{1}$ goes over $L_{2}$ . In Polyak-Viro’s language, each such
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crossing is a subdiagram with only one arrow remaining, oriented from $L_{1}$ to $L_{2}$ , and the
weight given to each subdigram is the writhe of the crossing.

In [14], Polyak and Viro give such formulas for computing (among others) the first two
Vassiliev invariants (Theorems 1 and 2). In both cases (as well as in the linking number
formula), the weight given to a subdiagram is equal to the product of its writhe numbers,
times a constant which depends only on the underlying unsigned diagram. Such particular
choices of weights proved to be extremely common in further literature (see for instance
[3, 2, 4 and yield what is often called arrow diagram formulas (an arrow diagram is a
Gauss diagram deprived from its decorating signs).

$\nearrow^{\cross+\backslash }$
$/_{-}\backslash ^{\nearrow}$

$\sim$

$\cross^{\backslash }$

Figure 1: A long figure eight knot diagram and its Gauss diagram

Figure 2: Example of computation of the Casson invariant on a random Gauss diagram

The main interest of these formulas lies in the following result.

Theorem 1 (Polyak-Viro [14], Goussarov [10]). A knot invariant admits a Gauss diagram
formula if and only if it is a Vassiliev invariant.

Although the proof given by the authors of this theorem does not mention the original
definition of Vassiliev invariants, it is possible to obtain such formulas by computing
weight systems (see [1]) and integrating them via the homological calculus presented in
[19]. This process highlights the deep origin of the writhe numbers in these formulas, as
co-orientations of singular strata in the space of all (including singular) knots. It is also
one reason to believe that computing products of writhes at a higher level could yield
formulas for Vassiliev 1-cocycles.

1.2 Arrow germ formulas

The idea in [13] is to copy Polyak-Viro’s construction using as raw material not a Gauss
diagram, but a Reidemeister move, which is here regarded as an elementary path in the
space of knots.
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Definition 1. An $i$-germ $(i=1,2,3)$ is a couple of Gauss diagrams that differ only by a
Reidemeister $i$ move.

$A$ partia13-germ is a 3-ge7m with one arrow removed (in both diagrams) from the
Reidemeister triple.

$A$ subgerm is the result of removing a set of arrows from $a$ (possibly partial) germ, con-
sistently in both diagrams. Arrows involved in the Reidemeister move cannot be removed,
except in 3-germs where at most one arrow from the triple can be forgotten.

As before, these notions have a counterpart with no sign decorations, called (partial)
arrow $germs-and$ as before, the latter are meant to count subgerms, weighted with the
product of writhes of the arrows involved.

The main result of [13] is the following.

Theorem 2. The formal sum $\alpha_{3}^{1}$ of (partial) arrow germs on Fig.3 defines $a$ 1-cocycle
in the space of long knots, over $\mathbb{Z}$ . Its reduction mod 2 coincides with Teiblum-Turchin’s
cocycle $v_{3}^{1}.$

The second statement is proved by showing directly that $\alpha_{3}^{1}$ mod2 is “of finite type”,
using Vassiliev’s homological calculus presented in [19]. The proof of the first state-
ment relies on a higher order Reidemeister theorem, that is, an exhaustive list of all
2-codimensional strata corresponding to the most generic degeneracies of Reidemeister
moves (by definition, a 1-cocycle should vanish on the meridians of such strata). A com-
plete description of those strata and their meridians is given in [13]; see also [7].

Notation:

Figure 3: The first non-trivial arrow germ formula $\alpha_{3}^{1}$ : three partial arrow 3-germs and one arrow 3-germ

As one can see, no 1- or 2-germs are involved in the formula of Theorem 2, and this
is actually a general fact: in any cohomology class represented by germ formulas, there
is a formula which contains only (possibly partial) 3-germs ([13], Proposition 2.8). As a
result, the linear system with germs as variables and 2-meridians as equations is reduced
to a reasonable size ([13], Theorem 2.11).

Conjecture 1. Every 1-cohomology class with an arrow germ presentation is of finite
type in the sense of Vassiliev.

So far, only one way is known for proving that a 1-cocycle is of finite-type over $\mathbb{Z}$ ;
it consists in defining orientations on the varieties involved in Vassiliev’s homological
calculus [19]. It has not been done yet, to the best of our knowledge.
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1.3 Evaluation of $\alpha_{3}^{1}$ on canonical cycles

One interest of 1-cocycles is that evaluating them on loops that are defined canonically
for all knots produces knot invariants. The easiest example of such a loop, for long knots,
is the loop rot (K) which consists of a full positive rotation of $K$ around its axis–see
Figs.4 and 5. It is proved in [13] that $\alpha_{3}^{1}(rot(K))$ is equal to minus the Casson invariant
of $K$ :

$\alpha_{3}^{1}(rot(K))=-v_{2}(K)$ .

This equality was conjectured to hold for the Teiblum-Turchin cocycle in [16]. Turchin’s
conjecture would follow from the above result and Conjecture 1.

Figure 4: One realization of the loop rot(K) as a sequence of Reidemeister moves

Figure 5: The railway followed by $K$ on Fig.4 is isotopic to a full rotation around the axis

A result of Hatcher [11] states that besides rot (K) , there is essentially only one other
interesting loop in the moduli space of all long knots equivalent to a given prime knot.
This second loop, often called the Hatcher loop Hat (K) , consists of sliding alittle “ball at
infinity”’ along a fixed parametrization of the knot in $\mathbb{S}^{3}$ (a framing convention should be
made, because every time the ball makes a full spin around itself, it adds $\pm rot(K)$ to the
loop). Although it does not seem easy to evaluate $\alpha_{3}^{1}$ on Hat (K) , further investigation
showed that there is another arrow germ formula $\tilde{\alpha}_{3}^{1}$ , with the same properties as $\alpha_{3}^{1}$ so
far, and such that if $K$ has framing $0$ , then

$\tilde{\alpha}_{3}^{1}$ (Hat (K) ) $=-6v_{3}(K)$ .

Here $v_{3}$ denotes the only Vassiliev invariant of order 3 with value 1 on the positive trefoil,
$-1$ on the negative trefoil and $0$ on the unknot. This result is to appear in a subsequent
article.
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2 Quantum one-cocycles for knots [8]

In this article, Fiedler defines a new family of 1-cocycles in the topological moduli space
of long knots, which are then extended to cocycles in the space of string links. As in the
previous article (Section 1), the formulas are constructed as algebraic intersection forms
with the variety of Reidemeister moves, purely combinatorially: follow a loop in the space
of knot diagrams, and every time you meet a Reidemeister move, count something. Only
this time what you count does not live in a “small” group like $\mathbb{Z}$ , but in a more complicated
structure that stays closer to topology and keeps more information.

One of the motivations here is to detect geometry-related information, with the fol-
lowing result in mind (see the definitions of rot and Hat in the previous section).

Theorem 3 (Hatcher [11]). Let $K$ be a long knot which is not a satellite. Then the loops
rot (K) and Hat (K) are linearly independent over $\mathbb{Q}$ if and only if $K$ is hyperbolic.

It means that if one can create a 1-cocycle powerful enough to detect exactly when
rot (K) and Hat (K) are linearly dependent, then it gives a simple criterion to evaluate the
geometry of prime knots. The ultimate goal in that direction is to find a cocycle $v$ such
that the quotient v(rot)/v(Hat), when not a rational number, is related to the hyperbolic
volume.

2.1 The space of cochains

There are a lot of combinatorial tools required to define properly the objects in Fiedler’s
theory; we begin with a simplified version, which will be refined gradually in the next
subsections. In particular, we first set aside orientation and sign issues.

Let us describe the elementary cochains from which one tries to obtain 1-cocycles.
They are based on a simple surgery operation that generalizes knot mutations. Indeed,
let $T$ be a tangle diagram in a 2-disc, with 6 boundary points. One defines an elementary
cochain $c_{T}$ as follows. Pick a generic path $\gamma$ in the space of long knot diagrams. For
each Reidemeister III move involved in $\gamma$ , notice that the local Reidemeister picture is a
tangle diagram in a disc, with 6 boundary points; remove that disc from your diagram,
and replace it with $T$ , making sure that the boundary points match; there are six ways
to do that, and we will explain later how to choose one canonically. The evaluation $c_{T}(\gamma)$

is by definition the formal sum of all tangle diagrams so obtained.
By considering tangles with 4 (respectively, 2) boundary points, one can similarly

construct cochains that detect Reidemeister II (respectively, I) moves.
Now if one stops here, the space of cochains is indexed by tangles in a disc, so that it is

infinite-dimensional. Moreover, a brief examination reveals that there are very few chances
to ever find a cocycle in that space: indeed, a 1-cocycle should vanish on 2-meridians,
and it is not easy for a formal sum of tangle diagrams to vanish (even with proper signs
defined). The natural answer to both these issues is to push the values of the cochains
in a skein module. In [8], two modules are separately considered: the HOMFLYPT and
Kauffman polynomials, which both yield finitely generated cochain spaces. Note that in
the former case, all graft tangles $T$ should be oriented and surgeries performed consistently.
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へ$\sim$ $c_{T}(\gamma)=$

Figure 6: Elementary cochain associated with an oriented tangle $T$ . The middle strand issue is explained
in Subsection 2.1.3.

2.1.1 Local and global types

An empirical fact in this theory is that 1-cocycle formulas tend to contain a lot of symme-
try, and the more symmetry there is in a formula, the more likely it is to be cohomologically

trivial. There are mainly two ideas in [8] to get round this difficulty: first, use parameters
and decorations so as to break the symmetry as much as possible; second, find a way to
extract interesting information even from a cocycle that is cohomologically trivial (see

Section 2.2.1).
Let us assume for now that we work with long knot diagrams (see example on Fig.1).

There are a number of data that one can read given a Reidemeister move in such a
diagram, which together define the local and global types of the move. Then, if $l$ denotes
one particular local type, and $g$ a global type, one can enrich the previous settings by
defining an elementary cochain $c_{T,l,g}$ : it makes the same computation as $c_{T}$ but only if
the Reidemeister move has type $(l, g)$ (so that $c_{T}$ is the sum of $c_{T,l,g}$ over all types $l$

and $g)$ .
Local types are more conveniently read on the local knot diagram picture, while global

types require to look at how the involved crossings are arranged on the Gauss diagram,
with respect to each other and to the point at infinity; the point at infinity appears to be
the key to break the symmetry and allow non-trivial solutions to exist.

Figure 7 sums up the definitions of all types, and where to find them in [8].

Terminology. The notation $c_{T,l,g}$

” , although convenient for an overview of the article,

is not the one used in [8]. There, cochains are systematically defined by giving, for each
couple of types $(l, g)$ , which tangles $T$ (called partial smoothings) contribute. For instance,
“for the cochain $R$ , the partial smoothing $T_{r_{c}}$ for type 3 is means in the current
terminology that $R$ can be written

$R=c$
3, $r_{C}+$ other terms.
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Figure 7: All local and global types with their reference pages in [8] (version 2)

2.1.2 Signs

One obvious necessary condition for a cochain $c$ to define a 1-cocycle is that $c$ should
vanish on any little loop in which one Reidemeister move is performed and then undone.
As a result, one must either work over $\mathbb{Z}/2$ , or define “co-orientations” of Reidemeister
moves. The latter choice is made in [8], as follows.

In the case of Reidemeister I and II moves, the evaluation of an elementary cochain
$c_{T,l,g}$ comes with an additional minus sign if and only if the move destroys crossings.

In the case of Reidemeister III, the co-orientation is defined separately for each local
type. That is the meaning of $the+and-$ signs in [8] Fig.16 p.31, they indicate on which
side of the move each picture is. When evaluating a cochain, count an additional minus
sign if and only if the move goes from the positive to the negative side. Note that the
signs here were not chosen arbitrarily. The easiest way to show it might be to point out
that in Fig.8, where every local type appears exactly once, all eight triangles are on their
respective positive side.
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1

Figure 8: All eight local types on their positive side, in one picture

2.1.3 Gluing conventions

We now explain how Fiedler chooses one out of six ways of gluing a graft tangle after
removing a Reidemeister III tangle (for $R$ I there is no choice since the skein modules are
1-dimensional, and for R II it is directly made clear on each picture, like [8] Fig.41 p.59,
which in our current notations would read $-(v-v^{-1})c$)$(,+,0)$ .

First, notice that for local types 2 and 6 (called star-like), sources and sinks alternate
along the boundary of the Reidemeister tangle; for the remaining (braid-like) types 1,
3, 4, 5, 7 and 8, the sources can be grouped together on one side of the disk. In the
latter case, the convention is that the three boundary points at the left of any picture of
a graft tangle $T$ should replace the three sources of the removed tangle. This convention
is especially useful when working over an unoriented skein module; otherwise, the simple
fact that orientations should match leaves no choice.

For local types 2 and 6, one defines the mid point in the Reidemeister tangle as
the source of the “middle strand, which goes neither over the two other strands, nor
under them. The convention is then to decorate one of the boundary points in the graft
tangles with a letter $m$

” , indicating that this point always replaces the mid point when
performing a surgery–see Fig.6.

When working over an oriented skein module, only graft tangles with consistent orien-
tations are allowed; note that this consistency condition depends on the local type.

2.1.4 Weights

There are two major ingredients in Fiedler’s formulas. The first is the idea of performing
surgeries that formally depend on some local and global parameters, i.e., the cochains
$c_{T,l,g}$ defined so far. The second is to weight these cochains with Gauss diagram
formulas. Very roughly, it amounts to considering the module freely generated by the
elementary cochains $c_{T,l,g}$ , not over $\mathbb{Z}$ , but over a ring of arrow diagrams (as defined in
Section 1).

As in Section 1, those arrow diagrams compute sums of products of writhes in the Gauss
diagram that represents the long knot at the moment where each Reidemeister move is
performed. The number of writhes involved in each product determines the degree of the
weight. A weight of degree 1 (resp. 2) is called linear (resp. quadratic).
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2.2 Results

Recall that when a 1-cochain in the space of knots is defined as an intersection form with
Reidemeister moves, the condition for being a cocycle is to vanish on the meridians of the
2-codimensional strata defined by the higher order Reidemeister theorem (just like knot
invariants, i.e., $0$-cocycles, should vanish on the meridians of the 1-codimensional strata
defined by the usual Reidemeister theorem). Two of these strata are by far the most
complicated, and occupy a central place in [8]:

$\bullet$ The set of knots whose projection to the plane contains a quadruple point (which
can be thought of as an arc sliding over a Reidemeister III move), denoted $by*.$
The equations associated with their meridians are called the tetrahedron equations.

$\bullet$ The set of knots whose projection contains a triple point with two tangent branches
(an arc sliding over/under/through a Reidemeister II move), denoted by $\succ|\prec$ . The
associated equations are called the cube equations.

The results are organized as follows: for each skein module (HOMFLYPT, pp.34-149
and Kauffman, pp.149-168), two 1-cocycle formulas are constructed: $R_{\eta eg}^{(1)}$ and $\overline{R}^{(1)}$ in
the HOMFLYPT case, $R_{F,reg}^{(1)}$ and $R_{F}^{-(1)}$ in the Kauffman case. Each of these are built
step by step, by first solving the tetrahedron equation, then adjusting the solution so
that it satisfies also the cube equations, then adjusting again so as to get all (when
possible) remaining equations satisfied. Formulas whose name contains a subscript “reg”
do not vanish on meridians involving Reidemeister I moves; however they vanish on all
other meridians, which makes them regular cocycles, i,e., invariants of regular loops up
to regular isotopy ([8] Theorem 3 p.94); they are both made of quantum cochains with
linear weights. On the other hand, $R^{(1)}-$ and $R_{F}^{-(1)}$ satisfy all equations and define non-trivial
cocycles in the space of long knots ([8] Theorem 4 p.127 and Theorem 5 p.165). They are
made of a main part which is a quantum cochain with (at most) quadratic weights, and
a corrective term which purely consists of a weight of degree 3 (and no surgery part).

2.2.1 From long knots to string links

There are many reasons for which one would like to generalize a construction related to
long knots to string links in a 3-ball. For instance, producing families of invariants via
knot cabling, or generalizing a formula computing the trivial knot invariant, which may
prove to be non-trivial when applied to string links. When it comes to 1-cocycles, tangles
in general are a little bit unfriendly: the moduli space of all tangles isotopic to a given one
has very often a trivial first homology group. However, even a 1-cocycle formula that is
null-cohomologous can lead to non-trivial invariants of tangles if evaluated on a canonical
arc which is not a loop.

The way Fiedler extends his long knot cocycle formulas to arbitrary string links is
extremely simple: just like knots, string links can be represented with Gauss diagrams,
the only difference is that the base manifold is not a circle, but a collection of numbered
arcs. Fix arbitrarily:

1. a way of gluing these arcs together so that they form a circle;

109



2. a point at infinity among the gluing points.

That is all. Now any sequence of Reidemeister moves applied to any string link diagram
looks like a sequence applied to a long knot, and it makes sense to evaluate Fiedler’s
formulas there. Any quantum cocycle for long knots defines a family of cocycles in the
moduli space of string links, indexed by the above choices of a circular permutation and
a point at infinity.

2.2.2 The scan-arc and the scan-property

As mentioned earlier, there are no non-trivial loops in the moduli space of string links in
general, except for particular cases such as long knots and their cables (for which there is
a version of the Hatcher $1oop-[8]$ , p.8).

Fiedler introduces a scan-arc, defined canonically for all string links, and denoted by
scan(L) . We represent it on Fig.9. It can be thought of as a generalization of the loop
rot (K) defined for long knots: indeed, rot (K) consists basically of two consecutive

$\langle$

scans”
(Fig.4). Notice that the little loop on the first frame is not a part of the string link, and
its “creation” by Reidemeister I is not a part of the scan-arc either (although the sequence
of Reidemeister II moves that lead to the second frame is included in the scan-arc): it
follows that the scan-arc is regular (it does not involve any Reidemeister I move), hence
it makes sense to evaluate $R_{veg}^{(1)}$ and $R_{F,reg}^{(1)}$ there.

$arrow$ $arrow$

Figure 9: The scan-arc of a string link $L$

Now one would like a result of the type “Let $c$ be a quantum cocycle formula. Then
$c(scan(L))$ is an isotopy invariant of the string link L.” It is not difficult to see that this
holds true if $c$ is a quantum formula with constant weights. However it fails with arbitrary
weights.

By definition, a quantum cocycle formula $c$ is said to have the scan-property if $c(scan(L))$
defines an isotopy invariant of the string link $L$ . All four formulas constructed in [8] have
that property ([8] Theorems 3, 4, 5).

Among many examples, let us mention that if $L$ is chosen to be the positive generator of
the 2-strand braid group, and if the point at infinity is chosen correctly, then $R_{7eg}^{(1)}(scan(L))$

is equal to the HOMFLYPT polynomial of the right trefoil (times the class of the trivial
braid in the HOMFLYPT skein module).

As for $\overline{R}^{(1)}$ , the computations made lead to the following conjectures ([8], Conjectures
1 and 2).

Conjecture 2. Let $K$ be a long knot, let $v_{2}(K)$ be its Casson invariant and let $P_{K}$ be
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its HOMFLYPT polynomial. Let $\delta$ denote the HOMFLYPT polynomial of the trivial 2-
component link. Then

$\overline{R}^{(1)}$ (rot (K) ) $=\delta v_{2}(K)P_{K}.$

Conjecture 3. Let $K$ be a long knot with trivial framing and with non trivial Casson
invariant. Then $R^{(1)}(Hat(K))$ is a non zero integer multiple of $R^{(1)}(rot(K))-$ if and only
if $K$ is a torus knot.

So far those two conjectures have been checked for knots up to 4 crossings.

2.2.3 Gradings

One specificity of the formulas $R_{eg}^{(1)}$ and $R_{F,reg}^{(1)}$ extended to string links is that they can
be refined into a collection of cocycle formulas $R_{\tau eg}^{(1)}(A)$ and $Rreg$

)
(A) indexed by a set of

gradings, so that the original formulas are the sum of the refined formulas over all possible
gradings.

A grading is defined for any Reidemeister II or III move. Just like $c_{T,l,g}$ is oblivious of
Reidemeister moves that are not of type $(l, g)$ , $R_{\gamma eg}^{(1)}(A)$ and $R_{Fre}^{(1)}(A)$ disregard the moves
that do not have grading $A$ . The full definition, however, is not very enlightening, so we
do not mention it here; see [8], Definition 9 p.48.
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