
Note on covering and approximation properties

Hiroshi Sakai (Kobe University)

Abstract

We discuss the covering and approximation properties of an ultrapower of $V$

by a $\kappa$-complete ultrafilter over a measurable cardinal $\kappa$ . Among other things, we
prove that it can have both of the $\mu$-covering and $\mu$-approximation properties for
every cardinal $\mu>\kappa^{+}.$

1 Introduction

In this paper we discuss the covering and approximation properties of inner models, which
were introduced by Hamkins [3]. First recall these properties: Let $M$ be an inner model,
i,e. a transitive inner model of ZFC containing all ordinals, and let $\mu$ be a cardinal (in $V$ ).
Note that $|x|<\mu$ if and only if $|x|^{M}<\mu$ for any set $x\in M$ . We say that $M$ has the
$\mu$-covering property if for any $x\in$ [On] $<\mu$ there is $y\in$ [On] $<\mu\cap M$ with $x\subseteq y.$ $M$ is said
to have the $\mu$ -approximation property if a set $A\subseteq$ On belongs to $M$ whenever $A\cap x\in M$

for all $x\in$ [On] $<\mu\cap M.$

These properties are often discussed in the context of forcing extensions. It was proved
in [3] that if $V$ is a set forcing extension of $M$ by a poset $\mathbb{P}$ , and $\mu$ is a cardinal with
$|\mathbb{P}|^{M}<\mu$ , then $M$ has the $\mu$-covering and $\mu$-approximation properties. Using this fact,
Laver [4] proved that a ground model is definable in any set forcing extensions. It was also
used in [3] and [4] to prove that certain large cardinals are not created by small forcing
extensions. Similar use of these properties can be found in Reiz [5], Fuchs-Hamkins-Reiz
[2] and Viale-WeiB [6], too.

In this paper we study the covering and approximation properties of an ultrapower of
$V$ by a $\kappa$-complete ultrafilter over a measurable cardinal $\kappa$ . Throughout this paper let $\kappa,$

$U,$ $M$ and $j$ be as follows:

$\bullet$ $\kappa$ is a measurable cardinal.

$\bullet$ $U$ is a non-principal $\kappa$-complete ultrafilter over $\kappa.$

$\bullet$ $M$ is the transitive collapse o$f^{\kappa}V/U.$

$\bullet$ $j:Varrow M$ is the ultrapower map.

Moreover, for each $f\in\kappa V$ , let $(f)_{U}\in\kappa V/U$ be the equivalence class represented by $f,$

and let $[f]_{U}\in M$ be the target of $(f)_{U}$ by the transitive collapse o$f^{\kappa}V/U.$

Here we summarize our results in this paper. First we present those on the convering
property. Note that $M$ has the $\mu$-covering property for every cardinal $\mu\leq\kappa^{+}$ because
$\kappa M\subseteq M$ . We will obtain the following:
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$\bullet$ Assume GCH. Then $M$ has the $\mu$-covering property for every cardinal $\mu$ . (Corollary

2.2)

$\bullet$ Assume that $\nu$ is a cardinal with $\nu^{<\kappa}=\nu$ and $\nu^{\kappa}>\nu^{+}$ . Then $M$ does not have the
$\nu^{++}$-covering property. (Corollary 2.3)

Next we present our results on the approximation property. Note that if $M$ has the $\mu-$

approximation property, then $M$ has the $\mu’$-approximation property for every $\mu’\geq\mu.$

Note also that $M$ does not have the $\kappa^{+}$-approximation property because $[U]^{\kappa}\subseteq M$ , but
$U\not\in M$ . We will obtain the following:

$\bullet$ Assume that $\mu$ is a strongly compact cardinal $>\kappa$ . Then $M$ has the $\mu$-approximation

property. (Corollary 3.3)

$\bullet$ It is consistent (with GCH) that $M$ has the $\kappa^{++}$ -approximation property. (Corollary

3.3)

$\bullet$ Suppose that $\nu$ is a cardinal $>\kappa$ and that $\coprod_{\nu}$ holds. Then $M$ does not have the
$\nu^{+}$-approximation property. (Corollary 3.8)

Among other things, note that $M$ can have both of the $\mu$-covering and $\mu$-approximation

properties for all cardinals $\mu>\kappa^{+}.$

At the end of the introduction we give our notation which may not be standard: For

a set $A$ of ordinals, $0.t.(A)$ denotes the order-type of $A$ , and $Lim(A)$ denotes the set of

all limit points of $A$ , i.e. the set of all $\alpha\in A$ such that $A\cap\alpha$ is unbounded in $\alpha$ . For a
regular cardinal $\mu>\kappa$ let $E_{<\kappa}^{\mu},$ $E_{\kappa}^{\mu}$ and $E_{>\kappa}^{\mu}$ denote the set of all $\alpha<\mu$ with $cf(\alpha)<\kappa,$

$cf(\alpha)=\kappa$ and $cf(\alpha)>\kappa$ , respectively. For an elementary embedding $k$ between transtive

models of ZFC, crit (k) denotes the critical point of $k.$
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2 Covering property

In this section we study the covering property of $M$ . We give a characterization of that
$M$ has the $\mu$-covering property for a regular $\mu$ :

Proposition 2.1. The following are equivalent for any regular cardinal $\mu$ :

(i) $M$ has the $\mu$-covering property.

(ii) There is no ordinal $\nu$ with $\nu^{+}<\mu\leq j(\nu)$ .

Proof. Fix a regular cardinal $\mu.$

First we show that (i) implies (ii). We prove the contraposition. Suppose that there

is an ordinal $\nu$ with $v^{+}<\mu\leq j(\nu)$ . Because $|j[\nu^{+}]|<\mu$ , it suffices to show that if

$j[\nu^{+}]\subseteq y\in M$ , then $|y|\geq\mu.$

82



Suppose that $j[\nu^{+}]\subseteq y\in M$ . We may assume that $y\subseteq j(\nu^{+})$ . First note that $j[\nu^{+}]$

is unbounded in $j(\nu^{+})$ . So $y$ is unbounded in $j(\nu^{+})$ , too. Then $|y|=j(\nu^{+})\geq\mu$ in $M$

because $j(\nu^{+})$ is regular in $M$ . Then $|y|\geq\mu$ also in $V.$

Next we prove the converse. Before starting, note that if $x$ is a set of ordinals with
$j(|x|)<\mu$ , then there is $y\in$ [On] $<\mu\cap M$ with $x\subseteq y$ : For each $\alpha\in x$ take $f_{\alpha}$ : $\kappaarrow On$

with $[f_{\alpha}]_{U}=\alpha$ . Let $g$ be the function on $\kappa$ defined by $g(\xi)=\{f_{\alpha}(\xi)|\alpha\in x\}$ , and let
$y:=[g]_{U}$ . Then $x\subseteq y$ clearly. Moreover $|9(\xi)|\leq|x|$ for all $\xi\in\kappa$ , and so $|y|\leq j(|x|)<\mu$

in $M$ . Then $|y|<\mu$ also in $V.$

We start to prove that (ii) implies (i). Assume (ii). To prove (i), take an arbitrary
$x\in$ [On] $<\mu$ . We must find $y\in$ [On] $<\mu\cap M$ with $x\subseteq y.$

First suppose that $cf(|x|)>\kappa$ . Then $j(|x|)= \sup_{\nu<|x|}j(\nu)$ . But $j(\nu)<\mu$ for all
$\nu<|x|$ by (ii) and the fact that $\nu^{+}\leq|x|<\mu$ . Then $j(|x|)<\mu$ by the regularity of $\mu$ . So
there is $y\in$ [On] $<\mu\cap M$ with $x\subseteq y$ by the remark above.

Next suppose that $cf(|x|)\leq\kappa$ . Take a partition $\langle x_{\eta}|\eta<cf(|x|)\rangle$ of $x$ such that
$|x_{\eta}|<|x|$ for all $\eta$ . For each $\eta,$ $j(|x_{\eta}|)<\mu$ by (ii), and so we can take $y_{\eta}\in$ [On] $<\mu\cap M$

with $x_{\eta}\subseteq y_{\eta}$ . Note that $\langle y_{\eta}|\eta<cf(|x|)\rangle\in M$ because $\kappa M\subseteq M$ . Then it is easy to
check that $y:= \bigcup_{\eta<cf(|x|)}y_{\eta}$ is as desired. $\square$

From Proposition 2.1 we obtain the following corollaries:

Corollary 2.2. Assume GCH. Then $M$ has the $\mu$ -covering property for every cardinal $\mu.$

Proof. $j(v)=\nu$ for each $\nu<\kappa$ , and $j(\nu)<(\nu^{\kappa})^{+}\leq v^{++}$ for each $\nu\geq\kappa$ . So (ii) of
Proposition 2.1 holds for every regular cardinal $\mu$ . Hence $M$ has the $\mu$-covering property
for every regular cardinal $\mu$ by Proposition 2.1,

Note that this also implies the $\mu$-covering property of $M$ for every singular cardinal $\mu$ :
Suppose that $\mu$ is a singular cardinal and that $x\in$ [On] $<\mu$ . Then we can take a regular
$\mu’<\mu$ with $|x|<\mu’$ . By the $\mu’$-covering property of $M$ there is $y\in$ [On] $<\mu’\cap M$ with
$x\subseteq y$ . Then $y\in$ [On] $<\mu\cap M$ , and $x\subseteq y.$ $\square$

Corollary 2.3. Assume that $\nu$ is a cardinal with $\nu^{<\kappa}=v$ and $\nu^{\kappa}>\nu^{+}$ . Then $M$ does
not have the $\nu^{++}$ -covering property.

Proof. By Proposition 2.1 it suffices to show that $\nu^{++}\leq j(\nu)$ . First take an injection
$\pi$ $:<\kappa\nuarrow\nu$ . For each $b\in\kappa v$ , define $f_{b}$ : $\kappaarrow\nu$ by $f_{b}(\xi)=\pi(b|\xi)$ . Then the set
$\{\xi<\kappa|f_{b}(\xi)=f_{b’}(\xi)\}$ is bounded in $\kappa$ for any distinct $b,$ $b’\in\cdot\kappa\nu$ , and so the map
$b\mapsto[f_{b}]_{U}$ is an injection from $\kappa\nu$ to $j(\nu)$ . Hence $\nu^{++}\leq\nu^{\kappa}\leq j(\nu)$ . $\square$

3 Approximation property

In this section we study the approximation property of $M$ . Recall that $M$ does not
have the $\kappa^{+}$-approximation property. Here we discuss the $\mu$-approximation property for
$\mu>\kappa^{+}$ . In Subsection 3.1 we give a characterization of the $\mu$-approximation property of
$M$ for a regular $\mu$ . In Subsection 3.2 we prove that $M$ has the $\mu$-approximation property
if $\mu$ is a generic strongly compact cardinal of some kind. In Subsection 3.3 we show that
$M$ does not have the $\mu$-approximation property under a square-like principle at $\mu.$
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3.1 Characterization of the approximation property of $M$

Here we give a characterization of the $\mu$-approximation property of $M$ for a regular $\mu>\kappa.$

First we prepare notation. Let $X$ be a $\subseteq$-directed set. A sequence $\langle f_{x}|x\in X\rangle$ is

called a $U$-coherent sequence on $X$ if

(i) $f_{x}$ : $\kappaarrow \mathcal{P}(x)$ $(so [f_{x}]_{U}\subseteq j(x))$ for each $x\in X,$

(ii) $\{\xi<\kappa|f_{y}(\xi)\cap x=f_{x}(\xi)\}\in U$ $(i.e. [f_{y}]_{U}\cap j(x)=[f_{x}]_{U})$ for each $x,$ $y\in X$ with
$x\subseteq y.$

Moreover a $U$-coherent sequence $\langle f_{x}|x\in X\rangle$ is said to be $U$-uniformizable if there is a
function $f$ : $\kappaarrow \mathcal{P}(\cup X)$ $(so [f]_{U}\subseteq j(\cup X))$ such that $\{\xi<\kappa|f(\xi)\cap x=f_{x}(\xi)\}\in U$

$(i.e. [f]_{U}\cap j(x)=[f_{x}]_{U})$ for all $x\in X.$

Here we prove the following.

Lemma 3.1. Let $\mu$ be a regular cardinal $>\kappa$ . Then (i) below implies (ii) below:

(i) $M$ has the $\mu$ -approximation property.

(ii) For any $\lambda\geq\mu$ every $U$ -coherent sequence on $[\lambda]^{<\mu}$ is $U$ -uniformizable.

The converse is also true if $j(\mu)=\mu.$

Proof. Before starting the proof, note that if $y\in[j(\lambda)]^{<\mu}\cap M$ for some $\lambda\geq\mu$ , then

there is $x\in[\lambda]^{<\mu}$ with $y\subseteq j(x)$ : Take 9: $\kappaarrow \mathcal{P}(\lambda)$ with $[9]_{U}=y$ . We may assume
that $|g(\xi)|<\mu$ for all $\xi<\kappa$ because $|y|<\mu\leq j(\mu)$ in $M$ . Then it is easy to see that

$x:= \bigcup_{\xi<\kappa}g(\xi)$ is as desired.

First we prove that (i) implies (ii). Assume (i). To show (ii) let $f^{arrow}=\langle f_{x}|x\in[\lambda]^{<\mu}\rangle$

be a $U$-coherent sequence for some $\lambda\geq\mu$ . Let $A$ $:=\cup\{[f_{x}]_{U}|x\in[\lambda]^{<\mu}\}$ . Note that
$A\subseteq j(\lambda)$ and that $A\cap j(x)=[f_{x}]_{U}\in M$ for all $x\in[\lambda]^{<\mu}$ by the coherency of $f^{arrow}$. Then

$A\cap y\in M$ for all $y\in$ [On] $<\mu\cap M$ by the remark at the beginning. So $A\in M$ by (i).

Take $f$ : $\kappaarrow \mathcal{P}(\lambda)$ with $A=[f]_{U}$ . Then $[f]_{U}\cap j(x)=A\cap j(x)=[f_{x}]_{U}$ for all $x\in[\lambda]^{<\mu},$

that is, $f$ $U$-uniformizes $f^{arrow}.$

Next we prove the converse assuming that $j(\mu)=\mu$ . Assume (ii). To show (i) suppose

that $A$ is a set of ordinals and that $A\cap y\in M$ for all $y\in$ [On] $<\mu\cap M$ . We must show

that $A\in M$ . Take $\lambda\geq\mu$ with $A\subseteq j(\lambda)$ . Here note that if $x\in[\lambda]^{<\mu}$ , then $j(x)\in M,$

and $|j(x)|<j(\mu)=\mu$ . Hence $A\cap j(x)\in M$ for all $x\in[\lambda]^{<\mu}$ . For each $x\in[\lambda]^{<\mu}$ take
$f_{x}$ : $\kappaarrow \mathcal{P}(x)$ with $[f_{x}]_{U}=A\cap j(x)$ . Then it is easy to see that $f^{arrow}=\langle f_{x}|x\in[\lambda]^{<\mu}\rangle$

is $U$-coherent. By (ii) take $f$ : $\kappaarrow \mathcal{P}(\lambda)$ which $U$-uniformizes $f^{arrow}$. Then $[f]_{U}\cap j(x)=$

$[f_{x}]_{U}=A\cap j(x)$ for all $x\in[\lambda]^{<\mu}$ . Moreover $\cup\{j(x)|x\in[\lambda]^{<\mu}\}=j(\lambda)\supseteq A$ by the

remark at the beginning. So $A=[f]_{U}\in M.$ $\square$

3.2 Approximation property for generic strongly compact car-

dinals

Here we show that if $\mu$ is a generic strongly compact cardinal in the following sense,

then $M$ has the $\mu$-approximation property: We say that $\mu$ is $\leq\kappa$-closed generic strongly

compact if it satisfies the following:
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(i) $\mu$ is a regular cardinal $>\kappa^{+}.$

(ii) For any $\lambda\geq\mu$ there is $a\leq\kappa$-closed forcing extension of $V$ in which we have $a(\mu, \lambda)-$

strongly compact embedding $k:Varrow N$ . Here $k:Varrow N$ is called $a(\mu, \lambda)$-strongly
compact embedding if

$\bullet$ $N$ is a transitive model of ZFC.
$\bullet$ $k$ is an elementary embedding with crit $(k)=\mu.$

$\bullet$ $k[\lambda]\subseteq y$ for some $y\in k([\lambda]^{<\mu})$ .

Note that if $\mu$ is a strongly compact cardinal $>\kappa$ , then in $V$ there is $a(\mu, \lambda)$-strongly
compact embedding for every $\lambda\geq\mu$ , and so $\mu$ is $\leq\kappa$-closed generic strongly compact.
Note also that $\kappa^{++}$ can be $\leq$ $\kappa$-closed generic strongly compact: Suppose that there
is an inner model $V’$ such that $(\kappa^{++})^{V}$ is strongly compact in $V’$ and such that $V$ is
an extension of $V’$ by the L\’evy collapse Co1 $((\kappa^{+})^{V}, <(\kappa^{++})^{V})$ . Then it follows from the
standard argument that $\kappa^{++}$ is $\leq\kappa$-closed generic strongly compact in V. (See Cummings
[1] for example.) Note also that if GCH holds in $V’$ , then so does in $V.$

As we promised above, we prove the following:

Proposition 3.2. Suppose that $\mu$ is $a\leq\kappa$ -closed generic strongly compact cardinal. Then
$M$ has the $\mu$ -approximation property.

Corollary 3.3.

(1) If $\mu$ is a strongly compact cardinal $>\kappa$ , then $M$ has the $\mu$ -approximation property.

(2) Suppose that there is an inner model $V’$ such that $(\kappa^{++})^{y}$ is strongly compact in $V’$

and such that $V$ is an extension of $V’$ by the L\’evy collapse $Co1((\kappa^{+})^{V}, <(\kappa^{++})^{V})$ .
Then $M$ has the $\mu$ -approximation property.

To prove Proposition 3.2, we need the following lemmata:

Lemma 3.4. Suppose that $\mu$ is $a\leq\kappa$ -closed generic strongly compact. Then $\alpha^{\kappa}<\mu$ for
all $\alpha<\mu$ , and so $j(\mu)=\mu.$

Proof. For the contradiction assume that $\alpha<\mu$ and $\alpha^{\kappa}\geq\mu$ . In $V$ take an injection
$\tau$ : $\muarrow\kappa\alpha$ . Let $W$ be $a\leq\kappa$-closed forcing extension of $V$ and $k:Varrow N$ be $a(\mu, \mu)-$

strongly compact embedding in $W$ . Then it is easy to see that $k(\tau)(\mu)\in(^{\kappa}\alpha)^{N}\backslash (^{\kappa}\alpha)^{V}.$

So $(^{\kappa}\alpha)^{N}\not\subset(^{\kappa}\alpha)^{V}$ . But $(^{\kappa}\alpha)^{N}\subseteq(^{\kappa}\alpha)^{W}$ because $N\subseteq W$ , and $(^{\kappa}\alpha)^{W}=(^{\kappa}\alpha)^{V}$ becauase
$W$ is $a\leq\kappa$-closed forcing extension of $V$ . So $(^{\kappa}\alpha)^{N}\subseteq(^{\kappa}\alpha)^{V}$ . This is a contradiction. $\square$

Lemma 3.5. Let $f^{arrow}=\langle f_{x}|x\in[\lambda]^{<\mu}\rangle$ be a $U$ -coherent sequence for some regular $\mu>\kappa^{+}$

and some $\lambda\geq\mu$ . If $f^{arrow}is$ $U$ -uniformizable in $some\leq\kappa$ -closed forcing extension of $V$ , then
so is in $V.$

Proof. Assume that $\mathbb{P}$ is $a\leq\kappa$-closed poset and that $f^{arrow}$ is $U$-uniformizable in $V^{\mathbb{P}}$ . Let $\dot{f}$

be a $\mathbb{P}$-name for a function $U$-uniformizing $f^{arrow}$. Because $\mathbb{P}$ is $\leq\kappa$-closed, we can take $p\in \mathbb{P}$

and $S\subseteq\kappa$ (in $V$) such that $p|\vdash"‘$ $\{\xi<\kappa|\dot{f}(\xi)\in V\}=S$ ”
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Claim. $S\in U.$

Proof of Claim. Take a sufficiently large regular cardinal $\theta$ . Because $\kappa$ is inaccesible, we

can take $K\in[\mathcal{H}_{\theta}]^{\kappa}$ such that $\kappa,$ $\mu,$
$\lambda,$ $U,$ $\mathbb{P},p,$

$\dot{f},$ $S\in K\prec\langle \mathcal{H}_{\theta},$ $\in\rangle$ and such that $<\kappa K\subseteq K.$

Let $z:=K\cap\lambda\in[\lambda]^{<\mu}.$

By induction on $\xi<\kappa$ we construct a descending sequence $\langle p_{\xi}|\xi<\kappa\rangle$ in $\mathbb{P}\cap K$ . Let

$Po$ $:=p$ . If $\xi$ is a limit ordinal, then let $p_{\xi}\in \mathbb{P}\cap K$ be a lower bound of $\{p_{\eta}|\eta<\xi\}.$

We can take such $p_{\xi}$ because $\mathbb{P}$ is $\leq\kappa$-closed, and $<\kappa K\subseteq K$ . Finally suppose that $\xi$

is a successor ordinal, say $\xi=\eta+1$ , and that $p_{\eta}$ has been taken. If $\eta\in S$ , then let

$p_{\xi}$ $:=p_{\eta}$ . Otherwise, because $p_{\eta}|\vdash$
$\dot{f}(\eta)\not\in V$

” , there are $r_{0},$ $r_{1}\leq p_{\eta}$ and $\alpha<$ A such

that $r_{0}|\vdash(\alpha\in\dot{f}(\eta)$ ” and $r_{1}|\vdash(\alpha\not\in j(\eta)$ ” By the elementarity of $K$ we can take such

$r_{0},$ $r_{1}$ and $\alpha$ in $K$ . Let $p_{\xi}$ $:=r_{1}$ if $\alpha\in f_{z}(\eta)$ , and let $p_{\xi}$ $:=r_{0}$ if $\alpha\not\in f_{z}(\eta)$ . Note that

$p_{\xi}|\vdash$
$\dot{f}(\eta)\cap z\neq f_{z}(\eta)$

”

Now we have constructed $\langle p_{\xi}|\xi<\kappa\rangle$ . By the $\leq\kappa$-closure of $\mathbb{P}$ we can take its lower

bound $p^{*}$ . Then $p^{*}$ forces that $\dot{f}(\xi)\cap z\neq f_{z}(\xi)$ for all $\xi\in\kappa\backslash S$ . Then $\kappa\backslash S\not\in U$ because
$\dot{f}$ is forced to $U$-uniformize $f^{arrow}$. So $S\in U.$ $\square$ (Claim)

Because $\mathbb{P}$ is $\leq\kappa$-closed, we can take $q\leq p$ and a sequence $\langle B_{\xi}|\xi\in S\rangle$ in $\mathcal{P}(\lambda)$ such

that $q|\vdash(\dot{f}(\xi)=B_{\xi}$
” for all $\xi\in S$ . Let $f$ : $\kappaarrow \mathcal{P}(\lambda)$ be such that $f(\xi)=B_{\xi}$ for all

$\xi\in S$ . From the choice of $j$ and the claim above, it follows that $f$ $U$-uniformizes $f^{arrow}.$ $\square$

Now we prove Proposition 3.2:

Proof of Proposition 3.2. By Lemmata 3.1 and 3.4 it suffices to show that for any $\lambda\geq\mu$

every $U$-coherent sequence on $[\lambda]^{<\mu}$ is $U$-uniformizable. Suppose that $\lambda\geq\mu$ and that
$f^{arrow}=\langle f_{x}|x\in[\lambda]^{<\mu}\rangle$ is a $U$-coherent sequence. Let $W$ be $a\leq\kappa$-closed forcing extension

of $V$ in which we have $a(\mu, \lambda)$-strongly compact embedding $k:Varrow N$ . By Lemma 3.5

it suffices to show that $f^{arrow}$ is $U$-uniformizable in $W$ . We work in $W.$

Let $k(f-)=\langle g_{y}|y\in k([\lambda]^{<\mu})\rangle$ , and take $y^{*}\in k([\lambda]^{<\mu})$ such that $k[\lambda]\subseteq y^{*}$ . Note that
$g_{y}:\kappaarrow \mathcal{P}(y)$ for each $y$ . Now let $f$ : $\kappaarrow \mathcal{P}(\lambda)$ be the pull-back of $g_{y^{*}}$ by $k$ , that is,

$f(\xi)=k^{-1}[g_{y}\cdot(\xi)\cap k[\lambda]]$

for each $\xi<\kappa$ . We claim that $f$ $U$-uniformizes $f^{arrow}$. Take an arbitrary $x\in[\lambda]^{<\mu}$ . We must

show that $\{\xi<\kappa|f(\xi)\cap x=f_{x}(\xi)\}\in U$ . First note that $k[z]=k(z)$ for all $z\subseteq x$

because $|x|<\mu=crit(k)$ . Then for each $\xi<\kappa,$

$f(\xi)\cap x=f_{x}(\xi)$ $\Leftrightarrow g_{y^{*}}(\xi)\cap k[x]=k[f_{x}(\xi)]\Leftrightarrow g_{y}\cdot(\xi)\cap k(x)=k(f_{x}(\xi))$

$\Leftrightarrow g_{y^{*}}(\xi)\cap k(x)=g_{k(x)}(\xi)$ .

Then

$\{\xi<\kappa|f(\xi)\cap x=f_{x}(\xi)\}=\{\xi<\kappa|g_{y}\cdot(\xi)\cap k(x)=g_{k(x)}(\xi)\}\in k(U)=U,$

where the middle $\in$-relation is by the $k(U)$-coherency of $k(f7=\langle g_{y}|y\in k([\lambda]^{<\mu})\rangle.$ $\square$
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3.3 Failure of $\mu$-approximation property under $\Phi(\mu)$

Here we prove that $M$ does not have the $\mu$-approximation property under the following
square-like principle $\Phi(\mu)$ : For a regular cardinal $\mu>\kappa^{+}$ let

$\Phi(\mu)\equiv$ there are $E\subseteq Lim(\mu)$ and $\langle c_{\alpha}|\alpha\in E\rangle$ such that

(i) $E_{>\kappa}^{\mu}\subseteq E$ , and $E_{\kappa}^{\mu}\backslash E$ is stationary in $\mu,$

(ii) $c_{\alpha}$ is a club subset of $\alpha$ for each $\alpha\in E,$

(iii) if $\alpha\in E$ , and $\beta\in Lim(c_{\alpha})$ , then $\beta\in E$ , and $c_{\alpha}\cap\beta=c_{\beta}.$

First we observe that $\Phi(\nu^{+})$ follows from Jensen’s $\square _{\nu}$ , which asserts the existence of
a sequence $\langle c_{\alpha}|\alpha\in Lim(v^{+})\rangle$ such that

(i) each $c_{\alpha}$ is a club subset of $\alpha$ with $0.t.(c_{\alpha})\leq\nu,$

(ii) $c_{\alpha}\cap\beta=c_{\beta}$ if $\beta\in Lim(c_{\alpha})$ .

Lemma 3.6. Let $\nu$ be a cardinal $>\kappa$ , and assume $\coprod_{\nu}$ . Then $\Phi(\nu^{+})$ holds.

Proof. Let $\langle d_{\alpha}|\alpha\in Lim(\nu^{+})\rangle$ be a sequence witnessing $\square _{\nu}$ . Then, because $0.t.(d_{\alpha})\leq\nu$

for all $\alpha\in E_{\kappa}^{\nu^{+}}$ , there is $\rho\leq\nu$ such that $D:=\{\alpha\in E_{\kappa}^{\nu^{+}}|0.t.(d_{\alpha})=\rho\}$ is stationary in
$\nu^{+}$ . Let $E$ $:=Lim(\nu^{+})\backslash D$ . For each $\alpha\in E$ define $c_{\alpha}$ as follows: If $0.t.(d_{\alpha})<\rho$ , then let
$c_{\alpha}$

$:=d_{\alpha}$ . Otherwise, $0.t.(d_{\alpha})>\rho$ . Let $\gamma$ be the $\rho$-th element of $d_{\alpha}$ , and let $c_{\alpha}$
$:=d_{\alpha}\backslash \gamma.$

Now it is easy to check that $E$ and $\langle c_{\alpha}|\alpha\in E\rangle$ witness $\Phi(v^{+})$ . $\square$

As we promised above, we prove the following:

Proposition 3.7. Let $\mu$ be a regular cardinal $>\kappa^{+}$ , and assume $\Phi(\mu)$ . Then $M$ does not
have the $\mu$ -approximation property.

Corollary 3.8. Let $\nu$ be a cardinal $>\kappa$ , and assume $\square _{\nu}$ . Then $M$ does not have the
$\nu^{+}$ -approximation property.

Proof of Proposition 3.7. Let $E$ and $\langle c_{\alpha}|\alpha\in E\rangle$ be a pair witnessing $\Phi(\mu)$ . By in-

duction on $\alpha<\mu$ we will construct a $U$-coherent sequence $\langle f_{\alpha}|\alpha<\mu\rangle$ which is not
$U$-uniformizable. The induction hypotheses are as follows:

(I) $[f_{\alpha}]_{U}\cap j(\beta)=[f_{\beta}]_{U}$ for each $\beta<\alpha.$

(II) If $\alpha\in E$ , and $\beta\in Lim(c_{\alpha})$ , then $f_{\alpha}(\xi)\cap\beta=f_{\beta}(\xi)$ for all $\xi<\kappa.$

Suppose that $\alpha<\mu$ and that $f_{\beta}$ : $\kappaarrow \mathcal{P}(\beta)$ has been taken for every $\beta<\alpha.$

Case 1: $\alpha$ is a successor ordinal.

Let $f_{\alpha}$ : $\kappaarrow \mathcal{P}(\alpha)$ be such that $[f_{\alpha}]_{U}=[f_{\alpha-1}]_{U}\cup\{j(\alpha-1$ Clearly $f_{\alpha}$ satisfies the
induction hypotheses.

Case 2: $\alpha\in Lim(\mu)\backslash E.$
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In this case note that $cf(\alpha)\leq\kappa$ by (i) of $\Phi(\mu)$ . Let $B$ $:= \bigcup_{\beta<\alpha}[f_{\beta}]_{U}\subseteq j(\alpha)$ . Then
$B\in M$ because $cf(\alpha)\leq\kappa$ , and $\kappa M\subseteq M$ . Let $f_{\alpha}$ : $\kappaarrow \mathcal{P}(\alpha)$ be such that $[f_{\alpha}]_{U}=B.$

Then $f_{\alpha}$ clearly satisfies the induction hypotheses. Here note that if $cf(\alpha)=\kappa$ , i.e. $\alpha\in$

$E_{\kappa}^{\mu}\backslash E$ , then $[f_{\alpha}]_{U}$ is bounded in $j(\alpha)$ because $B \subseteq\sup_{\beta<\alpha}j(\beta)<j(\alpha)$ .

Case 3: $\alpha\in E.$

In this case note that if $\beta,$ $\gamma\in Lim(c_{\alpha})$ , and $\beta<\gamma$ , then $\gamma\in E$ and $\beta\in Lim(c_{\gamma})$ by

(iii) of $\Phi(\mu)$ . So for such $\beta,$
$\gamma$ we have that $f_{\gamma}(\xi)\cap\beta=f_{\beta}(\xi)$ for all $\xi<\kappa$ by (II) for $f_{\gamma}.$

First suppose that $Lim(c_{\alpha})$ is unbounded in $\alpha$ . Define $f_{\alpha}$ by $f_{\alpha}( \xi)=\bigcup_{\gamma\in Lim(c_{\alpha})}f_{\gamma}(\xi)$

for all $\xi<\kappa$ . Then $f_{\alpha}$ satisfies (II) by the remark above. Moreover it is easy to see that
$f_{\alpha}$ also satisfies (I).

Next suppose that $Lim(c_{\alpha})$ is bounded in $\alpha$ . Let $\gamma$ $:= \max(Lim(c_{\alpha}))$ . Note that
$cf(\alpha)=\omega$ in this case. So we can take $f_{\alpha}$ satisfying (I) as in Case 2. Moreover we can

take such $f_{\alpha}$ with the property that $f_{\alpha}(\xi)\cap\gamma=f_{\gamma}(\xi)$ for all $\xi<\kappa$ . Then $f_{\alpha}$ also satisfies

(II) by the remark above.

Now we have constructed a $U$-coherent $f^{arrow}=\langle f_{\alpha}|\alpha<\mu\rangle$ . By Lemma 3.1 it suffices to

show that $f^{arrow}$ is not $U$-uniformizable.
For the contradiction assume that $f^{arrow}$ is $U$-uniformized by $f$ : $\kappaarrow \mathcal{P}(\mu)$ . Note that

$[f]_{U}\cap j(\alpha)=[f_{\alpha}]_{U}$ for all $\alpha<\mu$ . Then $j[\mu]\subseteq[f]_{U}$ by the choice of $f_{\alpha}$ ’s for successor
$\alpha’ s$ . Here note that $j[\mu]$ is unbounded in $j(\mu)$ because $\mu$ is a regular cardinal $>\kappa$ . So
$[f]_{U}$ is unbounded in $j(\mu)$ , that is, $S:=$ { $\xi<\kappa|f(\xi)$ is unbounded in $\mu$ } $\in U$ . Then we
can take $\alpha^{*}\in E_{\kappa}^{\mu}\backslash E$ such that $f(\xi)\cap\alpha^{*}$ is unbounded in $\alpha^{*}$ for all $\xi\in S$ because $\mu$ is a

regular cardinal $>\kappa$ , and $E_{\kappa}^{\mu}\backslash E$ is stationary in $\mu$ . Then $[f]_{U}\cap j(\alpha^{*})$ is unbounded in
$j(\alpha^{*})$ . But $[f]_{U}\cap j(\alpha^{*})=[f_{\alpha^{*}}]_{U}$ , and $[f_{\alpha^{*}}]_{U}$ is bounded in $j(\alpha^{*})$ by the choice of $f_{\alpha^{*}}$ in

Case 2, This is a contradiction. $\square$
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