WORKSHOP ON TOOLS FOR NATECH RISK MANAGEMENT

DISASTER PREVENTION RESEARCH INSTITUTE

Practical demonstration of some available tools for Natech risk assessment, risk mitigation and emergency planning for various types of natural hazards.

13/03/2017 Kyoto University, Uji Campus Collaborative Research Hub / Building 77 / Room 301

WORKSHOP ON TOOLS FOR NATECH RISK MANAGEMENT

Workshop Chairs: Ana María Cruz, Kyoto University Shin-ichi Aoki, Osaka University

WORKSHOP ON TOOLS FOR NATECH RISK MANAGEMENT

Scientific Committee

Ana Maria Cruz (DPRI-DRS, Kyoto University) Shin-ichi Aoki (Osaka University) Naomi Kato (Osaka University) Irasema Alacantara (DPRI, UNAM) Felipe Muñoz (DPRI-DRS, Kyoto University, Universidad de los Andes)

Organizing Committee

Sasha Yoshioka (Kyoto University) Horikomi Kaori (DPRI-DRS, Kyoto University) Hitomu Kotani (DPRI-DRS, Kyoto University) Giuseppe Aliperti (DPRI-DRS, Kyoto University, Scuola Superiore Sant'Anna) Marina Hamidzada (DPRI-DRS, Kyoto University) BonJun Koo (DPRI-DRS, Kyoto University) Maria Camila Suarez (DPRI-DRS, Kyoto University)

Collaborators

Toyoko Shimizu (DPRI-DRS, Kyoto University) Ryosuke Oba (DPRI-DRS, Kyoto University) Liuyi Zhang (DPRI-DRS, Kyoto University) Mohamed Elagaty (Photography, DPRI-DRS, Kyoto University) Marina Hamidzada (Notes transcript, DPRI-DRS, Kyoto University)

Report

Ana Maria Cruz (DPRI-DRS, Kyoto University) Felipe Muñoz (DPRI-DRS, Kyoto University, Universidad de los Andes) Giuseppe Aliperti (DPRI-DRS, Kyoto University, Scuola Superiore Sant'Anna) Maria Camila Suarez (DPRI-DRS, Kyoto University)

Images

Cover: torsakarin / 123RF Foto de archivo Page 10: tomas1111 / 123RF Foto de archivo

ISBN 978-4-901768-22-1

WORKSHOP ON TOOLS FOR NATECH RISK MANAGEMENT DPRI, KYOTO UNIVERSITY

WHAT IS A NATECH ACCIDENT?

A Natech accident is a technological accident triggered by natural hazard events such as earthquakes, floods, storms, lightning, landslides, etc.

In this context, a technological accident is understood as:

- Damage to and hazardous-materials releases from fixed chemical plants.
- Damage to and hazardous materials releases from oil and gas pipelines.

At least 50% of surveyed EU Member States and OECD Member Countries have experienced one or more Natech accidents, sometimes with fatalities and injuries, environmental and/or economic damage.

TABLE OF CONTENTS

Acknowledgments Summary Description and opening ceremony	7 8 9
SECTION 1 Chair: Prof. Ana Maria Cruz	11
State of the Art in Natech Risk Management María Camila Suarez, DPRI, Japan; Felipe Muñoz Giraldo, Universidad de los Andes, Colombia; Ana Maria Cruz, DPRI, Japan RAPID-N: Earthquake Natech Risk Assessment Elizabeth Krausmann, Joint Research Centre, European Commission, Italy	
SECTION 2 Chair: Prof. Shin-ichi Aoki	13
Natech Module in ARIPAR: Benefits and Limitations Valerio Cozzani, Università di Bologna, Italy Applications of ARIPAR to a Refinery Subject to Earthquake and Tsunami Hazards in Italy Ernesto Salzano, Università di Bologna, Italy	
SECTION 3 Chair: Prof. Felipe Muñoz	16
Oil and gas releases during large earthquakes and tsunami Shin-ichi Aoki and Kato Naomi, Osaka University, Japan Development of simulation tool for fire spread on floating oil in tsunamis Tomoaki Nishino, Building Research Institute, Japan Landslide and Pipeline Natech Risk Assessment Tool Mauricio Sánchez and Felipe Muñoz Giraldo, Universidad de los Andes, Colombia	
SECTION 4 Chair: Prof. Irasema Alcantara	20
Radiation Measurement for Protection of Children in Fukushima Takeshi Komino, CWS, Japan Discussion and Wrap-up Panel Session Panelists: Elisabeth Krausmann, Ernesto Salzano, Valerio Cozzani, Takeshi Komino, Tomoaki Nishino, Naomi Kato, Felipe Muñoz, Mauricio Sánchez	
ANNEXES	24
Annex 1. Group photo Annex 2. Program Annex 3. Presentations Annex 4. Number of Participants per Country and Participant Affiliations	

The material in this report may be reproduced, in whole or in part, if cited as follows:

Cruz Lab, Workshop on Tools for Natech Risk Management, Center for Disaster Reduction Systems, DPRI, Kyoto University, Japan, Report, 13 March, 2017.

AKNOWLEDGMENTS

This publication was put together by a group of international experts under the auspice of the Disaster Prevention Research Institute (DPRI), Kyoto University.

Its content reflects the multi-perspective contributions and international experiences presented at Kyoto University, Uji Campus, in March 2017, within the framework of the Workshop on Tools for Natech Risk Management.

We would like to thank the workshop speakers Prof. Kaoru Takara, Director, DPRI, Kyoto University; Prof. Shin-ichi Aoki, Osaka University; Mr. Jaime Pacheco, First Secretary of the Colombian Embassy in Japan; Ms. María Camila Suarez, DPRI; Prof. Felipe Muñoz Giraldo, Universidad de los Andes, Colombia; Dr. Elizabeth Krausmann, Joint Research Centre, European Commission, Italy; Prof. Valerio Cozzani, Università di Bologna, Italy; Prof. Ernesto Salzano, Università di Bologna, Italy; Emeritus Prof. Naomi Kato, Osaka University, Japan; Dr. Tomoaki Nishino, Building Research Institute, Japan; Prof. Mauricio Sánchez, Universidad de los Andes, Colombia; and Dr. Takeshi Komino, CWS, Japan.

We would also like to acknowledge the contribution of the members of the Disaster Risk Management Laboratory (Cruz Lab) to the preparation of this report under the guidance of Prof. Felipe Munoz Giraldo.

The Natech Workshop was partly funded by the Disaster Prevention Research Institute, Kyoto University, for which we are grateful.

About the Disaster Risk Management Laboratory (Cruz Lab):

Our lab is multidisciplinary, integrating skills and knowledge from a variety of disciplines such as engineering, sociology, economics, and disaster risk management (DRM), benefiting synergistically by working in association with local, national and international students, researchers and faculty (<u>www.natech.dpri.kyoto-u.ac.jp</u>). Cruz Lab is part of the Center for Disaster Reduction Systems (DRS) at DPRI, Kyoto University. Its purpose is to promote research and practices to build a safe and resilient society by reducing disaster risks.

SUMMARY

The Workshop on Tools for Natech Risk Management was organized and hosted by the Disaster Prevention Research Institute (DPRI) at Kyoto University, Uji Campus, on March13th 2017. The Natech workshop was carried out in an effort to do a hands-on practical demonstration of some available tools for Natech risk assessment, risk mitigation and emergency operations planning for various types of natural hazards. The workshop was attended by participants from 12 countries, including experts, students and stakeholders involved in Natech disaster risk reduction and similar topics.

The event included talks on available Natech tools, their strengths, implementation and development of case studies. A discussion of key elements and needs in the Natech context was the way to conclude the workshop. Identification of priorities, gaps and future research road map were the main outcomes of the event.

DESCRIPTION AND OPENING CEREMONY

On 13th March 2017, the Disaster Prevention Research Institute (DPRI, Kyoto University) hosted the Workshop on Tools for Natech Risk Management. Participants included representatives from Afghanistan, Bulgaria, China, Colombia, Egypt, Germany, Japan, India, Italy, Mexico, South Korea and Philippines (see Annex 4). The event was opened by the Director of the Disaster Prevention Research Institute, Prof. Kaoru Takara; Prof. Ana Maria Cruz, DPRI, KU; Prof. Shin-ichi Aoki, Osaka University; and Mr. Jaime Pacheco, First Secretary of the Colombian Embassy in Japan. Prof. Takara highlighted Natech's place in the Sendai framework for Disaster Risk Reduction.

During the opening ceremony speakers remarked the fact that Natech is a very recent concept and mentioned the need to better understand its complex accidental dynamics within interdisciplinary teams. They encouraged researchers to continue working towards prevention, mitigation and protection measures. The Colombian Embassy manifested their interest to support the development of research on Natech issues.

SECTION 1

State of the Art in Natech Risk Management

María Camila Suarez, DPRI; Felipe Muñoz Giraldo, Universidad de los Andes Colombia; Ana Maria Cruz, DPRI

This presentation was given by María Camila Suarez, a Ph.D. student at DPRI. She presented the state of the art in Natech Risk Management based on two stages of analysis. The first stage focused on a review of the literature concerning potential Natech accidents, mainly an apriori approach, and the second stage focused on a review of the literature concerning past Natech events, a posteriori approach. Classification by hazards and different types of analysis for the methodologies proposed so far has been conducted. The findings demonstrated the necessity for further research and outlined the way forward on this relatively recent topic.

RAPID-N: Earthquake Natech Risk Assessment

Elisabeth Krausmann, Joint Research Centre, European Commission, Italy

RAPID-N is a web based semi-quantitative tool for Natech risk assessment and mapping developed by the Joint Research Centre (JRC) of the European Commission. Rapid-N includes an integrated methodology able to analyze Natech risks by estimating the natural-hazard severity (e.g. earthquake) at a hazardous site, the damage caused by the natural hazard using fragility curves, and the consequences of the damage. The results give an overview of the impacted area around the accident site with respect to heat radiation and toxic concentrations. The JRC is the science body of the European Commission. Its mandate is to support policy making by providing scientific guidance to the European Commission. Through its activities, the JRC also supports EU Member States and operators in the identification and reduction of Natech risks.

SECTION 2

Natech Quantitative Risk Assessment by the ARIPAR software

Valerio Cozzani, LISES-DICAM, Università di Bologna, Italy

Natech events are characterized by a high level of complexity. They are categorized among the high impact, low probability events. As a consequence, Quantitative Risk Assessment (QRA) of Natechs is a challenging issue. The ARIPAR-GIS tool was developed under the ARIPAR project, which started since 1988. ARIPAR-GIS considers the impact area, vulnerability centers, demographics, meteorology and a combination of scenarios (e.g. 10,000-200,000 combination of scenarios) to give risk indexes as an output. For each risk source, event and failure trees are used, as well as geographical information. Vulnerability maps of the final scenarios are managed by the software. It has been applied to analyze several Italian industrial areas and it has proved to be a robust tool. The first complete approach to

Natech QRA was published in 2007, but it needed a computational tool. As a consequence, ARIPAR-GIS has now been modified to implement a specific method for Natech QRA, allowing the calculation of the specific contribution of Natech scenarios to the overall industrial risk figures.

Quantitative Assessment of Earthquake and Tsunami Natech scenarios

Ernesto Salzano, Università di Bologna, Italy

The complexity of Natech scenarios is such that Quantitative Risk Assessment requires a complex, multi-disciplinary analysis, involving several engineering and natural science disciplines. Under the STREST project, the fishbone diagram of industrial risk analysis was adopted and natural hazards and their interactions incorporated in order to analyze a case study of a refinery in Milazzo, Italy. Earthquake and Tsunami were the natural hazards considered. Thus, Probabilistic Seismic and Tsunami Hazard Analysis (PSHA) were developed. Results were obtained using the Risk Curves/Effect TNO tool. The results given by the tool are based on available standards for vulnerability and for

consequence analysis. Therefore, they can only be used for comparative purposes and as preliminary inputs for land use planning. It was concluded that the general complexity of Natech scenarios, which includes natural hazard analysis, is partially reduced by the similarities industrial facilities share worldwide and the availability of data associated to them.

SECTION 3

16

Oil and Gas Releases during Large Earthquakes and Tsunami

Shin-ichi Aoki and Naomi Kato, Osaka University, Japan

Osaka bay is exposed to several hazards such as floods, earthquakes, tsunami and storm surge. The consequences of oil and gas releases due to a large earthquake and associated tsunami in Osaka Bay represent a high risk for industrial facilities and neighboring communities. Thus, a research initiative for Disaster Prevention of Petrochemical Complexes (industrial parks) which includes the case study of the Sakai-Senboku industrial area, has been presented. Onshore and offshore propagation of damages were considered, although consequences and impacts were mostly present offshore. Numerical simulations of tsunami propagation and dispersion of spilt oil, including oil spill from storage tanks due to sloshing using Meshless Moving Particle Semiimplicit (MPS) method were developed. Furthermore, laboratory experiments on tsunami-induced hydrodynamic forces at the

harbor and 2D experiments on wave forces acting on a tank have been used in order to validate a proposed model, considering similarities and scale effects. Communityengagement initiatives have also been carried out exchanging opinions with residents near the industrial park areas. Finally, countermeasures that are being developed such as reduction of tsunami energy by flexible pipes and blocking tsunami by an earth bank were presented.

Development of Simulation Tool for Fire Spread on Floating Oil in Tsunamis

Tomoaki Nishino, Building Research Institute, Japan

The tsunami following the 2011 Great East Japan Earthquake caused spreading of fires at Kesennuma Bay. A large quantity of oil, which had been spilled from destroyed oil tanks, contributed to such tsunami-induced fires. Some of the fires ignited tsunami refuge buildings, and people who had escaped to the buildings from the tsunami were exposed to the fires. In addition, the fires spread to forests, resulting in wildfires involving 231 ha. These facts have raised concern among people whom must evacuate for future tsunamis of the risk from tsunami-induced fires. Nevertheless, adequante measures have not yet been taken in recent disaster prevention planning, because there is no method for predicting the big picture of tsunami-induced fires.

The Building Research Institute has been developing a

computational model for fire spread on floating oil in tsunamis. The model regards the spreading fires on the sea as an assembly of burning floating oil particles, and tracks the burning zone by predicting the locations and combustion behaviors of individual particles in time series. The spreading fires on Kesennuma Bay were numerically analyzed. As a result, it was concluded that the qualitative trend of the fire spread was well predicted by the model, compared with the actual conditions which were determined from film records and survey data.

Landslide and Pipeline Natech Risk Assessment Tool

Mauricio Sánchez and Felipe Muñoz Giraldo, Universidad de los Andes, Colombia

A quantitative-mechanistic model for assessing the probability of failure along pipelines due to their interaction with landslides, named GeoRisks was presented. The objective was to develop an integrated model to evaluate the risk of pipeline subjected to multiple natural hazards. The importance of managing problem complexity was considered. Topography, geotechnical information, hydrology, and pipeline information have been considered in the analysis. Cost analysis was also presented with a particular focus on cost-efficient design. Finally, criteria for risk management and structured hierarchical decision processes have been identified.

SECTION 4

Radiation Measurement for Protection of Children in Fukushima

Takeshi Komino, CWS, Japan

This presentation focused on the important question of how to mitigate nuclear-related risks analyzing the position of the government and providing real-time data. The presentation showed that under the Technical Hazards Working Session of the Sendai Framework, a call for transparent disclosure of risks was made. The question on "how are the lessons from Fukushima being used to mitigate future losses?" was the starting point to develop the project for Sharing Lessons and Protecting the Vulnerable communities. As a result, a method that is used to measure individual levels of radiation in Fukushima was developed. The tool has been used to identify radiation hotspot, particularly in

schools and other public areas which then leads to on-the-spot decontamination efforts led by local government.

The NGO CWS Japan operation pillars are related to humanitarian development assistance, advocacy and capacity building, and it works with a NGO called Shalom on the project presented.

Discussion and Wrap-up Panel Session

Chair: Ana Maria Cruz

Panelists: Elisabeth Krausmann, Ernesto Salzano, Valerio Cozzani, Takeshi Komino, Tomoaki Nishino, Naomi Kato, Felipe Muñoz, Mauricio Sánchez.

The discussion and wrap-up panel session was the opportunity to evaluate overall awareness concerning Natech risks, assess research achievements and gaps, and delineate the main conclusions from the Workshop. The panelists agreed that awareness concerning Natechs risks has increased. It was also mentioned that there is a need for interaction between people from different disciplines and exchanges within different geographical areas in order to provide guidance for industrial plants and local governments. As a consequence, integrated and useful models are needed to help decision makers take the right decisions. However, several issues remain unsolved such as how to use and interpret model results to adequately inform decision making.

All the panelists agreed that uncertainty characterization is a central issue. It needs to be further addressed and explained, in order to have models that serve a purpose and can be implemented by authorities and stakeholders. One of the panelists noted "Models may not yet address uncertainties and are not yet dynamic". But the question on how to include changeability, adaptability and flexibility in these models is still not resolved. For example, issues related to infrastructure deterioration and depreciation over time are not yet incorporated in current risk assessment models.

The importance of estimating economic losses from Natech accidental scenarios and the need to have more precise estimation tools which consider direct and indirect damages and losses was highlighted.

Another aspect that was discussed during the session was data availability. Several panelists manifested the need to have databases based on detailed descriptions of past accident scenarios, and agreed efforts to promote data sharing and recording is crucial for lessons learning. Another problem identified is the need to work towards improved risk communication and disclosure of risk information by industry to potentially affected communities. Thus, a call was made for inclusion of more social science approaches and risk communication fields in future Natech studies.

One of the participants noted that Natech risk management focuses on industrial aspects and exposure, but that it is also a risk governance problem. Risk management is in the hands of industries or though policies by government officials. Will power from government officials is needed. In developing countries, the problems are even greater due to lack of economic and human resources, and so on. The need for an international standard for Natech risk management, and the importance of constructing an international framework on Natechs was noted. In this context, the question concerning "What are key criteria needed for a Natech performance rating system?" was raised. The answers provide by the panelists and participants touched upon several issues including:

- Awareness about the problem
- Identification of exposure to hazards
- Knowledge creation (chemicals, quantities, etc.)
- Definition of natural hazard and level of risk
- Facilities should look at events beyond design level
- Emergency response (not captured by QRA)
- Emergency planned made by public authority.
- Early warning /forecasting in case of storms, flood etc.
- Incentives for companies
- Indicators for the relation between land use planning and governance.

Annexes

Annex 1:

Group Photo

PARTICIPANTS

Standing, left to right (First row): Ana Maria Cruz, Kaoru Takara, Valerio Cozzani, Angelica Baylon, Sandhya Babel, Jaime Pacheco, Ma. Camila Suarez, Marina Hamidzada, Luiyi Zhang.

Standing, left to right (Second row): Takeshi Komino, Dewi Dimyati, Ahmed Ibrahim, Ernesto Salzano, Shin-ichi Aoki, Shinichi Yamamoto, Horikomi Kaori, Felipe Muñoz.

Standing, left to right (Third row): Bonjun Koo, Daniel Cardoso, Atsushi Aoyama, Alexander Guzman, Elizabeth Krausmann, Toma Stoyanov, Uta Reichardt, Mauricio Sánchez, Hirokazu Tatano, Tomoaki Nishino, Irasema Alcantara, Giuseppe Aliperti, Hitomu Kotani.

Annex 2:

Program

Collaborativ Building 77, March 13, 2	ve Research Hu , Uji Campus, K 2017	ıb, Room 301 Yyoto University
	9:00 - 9:20	Opening ceremony Kaoru Takara, Director, DPRI, KU Ana María Cruz, DPRI, KU
		Shin-ichi Aoki, Osaka University Jaime Pacheco, First Secretary of the Colombian Embassy in Japan
Chair: <i>Ana Maria</i>	9:20 - 9:40	State of the Art in Natech Risk Management María Camila Suarez, DPRI; Felipe Muñoz Giraldo, University of Andes, Colombia; Ana Maria Cruz, DPRI
Cruz	9:40 - 10:20	RAPID-N: Earthquake Natech Risk Assessment Elizabeth Krausmann, Joint Research Centre, European Commission, Italy
	10:20 - 10:40	Coffee Break
Chair:	10:40 - 11:20	Natech Quantitative Risk Assessment by the ARIPAR software Valerio Cozzani, University of Bologna, Italy
Aoki	11:20-12:00	Quantitative Assessment of Earthquake and Tsunami Natech scenarios. Ernesto Salzano, University of Bologna, Italy
12:00 - 13:30		Lunch
	13:30 - 14:10	Oil and gas releases during large earthquakes and tsunami Shin-ichi Aoki and Kato Naomi, Osaka University, Japan
Chair: Felipe Muñoz	14:10 - 14:50	Damage and Effects Caused by Tsunami Fires Tomoaki Nishino, Building Institute, Japan
	14:50 - 15:30	Landslide and Pipeline Natech Risk Assessment Tool Mauricio Sánchez and Felipe Muñoz Giraldo, U. Andes, Colombia
	15:30 – 15:50	Coffee Break
Chair: Irasema Alcantara	15:50 - 16:30	Tool for Assessment of Radiation Hotspots Takeshi Komino, CWS, Japan
Chair: Ana Maria Cruz	16:30 - 17:45	Discussion and Wrap-up Panel Session Panelists: Elisabeth Krausmann, Ernesto Salzano, Valerio Cozzani, Takeshi Komino, Tomoaki Nishino, Naomi Kato, Felipe Muñoz, Mauricio Sánchez
17:45	- 18:00	Closing Ceremony

Annex 3:

Presentations

Natural haz	ard		
	Earthquake	Floods	Lightning
	Storms	Tsunami	Hurricane
	Volcanic eruptions	Landslides	Extreme Temp.
	Wildfires	Droughts	Multi-hazard and

	State of the art ir management Databases	n Na [.]	tech	ri	S	k				C	8					os /	And
No.	Databases and accident reports	Acronym	Information available (from-to)	Flood	Earth quake	Li ghtnin g	Storms	Volcanic	e ruptions	Landslides Des	Extreme termo	Midfies	Winds	Diro ught	Natural	ph eno mena	NATECH
1	High Pressure Gas Safety Institute Japan	КНК	2005- Present														
2	National Response Centre	NRC	1990-Present														
3	US Environmental Protection Agency in the ERNS database	ERNS	1986-1995									Γ	Γ				
4	Incident Reporting Information System	IRIS															
5	Major Accidents Reporting Systems	eMARS	1982-Present														
6	Toxic Release Inventory database	TRI	1997-2015														
7	Failure and ACcidents Technical information System	FACTS	1597-2014									Τ					Γ
8	Furopean Strong Motion Database	FSD	1957-2008														
9	Hazardous Substances Emergency Events Surveillance	HSEES	1993-2009														
10	Analysis, Research and Information on Accidents database	ARIA	1992-Present				Γ						Γ				
11	Major Hazard Incident Data Service	MHIDAS	2001-2014														
12	The Accident Database	TAD															
13	Association of Bay Area Governments Resilience Program*	ABAG	1990-1992														
14	Japan National Police Agency	NPA	Present														
15	RieLogix database	RigLogix	2000-Present														
16	eNATECH (Natural Hazard - Triggered Technological Accidents)	e-Natech	Present														
17	The International Disaster Database	Emdat	1900-Present									Г	L				
18	Pipeline and Hazardous Materials Safety Administration	PHMSA	1970-Present						1	T							
19	A large database of earthquake-induced damage for steel and non-steel pipelines	Lanzano et al	2015-Present									Τ				25	

	State of the art ir management	n Na	tech	ri	s	k				0			5		()) i	os A	nde
No.	Databases and accident reports	Acronym	Information available (from-to)	Flood	Earth quake	Li ghtnin g	Storms	Volcanic	e ruptious	Desc	erip Bereit	Midfies a	Winds	Diro ught	Natural	pn eno mena	NATECH
1	High Pressure Gas Safety Institute Japan	KHK	2005- Present						Т								
2	National Response Centre	NRC	1990-Present														
3	US Environmental Protection Agency in the ERNS database	ERNS	1985-1995														
4	Incident Reporting Information System	IRIS															
5	Major Accidents Reporting Systems	eMARS	1982-Present														
6	Toxic Release Inventory database	TRI	1997-2015														
7	Failure and ACcidents Technical information System	FACTS	1597-2014														
8	European Strong Motion Database	ESD	1967-2008						1			Т	1	1	1	1	п.
9	Hazardous Substances Emergency Events Surveillance	HSEES	1993-2009						Ι								٦
10	Analysis, Research and Information on Accidents database	ARIA	1992-Present						Τ	Τ		Т		Γ			
11	Major Hazard Incident Data Service	MHIDAS	2001-2014						T			Т		Γ			
12	The Accident Database	TAD							1							_T	
13	Association of Bay Area Governments Resilience Program*	ABAG	1990-1992						1		_					T	
14	Japan National Police Agency	NPA	Present						1		_						
15	RigLogix database	RigLogix	2000-Present						4								
16	eNATECH (Natural Hazard - Triggered Technological Accidents)	e-Natech	Present														
17	The International Disaster Database	Emdat	1900-Present						1			Т		L			
18	Pipeline and Hazardous Materials Safety Administration	PHMSA	1970-Present														
19	A large database of earthquake-induced damage for steel and non-steel pipelines	Lanzano et al	2015-Present						1	Τ		Т	Γ	Γ	- 2	16	

	State of the art ir management	n Na	tech	ri	is	k			0	•)			1	los /	nistad o Ande Court
			Information	-	ake	8	<i>"</i>	¥ 8	De 10	scri	pto	rs a	. *	-	ena	Ŧ
No.	Databases and accident reports	Acronym	(from-to)	Flood	Earthqui	Lightnin	Storm	Volcan eruptio	Landslie	Extrem	temp	The second secon	Drough	Natura	phenom	NATEC
1	High Pressure Gas Safety Institute Japan	КНК	2005- Present													
2	National Response Centre	NRC	1990-Present													
3	US Environmental Protection Agency in the ERNS database	ERNS	1986-1995													
4	Incident Reporting Information System	IRIS														
5	Major Accidents Reporting Systems	eMARS	1982-Present													
6	Toxic Release Inventory database	TRI	1997-2015													
7	Failure and ACcidents Technical information System	FACTS	1597-2014									L				
8	European Strong Motion Database	ESD	1967-2008									Т				
9	Hazardous Substances Emergency Events Surveillance	HSEES	1993-2009									Ι				
10	Analysis, Research and Information on Accidents database	ARIA	1992-Present									Τ				
11	Major Hazard Incident Data Service	MHIDAS	2001-2014													
12	The Accident Database	TAD														
13	Association of Bay Area Governments Resilience Program*	ABAG	1990-1992												_	
14	Japan National Police Agency	NPA	Present													
15	RigLogix database	RigLogix	2000-Present													
16	eNATECH (Natural Hazard - Triggered Technological Accidents)	e-Natech	Present													
17	The International Disaster Database	Emdat	1900-Present									Т				
18	Pipeline and Hazardous Materials Safety Administration	PHMSA	1970-Present								Г					
19	A large database of earthquake-induced damage for steel and non-steel pipelines	Lanzano et al	2015-Present						Γ		Τ	Т	Τ		27	

	State of the art management Natech Tools	: in Natech risk 🛛 📚 🎦 🕅 🔤 🕅 🕅 🕅								
No.	. Tool name Approach									
1	Advanced Disaster Management Simulator (ADMS).	Emergency Management Simulation								
2	Guardian Centers	Training in natural and manmade disasters								
3	The Finding Individuals for Disaster and Emergency Response (FINDER)	d Natural phenomenon (earthquakes and avalanches)								
4	Climada (Catastrophe modeling)	Probabilistic multi-hazard risk assessment								
5	SNOWPACK	Multi-purpose snow and land-surface model								
6	RAPID-N	Natech risk mapping								
7	PANR	Preliminary Assessment of Natech Risk in urban areas.								
8	TRAS 310 Technical Rules on Process Safety (TRAS)	Precautions and Measures Against the Hazard Sources Precipitation and Flooding								
9	TRAS 320	Precautions and Measures Against the Hazard Sources Wind, Snow Loads and ce Loads								
10	TRAT-GIS	Quantitative risk assessment computational tool applied to the land transport of dangerous goods								
11	Tsunami-Induced Fire Spread Simulation	Tsunami consequences								
12	Landslide and pipeline Natech Risk Assessment Tool	Quantitative-mechanistic model for assessing the probability of failure along pipelines due to their interaction with landslides								
13	ARIPAR GIS - Software Tool for Area Risk Assessment and Management	Quantitative area risk assessment tool to evaluate the risk from major accidents n industrial areas where hazardous substances are stored, processed and transported.								
14	Tool for Assessment of Radiation Hotspots	Assessment of radiation hot spot using Hot Spot Finder and linking it to decontamination efforts by local authority								

	State of the art management Natech Tools	in Natech risk 💿 🎦 🕅 🕅 Kander								
No.	Tool name Approach									
1	Advanced Disaster Management Simulator (ADMS).	Emergency Management Simulation								
2	Guardian Centers	Training in natural and manmade disasters								
3	The Finding Individuals for Disaster and Emergency Response (FINDER)	Natural phenomenon (earthquakes and avalanches)								
4	Climada (Catastrophe modeling)	Probabilistic multi-hazard risk assessment								
5	5NOWPACK	Multi-purpose snow and land-surface model								
6	RAPID-N	Natech risk mapping								
7	PANR	Preliminary Assessment of Natech Risk in urban areas.								
8	TRAS 310 Technical Rules on Process Safety (TRAS)	Precautions and Measures Against the Hazard Sources Precipitation and Flooding								
9	TRAS 320	Precautions and Measures Against the Hazard Sources Wind, Snow Loads and ce Loads								
10	TRAT-GIS	Quantitative risk assessment computational tool applied to the land transport of dangerous goods								
11	Tsunami-Induced Fire Spread Simulation	Tsunami consequences								
12	Landslide and pipeline Natech Risk Assessment Tool – GeoRisk	Quantitative-mechanistic model for assessing the probability of failure along pipelines due to their interaction with landslides								
13	ARIPAR GIS - Software Tool for Area Risk Assessment and Management	Quantitative area risk assessment tool to evaluate the risk from major accidents n industrial areas where hazardous substances are stored, processed and ransported.								
14	Tool for Assessment of Radiation Hotspots	Assessment of radiation hot spot using Hot Spot Finder and linking it to decontamination efforts by local authority								

	State of the art in management other Tools	Natech risk 💿 🎦 🕅 🕅 🕅 🕅
No.	Tool name	Approach
1	Global Platform for Disaster Risk Reduction	Disaster Risk Reduction
2	International Search and Rescue Advisory Group (INSARAG)	Earthquakes
3	Global Environments Network (GEN)	Seeks solutions to environmental and social problems
4	Real-Time Wireless Sensor Network for Landslide Monitoring	Landslides
5	STOP DISASTERS! Disaster simulation game.	Natural disasters
6	Nepal 2015 Earthquakes	Characterising the post-seismic behaviour of damaged slopes
7	TANAH - the tsunami and earthquake fighter	Tsunami
8	PreventionWeb - Information needs of the DRR community	Multihazard Disaster Risk Reduction
9	Flood Resilience Portal	Flood
10	Practical Action	App used as a Technical Information Service Rebuilding in the Aftermath of an Earthquake Seismic Resistant Retrofitting for Buildings
11	Missing map project	Map up of vulnerable areas before the disaster occurs
12	Flash Environmental Assessment Tool (FEAT)	First aid impact assessment and response prioritization tool, aimed to be used immediately after a chemical incident anywhere in the world.
13	The Hazard Identification Tool (HIT)	Support tool for first responders to identify and address secondary environmental risks as early as possible.

Conclusions

- This is a first approach which uses a small sample of literature to have an outlook of the state of the art in Natech Risk Management considering specific works which explicitly refer to Natechs.
- There is an increase interest of researchers and industries in understanding the dynamics and effects of storms, hurricanes, tsunamis, landslides and droughts.
- More methods that lie between the quantitative and qualitative approaches are urgently needed as they may be less time consuming and less expensive, while still providing some quantitative measure.

Conclusions This is a first approach which uses a small sample of literature to have an outlook of the state of the art in Natech Risk Management considering specific works which explicitly refer to Natechs. There is an increase interest of researchers and industries in understanding the dynamics and effects of storms, hurricanes, tsunamis, landslides and droughts in the industry and community. More methods that lie between the quantitative and qualitative

- More methods that lie between the quantitative and qualitative approaches are urgently needed as they may be less time consuming and less expensive, while still providing some quantitative measure.
- Some available databases have started to include Natech as keyword and Natech accidents among their records.
- More area wide methodologies and tools are needed in order to address the consequences beyond the fence line, and include neighboring communities in the Natech risk management context.³⁴
References

Ios Andes

Ancione, G. et al (2016) A GIS-based tool for the management of industrial accidents triggered by volcanic ash fallouts. Journal of
Risk Research. 19: 212-232.
Antonioni, G. et al. (2007) A methodology for the quantitative risk assessment of major accidents triggered by seismic events.
Journal of Hazardous Materials 147: 48–59
Antoniani, C. et al. (2000) Development of a framework for the rick according of Na Tech accidental quests. Beliability Engineering

- .
- Antonion, G. et al. (2009) Development of a framework for the risk assessment of Na-Tech acidential events. Reliability Engineering and System Safety 94:1429–1450 System Safety Safety
- Inductives 1-7
 Basola V.et all (2009) The Effects of Confidence in Government and Information on Perceived and Actual Preparedness for Disasters.
 Environment and Behavior. 41:332-343
 Basola V. et al. (2010) Inductival accidents triggered by flood events: Analysis of past accidents. Journal of Hazardous
 Materials 192: 129–139
 Cozani, V. et al. (2010) Inductival accidents triggered by flood events: Analysis of past accidents. Journal of Hazardous
 Materials 175,
 501–509 •
- •
- 501-309 Cruz, A. M. et al. (2004). State of the Art in Natech Risk Management. European Commission-JRC and United Nations-ISDR. 1-66 Cruz, A. M., and N. Okada (2008). Methodology for preliminary assessment of Natech risk in urban areas. Natural Hazards, 46:199– :
- •
- .
- Cruz, A. M., and N. Cokad. 2008b. Methodology for preliminary steesment or nation use in use in use in 20 Cruz, A. M., and E. Roausmann (2009). Hazardous: Materials Releases from the Offshore OII and Natural Gas Facilites Following Intricanas tatima and BaL. Journal of Carlos Prevention in the Process Maturitary. 20 (1): 59–50. International Carlos and BaL. Journal of Carlos Prevention in the Process Maturitary. 20 (1): 59–50. International Carlos Material Carlos Ca .

References

Hajj, C. et al (2015).	Development of generic bow-tie diagrams of accidental scenarios triggered by flooding of industrial facilit
latech) Journal of Los	s Prevention in the Process Industries 36:77-83

Itos Andes

Ios Andes

- n the Process Industries 36:72-83 tive risk analysis of oil storage facilities in seismic areas. Journal of Hazardous Mat als A123:61-Fabbrolino, G., et al (2005). Quantitative ras arrays as us as ways, and the second se
- Kishimoto, A. and Willot, A. Interdisciplinary study on the mitigation of NaTech risks in a complex world: learning from Japan experience applying ERRA NaTech method, INTeg-Risk project
- Vegenities upprogrammers in the second secon
- Krausmann, E., Cruz, A. M. and Affeltranger, B. (2009) Natech Accidents at Industrial Facilities-the Case of the Wenchuan Earthquake International Conference on Risk Analysis and Crisis Response. 53-59.
- Krausmann, E. (2010), E. Analysis of Natech risk reduction in EU Member States using a questionnaire survey. European Commission RC: 1-123
- Krausmann, E. et al. (2011) Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis. Natural Hazards, 59:285–300
- Krausmann, E. and A. M. Cruz (2013). Impact of the 11 March, 2011, Great East Japan earthquake and Isunami on the chemical industry. Natural Hazards, 67 (2): S11-828.
- Krausmann, E; Cruz, A.M.; Salzano, E. (2016) Natech Risk Assessment and Management: Reducing the Risk of Natural Hazard Impacts on Hazardous Installations. Elsevier: Peer reviewed.

References

- <section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

References

- Organization for Economic Cooperation and Development (IOECD) (2015). Addendum. Guiding Principles for chemical accident provention, progratchess and response [2rd ED] to address natural hazards triggering technological accidents (Natech). Series on Chemical Accidents No. 27.
 Panico, A. et al (2016) Fublauing the structural priorities for the seismic valuenability of civilian and industrial wastewater treatment planet. Safety Science, Special Siae Article: Rest and Inacideus. Telephone Science 1999; 5:3-57.
 Sengida, H.; N. Santella, L. J. Seinberg, A. M. Cruz (2004). Nanayiso f hazardous material releases due to natural hazards in the United States. Soziestra: 86 (4): 72-743.
 Seinberg, L. J., and A. M. Cruz (2004). Nethen natural and technological disasters collide: lessons from the Tarky earthquarks of ac13-51.
 Seinberg, L. J., M. A. M. Cruz (2008). Nethen risk and and specific plasmes that accident risk and releases. Soziestra: 86 (4): 72-743.
 Seinberg, L. J., M. A. M. Cruz (2008). Nether risk and magement: an assessment of the state of the art. *Industrial*, 411-43.
 Seinberg, L. J., M. Seinberg, J. (2004). Nethen natural and gas in finstructures for seismic exterme events. Proceedia regularization (2003). Nether, risk and magement: an assessment of the state of the art. *Natural Science*, 123-550-558.
 Young, S. (2014). L. and M. Allay, J. (2004) Natural and technologic hazdrous material releases during and after natural releases for the state of the art. *Natural Plasmetric*, 123-550-558.
 Young, S. (2014). L. and M. Allay, J. (2004) Natural and technologic hazdrous material releases during and after natural releases for the state of the art. *Natural Plasmetric*, 123-550-558.
 Young, S. (2014). L. and M. Allay, J. (2004) Natural and technologic hazdrous material releases during and after natural releases during and after natural plasmetric. *Plasmetric*, 2550-559.

- Engineering 123:500:508 Young, S., Balluz,L and Malilay, J. (2004) Natural and technologic hazardous material releases during and after natural disasters: a review. Science of the total environment. 322: 3-20

Columba State of the art in Natech **Risk Management**

Workshop 2017 - Kyoto

María Camila Suarez Prof. Ana María Cruz

Prof. Felipe Muñoz Giraldo Research Center for Disaster Reduction Systems DPRI, Kyoto University suarez.camila.57u@st.kyoto-u.ac.jp

- Publicly available
- Multilingual web serviceUser friendly application
- Easy and quick data entry
- Visualization
- Collaborative environment

		APID-N apid Nate	ch Risk Ass	essm
2			RAP	ID-N d Nati
	Personal	Page	NC - 8.493 - 16	
-	2	24	<u>[]</u>	Ľ
tarata a	Industrial	Panta and	Units	0
	Scientific Linearity	{x}	{x}	-
		Fri	112	7
	0	Eur	opean mission	1

Property Estimation Framework

Properties

- Natural hazard: e.g. PGA
- Site: e.g. Soil class
- Facility: e.g. Capacity
- Process unit: e.g. Volume
- Substance: e.g. Density
- Data

14

- Numerical (with unit) e.g. 10 m³, 1.5 m/s
- Tabular

e.g. Atmospheric, Pressurized

Property	notemotel	
Type	Omenand	(Process link)
Code:	0	
Read of Lot of Lot.	Danata d	the sectors and
Data Type:	Farmeric	
Parameter	European Macrosomers	· Valo Danageg ·
Parameter	Past Dravid Acceleration	W Value 2.5 If the Part
Pasnete	Peak Ground Displacement	Wiley 4840 # Link on
Empty	Peace arts	e a familie
Hariconte Vertical p Peak Gro	Fpeak ground acceleration ask ground acceleration and Displacement tops, 2011/2014 (0.5214 - Spin	n: 425 g 42 g 46-61 cm and linear (regs. 2010)01 (11)(11)
Harizonia Verikal p Peak Gro Maser Allesee	Ppeak ground acceleration and ground acceleration and Displacement ingo, 3011000-005214 - Span	 425 g 62 g 63 dl cm 64 dl cm 10 dl cm
Herizonia Verifical y Peak Gro Allenes Denete 129	Percil ground acceleration and ground acceleration and Displacement inp. 3111000 001214-1040	 4.55 g 4.7 g 4.7 d and latens drags (interest at the set interest at the
Herizonia Venical y Peak Cro Peak Cro P	r peak ground acceleration with preservat acceleration and Displacement raps 31*1101*10121*4 - type me	 0.35 p 0.5 p 0.5
Harizonia Venical y Peak Gro Ineret Seter I Allener Inereta Ing (Anten) (24	r pende ground antohondia nuk ground antohondia und Diagtersowert hup: 31111010 03114 - 1000 mm.	 625 (

Assessment Module

- Damage Classifications
- Fragility Curves
- Risk States

- Non-linear DS-RS relations
- Damage parameters, e.g.:
- Natech event (e.g. BLEVE)Conditional probability (e.g. 50%)
- Volume involved (e.g. 10 %v)
- Validity conditions

		1
CONTRACTOR AND ADDRESS OF	the state of a second second second	Contraction of the second seco
(d. 42,3 m) Red To (mod (2.67) Hotel (- Collegibial United; d: 42,5 m; Red Top fail: Atmospheric; V _{denal} (2 M ²) H ₂₅₄ (1	
A 42.3 m Ref To	Collected torbal: A 42.3 m Red To ten Inneghals; C _{anad} 8 m ² ; A ₂₀₄ : 1	The second se
at 41.1 m; Red To	Colorities Vertical: 41-12 Inc. Red Top Final States	
(d. 25 m; Rod Tops II Recent: 50 Tor; o Sciences	c Culturative State (L. 25 m); Rod Tope Son: Atmospheric; Fill Percent; 50 Top; e	Construction of the local data local
A: 23 m; Rolf Tope	c Cullinational vertilizati, dt. 23 mil Rooff Trape	Angel Maria
6.21 H: Rod Tran	Colorabial certical, il. 23 In. Rolf Popel Sec. Amutalianis; FB Recent: 82 Nov. el Insurine	wante prister
e 21 m; Red Tops	Collected vertical, # 25 m, Red Tope	Chana and
d 21 m; Rod Tops	Collection vertical, d. 21 m; Rod Type	and a second sec
4.25 m; Real Trans.	Collisional Vertical, 8, 25 m; feed Trans.	and a second sec
(Head Topic Alloce) Mad New Color	Apprential, & 15 m (does Type: Jillion) Res See	and of a
And the second second second second	: Spharical; el: 12 m; danse figne: alterna (and the second s
0.52 m; Red Trans B Recent: 52 Trans	Collected vertical; 0.52 m; food from	Constant of Consta
A Li m. Ford Trans	Colemanual Versitual: 4: 12 mil Reed Proper	
d 17 m. Rolf Tops	Collection (1997) at 17 m. Rold Trans	and a second sec
At 12 m. Rod Type Reservation	Collected Vertical, 6: 12 m. Rod Travel Meeting	comment of the second s
d 12 m. Rod Tree and	Collected Vertical & 32 to: Red Trees also and	He ² No. No.
4.7.5 million Type Marcane	Collection institut, 6:7.3 m; Bull Top Station for interpolation, 28 m; Lucy 20	and the second

Risk	Assessment – Ke	roser	ne	
Consec	quence: Pool fire	d _e	6.18 km	
End-po	pint: 2 nd degree burns (40s exp.)	PGA	0.7852 g	
DS1	No release	PGV	167.92 c	m/s
DS2	No release	MMI	10.07	
DS3	1.24 m ³ release 248 m ² pool (within dike)	HAZUS,	2010	
	69 m end-point distance	≥ 50%,	Anchored	
DS4	619 m ³ release	DS1		45.00%
	90 m end-point distance	DS2		46.56%
DS5	1238 m ³ release	DS3		5.86%
000	8588 m ² pool (dike overflow)	DS4		0.87%
	408 m end-point distance			1 72%

Natech Quantitative Risk Assessment by the **ARIPAR** software

Valerio Cozzani

LISES - DICAM Alma Mater Studiorum – Università di Bologna Bologna, Italy

valerio.cozzani@unibo.it

LISES - DICAM @ University of Bologna

- University of Bologna: funded in 1088: the oldest university in the western world
- 11 Schools, 33 Departments 2800 faculty members, 80000+ students
- One of the largest and best reputed Italian universities An international centre of competence for research in
- Safety of Industrial Activities Specific competences on external hazard factors and
- cascading events

Natech Events: definition Natural events (earthquake. infrastructures substances triggering a technological accident NaTech scenarios are potentially high impact – low probability (HILP) events

Natech Quantitative Assessment by ARIPAR tool V. Cozzani, University of Bologna, Italy

- floods, etc.) may cause damage to industrial installations and
- Damage caused by natural events may start the release of hazardous
- These cascading events are defined "Natech" scenarios (Natural hazard triggering Technological disasters)

Natech Tools Workshop Kyoto, Japan, March 13, 2017

n, March 13, 2017

Jap

further escalation (domino effects)

Natech Quantitative Assessment by ARIPAR tool V. Cozzani, University of Bologna, Italy

Quantitative Assessment of Natech

- Quantitative assessment of Natech scenarios deals with:
- HILP events falling outside common experience of 1. analysts and responders
- 2 A high number of complex overall scenarios -simultaneous events, alternative final scenarios, escalation
- 3 Complex characterization of hazard
- Complex description of impact area 4
- 5. Need to include non-perfect barriers in the analysis and early warning systems
- Quantitative Risk Assessment is usually applied to cope with a high number of scenarios having different credibility
- Geographical Information Systems (GIS) software is adopted to deal with the detailed characterization of complex areas Natech Tools Workshop Kyoto, Japan, March 13, 2017

Natech Quantitative Assessment by ARIPAR tool V. Cozzani, University of Bologna, Italy

The ARIPAR-GIS softw	are			
First complete application of QRA to Na ARIPAR-GIS software	tech was s	upport	ed by	the
	azione			
Anir An-Cio	naradullità			
Inserimente dati C	imponenti per Efi	etto Domin	o e Rischio	Sismico
Compensate [1 Serbatoro A	emosferico		
Tipo Probit	Coeff 1	Coeff 2	Coeff 3	Conv*
Sovapressione	2.44	-18.96		100000
Freedo Francis	D			
Irraggiamento	-1.163	10	1	1
Evento sismico				
Menu Princip/	da di conversione i	totrontic di s		
William Street Highling	Ind	a las		
he use of a software tool				and the second second
s required to carry our	1 Probit tempo	li cedimen	16.1	114
omplete calculations	2 Press tempe	li cestimen	• -1.0	4/
				Esci
Natech Quantitative Assessment by ARIPAR tool		Nate	ch Tools V	/orkshop

 AF se 	IPAR veral	-GIS w extend	as app led inc	plied t dustria	o the	e detailed ana eas in Italy	alysis of
area	Data o	the main l	Italian area	pipeline	ext.	dies performed using the	en behalf of:
Ravenna	47	379	ven	ves	205	Snamprogett-NIER-DAM and University of Bologna	Civil Protection Department - Emilia Romacina Region
Liverno	35	306	Ves	Ves	45	Snampropetti	Local control authorities (ARPAT, Regione Toscana
Piombino	5	40	VES	10	3	University of Pisa	Local control authorities (ARPAT, Regione Toscana
Mantova			yes	na	25	University of Pisa	Local control authorities (Provincia di Mantova), ISS
Teini			yes	00	10	University of Bologna	Rete Ferroviaria Italiana SpA
Priolo	210	to be defined	yes	yes	>100	Snamprogetti	Ministry of the Environment
Miazzo	43	191	yes	yes	20	University of Messina	Local industry committee
	4	27	VPS.	yes	30	University of Messina	

Conclusions /1

- ARIPAR-GIS software proved to be a robust tool to support Natech QRA
- Results obtained by the approach from different applications in Europe seem coherent
- The results provide a detailed quantification of Natech risk even for complex impact areas and complex scenarios
- Quantitative assessment of Natech risk supports decision making and captures the effect of safety barriers

Natech Quantitative Assessment by ARIPAR tool V. Cozzani, University of Bologna, Italy

Natech Tools Workshop oto, Japan, March 13, 2017

Conclusions /2

- ARIPAR-GIS addresses detailed risk assessment: it is not a screening tool
- QRA requires expert users and a deep knowledge of models, in particular when addressing consequence analysis
- Uncertainty needs to be managed when detailed approaches are developed
- Risk results are highly dependent on natural hazard characterization
- Equipment vulnerability model are the key element required for the implementation of the approach

Natech Quantitative Assessment by ARIPAR tool V. Cozzani, University of Bologna, Italy Natech Tools Workshop Kyoto, Japan, March 13, 2017

Natech Risk: Tsunami Tsunami Wave damages by Johnson number $J = \frac{u_o^2}{\sigma_D \theta} \frac{m_p}{r_p^2}$ $J = \frac{\rho V_o^2}{\sigma_D} \left(\frac{L}{\theta}\right)^n \left(1 + \ln \frac{L}{L_p}\right)$ = mass of fragment fragment characteristic dimension • velocity of fragment at the impact = target wall inchness = dynamic yield stress of target = characteristic lenght of target (p = partial) Regime Quasi-static elastic Moderate plastic behaviour Extensive plastic deformation Hypervelocity in pact

	Study fo	or a ref	inery in Italy
AREA III, Storug	e onnes		
170 floating roof	tank: 4 mil	lion m ³	
TANK PRODUCT	DIAM.	HEIGHT	CAPACITY (m3)
CRUDE	97	22	160.000
GASOIL	82.2	19	100,000
FUEL OIL	61	17	50,000
GASOLINE	61	17	50,000
NAPHTHA	24	15	7,000


```
    Acceptability criteria are the nub of the problem for industrial and NaTech risks
```

□ For some natural disasters, early warning may be essential: emergency plan can be operating well before the occurrence of the event

Conclusions

Thank you for your attention!

ernesto.salzano@unibo.it

Historica	al Disaster	rs by Storr	n Surge	
Year	Name	Location	People lost	Departure(cm)
1934. 9	Muroto	0saka	3, 036	310
1945. 9	Makurazaki	Kyushu	3, 122	160
1950. 9	Jane	0saka	534	270
1953. 9	No. 13	Ise	393	240
1959. 9	Isewan	Ise	5, 098	345
1961. 9	2 nd Muroto	0saka	200	241
1970. 8	No. 10	Kochi	13	235
1991. 8	No. 19	Suo-Nada	4	310
1999. 9	No. 18	Ariake	16	180
2004. 8	No. 16	Seto	45	134 (Kobe)
10	No. 23	Kochi	3	253(Kochi)

°N N

Osaka Port

Development of simulation tool for fire spread on floating oil in tsunamis

Tomoaki NISHINO (Building Research Institute)

Problems

- Some fires spread to tsunami refuge buildings and high grounds.
- Measures against tsunami-induced fires are not sufficient.
- There is no method for predicting tsunami-induced fires.

spread on liquid fuel).

Fire spread model on floating oil in tsunamis

- Fires on the sea is an assembly of burning floating oil particles.
- Locations of individual particles are predicted in time series.
- Combustions of individual particles are predicted in time series.
- Overall burning zone is tracked.
- 14 assumptions are made in the model.

Assumptions

(1) Tsunami inundation flow is already known.

10 15 20

Oil thickness (mm)

- (2) Locations, time and rate of oil spills are already known.
- (3) Oil floats on the water (oil and water are clearly separated).
- (4) Oil is an assembly of disc-like particles with uniform thickness.
- (5) Thickness and radius change depending on the density of particles.

	Item	Settings
	Simulation time	6h (2011.3.11 14:46-20:46)
	Time increment	0.1s
Tsunami	Mesh width	10m
	Fault model	Fujii et al., 2011
	Time increment	0.6s
	Initial volume of particles	0.001m ³
	Number of particles	7,532,000 (=7,532kL)*
Oil	Density of particles	814kg/m ³
(marine diesel)	Friction coefficient	0.006 (Lau et al., 1979)
	Spill locations	11 discovery points of tanks *
	Spill rate	0.2m ³ /s (convenient assumption)
	Start time of spills	50min after the earthquake

Summary

- Modeling of fire spread on floating oil in tsunamis.
- Numerical analysis of tsunami-induced fire spread in Kesennuma.
- Qualitative trend of fire spread was well predicted.
- Future challenges
 - Model extension including the combustion of floating debris.
 - Radiation and plume modeling
 - Fire risk assessment of ports in future tsunami.

Jimonolou	ality of avant	R decision orit	orio
Jinensioi	lancy of events		ena
ipeline evalu	ation model and ca	se study	
	immediate evaluation	periodic evaluation	sporadic evaluations
*/	Short-term	Mid-term	Long-term
nme span	days	months	years
Examples	Pipe failure	Potential landslide	Erosion
	Active landslide	Local scour	Climate change
	Existing flooding		Seismic activity
			Volcanic activity
Nature and	Decisions focused on	Decisions based on	Long term strategic
scope of decision	emergency response.	approximate physical models.	decisions.
000000000000000000000000000000000000000	Direct (immediate) costs	Impact on custom operation:	Ctastrophia damaga
Juisequeilles	Direct (inimediate) costs	and stable state revenue	High impact/low probability

Disk andes Development Cost-efficient design: life-cycle analysis Limitations of Life Cycle Analysis: some key points Second S

 Decisions about operation and management can rarely be anticipated beyond reasonable (easy to handle) time horizons; and change permanently as new information becomes available.

47/58

Faciliat de Ingeniera		

Important aspects in modeling the complexity of interactions (ideas for discussion)

- i) Decisions on infrastructure operation are made based on a combination of short, mid and long term reference time frames.
- i) There are many actors whose decisions, cannot be anticipated.
- Maintaining and providing value to the system depends highly on the perception and interests of stakeholders.
- Large engineering projects need to be modeled as multi-objective problems where different dimensions and metrics need to be evaluated simultaneously.

∨)

50/58

Universidad de Ios Andes Faciliad de Ingenieris		Complexity c	f decisions
Challenges Basic structural analysis Steady state or time-dependent	Cost-benefit analysis Life-Cycle Analysis (Cost/CO2)	Modeling interactions between physical behavior, actors and processes	Flexibility, adaptation and evolution to handle unforeseen events
	Engineering		Future design and operation
/59		NATECH 2017 - The 3rd Internatio	nal Symposium on Natural

ey terms	s related to changeability	
oncept	Definition	Ref.
hangeability	the ability to change, alter, or modify the system configura- tion with or without external influence after the system has been put in operation (deployed).	[18, 43]
ledesign	the process of evaluating and updating the system charac- teristics regularly to meet the changes in the demand or the environment.	[18, 34]
daptability	the system's ability to reconfigure itself after it has been put in operation (deployed), without external intervention.	[21, 43]
lexibility	the system's ability (physically or managerially) to cope with uncertainty and change once it is in operation.	[44, 47, 52]
esilience	the ability of a system to overcome undesirable events to con- tinue operating with an acceptable (required) level of perfor- mance.	[6, 32]
tobustness	the ability of a system to withstand events without being damaged to a level that is disproportionate to the original cause.	[12, 14].

des Complexity of dec

Adaptability/flexibility: a perspective from Biology

- Live beings have survived for millions of years despite their limited mid and long
 term capacity for making predictions
- Live beings can manage unplanned events and challenges depending only on their flexibility and ability to modify its structure.
- Adaptability (i.e., evolution) is designed to be in-effective in a short run (i.e. introducing mutations very often will only take you out of the current-local optimality);
- Evolution is effective in a long-run (explores the solution space and allows for the features that will be helpful if the environment changes). Note that adaptability of species occurs mostly across and not within generations.

53/58

Facilial de Ingeriera

Adaptability/flexibility within the engineering context Adaptability/flexibility will include new objectives in the design and operation of engineering systems; for instance, it will aim at (for discussion):

- Differing unnecessary initial provisions, with the respective costs; thus, reducing the uncertainty associated to decisions;
- Having the flexibility (physical and managerial) required to cope with unknown scenarios more effectively.
- Avoiding the concept of optimality in the traditional sense; aiming only at best decisions (adding or preserving value) with the information available at every decision point.
- Modifying its structure and management strategies based on the experiences and knowledge acquired over time.
- J. ...

54/58

Universidad de Ios Andes

Conclusions

57/58

- GeoRisk is a tool that provides both a technical and conceptual framework to manage a diverse number of *Natech* problems.
- The design and operation of industrial infrastructure goes beyond technical issues. It is not possible to build efficient infrastructure without a broader approach to the problem.
- Any system (engineered or not) may not be able to fulfilling its purpose if it does not improve its ability to cope with new information (e.g., new demands), learn and improve its capabilities, and adapt its structure to be more efficient.

78

	Universidad de Ios Andes Faceltad de Ingenieria		l	Pipeline evalu	ation: case study	1.5
	Scope of ev Temporal dimen	vent decisio	ons			
	Description	time	Event	Approach	Mechanistic & prob.	
	Frequent events	t = 0	$t \in T_1$	Reliability based	approach	
	Rare events		$t \in \{\mathcal{T}_2 \setminus \mathcal{T}_1\}$	Resilience/ Robustness		
	Extreme events	$t \to \infty$	$t\in\{\mathcal{T}_3\setminus\mathcal{T}_2\}$	Flexibility/Adaptabili ty	Stochastic & Managerial	
	Short-term*	Mid-term * 7	Long-term	* <i>T</i> ₃	upprodest	
59	58		Ni ar	ATECH 2017 - The 3rd Inten id Technological Risk Reduc	national Symposium on Natural tion at Large Industrial Parks	

Disaster Trends

From UNISDR....

- 1. Downward trend in mortality risk due to enhanced capacities in early warning, preparedness and response.
- 2.
- and response. Upward trend in economic loss and damage due to increase in exposure and vulnerability to natural hazards. No sufficient attention, capacity and investment to drivers (uncention development, poorly managed urbanization, climate change) З.

Sendai Framework for DRR 2015-2030

- 1.5 billion people were affected by disasters in various ways.
 At Technical Hazard working session at WCDRR, participants called for proactive rick assessment and
- proactive risk assessment, and transparent disclosure of risks.

- transparent clisiciosure or resks. Sendai Framework's priority of areas: 1. Understanding disaster risk; 2. Strengthening disaster risk; overnance to manage disaster risk; reduction for 3. Injecting in disaster preparedness for effective response, and to Build Back Better in recovery, rehabilitation and Chara foarus on side i identification and Clear focus on risk identification and mitigation.

Experience from Japan

- Nuclear power plant meltdown at Fukushima Daiichi Nuclear Power Plant
- Many lessons including: Safety myth Emergency evacuation Information management

 - Critical infrastructure such as hospitals
- How are these lessons mitigating the <u>future risks</u>?

Contamination Level

- A Air contamination level before the accident in Fukushima city 0.05 $\mu\,\text{Sv/h}$
- B International standard on exposure limit 1 mSv/y=0. 114 μSv/h
- C Ministry of Environment's target after decontamination 0, 23 μSv/h (16 hours inside, 8 hours outside)
- D Designated high-radiation area 1.3mSv/3 months = 0. 6 μSv/h
- E The highest figure after the accident in the city 2.4. 2.4 μ Sv/h

How Contamination is Measured

2,700 units placed in Fukushima prefecture (in the city, 368 units)

Does this help to protect the future generation?

Thinking about Well-being of Children

In 2014, Fukushima Prefecture saw limitation in promoting the health of children only with exercise inside (e.g. rise in obesity rate), so outside activities have started to be promoted.

It's not possible to use high-pressure decontamination for high contaminated rubber sidewalks.

Measuring your Exposure

Glass Badge

Local government lend to interested citizens. Then notifies accumulated exposure within 3 months period.

DOSE e NANO

Provided by Shalom for interested citizens. Measured every minute, results are presented as accumulated figures in 6.25 days).

⁸²**8**2

Summary

- Many lessons not political, it's linked to human lives
- Protection can only take place with human centered approach (limitation to one size fits all approach by the government)
- Protection by the people, for the people

Annex 4:

Number of Participants per Country

and Participant Affiliations

Country	ountry No. Participants		Affiliation	
Afghanistan	1	Marina Hamidzada	DPRI	
Bulgaria	1	Toma Stoyanov	Kyoto University	
China	1 Liuyi Zhang		DPRI	
Colombia	4	Jaime Pacheco	First Secretary of the Colombian	
			Embassy in Japan	
		Felipe Muñoz	Universidad de los Andes	
		Mauricio Sánchez	Universidad de los Andes	
		María Camila Suarez Paba	DPRI	
Egypt	2	Ahmed Ibrahim	Kyoto University	
		Mohamed Abdel	DPRI	
Germany	1	Uta Reichardt	DPRI	
India	1	Sandhya Babel	Thammasat University	
Italy	4	Valerio Cozzani	Università di Bologna	
		Ernesto Salzano	Università di Bologna	
		Elizabeth Krausmann	Joint Research Center, European	
			Commission	
		Giuseppe Aliperti	DPRI	
Japan	16	Kaoru Takara	DPRI	
		Ana Maria Cruz	DPRI	
		Shin-Ichi Aoki	Osaka University	
		Naomi Kato	Osaka University	
		Daniel Cardoso	Osaka University	
		Tomoaki Nishino	Building Research Institute	
		Takeshi Komino	CWS	
		Hirokazu Tatano	DPRI	
		Takashi Kumagai	DPRI	
		Kazuyoshi Nishijima	DPRI	
		Alexander Guzman	Ritsumeikan University	
		Atsushi Aoyama	Ritsumeikan University	
		Dewi Dimyati	Kyoto University	
		Kaori Horikomi	DPRI	
		Sasha Yoshioka	Kyoto University	
		Hitomu Kotani	DPRI	
Mexico	1	Iracoma Alcantara Avala	National Autonomous University of	
		nasema Alcantara-Ayala	Mexico (UNAM)	
Philippines	1	Angelica Baylon	MAAP	
South Korea	1	BonJun Koo	DPRI	

This publication is the multi-perspective contributions and international experiences presented at Kyoto University, Uji Campus, in March 2017, within the framework of the Workshop on Tools for Natech Risk Management. The organizer of the workshop was the Disaster Prevention Research Institute (DPRI), Kyoto University. WORKSHOP ON TOOLS FOR NATECH RISK MANAGEMENT

