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Abstract

This paper considers a portfolio allocation problem between a risky

asset and an ambiguous asset, and investigates how the existence of am-

biguity influences the optimal proportion invested in the two assets. By

introducing the notion of ambiguity, we derive several sufficient condi-

tions under which an investor decreases the optimal proportion invested

in the ambiguous asset. Furthermore, as an application, we consider an

international diversification problem, and show that the home bias puz-

zle is partially resolved.
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1 Introduction

In the real world, it is difficult to precisely predict what will happen in the fu-

ture. In particular, in financial markets, it is difficult for investors to accurately

foresee returns on assets. Therefore, it is worth investigating how investors di-

versify their wealths across different assets under uncertainty. The notion of

uncertainty1 has been investigated in the literature since Keynes (1921) and

Knight (1921). While risk is a situation in which the beliefs of a decision maker

(DM) are captured by a unique probability measure, ambiguity is a situation

in which a DM’s beliefs are not pinned down by a unique probability mea-

sure because of a lack of information. In previous research, portfolio selection

problems have been analyzed within the frameworks of expected utility theory

and non-expected utility theories. While investors are supposed to allocate

their wealths to a safe asset2 and a risky asset under expected utility theory,3

they are assumed to allocate their wealths to a safe asset and an ambiguous

asset4 under non-expected utility theories.5 Although these analyses clarify

the effects of risk or ambiguity on portfolio selection problems, in financial

markets, it is appropriate to analyze situations in which investors consider a

risky asset and an ambiguous asset simultaneously. Therefore, by incorporat-

ing the notions of both risk and ambiguity into portfolio selection problems

as well as introducing some notions of stochastic dominance to capture shifts

in returns on assets,6 we investigate how the existence of ambiguity affects

optimal portfolio allocation problems.

As explained above, the notion of ambiguity is suitable for capturing situa-

1Following Strazalecki (2013), we term uncertainty as an umbrella term for both risk and
ambiguity.

2Throughout this paper, to avoid confusion, we say that an asset whose return is known
with certainty is safe, rather than riskless or risk-free.

3For example, see Hadar and Seo (1988, 1990) as mentioned in Introduction and subsec-
tion 4.1.

4Throughout this paper, we say that an asset whose return is captured by a unique
probability measure is risky and an asset whose return is not captured by a unique probability
measure is ambiguous.

5See Gollier (2011).
6For a survey of stochastic dominance, see Levy (1992).
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tions in which investors possess different information about returns on assets.

This enables us to analyze a portfolio allocation problem between a risky asset

and an ambiguous asset. For example, let us consider an investor who plans

to purchase equities in her local and foreign markets. It is natural to assume

that she confronts more difficulty predicting returns on foreign equities than

on local equities because of the difference in information. Moreover, a portfo-

lio consisting of risky and ambiguous assets is more general than a portfolio

consisting of safe and risky assets or safe and ambiguous assets. In this situa-

tion, returns on foreign equities are more uncertain for the investor than those

on local equities, which is captured appropriately by risk and ambiguity. As

another example, suppose that a firm determines the budgets for existing and

new businesses. It is appropriate to assume that the profit from the former is

more predictable than that from the latter. Therefore, we consider the profit

from existing businesses to be captured by risk and the profit from new ones

to be captured by ambiguity.

Ellsberg (1961) shows experimentally that DMs typically dislike situations

where they cannot assign a unique probability measure. This behavior, which

is called ambiguity aversion, cannot be explained in the framework of expected

utility theory. To overcome the shortcomings of expected utility theory pointed

out by Ellsberg (1961), many preference representations, which is called as

ambiguity models, have been proposed. For example, Gilboa and Schmeidler

(1989) propose max-min expected utility theory (MEU), and Schmeidler (1989)

proposes Choquet expected utility theory (CEU). In this paper, we adopt

the smooth ambiguity model by Klibanoff et al. (2005) as our ambiguity

model. This is because the smooth ambiguity model can differentiate the

DMs’ attitude towards ambiguity from their perception of ambiguity, which

implies that the smooth ambiguity model is more general than MEU and CEU.

Furthermore, because the smooth ambiguity model has a “double” expected

utility form, it is more tractable than most of ambiguity models.

Several studies in the literature on portfolio selection problems are worth

mentioning. Hadar and Seo (1988, 1990) derive conditions on utility func-

tions when returns on assets are shifted by first-order stochastic dominance

(FSD). Conditions on utility functions can be removed by concepts stronger
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than FSD, such as monotone likelihood ratio dominance (MLRD) by Landsber

and Meilijson (1990) and reversed hazard ratio dominance (RHRD) by Kijima

and Ohnishi (1996).7 Kijima and Ohnshi (1996) provide a systematic method

for stochastic dominance that is useful for portfolio allocation problems. While

these papers analyze portfolio selection problems within the framework of ex-

pected utility theory, Gollier (2011), Osaki and Schlesinger (2014), and this

paper investigate portfolio selection problems within the framework of the

smooth ambiguity model. Gollier (2011) introduces ambiguity into returns on

an asset and derives sufficient conditions under which any increase in ambi-

guity aversion decreases the purchase of the ambiguous asset. While Gollier

(2011) analyzes portfolios consisting of one safe asset and one ambiguous asset,

we analyze portfolios consisting of one risky asset and one ambiguous asset.

As mentioned in the above example, in financial markets, it is appropriate to

analyze portfolios consisting of one risky asset and one ambiguous asset. Osaki

and Schlesinger (2014) do not introduce ambiguity into returns on an asset,

but investigate background uncertainty, which cannot be controlled or traded.

As in Osaki and Schlesinger (2014), we consider situations with different levels

of uncertainty. However, we introduce ambiguity into our model as tradable

uncertainty, while in Osaki and Schlesinger (2014) ambiguity is non-tradable.

The organization of this paper is as follows. Section 2 formulates a portfolio

allocation problem between a risky asset and an ambiguous asset. Section 3

states the main result of this paper and discusses an implication for the home

bias puzzle. Section 4 provides further results applying the main theorem

of this paper. Section 5 concludes this paper. Some of the mathematical

definitions and proofs are relegated to the Appendix.

7Reversed hazard ratio dominance is also called as monotone probability ratio dominance.
See Eeckhoudt and Gollier (1995).
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2 Portfolio Allocation Problem with Two Un-

certain Assets

In this section, we present a portfolio allocation problem based on the smooth

ambiguity model by Klibanoff et al. (2005) in which an investor is faced with

both risk and ambiguity.

To simultaneously analyze the effects of risk and ambiguity on portfolio

choices, we consider an investor who allocates her wealth w between two un-

certain assets, a risky asset and an ambiguous asset.8 The return on the

risky asset is denoted by the random variable x̃ whose probability distribution

function F is defined over the bounded support [a, b] with a < 0 < b. The am-

biguity of the return is represented by the second-order probability approach

based on Segal (1987) and Klibanoff et al. (2005). There are n possibilities of

the return on the ambiguous asset which are indexed by θ ∈ Θ = {1, . . . , n}.
The possible returns on the ambiguous asset are denoted by ỹθ, θ = 1, . . . , n.

The probability distribution function of ỹθ is denoted by Gθ and is defined over

the bounded support [a, b]. For simplicity, all possible probability distribution

functions are assumed to be defined over the same support [a, b]. The investor

attaches the second-order probability {q1, . . . , qn} to the index set Θ. The

return on the risky asset x̃ and the possible returns on the ambiguous asset ỹθ

are assumed to be independent. The investor’s preferences are assumed to be

represented by the smooth ambiguity model by Klibanoff et al. (2005).

The investor chooses her portfolio allocation (w − k, k) to maximize the

welfare from the terminal wealth. Here, w − k is the amount invested in the

risky asset and k is the amount invested in the ambiguous asset. Her objective

is to maximize the following:

V (k) =

n∑
θ=1

qθφ(E[u((w − k)x̃+ kỹθ)]).

We assume that u is strictly increasing and strictly concave, that is, u′ > 0

and u′′ < 0, and φ is strictly increasing and concave, that is, φ′ > 0 and

8In the literature, for example, Gollier (2011) and Huang and Tzeng (2017) consider one
safe asset and one ambiguous asset.
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φ′′ ≤ 0. The attitude towards ambiguity is captured by the curvature of φ.

The concavity captures an investor’s ambiguity aversion in the sense that she

dislikes any mean-preserving spread of the expected utility of u. The linearity

of φ captures her ambiguity neutrality in the sense that ambiguity degenerates

to the single return on the asset, ỹO
d
=

∑n
θ=1 qθỹθ, where

d
= indicates equality

in distribution. The linearity of φ plays the benchmark role for the following

analyses.

The optimal portfolio allocation k∗ is the solution of the following first-

order condition (FOC):

V ′(k∗) =
n∑

θ=1

qθφ
′(E[u((w − k∗)x̃+ k∗ỹθ)])E[(ỹθ − x̃)u′((w − k∗)x̃+ k∗ỹθ)] = 0.

The second-order condition is satisfied by the concavities of u and φ. We

suppose that V ′(0) > 0 and V ′(w) < 0, that is, the investor allocates a positive

amount of her wealth to each asset.

We define kθ as follows:

kθ = argmaxkE[u((w − k)x̃+ kỹθ)]), θ = 1, . . . , n, (1)

where kθ denotes the ex-post optimal portfolio allocation given θ. When we

set ỹθ
d
= ỹO, the optimal portfolio allocation is denoted by kO. This value

kO corresponds to the optimal portfolio allocation for an ambiguity neutral

investor and is equal to the optimal portfolio allocation for an expected utility

maximizer. In other words, ambiguity disappears in this case and the investor

faces two risky assets. In the following sections, we examine the effects of

ambiguity on the optimal portfolio allocations by comparing k∗ with kO.

3 Effects of Ambiguity on Portfolio Alloca-

tions

In this section, we provide the main result of this paper and an informal proof.

A formal proof is relegated to Appendix B. We then analyze the home bias

puzzle as an implication of the result.
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3.1 The Main Result

We introduce some definitions and notation before stating the main result. To

obtain a clear result, we consider the situation in which the possible returns

on the ambiguous asset are ranked by FSD. Let ỹi and ỹj be random variables

for i, j ∈ Θ = {1, . . . , n}. We say that ỹj is greater than ỹi in the sense of

FSD, denoted by ỹi �FSD ỹj, if Gi(y) ≥ Gj(y) holds for any y ∈ [a, b] and every

i, j ∈ Θ with i < j, where Gθ denotes the probability distribution function

of ỹθ for θ ∈ Θ. The Arrow-Pratt measure of relative risk aversion is defined

by R(z) = −zu′′(z)/u′(z).9 This terminology is used within the framework of

expected utility theory. We also use it in the smooth ambiguity model. The

following result shows that under some conditions, the existence of ambiguity

decreases the optimal amount of investment compared with the case in which

ambiguity does not exist.

Theorem 1. The existence of ambiguity aversion decreases the optimal port-

folio allocation, k∗ ≤ kO, if the possible returns on an ambiguous asset {ỹ1, . . . , ỹn}
are ranked by FSD and R(z) ≤ 1.

Proof. The proof is relegated to Appendix B.

For comparison, consider the situation in which there are two risky assets

whose returns are denoted by x̃ and ỹ. In this situation, the investor should

allocate w−kO to the risky asset x̃ and kO to the risky asset ỹ. For the purpose

of introducing ambiguity, consider the situation in which x̃ denote the return

on the risky asset and ỹ denotes the return on the ambiguous asset. Therefore,

the possible returns on the ambiguous asset are denoted by {ỹ1, . . . , ỹn}. In

this situation, the investor should allocate w − k∗ to the risky asset and k∗ to

the ambiguous asset. That is, the investor increases the portfolio allocation

to the risky asset, or equivalently, decreases the allocation to the ambiguous

asset, compared with the case in which both assets are risky. This is because

an investor with insufficient information about the return on the ambiguous

asset is likely to avoid to invest in the ambiguous asset.

9See Arrow (1965) and Pratt (1964).
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To gain intuitive understanding, we consider the following example in which

there are only two indices Θ = {1, 2}. The FOC can be written by using the

Radon-Nikodym derivatives {q̂1, q̂2}:

V ′(k∗) = q̂1E[(ỹ1 − x̃)u′((w − k∗)x̃+ k∗ỹ1)]

+ q̂2E[(ỹ2 − x̃)u′((w − k∗)x̃+ k∗ỹ2)] = 0, (2)

where

q̂θ =
qθφ

′(E[u((w − k∗)x̃+ k∗ỹθ)])

q1φ′(E[u((w − k∗)x̃+ k∗ỹ1)]) + q2φ′(E[u((w − k∗)x̃+ k∗ỹ2)])
, θ = 1, 2.

Without loss of generality, we assume that E[u((w−k∗)x̃+k∗ỹ1)] ≤ E[u((w−
k∗)x̃ + k∗ỹ2)]. We can then show that ambiguity averse investors put more

weight on a lower expected utility than on a higher expected utility because

φ′ is decreasing. That is,

E[u((w − k∗)x̃+ k∗ỹ1)] ≤ E[u((w − k∗)x̃+ k∗ỹ2)]

⇔ q̂1 ≥ q1 (equivalently, q̂2 ≤ q2 because q̂1 = 1 − q̂2 and q1 = 1 − q2).(3)

Note that q̂θ = qθ if φ is linear. In this case, q̂θ is not distorted, which

implies that this kind of investors does not take into accout the existence of

ambiguity. Thus, (2) can be written as

V ′(kO) = q1E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)]

+ q2E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)] (4)

= E[(ỹO − x̃)u′((w − kO)x̃+ kOỹO)] = 0,

when φ is linear. Recall that the linearity of φ corresponds to both assets being

risky. It follows from (4) that the sign of E[(ỹθ − x̃)u′((w − kO)x̃ + kOỹθ)] is

different for θ = 1 and θ = 2 unless E[(ỹθ − x̃)u′((w−kO)x̃+kOỹθ)] = 0. That

is, either

E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] ≤ 0 ≤ E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)] (5)

or

E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] ≥ 0 ≥ E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)]. (6)
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For the former case, it follows by combining (3) and (5) that

0 = V ′(kO)

= q1E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] + q2E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)]

≥ q̂1E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] + q̂2E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)]

= V ′(k∗)

⇔ k∗ ≤ kO.

This is an intuitive case in which the existence of ambiguity decreases the

amount invested in the ambiguous asset. This result follows from (5), which

states that investors increase their portfolio allocations for higher expected

utility. To explain this investment behavior, it seems natural to suppose that

(5) holds. However, as shown by, for example, Hadar and Seo (1990), it is well

known that such a condition does not necessarily hold. Therefore, additional

conditions are required to show that the existence of ambiguity decreases the

optimal portfolio allocation. Theorem 1 provides one such sufficient condition.

In the following section, we present other sufficient conditions.

For the latter case, it follows by combining (3) and (6) that

0 = V ′(kO)

= q1E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] + q2E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)]

≤ q̂1E[(ỹ1 − x̃)u′((w − kO)x̃+ kOỹ1)] + q̂2E[(ỹ2 − x̃)u′((w − kO)x̃+ kOỹ2)]

= V ′(k∗)

⇔ k∗ ≥ kO.

This is a counterintuitive case in which the existence of ambiguity increases

the amount invested in the ambiguous asset.

As a final remark, we discuss the assumption of the independence. Kijima

and Ohnishi (1996) show that Inequalities (5) hold for FSD even though the

return on the risky asset x̃ and each possible return on the ambiguous asset

ỹθ are dependent, not independent. However, the convolution property cannot

be guaranteed to hold.10 If this property does not hold, Inequality (3) may

10For the definition of the convolution property, see Appendix A.
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be reversed, that is, it is possible that q̂1 < q1. In this case, we obtain the

counterintuitive result that states that the existence of ambiguity increases the

amount invested in the ambiguous asset. On the other hand, if the convolusion

property holds, we obtain Theorem 1 in the case of the dependence.

3.2 The Home Bias Puzzle

In this subsection, we apply Theorem 1 to an international diversification

problem, which provides a solution to the home bias puzzle from the viewpoint

of ambiguity.

French and Poterba (1991) observe the tendency for investors to hold more

equities in their home country than in their foreign countries, which is contrary

to theoretical results obtained from macroeconomic models. This is called the

home bias puzzle. This puzzle cannot be explained by standard macroeconomic

models within the framework of expected utility theory.11 It is natural to as-

sume that investors have more information about assets in their home country

than those in foreign countries. Therefore, ambiguity may play an important

role in explaining the home bias puzzle.12 We investigate how the difference

between individual investors with insufficient information and institutional in-

vestors with much information explains the home bias puzzle.

Let us consider an ambiguity averse individual investor who allocates her

wealth w between a domestic asset and a foreign asset. The investor possesses

enough information to quantify the return on the domestic asset using a single

probability distribution, but she does not have enough information to quantify

the return on the foreign asset similarly. In this situation, the domestic asset

is risky and the foreign asset is ambiguous. This setting is the same as in the

previous section. The return on the domestic asset is denoted by x̃, and the

return on the foreign asset is represented by n possible returns on the asset

{ỹ1, . . . , ỹn} and the associated second-order probability {q1, . . . , qn}. In this

11For example, see Lewis (1999).
12Epstein and Miao (2003) explain the home bias puzzle under ambiguity within the

framework of MEU.
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setting, the optimal portfolio allocation is determined by

k∗ = argmaxk

n∑
θ=1

qθφ(E[u((w − k)x̃+ kỹθ)]).

We assume that institutional investors usually estimate returns on assets

from historical data and assign unique probability distributions to these re-

turns. The optimal portfolio allocation is given by

kO = argmaxkE[u((w − k)x̃+ kỹO)]).

Applying the result in the previous section to this setting, we find that kO ≥ k∗.

That is, the individual investor purchases more of the domestic asset than the

foreign asset compared with the optimal portfolio allocation derived by in-

stitutional investors. This is because an individual investor with insufficient

information about the foreign asset takes into account the existence of ambi-

guity on the return on the foreign asset and she is likely to avoid to invest

in the foreign asset. Note that Theorem 1 follows from the conditions under

which the possible returns on an ambiguous asset are ranked by FSD and the

Arrow-Pratt measure of relative risk aversion is less than 1. As pointed out

by Meyer and Meyer (2005), it is unclear whether this condition is reasonable

from an empirical viewpoint. As we mention in subsection 4.2, however, by

introducing the notion of MLRD, we derive the same result as Theorem 1

without assuming any condition on DM’s utility function.

4 Further Results

In this section, we consider three further results as applications of the main

result. First, for the purpose of extending the 50% rule for portfolio allo-

cation problems, we consider conditions under which the 50% rule holds for

the portfolio allocation problem with a risky asset and an ambiguous asset in

the smooth ambiguity model. The 50% rule for portfolio allocation problems

was investigated by Hadar and Seo (1988, 1990) and Clark and Jokung (1999).

Second, by applying MLRD and RHRD to the analysis in the previous section,

we analyze the effect of ambiguity on optimal portfolio allocation. Finally, we
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analyze the effect of ambiguity on the optimal portfolio allocation based on

the notion of higher-order increases in risk by Ekern (1980).

4.1 50% Rule

In this subsection, we investigate conditions under which the 50% rule holds

for the portfolio allocation problem with a risky asset and an ambiguous asset.

The so-called demand problem named by Kijima and Ohnshi (1996) has been

paid attention to in the literature. Setting w = 1, the portfolio allocation

problem is formulated as follows:

V (k) =

n∑
θ=1

qθφ(E[u((1 − k)x̃+ kỹθ)]). (7)

Because V ′(0) > 0 and V ′(1) < 0, the optimal portfolio allocation k∗ is an

interior solution in [0, 1].

Suppose that a risk averse investor can allocate her initial wealth to two

risky assets that are independent and are equal in law, and suppose that her

preferences are represented by the expected utility. Then, Rothschild and

Stiglitz (1971) show that the optimal portfolio allocation is exactly equal to

0.5, as originally shown by Samuelson (1967).13 Conditions for the optimal

portfolio allocation to be k ≤ 0.5 have been investigated in the literature.

This is called the 50% rule for portfolio allocation problems.14 By restricting

the class of utility functions, Hadar and Seo (1988, Theorems 4 and 5) derive

necessary and sufficient conditions for the optimal portfolio allocation to be

k ≤ 0.5. Clark and Jokung (1999) generalize Hadar and Seo (1988, Theorem 3)

and derive sufficient conditions on the conditional distributions of the two risky

assets under which the optimal portfolio allocation of one risky asset is less

than 0.5. For the purpose of extending the 50% rule for portfolio allocation

13Gollier (2001, Proposition 5) generalizes Rothschild and Stiglitz (1971) and shows that
the optimal portfolio allocation for n assets is perfectly diversified. That is, the portfolio
consists of an equal amount of each asset.

14The previous studies examine conditions under which the optimal portfolio allocation
for one asset is greater than 50%, k ≥ 0.5. Because it is essentially identical, their results
are restated as k ≤ 0.5, to agree with the settings in this paper.
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problems, based on the smooth ambiguity model, we investigate conditions

under which the 50% rule holds for the portfolio allocation problem with a

risky asset and an ambiguous asset. From the main result of this paper, we

have

V ′(0.5) ≤ 0 ⇔ k∗ ≤ 0.5,

by putting w = 1 and kO = 0.5 when the possible returns on the asset

{ỹ1, . . . , ỹn} are ranked by FSD andR(z) ≤ 1. Recall thatR(z) = −zu′′(z)/u′(z)
denotes the Arrow-Pratt measure of relative risk aversion. These are the con-

ditions for the 50% rule for the portfolio allocation problem with a risky asset

and an ambiguous asset. We summarize this argument in the following corol-

lary.

Corollary 1. Suppose that an investor’s objective function is represented by

Equation (7), and that x̃
d
=

∑n
θ=1 qθỹθ. The 50% rule holds, that is, k∗ ≤ 0.5 if

the possible returns on the asset {ỹ1, . . . , ỹn} are ranked by FSD and R(z) ≤ 1.

This result can be applied to every compound return on the asset ỹ for

which kO = 0.5. It can also be applied to other stochastic dominance relations

mentioned in the following subsections by imposing appropriate conditions on

the utility function u.

4.2 Monotone Likelihood Ratio Dominance and Reversed

Hazard Ratio Dominance

When the possible returns on an ambiguous asset are ranked by FSD, we can

conclude that ambiguity decreases the optimal portfolio allocation for investors

whose Arrow-Pratt measure of relative risk aversion is less than unity. The

condition, R(z) ≤ 1, is assumed in determining the effect of FSD shifts in

various decision problems. See, for example, Fishburn and Porter (1976) and

Cheng et al. (1987). However, as pointed out by Meyer and Meyer (2005), it

is unclear whether this condition is reasonable from an empirical viewpoint.

We also question whether empirical observations under expected utility theory
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can be directly applied to the smooth ambiguity model even though R(z) ≤ 1

is viewed as a reasonable property.

In this subsection, based on the motivations above, we introduce MLRD as

a stronger notion of stochastic dominance than FSD. Let ỹi and ỹj be random

variables for i, j ∈ Θ = {1, . . . , n}. Then, we say that ỹj is greater than ỹi in

the sense of MLRD, denoted by ỹi �MLRD ỹj, if gj(t)/gi(t) ≥ gj(s)/gi(s) for

any s, t ∈ [a, b] with s < t, where Gθ and gθ denote the probability distribution

function of ỹθ and the probability density function of ỹθ for θ ∈ Θ, respectively.

Applying MLRD to rank the possible returns on assets, we obtain the same

results as in the previous subsection with no restrictions on u. That is, we do

not have to assume any conditions on u such that R(z) = −zu′′(z)/u′(z) ≤
1. To achieve this, we need results corresponding to Lemmas 2 and 3 for

MLRD.15 Landsberger and Meilijson (1990) show that ki ≤ kj for ỹi �MLRD

ỹj. Recall that ki is defined by (1) for i = 1, . . . , n. Thus, we obtain the

result corresponding to Lemma 3 by applying a similar argument. Kijima

and Ohnishi (1996, Proposition 3.4) show that MLRD satisfies the convolution

property for x̃, that is, x̃+ỹi �MLRD x̃+ỹj for any random variable x̃ such that x̃

and ỹi are independent and x̃ and ỹj are independent if the probability density

function of x̃ is the Pòlya frequency function of order 2 (PF2).
16 As pointed

out in Kijima and Ohnishi (1996, p.275), every PF2 function is characterized

by the form f(x) = e−φ(x), where φ(x) is a convex function. Furthermore, it

can be shown that every PF2 function on R is log-concave. As in Lehmann

(2005, p.323), the probability density functions of the normal distribution,

the double exponential distribution, and the logistic distribution are PF2.
17

Therefore, the condition that the probability density function is PF2 is not

restrictive. We obtain the following result by restricting our analysis to a class

of probability density functions that are PF2.

Corollary 2. The existence of ambiguity aversion decreases the optimal port-

folio allocation, k∗ ≤ kO if the possible returns on the asset {ỹ1, . . . , ỹn} are

15For Lemmas 2 and 3, see Appendix B.
16For the definition of the Pòlya frequency function of order 2, see the Appendix.
17Note that their probability density functions are f(x) = (1/

√
2πσ)e−(x−μ)2/2σ2

, f(x) =
(1/2)e−|x|, and f(x) = e−x/(1 + e−x)2, respectively.
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ranked by MLRD and their probability density functions are PF2.

Next, we consider reversed hazard ratio dominance (RHRD) that is weaker

than MLRD, which is shown, for example, in Eeckhoudt and Gollier (1995).18

Let ỹi and ỹj be random variables for i, j ∈ Θ = {1, . . . , n}. Then, we say

that ỹj is greater than ỹi in the sense of RHRD, denoted by ỹi �RHRD ỹj,

if Gj(t)/Gi(t) ≥ gj(t)/gi(t) for any t ∈ [a, b], where Gθ and gθ denote the

probability distribution function of ỹθ and the probability density function of

ỹθ for θ ∈ Θ, respectively.19 Kijima and Ohnishi (1996, Theorem 3.3) show that

ki ≤ kj for ỹi �RHRD ỹj. Thus, we obtain the result corresponding to Lemma

3 by applying a similar argument. Kijima and Ohnishi (1996, Proposition 3.4)

also show that RHRD satisfies the convolution property for x̃, that is, x̃ +

ỹi �RHRD x̃+ ỹj for any random variable x̃ such that x̃ and ỹi are independent

and x̃ and ỹj are independent if the probability density function of x̃ is the

Pòlya frequency function of order 2 (PF2). Thus, the following corollary is in

order.

Corollary 3. The existence of ambiguity aversion decreases the optimal port-

folio allocation, k∗ ≤ kO if the possible returns on the asset {ỹ1, . . . , ỹn} are

ranked by RHRD and their probability density functions are PF2.

4.3 Higher-Order Increases in Risk

The notion of higher-order increases in risk is introduced by Ekern (1980),

and has been analyzed, for example, by Eeckhdout and Shclesinger (2006) and

Jindapon and Neilson (2007). In this subsection, we show that the result in

this paper also applies to higher-order increases in risk.

For θ ∈ Θ = {1, . . . , n}, let Gθ be probability distribution functions of

random variables ỹθ with supports contained in [a, b]. We define the functions

18In Eeckhoudt and Gollier (1995), RHRD is referred to as monotone probability ratio
order.

19See Eeckhoudt and Gollier (1995, Lemma 2). Eeckhoudt and Gollier (1995, Lemma 1)
also show that RHRD is stronger than FSD.
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by

G1
θ(x) = Gθ(x) and

Gk
θ(x) =

∫ x

a

Gk−1
θ (t)dt

for x ∈ [a, b], θ ∈ Θ, and k = 2, . . . , N , where the function Gn
θ denotes the

n-th moment of Gθ. The definition of the N -th degree increase in risk for

N ≥ 2 is as follows. Let ỹi and ỹj be random variables for i, j ∈ Θ. Then,

we say that ỹj is greater than ỹi in the sense of N -th degree risk, denoted by

ỹi �N−risk ỹj, if GN
j (y) ≥ GN

i (y) and Gn
i (b) = Gn

j (b) for n = 1, . . . , N − 1.

Note that if ỹj is greater than ỹi in the sense of N -th degree risk, then the

first (N − 1)-moments of Gi and Gj are equal. It is worth mentioning that

N = 2 corresponds to an increase in risk in the sense of Rothschild and Stiglitz

(1970), and N = 3 corresponds to an increase in downside risk in the sense of

Menezes et al. (1980).

We need results corresponding to Lemmas 2 and 3 to obtain compara-

tive statics results. The result corresponding to Lemma 3 is straightforward

because it is shown by Chiu et al. (2010) that ki ≤ kj if ỹi �N−risk ỹj,

(−1)nun(x) ≤ 0 for n = N, N + 1, and −xuN+1(x)/uN(x) ≤ N , where the

utility function u is assumed to be strictly increasing and infinitely continu-

ously differentiable, and un denotes the n-th derivative of u. Recall that ki

is defined by (1). The convolution property20 must hold to obtain the result

corresponding to Lemma 2. In the following, we show that the convolution

property holds. Because x̃ and ỹθ are independent for any θ ∈ Θ, the convo-

lution of F and Gθ is21

Hθ(z) =

∫ b

a

Gθ(z − x)dF (x),

where F and Gθ denote the probability distribution functions of x̃ and ỹθ,

respectively. It can be shown that the convolution H is also a probability

20Recall that the definition of the convolution property is in the Appendix.
21For the definition of the convolution of two probability distribution functions, see the

Appendix. Note that the convolution property and the convolution of two probability dis-
tribution functions are different. See the Appendix.
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distribution function. Let us define Gn
θ (y−x) =

∫ y

a
Gn−1

θ (t−x)dt. By Fubini’s

theorem, we can rewrite the probability distribution function as

Hn
θ (z) =

∫ b

a

Gn
θ (z − x)dF (x).

Note that ỹi �n−risk ỹj is equivalent toHn
i (z) =

∫ b

a
Gn

i (z−x)dF (x) ≥ ∫ b

a
Gn

j (z−
x)dF (x) = Hn

j (z), that is, x̃+ ỹi �n−risk x̃+ ỹj. From the convolution property,

we obtain the result corresponding to Lemma 2. Hence, the following corollary

is in order.

Corollary 4. The existence of ambiguity aversion decreases the optimal port-

folio allocation, k∗ ≤ kO if the possible returns on the asset {ỹ1, . . . , ỹn}
are ranked by N-th degree risk, (−1)nun(x) ≤ 0 for n = N, N + 1, and

−xuN+1(x)/uN(x) ≤ N .

5 Conclusion

This paper considers a portfolio allocation problem between a risky asset and

an ambiguous asset. We determine conditions under which an investor de-

creases the optimal portfolio allocation for the ambiguous asset. The con-

ditions are imposed on the investor’s utility function u and the stochastic

dominance relations of {ỹ1, . . . , ỹn}. For FSD, the investor with an Arrow-

Pratt measure of relative risk aversion less than unity decreases the portfolio

allocation of the risky asset when ambiguity is incorporated into the model.

Our analyses can be applied to an international diversification problem where

our result provides a potential explanation of the home bias puzzle. Further-

more, as corollaries of the main result in this paper, we extend the 50% rule

for portfolio allocation problems by Hadar and Seo (1988, 1990) and Clark and

Jokung (1999) based on the smooth ambiguity model. Finally, we investigate

the effect of ambiguity on the optimal portfolio allocation based on MLRD,

RHRD, and higher-order increases in risk introduced Ekern by (1980).

This paper assumes that the return on the risky asset x̃ and the possible

returns on the ambiguous asset ỹθ are independent. This assumption enables us
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to apply the convolution property to our analyses. However, it is appropriate

to assume that these assets are dependent. We leave this extension for future

research.
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Appendix

Appendix A

We provide a definition of convolution in probability theory based on

Billingsley (1995, p.266), Lehmann (2005, p.103), and Kijima and Ohnishi

(1996, Appendix B), and provide some definitions from the theory of total

positivity.

Definition 1. Let x̃ and ỹ be independent random variables with probabili-

ties μ and v, respectively, and let P and Q be the corresponding probability

distribution functions. The convolution of P and Q is defined by

H(z) ≡
∫ b

a

Q(z − x)dP (x). (8)

It can be shown that H is a probability distribution function. It can also

be shown that if two random variables x̃ and ỹ with probability distribution

functions P and Q are independent, then x̃+ ỹ has the probability distribution

function H defined by (8).

Next, we introduce the convolution property.

Definition 2. A stochastic order �st satisfies the convolution property if x̃+

ỹi �st x̃ + ỹj for any random variable x̃ such that x̃ and ỹi are independent

and x̃ and ỹj are independent.

As in Kijima and Ohnishi (1996, Proposition 3.3), FSD satisfies the convo-

lution property. However, MLRD does not necessarily satisfy the convolution

property. Proposition 3.4 in Kijima and Ohnishi (1996) shows that MLRD

and RHRD satisfy the convolution property for x̃ if the probability density

function of x̃ is Pòlya frequency function of order 2 (PF2). The definition of

PF2 functions is based on the notion of being totally positive of order 2 (TP2),

so we first define TP2 functions.

Definition 3. A function K : R×R → R+ is totally positive of order 2 (TP2),

denoted by K ∈ TP2 if for x1 < x2 and y1 < y2,

K(x1, y1)K(x2, y2) −K(x1, y2)K(x2, y1) ≥ 0.
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As pointed out in Jewitt (1987, p.77), the function K(x, y) = exy is TP2,

and any probability density function of the form f(x, y) = γ(x)ψ(y)exy is TP2.

Therefore, the probability density functions of the nomal distribution, the ex-

ponential distribution, the binomial distribution, and the Poisson distribution

are TP2. Finally, we provide the definition of PF2 functions.

Definition 4. A non-negative function f(x) is Pòlya frequency function of

order 2 (PF2) in x if f(x− y) is TP2 in x and y; i.e.,

f(x1 − y1)f(x2 − y2) ≥ f(x1 − y2)f(x2 − y1), x1 < x2, y1 < y2.

Appendix B. Proof of Theorem 1

We now prove Theorem 1 using the technique of the monotone comparative

statics under uncertainty developed by Jewitt (1987) and Athey (2002).

Definition 5. A real-valued function g : R → R satisfies the single crossing

condition from below if there exists some x̄ such that (x− x̄)g(x) ≥ 0 for any

x.

The following notion is equivalent to being TP2, which is defined in Defi-

nition 3.

Definition 6. A function K : R × R → R+ is log-supermodular if for x1 < x2

and y1 < y2,

K(x1, y1)K(x2, y2) −K(x1, y2)K(x2, y1) ≥ 0.

Because “log-supermodularity” is more widely used than “TP2” in eco-

nomics, we use “log-supermodularity” in this paper. Log-supermodularity is

characterized by the following lemma. See, for example, Topkis (1978), Kijima

and Ohnishi (1996, p.274) or Gollier (2001).

Lemma 1. Suppose that K : R×R → R+ is twice continuously differentiable.

Then, K is log-supermodular if and only if one of the following two equivalent

conditions holds:

(1) For any x, x0 ∈ R and for any y1 < y2,

(x− x0)
K(x, y2)

K(x0, y2)
≥ (x− x0)

K(x, y1)

K(x0, y1)
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(2) (∂K(x, y)/∂x)/K(x, y) is non-decreasing in y. Equivalently, ∂2K(x, y)/∂x∂y ≥
0.

Lemma 2. For i, j ∈ Θ = {1, . . . , n} with i < j,

E[u((w − k)x̃+ kỹi)] ≤ E[u((w − k)x̃+ kỹj)].

Proof. Because FSD satisfies the convolution property, it follows that x̃ +

ỹi �FSD x̃ + ỹj for i < j and for any random variable x̃ such that x̃ and

ỹi are independent and x̃ and ỹj are independent. By FSD, it follows that

E[u((w − k)x̃+ kỹi)] ≤ E[u((w − k)x̃+ kỹj)], which proves the claim.

Furthermore, log-supermodularity is also characterized by the following

theorem. See, for example, Karlin (1968), Jewitt (1987), Athey (2002), or

Gollier (2001).

Theorem 2. Let K : R × R → R+ be a non-negative real-valued function.

Suppose that the function g : R → R satisfies the single crossing condition

from below. Then, for any random variable x̃ and any y1 < y2,

E[g(x̃)K(x̃, y1)] = 0 ⇒ E[g(x̃)K(x̃, y2)] ≥ 0

if and only if K is log-supermodular.

Theorem 3. (Hadar and Seo (1990)) Suppose that a) u′ > 0, u′′ ≤ 0, b) x̃i

and ỹ are independent for i = 1, 2, and c) E[u((w− ki)x̃
i + kiỹ)] is maximized

at k∗i . Then, k∗1 ≤ k∗2 for any x̃2 �FSD x̃1 if and only if u′(z)z is non-decreasing

if and only if R(z) ≤ 1.

Based on Theorem 3, we can prove the following lemma, which plays a key

role in proving Theorem 1.

Lemma 3. Let g(θ) = E[(ỹθ − x̃)u′((w − k∗)x̃ + k∗ỹθ)] for any θ ∈ Θ =

{1, . . . , n}. Then, g satisfies the single crossing condition from below.

Proof. It follows from Theorem 3 that kj ≤ ki for ỹi �FSD ỹj for i, j ∈ Θ =

{1, . . . , n} with i < j if and only if R(z) = −zu′′(z)/u(z) ≤ 1. This implies
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that k1 ≤ . . . ≤ kn. Because k1 ≤ k∗ ≤ kn, there exists some i ∈ Θ such that

ki−1 ≤ k∗ ≤ ki. By the concavity, we have

E[(ỹθ − x̃)u′((w − k∗)x̃+ k∗ỹθ)] ≤ 0 for θ ≤ i and

E[(ỹθ − x̃)u′((w − k∗)x̃+ k∗ỹθ)] ≥ 0 for θ > i,

which proves the lemma.

Proof of Theorem 1. Let v(θ) = E[u((w − k∗)x̃ + k∗ỹθ)], let g(θ) = E[(ỹθ −
x̃)u′((w − k∗)x̃ + k∗ỹθ)] for any θ ∈ Θ = {1, . . . , n}, and let φ(v(θ), i) =

φi(v(θ)) for i = 1, 2. For ease of exposition, let i = 2 correspond to ambiguity

neutrality (that is, φ2(v(θ)) is linear), and let i = 1 correspond to ambiguity

aversion (that is, φ1(v(θ)) is concave). It follows from Lemmas 1 and 2 that

φ′(v(θ), i) = ∂φ(v(θ), i)/∂v(θ) is log-supermodular if and only if φ1 is more

ambiguity averse than φ2. Because g(θ) satisfies the single crossing condition

from below by Lemma 3, it follows that

φ1 is more ambiguity averse than φ2

⇔
n∑

θ=1

qθφ
′
1(E[u((w − k∗)x̃+ k∗ỹθ)])g(θ) = 0

⇒
n∑

θ=1

qθφ
′
2(E[u((w − k∗)x̃+ k∗ỹθ)])g(θ) ≥ 0

⇔
n∑

θ=1

qθg(θ) ≥ 0

⇔
n∑

θ=1

qθE[(ỹθ − x̃)u′((w − k∗)x̃+ k∗ỹθ)] ≥ 0,

where the first equivalence follows from Theorem 2, the second equivalence

follows from the linearity of φ2(·) and φ′
2(·) > 0, and the last equivalence

follows from the definition of g(θ). This completes the proof.
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