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SUMMARY

AMP-activated protein kinase (AMPK), a master
regulator of cellular metabolism, is a potential target
for type 2 diabetes. Although extensive in vitro
studies have revealed the complex regulation of
AMPK, much remains unknown about the regulation
in vivo. We therefore developed transgenic mice
expressing a highly sensitive fluorescence reso-
nance energy transfer (FRET)-based biosensor for
AMPK, called AMPKAR-EV. AMPKAR-EV allowed
us to readily examine the role of LKB1, a canonical
stimulator of AMPK, in drug-induced activation and
inactivation of AMPK in vitro. In transgenic mice
expressing AMPKAR-EV, the AMP analog AICAR
activated AMPK in muscle. In contrast, the antidia-
betic drug metformin activated AMPK in liver, high-
lighting the organ-specific action of AMPK stimula-
tors. Moreover, we found that AMPK was activated
primarily in fast-twitch muscle fibers after tetanic
contraction and exercise. These observations sug-
gest that the AMPKAR-EV mouse will pave a way to
understanding the heterogeneous responses of
AMPK among cell types in vivo.

INTRODUCTION

The AMP-activated protein kinase (AMPK) regulates energy

balance in the body (Mihaylova and Shaw, 2011; Carling et al.,

2012;Hardie et al., 2012). Intracellular deficiency in ATP activates

AMPK, which, in turn, promotes catabolic processes and inhibits

anabolic processes by phosphorylation of multiple substrates,

including acetyl-coenzyme A (CoA) carboxylase (ACC) and hy-

droxymethylglutaryl-CoA (HMG-CoA) reductase. The linkage of

AMPK tometabolic processes renders AMPK a promising thera-

peutic target for obesity and type 2 diabetes (Zhang et al., 2009).
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AMPK is a heterotrimeric enzyme composed of a catalytic

a subunit and two regulatory b and g subunits. The g subunit

contains four cystathionine-b synthase (CBS) domains. Each

CBSdomain contains a binding site for an adenosine phosphate.

Sites 1 and 3 bind AMP, ADP, or ATP in a concentration-depen-

dent manner; site 4 constitutively binds to AMP; and site 2 is

always empty. Phosphorylation of Thr172 of the a subunit and

allosteric activation, both due to binding of AMP to the g subunit,

lead to a 1,000-fold increase in AMPK activity (Suter et al., 2006).

AMP binding to AMPK also inhibits dephosphorylation of AMPK

(Davies et al., 1995). Liver kinase B1 (LKB1) is the primary protein

kinase responsible for the phosphorylation of this regulatory

Thr172 residue (Hawley et al., 2003; Woods et al., 2003; Shaw

et al., 2004). Increased intracellular AMP concentration drives

assembly of the Axin-AMPK-LKB1 complex, thereby promoting

AMPK phosphorylation by LKB1 (Zhang et al., 2013). Thus, in

addition to the multiple CBS domains, Axin-mediated regulation

contributes to the ultrasensitive system for the monitoring of

intracellular AMP concentration.

Calcium/calmodulin-dependent protein kinase kinase 2

(CaMKK2, also known as CaMKKb) has also been shown to

phosphorylate Thr172 of the a subunit in a calcium-dependent

manner (Hurley et al., 2005; Hawley et al., 2005). This pathway

is known to function at least in neurons and T cells (Mihaylova

and Shaw, 2011; Carling et al., 2012; Hardie et al., 2012).

Another class of AMPK regulator is peptidyl-prolyl cis/trans

isomerase (PPIase) NIMA-interacting 1 (Pin1), which binds to a

number of proteins and regulates oncogenesis and metabolic

diseases (Khanal et al., 2013; Zhou and Lu, 2016). Pin1 has

been shown to bind to and inhibit AMPK; therefore, at least

some effects of Pin1 on metabolism appear to be mediated by

the Pin1-AMPK association.

The AMPK activity has been studied extensively by in vitro

kinase assay and immunoblotting with anti-phospho-AMPK

(pAMPK) or anti-phospho-ACC (pACC), which reflect mean

AMPK activity in the cell population. To examine the heterogene-

ity of AMPK activity, Tsou et al. (2011) developed AMPKAR, a

genetically encoded biosensor based on fluorescence
uthors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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resonance energy transfer (FRET) for AMPK activity, and re-

vealed a very high cell-to-cell heterogeneity in the amplitude

and time course using tissue culture cells. An improved version

of AMPKAR has been developed and used to examine the

AMPK activity in neurons (Sample et al., 2015). A drawback of

many FRET biosensors, including AMPKAR, may be low

signal-to-noise ratio. We have reported that a long, flexible EV

linker could significantly improve the dynamic range of many

FRET biosensors by reducing the basal FRET signal (Komatsu

et al., 2011) and that the resulting highly sensitive FRET biosen-

sors enable us to visualize protein kinase activities in living mice,

collectively called FRET mice (Kamioka et al., 2012).

In this study, we have applied the EV linker technology to

AMPKAR. The resulting AMPKAR-EV FRET biosensor exhibits

three-fold higher dynamic range than AMPKAR and monitored

AMPK activation in HeLa cells stimulated by 2-deoxyglucose

(2-DG). Moreover, intravital imaging of transgenic mice express-

ing AMPKAR-EV has revealed that AMPK is predominantly acti-

vated in fast-twitch muscle fibers and that metformin activates

AMPK in hepatocytes, but not in muscles. Thus, the in vivo imag-

ing of AMPK activity will open a window to understanding the

heterogeneous responses of AMPK among cell types in vivo.

RESULTS

AMPKAR-EV Monitors the Effect of Stimulators and an
Inhibitor on Endogenous AMPK Activity
AMPKAR is a genetically encoded intramolecular FRET

biosensor for monitoring AMPK activity in living cells (Tsou

et al., 2011). We developed AMPKAR-EV to increase the sensi-

tivity by using a long, flexible EV linker (Komatsu et al., 2011),

and by replacing the yellow fluorescent protein (YFP) with YFP

for energy transfer (YPet), a FRET-prone variant of YFP (Nguyen

and Daugherty, 2005). Phosphorylation of the substrate peptide

by AMPKpromotes its binding to the FHA1 domain and a confor-

mational change of AMPKAR-EV, resulting in an increase in the

FRET efficiency from super enhanced cyan fluorescent protein

(SECFP) to YPet (Figure 1A). The fluorescence ratio of YPet to

SECFP, hereinafter the FRET/CFP ratio, is used to represent

the FRET efficiency. HeLa cells transiently expressing

AMPKAR-EV were stimulated with 10 mM 2-DG, a glucose

analog that perturbs glycolysis and reduces cytosolic ATP levels.

We performed a side-by-side experiment with the prototype

AMPKAR (Figures 1B and 1C). In contrast to the prototype

AMPKAR, AMPKAR-EV exhibited a remarkably low FRET/CFP

ratio, primarily because the EV linker decreases the association

of SECFP and YPet in the absence of phosphorylation of the

substrate (Komatsu et al., 2011). After 2-DG stimulation, AMP-

KAR-EV, but not the prototype AMPKAR, showed a robust and

rapid change in the FRET/CFP ratio. The low response of the

prototype AMPKAR to 2-DG in HeLa cells agrees with the previ-

ous report (Tsou et al., 2011). To examine the correlation of the

FRET/CFP ratio with AMPK activity, immunoblotting experi-

ments and FRET imaging were performed side by side in HeLa

cells stably expressing AMPKAR-EV. The temporal dynamics

of pACC levels were similar to those of AMPKAR-EV (Figure 1C).

Moreover, 2-DG-induced phosphorylation of ACC was corre-

lated almost linearly with the FRET/CFP ratio (correlation coeffi-
cients = 0.92 and 0.95) (Figure 1D). We also tested whether the

increase in the FRET/CFP ratio required endogenous AMPK by

using AMPK-double knockout (DKO) HEK293A cells, which

lack both AMPKa1 and AMPKa2 (PRKAA1 and PRKAA2) genes.

The basal FRET/CFP ratio was markedly higher in the wild-type

(WT) HEK293A cells than in the AMPK-DKO HEK293A cells (Fig-

ure 1E). Moreover, 2-DG increased the FRET/CFP ratio only in

WT HEK293A cells. Thus, AMPKAR-EV is specific to AMPK

and sensitive enough to detect 2-DG-stimulated AMPK

activation.

We further examined the response of AMPKAR-EV for

two AMPK stimulators that have different modes of action.

A-769662 is a thienopyridone and directly activates AMPK

by inducing interaction between the b and the g subunits

of AMPK (Göransson et al., 2007; Xiao et al., 2013). On the

other hand, 5-aminoimidazole-4-carboxamide-1-b-D-ribofura-

noside (AICAR) is phosphorylated to yield an AMP analog, 5-ami-

noimidazole-4-carboxamide-1-b-D-ribofuranotide (ZMP), which

binds to AMPK and thereby promotes net phosphorylation by

LKB1 (Corton et al., 1995; Zhang et al., 2013). A-769662 induced

a rapid increase in the FRET/CFP ratio in AMPKAR-EV-express-

ing Colon 38 cells (Figure 1F). The temporal dynamics of the

FRET/CFP ratio were comparable to those of pACC. Dose re-

sponses revealed that the 50% effective concentration (EC50)

of A-769662 was �50 mM under our experimental conditions

(Figure 1G). Similarly, the EC50 of AICAR was determined as

�0.5 mM in Colon 38 cells. These values are similar to those re-

ported previously (Cool et al., 2006; Göransson et al., 2007).

Altogether, these results support the notion that AMPKAR-EV

faithfully represents AMPK activity in tissue culture cells.

AMPKAR-EV Delineates Roles of LKB1 in the Basal
Activity and Drug-Induced Activation of AMPK Activity
LKB1, a major regulator of AMPK (Hawley et al., 2003; Woods

et al., 2003; Shaw et al., 2004), is often suppressed in cancer

cells. We therefore examined whether the basal AMPK activity

detected by AMPKAR-EV correlated with the expression of

LKB1. We used HepG2, Colon 38, and 3LL cells as cell lines re-

taining intact LKB1 and used A549, H460, and HeLa cells as cell

lines deficient for LKB1. As expected, ACC was more phosphor-

ylated in LKB1-intact cells than that in LKB1-deficient cells,

although the level of phosphorylation differed significantly

among the LKB1-intact cells (Figure S1). In agreement with this

observation, the FRET/CFP ratio clearly grouped the cell lines

into LKB1-positive and LKB1-negative cell lines (Figure 2A).

Consistently, HeLa cells exhibited high basal AMPK activity by

the expression of WT, but not by that of kinase-deficient LKB1.

We further examined the cellular response to AICAR, metfor-

min, 2-DG, and A-769662, which have been shown to activate

AMPK in an LKB1-dependent or LKB1-independent manner.

Metformin is one of the most widely used anti-diabetic drugs; it

acts by inhibiting respiratory-chain complex I and thereby

increasing the AMP/ATP ratio (Viollet et al., 2012). As reported

previously (Shaw et al., 2004; Shackelford et al., 2013), AICAR

and metformin increased the FRET/CFP ratio in the LKB1-ex-

pressing cell lines Colon 38, HepG2, and 3LL, but not in the

LKB1-deficient cell lines A549, H460, and HeLa (Figure 2B). In

contrast to AICAR and metformin, 2-DG induced a rapid and
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Figure 1. AMPKAR-EV Monitors the Effect of Stimulators and an

Inhibitor on Endogenous AMPK Activity

(A) A schema of AMPKAR-EV is shown.

(B and C) Representative FRET/CFP ratio images at the indicated time points

are shown in the intensity-modulated display (IMD) mode (B). HeLa cells ex-

pressing AMPKAR-EV were stimulated with 10 mM 2-deoxyglucose (2-DG) at

0 min. The averaged FRET/CFP ratios are also shown (bars, SDs; n = 20 cells

across 4 or 5 fields of view). Gray dashed lines denote the initial values. The

time course of pACC (Ser79) and total ACC following addition of 10mM2-DG in

HeLa cells was analyzed by immunoblotting (top) and quantified (bottom). The

level of pACC was normalized by the maximum value (n = 3 independent

samples) (C).

(D) Phosphorylation of ACC (pACC/ACC) is plotted against FRET/CFP. HeLa

cells expressing AMPKAR-EV were stimulated with 10 mM 2-DG at the indi-

cated time points (left) or stimulated with the indicated concentrations of 2-DG

at 20 min (right). The levels of pACC and the averaged FRET/CFP ratios were

normalized by 0 min (left) or 0 mM (right). The dashed lines denote the linear

regression line with a coefficient of determination R2 = 0.92 (left) and R2 = 0.95

(right) (bars, SDs; n = 3 independent experiments).

(E) Similar experiments were performed as in (C) using the WT and AMPK-

double knockout (DKO) HEK293A cells. Cells were analyzed before and 20min

after 2-DG treatment for immunoblotting.

(F) Similar experiments were performed as in (C) using Colon 38 cells ex-

pressing AMPKAR-EV with 50 mM A-769662 (bars, SDs; n = more than 8 cells

across 3 fields of view).

(G) Colon 38 cells expressing AMPKAR-EV were stimulated with A-769662 or

AICAR at the indicated concentrations. The averaged FRET/CFP ratios at

60 min after the stimulation were normalized by the values before the stimu-

lation (bars, SDs; n = more than 4 cells across 4 or 2 fields of view).
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sustained increase in the FRET/CFP ratio irrespective of the

expression of LKB1. We found that A-769662 elicited two

phases of AMPK activation: a rapid and transient increase

10 to 20 min after the stimulation and a gradual second-phase

increase after 30min. Themechanismof this two-phase increase

is unknown.

Because the increase in the FRET/CFP ratio by 2-DGwas also

observed in LKB1-deficient cells, we examined the contribution

of the Ca2+-CaMKK2 pathway to 2-DG-induced AMPK activa-

tion. As expected, the intracellular Ca2+ chelator BAPTA-AM,

the CaMKK2 inhibitor STO-609, and a small interfering RNA

(siRNA) against CaMKK2 ablated the 2-DG-induced increase in

the FRET/CFP ratio (Figure S2A). The consistent effect of the

CaMKK2was confirmed by immunoblotting with anti-pACC anti-

body (Figure S2B). Similar results were obtained using A549

(Figures S2C and S2D). By using R-GECO1.0, which is a Ca2+ in-

dicator, we confirmed that intracellular Ca2+ levels were

increased upon 2-DG stimulation, irrespective of AMPKAR-EV

expression (Figure S2E). All of these results are consistent with

the idea that the 2-DG-induced AMPK activation in LKB1-defi-

cient cell lines depends on the Ca2+-CaMKK2 pathway and

that AMPKAR-EV faithfully reports the AMPK activity in the

presence of various stimulators and inhibitors.

Pin1 Inhibits LKB1-Dependent, but not CaMKK2-
Dependent, AMPK Activation
Pin1, a PPIase, has been shown to suppress AMPK by direct

binding to phospho-Ser176 of AMPK (Khanal et al., 2013) and

phospho-Thr211 of AMPK (Nakatsu et al., 2015). However, it has

not been determined whether Pin1 inhibits both LKB1- and

CaMKK2-dependent AMPK activation. To answer this question,

we examined the effect of Pin1 on AMPK activity in the presence
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Figure 2. AMPKAR-EV Delineates Roles of LKB1 in the Basal and

Drug-Induced AMPK Activity
(A) The averaged FRET/CFP ratios of AMPKAR-EV in different cell lines without

stimulation are shown (bars, SDs; n = 2 independent experiments with 15 cells;

***p < 0.001). HepG2, Colon 38, and 3LL cells express LKB1, while A549,

H460, and HeLa cells are LKB1 deficient, as shown in Figure S1. LKB1 or

kinase-dead LKB1 was expressed in HeLa cells (HeLa + LKB1WT and HeLa +

LKB1KD, respectively).

(B) Cells expressing AMPKAR-EV were stimulated with the following agents:

10 mM 2-DG, 50 mM A-769662, 1 mM AICAR, and 10 mM metformin. The

averaged FRET/CFP ratios are shown (bars, SDs; n =more than 16 cells across

more than 3 fields of view). Gray dashed lines denote the initial values. Sta-

tistical significance of the averaged FRET/CFP was assessed between the

initial time point and 54 min after the stimulation (***p < 0.001; *p < 0.05; n.s.,

not significant). See also Figures S1 and S2.
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Figure 3. Pin1 Inhibits LKB1-Dependent AMPK Activation

(A) Pin1was overexpressed in HepG2, Colon 38, HeLa, andHeLa + LKB1 cells.

The averaged FRET/CFP ratios of AMPKAR-EV in different cell lines are shown

(bars, SDs; n = 3 independent experiments with 19 to 20 cells each; ***p <

0.001).

(B) HeLa andHeLa + LKB1 cells were stimulatedwith 100 mMof Pin1 inhibitor 1

or 2 for 30 min. The averaged FRET/CFP ratios are shown (bars, SDs; n = 3

independent experiments with 3 to 11 cells each; ***p < 0.001).

(C and D) HeLa and HeLa + LKB1 cells with or without overexpression of Pin1

were stimulated with 1 mM AICAR (C) and 10 mM 2-DG (D). The averaged

FRET/CFP ratios of the cells are shown (bars, SDs; n = more than 20 cells

across more than 3 fields of view).

See also Figure S2.
or absence of LKB1. We found that the basal FRET/CFP ratios

were decreased by Pin1 overexpression in LKB1-expressing

cells, includingHepG2cells, Colon 38 cells, and LKB1-expressing

HeLa cells, but not in the authentic LKB1-deficient HeLa cells

(Figure 3A). By contrast, Pin1 inhibitors increased the FRET/

CFP ratio only in the LKB1-expressing HeLa cells, not in the

authentic HeLa cells (Figure 3B). Collectively, these results indi-

cate that Pin1 inhibits LKB1-dependent AMPK activation under

unstimulated conditions. Next, therefore, we examined the effect

of Pin1 under stimulated conditions. The authentic and LKB1-ex-

pressing HeLa cells were infected with Pin1-expressing lentivirus

and time-lapse imaged to examine the effect of AMPK stimulators

(Figures 3C and 3D). In the authentic HeLa cells, AICAR failed to

exhibit any effects irrespective of the expression of Pin1. In the

LKB1-expressing HeLa cells, Pin1 not only decreased the basal

FRET/CFP ratio but also abrogated AICAR-induced increase in
the FRET/CFP ratio. In contrast to AICAR, 2-DG markedly

increased the FRET/CFP ratio, irrespective of the presence of

LKB1 or Pin1 (Figure 3D). Because we have shown that 2-DG

activates AMPK via the Ca2+-CaMKK2pathway (Figure S2), these

results demonstrated that Pin1 inhibits LKB1-dependent, but not

CaMKK2-dependent, AMPK activation.

Myocytes and Hepatocytes Respond to AICAR and
Metformin Differently
Encouraged by the in vitro data showing that AMPKAR-EV could

monitor AMPK activity under various conditions, we generated
Cell Reports 21, 2628–2638, November 28, 2017 2631
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Figure 4. Myocytes and Hepatocytes Respond to AICAR and

Metformin Differently

(A–F) Layout of the intravital imaging system for the biceps femoris (A) and the

liver (D). An anesthetized mouse is placed on an electric heat pad and

observed with an inverted or an upright two-photon excitation microscope.

Representative FRET/CFP ratio images of the biceps femoris (B) and the liver

(E) at the indicated time points are shown in IMD mode. AICAR (250 mg/kg) or

metformin (100 mg/kg) was injected intravenously at 0 min. (C and F) The

averaged FRET/CFP ratios are shown (bars, SDs; n = 3 independent experi-

ments with more than 32 skeletal muscle fibers [C] and 6 hepatocytes [F]).

pAMPK (Thr172) and total AMPK following addition of AICAR ormetformin were

also analyzed by immunoblotting.

(G) Normalized FRET/CFP is plotted against blood glucose levels. AMPKAR-

EVmicewere fasted formore than 24 or 48 hr. AMPKAR-EVmice fed ad libitum
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transgenic mice expressing AMPKAR-EV by Tol2-mediated

gene transfer (Kamioka et al., 2012). The transgenes were trans-

mitted to offspring by Mendelian inheritance across five genera-

tions (continued transmission in this line is ongoing). Animals

transgenic for FRET biosensors grew normally and showed no

external or internal signs of malformations or other adverse reac-

tions to the transgene. The CAG promoter-driven expression of

AMPKAR-EV was sufficiently robust to identify newborn trans-

genic mice by visual inspection of green fluorescence in the

skin. Expression of AMPKAR-EV was confirmed in most, if not

all, organs examined by visual inspection and in vivo imaging

by two-photon excitation microscopy.

One of the prospective applications of FRET mice is for the

study of pharmacodynamics. Here, we attempted to visualize

the effect of AICAR and metformin in the liver and the skeletal

muscle (Figure 4). In muscle cells, AICAR, but not metformin,

induced a transient increase in the FRET/CFP ratio (Figures 4B

and 4C; Movie S1). In contrast, the FRET/CFP ratio in hepato-

cytes was gradually increased only by metformin (Figures 4E

and 4F). Immunoblotting analysis confirmed the organ-specific

effect of AICAR and metformin on pAMPK levels. Thus, these

data demonstrate that the AMPKAR-EV mouse is a powerful

tool for comparing the pharmacodynamics of stimulators and

inhibitors of AMPK among different tissues. We also examined

whether we could detect AMPK activation upon starvation. For

this, mice were starved for one or two days, and AMPK activity

was monitored in the liver (Figure 4G). Hepatocytes in starved

mice showed higher FRET efficiency than those in fed mice,

representing that the AMPKAR-EV mouse reports the AMPK

activation under a physiological stimulus. We also confirmed

the effect of starvation in each mouse by measuring blood

glucose levels and AMPK phosphorylation (Figure 4G).

AMPKAR-EV Mice Reveal AMPK Activation in Fast-
Twitch Fibers after Contraction In Vivo

Another promising application of the transgenic mice expressing

AMPKAR-EV is for the examination of heterogeneous responses

of cell types within a tissue of interest. In skeletal muscles, fibers

are largely classified into white fast-twitch muscles, character-

ized by glycolytic metabolism, and red slow-twitch muscles,

characterized by oxidative metabolism. We examined whether

any muscle fiber type-specific difference could be observed in

the AMPK activity by observing the biceps femoris after tetanic

contraction or exercise. After stimulation, mice were subjected

to in vivo imaging. To increase the number of muscle fibers to

be analyzed, one to four fields of view were imaged in each

mouse. The image acquisition started approximately 5 min and

no later than 31min after the stimulation; in no case were images

captured later than 40 min after the stimulation. Precise intervals

between the stimulation and the imaging are described in

Figure S3.
were used as a control. Glucose (1 g/kg) was injected intravenously at 0 min.

The averaged FRET/CFP ratios just before the glucose addition were

normalized by the values 60 min after the stimulation (n = 4 independent

experiments with more than 15 hepatocytes). pAMPK (Thr172) and total

AMPK after starvation were also analyzed by immunoblotting.

Refer to Movie S1.
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Figure 5. AMPKAR-EV Mice Reveal AMPK Activation in Fast-Twitch Fibers after Contraction In Vivo

(A) Representative FRET/CFP ratio images of the skeletal muscle fibers are shown in IMDmode. NAD(P)H images were obtained at 430 nm fluorescence. Muscle

contraction was electrically induced in the AMPKAR-EV mice.

(B) Muscle fiber types were assessed by NADH tetrazolium reductase (NADH-TR) staining.

(C) Representative FRET/CFP ratio images of the skeletal muscle fibers are shown in IMD mode. Transgenic mice expressing FRET biosensors for AMPK, ERK,

PKA, and a negative control underwent electrical induction of muscle contraction. Image acquisition was started 5 to 31 min after the end of stimulation and

finished in 40 min. See also Figure S3 for the detailed interval between the stimulation and the in vivo imaging. White arrowheads indicate NAD(P)H-high fibers.

(D) The FRET/CFP ratio is plotted against normalized NAD(P)H intensity. To minimize the depth effect, NAD(P)H intensity was normalized by dividing the average

of the entire image. 10 to 50 fibers in eachmousewere imaged, quantified, and presented in the figure. Each shape (triangles, circles, or diamonds) represents the

(legend continued on next page)
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In the control mice, the FRET/CFP ratio in each muscle fiber

differed to some extent; however, the heterogeneity was signifi-

cantly increased after electrically induced tetanic contraction

(Figure 5A). Fluorescence of 430 nm can be used to quantify

NAD(P)H and thereby identify the muscle fiber types, because

NAD(P)H is abundant in mitochondria-rich, red slow-twitch mus-

cle fibers (Piston et al., 1995; Rothstein et al., 2005). We found

that NAD(P)H-high fibers were smaller in diameter and lower in

FRET/CFP ratio than NAD(P)H-low fibers (Figure 5A). The pro-

portion and diameter of NAD(P)H-high fibers were similar to

those of fibers heavily stained by NADH-TR, supporting the

muscle fiber typing by NAD(P)H fluorescence (Figure 5B). We

extended this approach to examine the specificity of our findings

by using transgenic mice expressing FRET biosensors for ERK

and PKA and a negative control FRET biosensor, PKA-NC (Fig-

ure 5C). Quantification of the FRET/CFP ratio and NAD(P)H

intensity demonstrated clearly that AMPK was activated prefer-

entially in NAD(P)H-low fibers 0 to 40 min after electronically

induced tetanic contraction (Figure 5D). Similar results were

obtained for ERK. Upon muscle contraction, the FRET/CFP ratio

in transgenic mice expressing the FRET biosensor for ERK was

significantly increased in NAD(P)H-high muscle fibers. The in-

crease in the FRET/CFP ratio was mostly confined to the muscle

fibers beneath the muscular fascia, suggesting that the ERK

activity was regulated not by the type of muscle fibers but rather

by the location within the muscle. In contrast, the transgenic

mice expressing the FRET biosensor for PKA or the negative

control FRET biosensor did not show a significant increase in

the FRET/CFP ratio in the muscle. Collectively, these data sug-

gest that AMPK is activated in fast-twitch fibers after tetanic

contraction.

Finally, we investigated whether treadmill exercise is able to

activate AMPK in fast-twitch fibers specifically. Mice were

trained according to a previous report (Maarbjerg et al., 2009)

and then forced to run on a treadmill for 60min at 16m/min. After

treadmill running, there were some myofibers with high AMPK

activity, especially in NAD(P)H-low fibers (Figure 5E). This result

supports our model that AMPK is activated in fast-twitch fibers.

In conclusion, the transgenic mouse expressing AMPKAR-EV is

a powerful tool to detect the minor population and examine the

heterogeneous responses of AMPK in vivo.

DISCUSSION

By the use of a flexible EV linker, the basal level of the FRET/CFP

ratio was markedly decreased in comparison to that for the

prototype, AMPKAR (Figures 1B and 1C). This decreased basal

signal of AMPKAR-EV allowed us to classify cells easily into two

groups based on the expression of LKB1 (Figure 2). In agreement

with previous reports (Hawley et al., 2003; Woods et al., 2003;
dataset from the same mouse before and after stimulation. Histograms of the nor

side of the figure, respectively. For statistical analysis, the datasets were divided

nificance of the averaged FRET/CFP was assessed by t test between before and

p values are given in parentheses).

(E) Similar experiments were performed as in (D). Trained mice expressing AMPK

started 6 to 25 min after the end of running and finished in 40 min. AMPKAR-EV

p values are given in parentheses).
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Shaw et al., 2004; Gowans et al., 2013), this significant difference

in the basal AMPK activity indicates that LKB1 phosphorylates

and activates AMPK even in nutrient-rich culture medium. It

should be recalled that AMPK-dependent phosphorylation

inactivates ACC andHMG-CoA reductase. Thus, the basal activ-

ities of LKB1 and AMPK may play a role in reserving inert ACC

and HMG-CoA reductase. In this context, we may need to pay

more attention to signals that reduce LKB1 activity under

nutrient-rich conditions.

Pin1 has been shown to bind to and inactivate AMPK (Khanal

et al., 2013; Nakatsu et al., 2015). The binding of Pin1 to the

CBS3 domain of the AMPK g subunit exposes phospho-Thr172

of the a subunit for the dephosphorylation by PP2C and thereby

suppresses AMPK activity (Nakatsu et al., 2015). By using cell

lines expressing AMPKAR-EV, we found that Pin1 inhibits

AMPK activation by LKB1, but not by CaMKK2 (Figures 3 and

S2), suggesting an LKB1-specific mechanism of inhibition.

LKB1 phosphorylates AMPK on a scaffold protein, Axin (Zhang

et al., 2013). It remains unknown which subunit of AMPK binds

to Axin; however, we could speculate that Pin1 binding to

AMPK inhibits the association of AMPK with Axin and thereby

prevents AMPK from LKB1-dependent phosphorylation. This

scenario can also explain why Pin1 did not inhibit CaMKK2-

dependent AMPK activation.

The difference in the AMPK activity between slow- and fast-

twitch fibers has been controversial. Narkar et al. (2011) found

that AMPK was more active in the soleus (predominantly slow-

twitch myofibers) than the quadriceps (predominantly fast-

twitch myofibers). Meanwhile, other research groups failed

to find significant difference in AMPK activity between the

soleus and the extensor digitorum longus (predominantly

fast-twitch myofibers) (Dzamko et al., 2008; Jensen et al.,

2007; Jørgensen et al., 2004). These studies were based

mostly on immunoblotting with anti-pAMPK; therefore, they

do not necessarily show the difference between fast- and

slow-twitch fibers. The use of AMPKAR-EV enabled us to

examine the AMPK activity directly in each fiber type before

and after stimulation (Figure 5). Our data strongly suggested

that only the fast-twitch myofibers exhibited an increase in

AMPK activity upon tetanic contraction and exercise. We

may speculate that the tetanic contraction and the exercise

causes ATP consumption primarily in fast-twitch myofibers,

resulting in strong AMPK activation. Although we cannot rule

out the possibility that AMPK activation in the slow-twitch

myofibers was transient, and therefore could not be detected

in our experimental protocol, it is unlikely that such transient

AMPK activation alters the metabolic states of the slow-twitch

myofibers. It would be interesting to test whether low-inten-

sity, long-time exercise may activate AMPK preferentially in

the slow-twitch myofibers.
malized NAD(P)H intensity and FRET/CFP ratio are shown at the top and right

into two groups by the threshold of normalized NAD(P)H = 2. Statistical sig-

after stimulation in categorized fibers (**p < 0.01; *p < 0.05; n.s., not significant;

AR-EV were run on a treadmill for 60 min at 16 m/min. Image acquisition was

mice without training were used as a control (*p < 0.05; n.s., not significant;



Because of the critical roles played by AMPK in energy

sensing and cancer cell survival, a huge number of drugs have

been proposed to exert their pharmacological effects by means

of AMPK activation (Kim and He, 2013). For example, metformin

has been shown to activate AMPK in muscle (Sajan et al., 2010;

Kristensen et al., 2014), liver (Shaw et al., 2005; Sajan et al., 2010;

Tajima et al., 2013), brain (Chen et al., 2009; Duan et al., 2013;

Cho et al., 2015), and pancreatic cancer cells (Hinke et al.,

2007; Kisfalvi et al., 2009; Sinnett-Smith et al., 2013); however,

the difficulty of performing direct comparisons among experi-

mental setups renders the effect of metformin obscure, even if

we admit the pleiotropic effects of this agent. Intravital imaging

of AMPK activity by using AMPKAR-EV-expressing transgenic

mice has enabled us to visualize the influence of AMPK-acti-

vating reagents to different organs on the same scale. We found

that effect of metformin on AMPK activity differs substantially

between liver and skeletal muscle (Figure 4). The reason for

this tissue-specific action of metformin is probably because a

metformin transporter, organic cation transporter 1 (OCT1), is

expressed preferentially in the liver (Wang et al., 2002). Similarly,

the expression level of OCT1 in each cell line could affect the

responsiveness tometformin in vitro. In the six cell lines analyzed

in this study, the expression of LKB1 was perfectly correlated

with the reactivity to metformin; however, this observation

does not rule out that low OCT1 expression abolishes the reac-

tivity to metformin in vitro.

AICAR-induced AMPK activation was observed in previous

studies using isolated hepatocytes from mice (Foretz et al.,

2010) and rats (Corton et al., 1995) and, in the present study,

using hepatic cancer-derived HepG2 cells (Figure 2B). However,

only a few reports described similar results in vivo. After two

weeks of administration of AICAR, AMPK activity in the liver is

increased approximately two-fold in mice (Liu et al., 2015). To

our knowledge, only two studies reported in vivo AMPK activa-

tion after acute administration of AICAR (Buhl et al., 2002; Sajan

et al., 2010). By using obese Zucker (fa/fa) rats and Sprague-

Dawley rats, the authors reported a two- to three-fold increase

of AMPK activity and pAMPK (Thr172) by AICAR and a three-

fold increase by metformin, indicating that metformin more

potently activates AMPK in the liver than does AICAR. We also

found AMPK activation by metformin in the liver but failed to

detect the effect of AICAR (Figure 4). The discrepancy may be

ascribable to the difference between mice and rats. Because

AICAR must be transported into the liver and phosphorylated

to yield ZMP for its action, the kinetics of AMPK activation by

AICAR may be influenced by the transporters and kinases, of

which activity may vary among species and organs. Although

the mechanism of muscle-specific action of AICAR in mice is

elusive, these findings give us a clue to understanding the

effectiveness of metformin for type 2 diabetes mellitus and

AICAR for sports doping, respectively (Hardie et al., 2012).

Because many pro-AMPK reagents exert their effect through

decreasing intracellular ATP concentration, use of transgenic

mice expressing FRET biosensors for ATP (Imamura et al.,

2009) will also be informative in understanding the regulation of

AMPK in vivo.

In summary, we generated a highly sensitive AMPK biosensor,

AMPKAR-EV, and established a protocol to visualize AMPK
activity in living mice. These transgenic mice expressing

AMPKAR-EV will be a powerful tool for understanding AMPK

activity in individual cell types and organs. Because the impor-

tance of the AMPK pathway has been identified in autophagy,

aging, immunity, and inflammation, in addition to cancer and

metabolism, AMPKAR-EV mice are expected to provide valu-

able information about AMPK activity in various fields.

EXPERIMENTAL PROCEDURES

For detailed methods, see also Supplemental Experimental Procedures.

AMPKAR-EV Mice

The animal protocols were reviewed and approved by the Animal Care and

Use Committee of Kyoto University Graduate School of Medicine (No.

14079, 15064, 16038, and 17539). To develop transgenic mice expressing

AMPKAR-EV, Lox-Stop-Lox (LSL)-tdKeima-AMPKAR-EV mice were gener-

ated by cytoplasmic microinjection into fertilized eggs of B6C3F1 mice with

Tol2mRNA and pT2A-derived LSL-tdKeima-AMPKAR-EV vector as described

previously (Sumiyama et al., 2010). Transgenic male mice were crossed with

B6.FVB-Tg (EIIa-cre)C5379Lmgd/J female mice (a gift from Mitinori Saitou, Kyoto

University, Kyoto, Japan) for the ubiquitous expression of AMPKAR-EV. Mice

were backcrossed with C57BL/6 for at least two generations before analyses.

Mice were housed in a specific pathogen-free facility and received a routine

chow diet andwater ad libitum. To date, no disease or anomaly has been asso-

ciated with the transgenic mice used in this study. 4- to 40-week-old male and

female mice were used for the in vivo imaging.

Plasmids

The AMPKAR-EV was generated by substitution of the kinase substrate

peptide in the previously described Eevee backbone (Komatsu et al., 2011).

From the N terminus, AMPKAR-EV consists of YPet, a spacer (Leu-Glu), the

FHA1 domain of yeast Rad53 (aa 241–382), a spacer (Gly-Thr), the EV linker,

a spacer (Ser-Gly), the substrate peptide (GSGEGSTKMRRVATLVDLGTGG

SEL), a spacer (Gly-Gly-Arg), SECFP, a spacer (Ser-Arg), and the nuclear

export signal peptide of the HIV-1 Rev protein (LQLPPLERLTLD).

The cDNA of AMPKAR-EV was inserted into pPBbsr, consisting of a

piggyBac transposon vector (Yusa et al., 2009). pCMV-mPBase (mammalian

codon-optimized PBase) encoding a piggyBac transposase was a gift from

Allan Bradley (Welcome Trust Sanger Institute, Cambridge, UK).

Observation of the Skeletal Muscle and the Liver

Living mice were observed with an FV1000MVE inverted microscope

(Olympus, Tokyo, Japan) equipped with a UplanSApo 303/1.05 silicon oil-im-

mersion objective lens (Olympus) or an FV1200MPE-BX61WI upright micro-

scope (Olympus) equipped with a UplanSApo 253/1.05 numerical aperture

(NA) water-immersion objective lens (Olympus). The microscopes were equip-

ped with an InSight DeepSee Ultrafast laser (0.95 W at 900 nm) (Spectra Phys-

ics, Mountain View, CA). The scan speed was set for 2 to 12.5 ms/pixel. The

excitation wavelength for CFP was 840 nm, and that for NAD(P)H was

780 nm. Fluorescent images were acquired with the following filters and

mirrors: an infrared (IR)-cut filter, BA685RIF-3; two dichroic mirrors, DM505

and DM570; and three emission filters, FF01-425/30 (Semrock, Rochester,

NY) for second harmonic generation (SHG) and NAD(P)H, BA460-500

(Olympus) for CFP, and BA520-560 (Olympus) for FRET. The microscopes

were equipped with a two-channel GaAsP detector unit and two multialkali

detectors. FluoView software (Olympus) was used to control the microscope

and to acquire images, which were saved in the multilayer 12-bit tagged image

file format. Acquired images were processed and analyzed with Metamorph

software as described previously (Kamioka et al., 2012). Intravital mouse imag-

ing was performed essentially as described previously (Kamioka et al., 2012).

For observation of the skeletal muscle, the mouse was placed in the prone

position on an electric heat pad maintained at 37�C. The skin over the thigh

was flapped to expose approximately 1 cm2 of the biceps femoris, which

was set over the objective. For observation of the liver, the abdominal wall
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was incised to expose approximately 0.25 cm2 of the tissue. The exposed tis-

sue was imaged using an aspiration fixation system (Sano et al., 2016). Drugs

were injected intravenously during imaging.

Energy Stress Manipulation

For electrically induced muscle contraction, the femoral nerve was stimulated

with a NEPA21 electroporator (Nepa Gene, Chiba, Japan) at a voltage of 40 V.

A tetanic contraction was obtained using 180 pulses at 5 Hz (O’Neill et al.,

2011; Pratt and Lovering, 2014). Immediately after the stimulation, mice

were anesthetized and subjected to in vivo imaging, which started approxi-

mately 5 min and no later than 31 min after the end of stimulation; in no case

were images captured later than 40 min after the stimulation.

For the detection of exercise-induced AMPK activation, according to a

previous report (Maarbjerg et al., 2009), mice were acclimatized to treadmill

running before the experiment from day �5 to day�2 using an MK-680 tread-

mill (Muromachi-Koki, Tokyo, Japan). Initially, mice were allowed to rest in the

treadmill apparatus for 10 min and then exercised by running for 5 min at

10 m/min and 5 min at 16 m/min at 0% incline. Before imaging, mice ran for

60 min at 16 m/min on a 0% incline. If necessary, electrical shock was applied

to encourage running during both the acclimatization and the experiment.

Immediately after the exercising, mice were anesthetized and subjected

to in vivo imaging, which started 6 to 25 min after the end of exercising; in

no case were images captured later than 40 min after the exercising

(Figure S3).

For fasting, mice were single-caged and maintained in standard cages

without accesses to food for more than 24 or 48 hr. To confirm fasting status,

blood glucose levels were measured using a blood glucose monitor (Glutest

Neo Sensor; Sanwa Kagaku Kenkyusho, Nagoya, Japan). Histochemical

analysis of NADH tetrazolium reductase (NADH-TR) was performed as

previously described (Hoshino et al., 2013).

Quantification and Statistical Analysis

The statistical differences between the two experimental groups were

assessed by Student’s two-sample t test.

SUPPLEMENTAL INFORMATION
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