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Abstract

We present a non-cooperative sequential bargaining game for side

payments contracting. Players voluntarily participate in negotiations.

If any player does not participate, then renegotiation will take place in

the next round, given an on-going contract. We show that if the stop-

ping probability of negotiations is sufficiently small, then there exists an

efficient Markov perfect equilibrium where all players immediately par-

ticipate in negotiations and agree to the Nash bargaining solution. The

efficiency result is strengthened by the asymptotically efficient one that

in every Markov perfect equilibrium, all players participate in negotia-

tions through a process of renegotiations in the long run with probability

one. Finally, we illustrate international negotiations for climate change

as an application of the result.
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1 Introduction

The so-called Coase (1960) “theorem” says that if property rights are well-

defined and there are no transaction costs, rational and fully informed agents

agree to a contract generating an efficient outcome.1 An intuitive idea (or

belief) supporting the “theorem” is that if an agreement is inefficient, rational

agents renegotiate it towards a Pareto-improving one. We call it the idea of

Coasian bargaining. Recently, Jackson and Wilkie (2005) and Ellingsen and

Paltseva (2016) examine the relevancy of the Coase theorem in the framework

of non-cooperative game theory. They show that voluntary side contracting

does not necessarily leads to an efficient outcome, and that the outcome of a

contracting process critically depends on the number of agents. The outcome

in the case of two agents is very different from that in the case of more than

two agents. Ellingsen and Paltseva (2016) argued that the Coase theorem does

not hold except the case of two agents.

In this paper, we consider the Coase theorem in the light of two points which

are not studied by the previous works mentioned. One point is the problem of

distributional fairness, and the other is that of renegotiations. Before we state

our main results, let us illustrate each point by an example.

Jackson and Wilkie (2005) present a two-stage model of side contracting

where agents make enforceable offers of side payments contingent on actions

to each other before they play a game in strategic form. In their model, agents

can unilaterally commit themselves to payoff transfer plans. While the possi-

bility of commitments plays a critical role in negotiations, the model does not

include that of agreement, which is a fundamental element in many bargain-

ing situations where any contract can be binding only based on the unanimous

consent among all parties involved. In the commitment model of Jackson and

Wilkie (2005), players can effectively refuse payoff transfers from other players

only by returning the same amounts of payoffs to them. An unilateral com-

1For a detailed account of the Coase theorem, see Cooter (1989).
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mitment may leads to an efficient, but unfair payoff allocation. We illustrate

this point by a classic problem of one-sided externality.

Example 1. One sided externalities

This is a special case of one sided externalities problem discussed by Jack-

son and Wilkie (2005). Consider the Coase’s example of a steel mill affecting

a laundry. Let x1 ∈ [0, 1] denote the output of the steel mill.2 The payoff

functions of the steel mill and the laundry are v1(x1) = 1 − (1 − x1)
2 and

v2(x1) = 1− x1, respectively. The steel mill’s production affects the laundry’s

payoff. There is an unique Nash equilibrium xn
1 = 1 generating the payoff

allocation (1, 0), and x∗
1 = 0.5 is an unique efficient production under trans-

ferability and it generates the payoff allocation (0.75, 0.5). In the Jackson and

Wilkie’s (2005) game, it is optimal for the laundry to offer the side payments

contract that the laundry gives 0.25 to the steel mill to compensate it for

choosing the efficient output x∗ = 0.5 and otherwise does nothing. As a result,

the laundry can exploit the net surplus 0.25 while the steel mill gets the same

payoff as in the Nash equilibrium. The underlying situation is that the steel

mill has the legal right to choose any output without the consent of the laun-

dry, and thus the threat point of the bargaining problem between the steel mill

and the laundry is the Nash equilibrium payoffs (1, 0). If any contract can be

enforceable only based on the mutual consent, the natural outcome seems to

be a fair allocation such as the Nash (1950) bargaining solution (1.125, 0.125),

not (1, 0.25). In this paper, we consider a non-cooperative bargaining game

and whether it is possible for the steel mill and the laundry to agree to the

Nash bargaining solution.

Ellingsen and Paltseva (2016) consider a non-cooperative model of contract

negotiation. In their model, players decide to participate in negotiations, or

not. All participants make contract proposals and thereafter they decide in-

2Jackson and Wilkie (2005) consider the output x2 of the laundry. For simplicity, we
assume that the output of the laundry is fixed.
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dependently which contract proposals to sign. A contract can be binding if

and only if it is signed by all players who may pay or receive transfers under

the contract. Finally, players play the underlying game under the agreed-upon

contract. Since the signing stage has a coordination problem, it has an in-

efficient Nash equilibrium where players fail to sign desirable contracts. To

eliminate such an inefficient Nash equilibrium, Ellingsen and Paltseva (2016)

employ the strong solution concept of a consistent equilibrium (Bernheim and

Ray 1989) that applies Pareto-dominant selection recursively. Ellingsen and

Paltseva (2016) point out that players may have an incentive not to partici-

pate in negotiations. This point is illustrated by the following example given

by them.

Example 2. Public goods

There are four players, each with an endowment M money units. They

choose independently how much of the endowments to contribute to a public

good. Let xi be a contribution of every player i = 1, · · · , 4. Player i’s pay-

off is given by 0.4
∑

i xi + M − xi. It is the dominant action for each player

to contribute nothing. If all four players participate in negotiations for the

joint provision of the public good, the efficient provision is attained by the

full contribution profile (M, · · · ,M) with payoffs (1.6M, · · · , 1.6M). Suppose

that one player, say 1, does not participate and contribute nothing. The pay-

off of every remaining player i 6= 1 is given by 0.4
∑

i 6=1 xi + M − xi. The

total payoff is 0.2
∑

i 6=1 xi+3M , and this is maximized by the full contribution

profile (M,M,M). This gives payoffs 1.2M to each of the three participants

and does payoff 2.2M to non-participant 1. Thus, player 1 has an incentive

not to participate in negotiations, free-riding on the public good provided by

the other players. This, however, is not the end of the story. Since the total

payoff of the three participants and of one free-rider is 5.8M which is smaller

than the efficient outcome 6.4M , there exists a Pareto-improving outcome.

Thus, the three contributors and a free-rider have an incentive to renegotiate
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for their contributions, given that the payoff profile (2.2M, 1.2M, 1.2M, 1.2M)

is the threat point of the bargaining problem. For example, all of them may

agree to split the surplus 0.6M equally, which results in an efficient payoff

(2.35M, 1.35M, 1.35M, 1.35M). This is the idea of Coasian bargaining. In

this paper, we examine whether the idea of Coasian bargaining can be justi-

fied by a non-cooperative bargaining model with voluntary participation and

renegotiations.

The incentive to non-participation in the context of public goods has been

a central problem by a classic argument called “the second-order dilemma of

public goods” (Oliver 1980 and Ostrom 1990). It says that since any mech-

anism which achieves an efficient provision of public goods is itself a kind of

public goods, players have an incentive to free ride on the mechanism. Thus,

the mechanism may fail. Putting this dilemma into contract negotiations, play-

ers may have an incentive not to participate in negotiations and to free ride on

a contract made by others. Non-participation of some (or all) players results

in an inefficient outcome. However, as we suggest in the example above, the

Coasian idea may work. If a contract is inefficient due to non-participation,

then all parties involved may have an incentive to renegotiate it towards an

Pareto-improving one so that (at least some) non-participants are motivated

to participate. If this is true, then by repeating renegotiations, an efficient

outcome may result in the end.

We summarize the results in this paper as follows. We first present a basic

model of contract negotiations where all players are assumed to participate.

The model is a two-stage process. Different from the models of Jackson and

Wilkie (2005) and of Ellingsen and Paltseva (2016), players play a Rubinstein

(1982)-type sequential bargaining game in the first stage. Specifically, at the

beginning of each round, one player is selected as a proposer according to a

predetermined probability distribution θ over the set of players. A proposer

proposes a side payments contract, and thereafter all other players either ac-

cept or reject it sequentially. If all accept it, then negotiations stop and the
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underlying game is played under the agreed-upon contract. If any responder

rejects the proposal, two events may happen. With a positive probability ε,

negotiations may stop and the underlying game is played under no contract.

With probability 1 − ε, negotiations may continue in the next round by the

same rule.

We show that for every ε > 0, there exists a stationary subgame perfect

equilibrium (SSPE) of the two stage game where the expected payoff profile

for players is equal to an asymmetric Nash bargaining solution NB(θ, u(a)) of

the underlying game where the weights of players is equal to the probability

distribution θ and the disagreement point u(a) is a payoff profile under some

Nash equilibrium a of the underlying game (Theorem 1). The equilibrium

payoff profile of players in the second-stage game converges to NB(θ, u(a)),

independent of a proposer, in the limit that the stopping probability ε of ne-

gotiations goes to zero. Whenever negotiations fail, a Nash equilibrium of the

underlying game must be played in a subgame perfect equilibrium. Given a

Nash equilibrium played when negotiations fail, we show that the Nash bar-

gaining solution with the selected Nash equilibrium payoffs as the threat point

is a unique SSPE outcome of the two-stage game when the stopping proba-

bility of negotiations is sufficiently small (Theorem 2). By the results of the

basic model, we conclude that an efficient and fair allocation of payoffs (the

Nash bargaining solution) can be attained through a process of voluntary con-

tracting, provided that all players participate in negotiations. The assumption

of participation can be justified in some economic situations. They include

pure exchange markets of private goods and provision of excludable goods. In

these situations, no agents have an incentive to free ride. In real situations,

non-participants are often punished by participants (with no provision of pub-

lic goods, for example). Kosfeld et al. (2009) report experimental evidence in

a four-person institution formation game with public goods which show that

subjects are reluctant to implement institutions if there exist non-participants

and the majority (on average, around 75 percent) of successful institutions are
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the largest one.

We next extend the basic model so that it includes voluntary participation

and renegotiations. In the extended model, at the beginning of each round

k = 1, 2, · · · , all players who have not participated in negotiations decide inde-

pendently to participate, and thereafter negotiations take place among a new

set Sk+1 of all the incumbent and new participants. The bargaining rule is the

same as in the basic model. If a side payments contract tk+1 within Sk+1 is

agreed, negotiations may stop with probability ε and the underlying game is

played under the final agreement tk+1. All non-participants choose their de-

fault actions (no-trade or no-contribution, for example). With probability 1−ε,

negotiations continue in the the next round k + 1 with the on-going contract

tk+1 by the same rule as in round k. The pair (Sk+1, t
k+1) of the set of partici-

pants and the on-going contract composes a state of round k+1. Negotiations

stop if all players participate and make an agreement. We prove that there

exists an efficient Markov perfect equilibrium of the extended model where all

players participate in negotiations in the first period and agree to the Nash

bargaining solution if the stopping probability ε is sufficiently small (Theorem

3). The equilibrium strategy does not include inefficient punishments in the

sense that all non-participants participate immediately off equilibrium play.

To strengthen our efficiency result, we prove that all players participate in

negotiations and attain an efficient outcome with probability one in the long

run in every Markov perfect equilibrium under a certain condition of supper-

additivity of coalitional values of players (Theorem 4). Finally, we illustrate

international negotiations on climate change as an application of the result.

Before presenting the models and results, let us review briefly the relation-

ship between our work and other works in the literature.

As mentioned above, this paper is inspired by the works of Jackson and

Wilkie (2005) and Ellingsen and Paltseva (2016). Employing a Rubinstein-

type sequential bargaining game on side payments contract, we obtain more

positive results than theirs. We show that voluntary contracting can lead to

7



an efficient and fair allocation (the Nash bargaining solution) either without or

with voluntary participation. In the case of voluntary participation, renegotia-

tions are effective in attaining the efficiency of allocations. The idea of Coasian

bargaining can be supported in our framework. Our result does not depend

on the number of agents. This paper is also related to recent literature on

non-cooperative coalitional bargaining. This literature shows that the Coase

theorem does not always hold due to the formation of subcoalitions in char-

acteristic function games (Chatterjee et al. 1993, Okada 1996 and 2011, Ray

2007, Compte and Jehiel 2010 among others) and in partition function games

with externality (Ray and Vohra 1999). The literature also shows that the op-

portunity of renegotiations reinstates the efficiency in characteristic function

games (Seidmann and Winter 1998, Okada 2000 and Hyndman and Ray 2007),

in partition function games (Gomes 2005 and Bloch and Gomes 2006) and in

a class of social interactions (Gomes and Jehiel 2005). In most coalitional

bargaining games, a player can propose a coalition that he want to form, and

voluntary participation is not the main focus in their studies. They also as-

sume that any contract on actions and allocations within a coalition of players

is binding if all members accept it.3 Maruta and Okada (2012) consider a se-

quential bargaining game with voluntary participation in a special case of the

repeated n-person prisoner’s dilemma. In their model, a set of participants ne-

gotiate for self-binding contracts (subgame perfect equilibrium strategies in the

repeated game). They show that an efficient group of cooperators is formed

after a finite number of renegotiations in every Markov perfect equilibrium.

The literature on voluntary participation is sizeable (Selten 1973, Palfrey and

Rosenthal 1984, Dixit and Olson 2000, Ellingsen and Paltseva 2012, for exam-

ple).4 Most models are analysed in static setups without renegotiation.

3The assumption on binding contracts on actions seems strong at first sight, but it is
not very much so as long as players can write any enforceable contract of side payments.
As Lemma 1 shows, any action profile in a coalition can be implemented under a suitably
designed side payments contract.

4To the best of our knowledge, Selten (1973) first considered the problem of voluntary
participation in a formal model of a non-cooperative game. He considered the formation of

8



A vast literature on the theory of incomplete contract (property right)

usually assume that ex post renegotiation is efficient (Hart and Moore 1988). It

is also standard to apply the Nash bargaining solution to ex post renegotiation

(Grossman and Hart 1986). See Segal and Whinston (2013) for a survey on the

theory of property rights. This paper complements the works in this literature.

The issue of renegotiation is also discussed as a way of eliminating inefficient

punishments off the equilibrium play in implementation literature (Maskin

and Moore 1999) and in repeated games (Farrell and Maskin 1989). Our

result is irrelevant to this aspect of renegotiation. The efficient MPE strategy

constructed in Theorem 3 does not include inefficient punishments, and in the

asymptotic efficiency result of Theorem 4, renegotiation takes place on the

equilibrium play and as a result, the set of participants is expanded.

The remainder of the paper is organized as follows. Section 2 presents

the basic model of contract negotiations. Section 3 characterizes an SSPE of

the model. Section 4 presents the repeated bargaining model with voluntary

participation, and provides the efficiency result. Section 4 illustrates interna-

tional negotiations for climate change as an application of the result. Section

5 discusses the result. All proofs are given in Appendix.

2 The Model

Players interact in a two-stage process. In the first stage, they bargain for a side

payments contract which is a payoff transfer plan contingent on actions. Unlike

Jackson and Wilkie (2005) who allow players to commit to payoff transfers

unilaterally, we assume that a side payment contract can be binding only based

on unanimous agreement among players. Namely, we consider unanimous

bargaining for a side payments contract. Any player can refuse a payoff transfer

plan simply by rejecting it. In the commitment model of Jackson and Wilkie

(2005), players can effectively refuse payoff transfers from other players only

cartel by oligopolistic firms which plays a role of public goods for non-member firms.
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by returning the same amounts of payoffs to them. A detailed negotiation

process is given in a formal definition of a model below. In the second stage,

players choose actions given a side payments contract possibly agreed in the

first stage.

We now provide formal definitions. Let G = (N, {Ai}i∈N , {ui}i∈N) be an

n-person game in strategic form. N = {1, · · · , n} is the set of players. Ai is a

finite set of player i’s pure actions ai.
5 Let A = Πi∈NAi. A is the set of all pure

action profiles a = (a1, · · · , an) for players. For each i ∈ N , a−i denotes the

pure action profile in a except ai. Whenever it is convenient, we employ the

notation a = (ai, a−i). Player i’s payoff function ui is a real-valued function

on A. ∆(Ai) denotes the set of all probability distributions on Ai. An element

µi in ∆(Ai) is called a mixed action for player i. Let ∆ = Πi∈N∆(Ai). For

a mixed action profile µ = (µ1, · · · , µn) ∈ ∆ of players, the expected payoff

Eui(µ) for player i is given in a usual way. For a subset S of N , the cardinality

of S is denoted by s. Rs denotes the s-dimensional Euclidean space.

An action profile a∗ is efficient if it maximizes the payoff sum
∑

i∈N ui(a)

over A. Let M be the maximum payoff sum. A side payments contract t =

(t1, · · · , tn) is a vector of functions where ti : A → R satisfies the balancedness

condition ∑
i∈N

ti(a) = 0.

Player i receives a side payment ti(a) as a function of an action profile a played

in the second stage. We denote by t0 = (t01, · · · , t0n) the null side payments

contract such that t0i (a) = 0 for all i and all a. As in Jackson and Wilkie

(2005), an alternative (and more detailed) formulation of a side payments

contract specifies senders of and receivers of payoff transfers such that tij(a) is

5The result of the paper can be extended to the case of continuum action sets without
much difficulty.
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a payoff transfer from player i to player j. In this formulation, it holds that

ti(a) =
∑

j∈N,j 6=i

tji(a)− tij(a).

To obtain the results of this paper, it does not matter which formulation

is employed. For simplicity of exposition, we employ the formulation t =

(t1, · · · , tn) as a side payments contract among players.6 In the following , we

will call a side payments contract simply a contract.

We describe a two-stage process of contracting.

Stage 1.

The negotiation process in the first stage is a Rubinstein-type sequential

bargaining game with random proposers. It consists of possibly infinitely many

bargaining rounds. The precise rule is as follows.

(1) At the beginning of the first round, a player i ∈ N is randomly se-

lected as a proposer according to a predetermined probability distribution

θ = (θ1, · · · , θn) over the player set N where θi is the probability that player i

is selected. In real situations, a probability distribution for proposers may be

determined by institutional and cultural factors as well as formal protocols.

For example, in legislative bargaining, a political party with more seats tends

to have more opportunities to make proposals. Some countries have a social

norm of seniority that older persons make proposals with higher likelihoods

than younger ones. The model of random proposers attempts to capture a risk

that a player may not become a proposer. In the principal-agent model where

only the principal can make a proposal, the probability distribution is degener-

ate in that the principal is selected as a proposer with probability one. It turns

out that the probability for a player to be selected as a proposer generates his

bargaining power.

(2) Proposer i chooses a contract t, and thereafter all other players either

accept or reject it sequentially. The order of responders does not affect the

6Ellingsen and Paltseva (2016) employ the same formulation as ours.
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result of the paper in any critical way.

(3) If all responders accept a proposal t, then it is binding. We assume

that players can write a binding contract costlessly by unanimous consent.

Information is complete. Players choose actions in the second-stage game given

t. If any responder rejects the proposal, two events may happen. Bargaining

may stop with a positive probability ε > 0. If this event happens, players

choose actions independently in the underlying game G without any contract

(that is, under the null contract t0). With probability 1 − ε, negotiations

continue in the next round by the same rule as above. Whenever players make

choices, they know a history of play perfectly. When negotiations continue

forever with no agreement,7 it is assumed that players choose actions in the

second-stage game under the null contract t0.

Stage 2.

Every player i chooses his action ai ∈ Ai independently either with or

without a contract. Suppose that a contract t = (t1, · · · , tn) is agreed in the

first stage. The payoff of player i is given by

ui(a, t) = ui(a) + ti(a).

Let NE(t) be the set of (pure and mixed) Nash equilibria when players’ payoff

functions are defined above. If there is no contract, player i receives ui(a).

We denote the whole game defined above by Γε where ε > 0 is the stopping

probability of negotiations when a proposal is rejected. A behavior strategy

profile σ for Γε prescribes a randomized choice of every player at his every

move in the first and second stages, depending on a history of play.

The aim of our analysis is to characterize a stationary subgame perfect

equilibrium (SSPE) of Γε when the stopping probability ε is sufficiently small.8

7Although the probability of this event is zero as long as the stopping probability ε of
negotiations is positive, this assumption is made for completeness of modelling.

8It is well-known that the set of non-stationary subgame perfect equilibrium outcomes
in a broad class of Rubinstein-type sequential multilateral bargaining games including our
game is large when there are more than two players (see Osborne and Rubinstein 1990).
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An SSPE is a subgame perfect equilibrium where every player’s behavior in

every bargaining round of the first stage does not depend on a history of play.

We note that a player’s equilibrium action in the second stage may depend on

a history of negotiations in the first-stage game. When a contract has been

agreed in the first- stage game, players’ actions in the second-stage game surely

depend on the contract. When there is no agreement in the first-stage game,

such a history may affect players’ actions in the second-stage game.

We also note that any randomized choice of players in the first-stage game

is unnecessary to characterize an SSPE of Γε as is well-known in the literature

of non-cooperative sequential bargaining theory with complete information.

In equilibrium, a randomized choice may be needed in the second-stage game

where there exists no pure Nash equilibrium in the game with or without a

contract. This gives an analytical simplicity to our bargaining model compared

with the commitment model of Jackson and Wilkie (2005) where a mixed

strategy over transfer functions in the first-stage game may be necessary in

equilibrium.

The central questions in this paper are which side payments contract is

agreed, and whether the possibility of contracting leads to efficiency. Specif-

ically, we examine whether the Nash bargaining solution can be attained

through side payments when the stopping probability of negotiations is suffi-

ciently small.

We consider an asymmetric Nash bargaining solution for a strategic game

G with side payments. Recall thatM is the maximum value of
∑

i∈N ui(a) over

a ∈ A. Let ω = (ω1, · · · , ωn) ∈ Rn satisfy
∑

i∈N ωi = 1 and ωi > 0 for all i, and

let d = (d1, · · · , dn) satisfy di = ui(a) for all i and for some (pure or mixed)

action profile a in the underlying game G. A payoff vector x∗ = (x∗
1, · · · , x∗

n)

is an asymmetric Nash bargaining solution of G with a weight vector ω and a

disagreement point d, denoted by NB(ω, d), if it is a solution of the program

For example, every allocation in an n-person bargaining problem of splitting a pie of fixed-
size can be supported by a non-stationary subgame perfect equilibrium when the stopping
probability of negotiations is sufficiently small.
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max Πi∈N(xi − di)
ωi

subject to (1)
∑
i∈N

xi = M

(2) xi ≥ di for all i = 1, · · · , n.

It is straightforward to see that the solution x∗ satisfies

x∗
1 − d1
ω1

= · · · = x∗
n − dn
ωn

.9

(2.5) with
∑

i∈N x∗
i = M and

∑
i∈N ωi = 1 implies that for all i ∈ N

x∗
i = di + ωi (M −

∑
j∈N

dj).

The asymmetric Nash bargaining solution NB(ω, d) allocates the net sur-

plus M −
∑

i∈N di to players in proportional to the weight vector ω in addition

to their disagreement payoffs. The weight vector ω reflects the bargaining

power of players.

3 The Agreement of Nash Bargaining Solu-

tion

We first prove the existence of an SSPE of the two-stage game Γε for every

ε. The SSPE has the following properties. On equilibrium play, a contract is

agreed in the first round, independent of a proposer, and an efficient action

profile is played in the second stage given the agreed-upon contract. When

negotiations break down off equilibrium play, some (pure or mixed) Nash equi-

librium a in the underlying game G is played. The expected payoff profile (due

9If
∑

i∈N di = M , then it is clear that d is a unique feasible solution of the program and
thus that x∗ = d. (2.5) is trivially satisfied in this case. If

∑
i∈N di < M , constraint (2) is

non-binding, and thus (2.5) is obtained from FOC.
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to random proposers) of players in the whole game is equal to an asymmetric

Nash bargaining solution NB(θ, u(a)) where the weight vector of players is

equal to the probability distribution θ choosing proposers and a disagreement

point is given by the payoff vector of the Nash equilibrium a of G that is played

when negotiations break down. Moreover, when the stopping probability ε goes

to zero, the equilibrium payoff profile of players given the contract converges

to the Nash bargaining solution NB(θ, u(a)), independent of a proposer.

When the underlying game G has an efficient Nash equilibrium a∗, the exis-

tence of an SSPE of Γε satisfying the properties above is trivial. In equilibrium,

every player proposes the null contract t0 and all other players accept t0. In

the second stage, the Nash equilibrium a∗ of G is played when t0 is agreed (and

also negotiations fail). When a contract t 6= t0 is agreed off equilibrium play,

any Nash equilibrium a(t) in NE(t) is played.10 When a contract t 6= t0 is pro-

posed off equilibrium play, every responder i accepts it if ui(a(t), t) ≥ ui(a
∗).

In this case, we note that the Nash bargaining solution NB(θ, u(a∗)) is equal

to the disagreement point u(a∗).

In the following, we assume:

Assumption 1. Every (pure or mixed) Nash equilibrium inG is inefficient.

We provide a useful result to construct an SSPE.11

Lemma 1. For any pure action profile a of the underlying game G and any

payoff profile x ∈ Rn satisfying
∑

i∈N xi =
∑

i∈N ui(a), there exists a contract t

satisfying (1) xi = ui(a, t) for all i ∈ N and (2) a is a unique Nash equilibrium

in the second-stage game given t.

The intuition for the lemma is straightforward. When an action profile

10Recall that NE(t) is the set of Nash equilibria in the underlying game G given a contract
t.

11Jackson and Wilkie (2005, p.563) show a similar result.

15



a is played, a contract t is designed so that players receive the payoff profile

x. Such a payoff transfer is possible since
∑

i∈N xi =
∑

i∈N ui(a). When any

action profile a′ 6= a is played, the contract t prescribes every player i deviating

from ai to pay a large amount penalty M to all other players. Under t, it is

a strictly dominant action for player i to choose ai. Thus, condition (2) is

satisfied. We denote by t(x, a) the contract given in Lemma 1.

We now present the existence of an SSPE in the two-stage game Γε where

the Nash bargaining solution is attained through side payments contracts, inde-

pendent of a proposer, in the limit that the stopping probability of negotiations

goes to zero.

Let a be a Nash equilibrium of the underlying game G, and let θ be a

probability distribution to select a proposer in the first stage of negotiations.

Theorem 1. For every ε > 0, there exists an SSPE of the two stage game Γε

where the expected payoff profile for players is equal to the Nash bargaining

solution NB(θ, u(a)) with the weight vector θ and the disagreement point u(a).

The equilibrium payoff profile of players in the second-stage game converges to

NB(θ, u(a)), independent of a proposer, in the limit that the stopping proba-

bility ε of negotiations goes to zero.

We construct an SSPE strategy profile in the theorem by the following idea.

Let x∗ = NB(θ, u(a)) be the Nash bargaining solution with a disagreement

point u(a) which is a Nash equilibrium payoff profile in the underlying game.

First, an SSPE strategy prescribes a Nash equilibrium in the second-stage

game given any contract. Specifically, players choose the Nash equilibrium a

under the null contract, namely, when negotiations break down in the first-

stage game. Secondly, to obtain the Nash bargaining solution, players must

choose an efficient action profile e in the second-stage game. Since e is not a

Nash equilibrium of the underlying game (by Assumption 1), we need some

appropriate contract under which e becomes a Nash equilibrium. Lemma 1
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guarantees such a contract. Furthermore, any payoff profile can be attained

through payoff transfers, keeping that e is a Nash equilibrium. Which payoff

profile should be attained? It depends on who is a proposer. Since a pro-

poser has a strategic advantage, it is not optimal to propose simply the Nash

bargaining solution x∗ if the stopping probability ε of negotiations is positive.

Temporarily, suppose that the expected equilibrium payoffs for players in

the whole game are equal to the Nash bargaining solution x∗. The key factor

to determine an equilibrium contract is the continuation payoff after rejection

that a player receives in the whole game when negotiations break down. Since

an equilibrium is stationary, the continuation payoff cj for player j is given by

cj = (1− ε)x∗
j + ε · uj(a). Every player i proposes the contract under which he

receives payoff
∑

k∈N uk(e)−
∑

j 6=i cj, giving continuation payoffs cj to all other

players j. If all such contracts are agreed, it can be shown that the expected

payoffs for players (due to random proposers) are actually equal to the Nash

bargaining solution x∗. The equilibrium response rule for every player i is to

accept any contract t if ui(b(t), t) ≥ ci where b(t) is the action profile played

in the second-stage game given t. It remains to show the optimality of the

equilibrium contract that every player i proposes. Suppose that he proposes

any other contract t to obtain a payoff higher than
∑

k∈N uk(e) −
∑

j 6=i cj.

Since the equilibrium contract gives an efficient payoff profile for players, there

must exist some player j 6= i who receives a payoff smaller than his continuation

payoff cj given t. Such a player j rejects t, and player i becomes worse-off since

his continuation payoff ci is smaller than
∑

k∈N uk(e)−
∑

j 6=i cj. Finally, when

the stopping probability ε of negotiations goes to zero, all player s’ continuation

payoffs ci converge to the Nash bargaining solution x∗, and thus the equilibrium

payoff profile in the second stage given the equilibrium contract does so, too,

independent of a proposer.

We now move to the issue of uniqueness of an SSPE outcome in the two

stage game. Theorem 1 states that for every (pure or mixed) Nash equilibrium

a of the underlying game there exists an SSPE in the two-stage game which
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supports the Nash bargaining solution with the disagreement point u(a). Thus,

the two stage game has multiple SSPE outcomes if the underlying game G has

multiple Nash equilibria. We, however, prove that there exists no other SSPE

outcomes in the two-stage game. Specifically, if the underlying game has a

unique Nash equilibrium, the two-stage game has a unique SSPE outcome.

Theorem 2. Let a be a Nash equilibrium of the underlying game G. For

every ε > 0, there exists a unique SSPE outcome of the two-stage game Γε

where a is played when negotiations break down.

The logic for the uniqueness of an SSPE outcome in the two-stage game is

basically the same as that in many multilateral sequential bargaining games

in the literature. The only difference is that a non-cooperative game is played

in the second-stage game after an agreement is made in the first-stage game.

If there are multiple Nash equilibria in the second-stage game given a con-

tract, the contract cannot determine a final payoff profile. Lemma 1 overcomes

this difficulty. It guarantees that every action profile and every payoff profile

generated by it through payoffs transfer can be supported as a unique Nash

equilibrium under some suitably designed contract.

Specifically, the proof of Theorem 2 proceeds in two steps. First, it is

shown that every player i’s proposal is accepted in an SSPE. The intuition for

this is as follows. Let vj be the expected equilibrium payoff for every player

j. If responder j rejects i’s proposal, then j receives his continuation payoff

cj = (1− ε)vj + ε · uj(a) since the equilibrium is stationary. We have assumed

that the Nash equilibrium is inefficient. Thus, the continuation payoff vector

c = (cj) is also inefficient. Then, there exists some payoff vector x ∈ Rn

such that players can attain x through payoff transfers by playing an efficient

action profile e in the underlying game, and that xj > cj for every j ∈ N . Let

t(x, e) be the contract under which e is a unique Nash equilibrium generating

payoffs x in the second-stage game. If i proposes t(x, e), then it can be shown
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by backward induction that all responders j accept it, since xj > cj. This

means that every player i’s equilibrium proposal must be accepted. Secondly,

every proposer i optimally proposes the side payments contract t(yi,ε, e) under

which the efficient action profile e is played in the second-stage game. The

final payoff profile yi,ε is such that all responders j obtain their continuation

payoffs cj and proposer i does M −
∑

j 6=i cj where M =
∑

i∈N ui(e). It implies

that every player i’s equilibrium expected payoff vi satisfies

vi = θi{M −
∑
j 6=i

((1− ε)vj + ε · uj(a))}+ (1− θi)((1− ε)vi + ε · ui(a)).

These n equations solve vi = ui(a) + θi (M −
∑

j∈N uj(a)), which is the asym-

metric Nash bargaining solution NB(θ, u(a)) with the weight vector θ = (θi)

and the disagreement point u(a). Thus, given that a fixed Nash equilibrium

of the underlying game is played when negotiations fail, an SSPE outcome of

the two-stage game is unique.

4 Repeated Bargaining with Voluntary Par-

ticipation

In the last section, we have shown that the efficient and fair outcome (the

Nash bargaining solution) is attained in a two-stage process of side payments

contract. It is assumed that all players participate in negotiations. As we

have discussed in the introduction, players may have an incentive not to par-

ticipate in negotiations and to free ride on a contract made by others. Non-

participation of some (or all) players results in an inefficient outcome. The

idea of Coasian bargaining suggests that if a contract is inefficient due to non-

participation, then all parties involved may have an incentive to renegotiate it

towards a Pareto-improving one so that (at least some) non-participants are

motivated to participate. If this is true, then by repeating renegotiations, an

efficient outcome may result in the end.
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In this section, we present a formal model of renegotiation process and ex-

amine whether or not inefficiency caused by non-participation can be overcome

by renegotiations.12 We will show that an answer to the question is affirmative.

Specifically, we will show the two results. First, there exists an efficient Markov

perfect equilibrium of the repeated bargaining game with voluntary participa-

tion where all players participate in negotiations in the first round, provided

that the probability of renegotiations is sufficiently high. Second, all players

participate in negotiations and attain an efficient outcome with probability one

in the long run in every Markov perfect equilibrium if the coalitional values of

players in the underlying game satisfy a certain condition of supper-additivity.

We now describe a formal model of renegotiations with voluntary partici-

pation. In the model, the two-stage game Γε in Section 2 is repeated until all

players participate in negotiations and make an agreement.

For every k = 1, 2, · · · , let ωk = (Sk, t
k) be a state in round k where

Sk ⊂ N and a transfer contract tk = (tki )i∈Sk is a vector of functions where

tki : Πj∈Sk
Aj → R satisfies the balancedness condition

∑
i∈Sk

tki (a
k) = 0

for all action profiles ak in Πj∈Sk
Aj.

The interpretation of ωk = (Sk, t
k) is that Sk is the set of all players who

have participated in negotiations before round k and tk is an “on-going” side

payments contract agreed by Sk. Let the initial state ω1 = (S1, t
1) satisfy

S1 = ∅ and t1 = 0 (null contract). Each round k is played by the following

rule.

12Anderlini and Felli (2001) consider a renegotiation model based on the Rubinstein’s
alternating-offers model different from ours. In their model, players may forget a previous
history of play with a positive probability at the end of every round, and they will restart ne-
gotiations in the next period. They show that such a possibility of renegotiation induces the
inefficiency (no agreement) with the additional rule that the players decide simultaneously
to pay participation costs at the beginning of each round.

20



Round k.

Stage 0.

All non-participants i /∈ Sk decide independently to participate in negoti-

ations, or not. Let Pk be the set of new participants. If Pk is the empty set,

then the next stage is vacuous and let ωk+1 = ωk.

Stage 1.

Negotiations take place among incumbent participants Sk and new partic-

ipants Pk. Let Sk+1 = Sk ∪ Pk, and let θk be a predetermined probability

distribution over Sk+1. Each player i ∈ Sk+1 is randomly selected as a pro-

poser according to the probability distribution θk. Proposer i chooses a side

payments contract t among Sk+1, and thereafter all other participants in Sk+1

either accept or reject it sequentially according to a predetermined order. If

all accept the proposal t, then t becomes an on-going agreement, replacing tk.

In this case, we say that coalition Sk+1 forms. If t is rejected by any respon-

der, tk remains the on-going contract. When Pk is the empty set, stage 1 is

vacuous and tk remains the on-going contract. At the end of stage 1, there

is a random choice that determines whether or not negotiations stop. With

probability 1− ε, negotiations continue in the next round k + 1 and the same

process is repeated with a new state ωk+1 determined by

ωk+1 =

(Sk+1, t
k+1) if tk+1 is agreed by Sk+1 in period k,

ωk otherwise.

With probability ε > 0, negotiations stop and the on-going contract be-

comes the final agreement. Once the largest coalition N is formed, negotiations

stop with probability one.

Stage 2.

When negotiations stop, the underlying game G is played under the final

agreement of payoff transfer. All non-participants choose their default actions

(non-contribution or no-trade, for example).
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We denote by Γε,∞ the dynamic bargaining game defined above. Every

player can know a history of play perfectly whenever he makes a choice.

A behavior strategy profile σ for Γε,∞ is defined in a standard manner. It

prescribes a randomized choice to every player, depending on a history of play.

For a behavior strategy profile σ, we denote by Eui(σ) the expected payoff for

player i in Γε,∞.13

We consider a Markov perfect equilibrium in the game Γε,∞. A behavior

strategy profile for Γε,∞ is a Markov perfect equilibrium if it is a subgame per-

fect equilibrium where every player’s choice in every round k depends only on a

state variable ωk.
14 There exists a trivial Markov perfect equilibrium where in

every round, no players participate in negotiations and all players play a Nash

equilibrium of the underlying game G. To eliminate such a trivial equilibrium,

we employ a refinement that a Markov perfect equilibrium prescribes a strict

Nash equilibrium (if any) in the participation stage on equilibrium play.15 The

trivial equilibrium describes above prescribes a non-strict Nash equilibrium in

the participation stage since every player is indifferent to participate or not,

given that any other player does not participate. We remark that the strictness

property is applied only on equilibrium play.

To characterize a Markov perfect equilibrium of Γε,∞, we assume the fol-

lowing.

Assumption 2. (i) An efficient action profile of the underlying game G

does not include any player’s default action a0i . (ii) The default action profile

a0 = (a01, · · · , a0n) is a Nash equilibrium of G,

This assumption is not restrictive. It holds in many economic games such

13The probability that a play continues forever in Γε,∞ is zero as long as the stopping
probability ε of negotiations is positive.

14Every responder’s choice in stage 1 of negotiations certainly depends on a proposal.
15A strict Nash equilibrium is a Nash equilibrium where every player has a unique best

response to all other players’ choices.
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as exchange markets of private goods, team production and voluntary con-

tribution games of public goods when the default actions mean no-trade or

no-contribution.

We first prove that there exists an efficient Markov perfect equilibrium in

the game Γε,∞ when the stopping probability ε is sufficiently small.

Theorem 3. There exists an efficient Markov perfect equilibrium of Γε,∞

where all players participate in negotiations in the first round and they agree

to the Nash bargaining solution x∗ = NB(θ, u(a0)) if the stopping probability

ε of negotiations is sufficiently small.

In the theorem, we construct an efficient Markov perfect equilibrium of Γε,∞

as follows. In round 1, all players participate in negotiations and they behave

according to the SSPE σ∗ of Γε constructed in Theorem 1. The expected payoff

profile of players is equal to the Nash bargaining solution x∗ = NB(θ, u(a0))

of the underlying game G where a0 is the default action profile. When nego-

tiations stop with no agreement off equilibrium play, all players choose their

default actions. By Assumption 2(ii), a0 is a Nash equilibrium of G. Suppose

that the game reaches round k(> 1) with a state ωk = (Sk, t
k) off the equi-

librium play. Let ãt
k

Sk
= (at

k

Sk
, a0N−Sk

) be an action profile in the underlying

game G where all participants Sk play a Nash equilibrium at
k

Sk
of G under the

side payments contract tk, given that non-participants N − Sk choose their

default actions a0N−Sk
. Let u(tk) be the payoff profile of all players for ãt

k

Sk
,

and let x∗(tk) = NB(θ, u(tk)) be the Nash bargaining solution of G with the

disagreement point u(tk). In round k, all players outside Sk participate in

negotiations. In the negotiation stage, all players behave in the same way as

σ∗ and the expected payoff profile of them is equal to the Nash bargaining

solution x∗(tk) = NB(θ, u(tk)). The only difference is that the disagreement

point is u(tk) instead of u(a0). Assumption 2(i) is needed in order for us to

guarantee that every proposer makes an accepted proposal.
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The central question in Theorem 3 is why all players participate in nego-

tiations in the equilibrium. The answer to this is as follows. Suppose that

any player h does not participate in negotiations, while all other players do.

Then, negotiations take place among the players in S = N − {h}. For every

contract w for S, the action profile ãwS can be defined in the same way as ãt
k

Sk
.

Let x∗(w) = NB(θ, u(w)) be the Nash bargaining solution of G where the dis-

agreement point u(w) is the payoff profile attained by ãwS . In negotiations, the

continuation payoff after rejection for every player i ∈ S is (1− ε)x∗
i + εui(a

0).

Note that the Nash bargaining solution x∗ = NB(θ, u(a0)) will be agreed in the

next round if negotiations may continue with probability 1− ε. On the other

hand, if any contract w is agreed, every player j ∈ S receives the expected

payoff (1− ε)x∗
j(w)+ εuj(w) since renegotiations take place in the next round,

given the contract w, and the Nash bargaining solution x∗(w) = NB(θ, u(w))

with the disagreement point u(w) will be agreed. Thus, every proposer i’s

(potentially) optimal contract t is such that all responders j receive payoffs

uj(t) satisfying (1 − ε)x∗
j(t) + εuj(t) = (1− ε)x∗

i + εui(a
0), and they accept it

in equilibrium. If the optimal contract t is agreed, then proposer i receives

payoff (1 − ε)x∗
j(t) + ε(MS −

∑
j∈S,j 6=i uj(t)) and non-participant h receives

payoff (1− ε)x∗
h(t) + εuh(e

S, a0h). A critical point is whether or not it is indeed

optimal for proposer i to propose the contract t. It is so if

(1− ε)x∗
i (t) + ε(MS −

∑
j∈S,j 6=i

ui(t)) ≥ (1− ε)x∗
i + εui(a

0).

Since
∑

j∈N x∗
j(t) =

∑
j∈N x∗

j = M where M is the maximum value of the

payoff sum for all players in the underlying game G, there exists a trade-off of

payoffs for participants and non-participant h between x∗(t) and x∗. Roughly,

if x∗
i (t) > x∗

i so that proposer i makes the optimal proposal t for sufficiently

small ε > 0, then it holds that x∗
h(t) < x∗

h,
16 which means that non-participant

16To be precise, we will show that the payoff differences x∗
j (t)− x∗

j have the same sign for

all participants. See the proof in Appendix.
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h is worse off by the optimal contract t for S. Conversely, if non-participant h

is better off by the optimal contract t, then it should be actually optimal for

proposer i to make an unacceptable proposal, and as a result, non-participant

h becomes worse off. Whichever happens, the non-participant is worse off by

deviating from her equilibrium strategy.

Theorem 3 shows the existence of an efficient Markov perfect equilibrium

of the repeated bargaining game Γε,∞. We next strengthen the efficiency result

of Theorem 3 and show that all n players participate in negotiations in the

long run in every Markov perfect equilibrium of Γε,∞. For every subset S of

N , let MS = maxa∈A
∑

i∈S ui(a) subject to ai = a0i for every i /∈ S, and let

eS ∈ A be the action profile attaining MS. We call MS the coalitional value

of S. We assume the following.

Assumption 3. For every two subsets S and T of N with S ⊂ T ,

MS +
∑

i∈T−S ui(e
S) < MT .

This assumption says that if a set of players participate in a group S, then

the coalitional value of the extended group T is higher than the sum of the

coalitional value of S and their total payoff before participation. It implies

that the participation of some players in a group increases the total payoffs of

the incumbent members and the new members. In this sense, Assumption 3

is interpreted as the supper-additivity of coalitional values.

Example 3.

Consider an n-person game of voluntary contributions to a public good. Ev-

ery player has an endowment one monetary unit. Let xi ∈ [0, 1] be every player

i’s contribution and his payoff is given by ui(x1, · · · , xn) = 1− xi + a
∑n

j=1 xj.

Parameter a represents the marginal per capita return from contributing to

the public good. We assume that 1/2 < a < 1. Under this condition, it is the

dominant action for every player i to choose xi = 0 and it is optimal for every
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coalition S of players with s ≥ 2 to choose the full contribution xi = 1 by its

members. Thus, MS = as2 and free-riders receive payoffs 1 + as. This game

satisfies Assumption 3 since

MS +
∑

i∈T−S

ui(e
S) = as2 + (t− s)(as+ 1) = ats+ t− s < at2 = MT

for every t > s.

Theorem 4. Under Assumption 3, all n players participate in negotiations

and attain an efficient outcome with probability one in the long run in every

Markov perfect equilibrium of Γε,∞.

The logic for this result is as follows. When the set Sk of participants is

smaller than the largest group N at the beginning of some round k, there

exists at least one player who may participate in negotiations with a positive

probability η on the play of every Markov perfect equilibrium σ. This fact can

be explained intuitively by the following reason. Let tk be an on-going contract

in round k. If no players participate in negotiations, the game may end with

probability ε and tk becomes the final agreement. In this case, players receive

the payoff profile u(tk) where all participants choose a Nash equilibrium of the

underlying game G under the contract tk while non-participants choose their

default actions. With probability 1 − ε, the game may continue in the next

round k+1 with the same state as in round k. Since the equilibrium σ satisfies

the Markov property, it induces the same play in round k + 1 as in round k.

Thus, every player i receives the payoff ui(t
k) in the subgame of Γε,∞ starting in

round k. If any one player i participates in negotiations, the coalitional value

of the extended group S = Sk∪{i} is larger than
∑

j∈S uj(t
k) by Assumption 3.

This means that a beneficial contract can be agreed in negotiations,17 and thus

17To be precise, we should take into account players’ continuation payoffs after a contract
is agreed. See the formal proof given in Appendix.
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every player in S obtains an expected payoff larger than in u(tk). Specifically,

the new participant i can be better off by participation. This implies that in the

participation stage, σ prescribes either a strict pure Nash equilibrium where

at least one player participates in negotiations, or a mixed Nash equilibrium

where at least one player may participate with a positive probability. Given

the fact above, Theorem 4 can be proved roughly as follows. By round n, all

n players may participate in negotiations at least with probability ηn. Thus,

for any integer r = 1, 2, · · · all players may not participate in negotiations by

round rn at most with probability (1 − ηn)r. In the limit that r → ∞, the

probability that all players do not participate in negotiations converges to zero.

5 Application

We illustrate international negotiations on climate change as an application of

the two-stage model in Section 2.18 The following illustration is based on our

previous work of Okada (2007).

The Kyoto Protocol of 1997 is an international agreement that developed

countries commit to reducing their greenhouse gas (GHG) emissions. The con-

tents of the Protocol is that developed countries as a whole reduce emissions

by 5.2 percent below 1990 levels between 2008 and 2012, and that reduction

commitments are assigned to developed countries. For example, the reduction

rates of major countries are: Russia and Ukraine 0 percent, Japan 6 percent,

the Unites States 7 percent, and European Union 8 percent. The Protocol also

includes emissions trading as a flexible mechanism for international emissions

transfer. Focusing on negotiations for reduction commitments and emissions

trading, the two-stage model in Section 2 can be applied to international ne-

gotiations for the Protocol. In the first stage, developing countries play the

bargaining game. Given an agreement of reduction commitments, they play a

18Harstad (2012 and 2015) considers a dynamic game of climate contract where countries
contribute to emissions and invest in technologies.
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game of emissions trading in the second stage. We assume that emissions trad-

ing take place in a competitive market, and thus that the efficient reduction

can be attained across the countries.

Let N = {1, · · · , n} be the set of countries. For every i ∈ N , we denote

by Ei country i’s current level of CO2 emissions. Let xi denote country i’s

reduction of CO2 emissions where 0 ≤ xi ≤ Ei. The CO2 abatement cost

function of country i is denoted by Ci(xi). Ci(xi) is a differentiable, strictly

convex and monotonically increasing function on R+. Let MCi(xi) denote the

marginal abatement cost function of country i.

In the first stage, n countries negotiate for an allocation ω = (ω1, · · · , ωn) ∈

Rn
+ of emissions satisfying ω =

∑n
i=1 ωi, where ωi denotes an amount of emis-

sion permits allocated to country i and ω is a total emission target. For

simplicity of analysis, we assume that the total emission target is predeter-

mined by a scientific committee.19 Country i has to reduce Ei − ωi amount of

emissions if emissions trading is impossible.

In the second stage, emissions trading takes place in a competitive market.

Let p be a price of emissions and let xi be an actual level of emissions reduction

by country i after the trading. A competitive equilibrium of emissions trading

with an initial emission allocation ω = (ω1, · · · , ωn) ∈ Rn
+ is defined to be a

vector (p∗, x∗
1, · · · , x∗

n) ∈ Rn+1
+ satisfying

x∗
i ∈ argmin {Ci(xi) + p∗(Ei − xi − ωi) | 0 ≤ xi ≤ Ei} for any i ∈ N,∑

i∈N

(Ei − x∗
i ) =

∑
i∈N

ωi.

The competitive equilibrium reduction cost for country i is given by

cei (ωi) = Ci(x
∗
i ) + p∗(Ei − x∗

i − ωi).

19In a more elaborate bargaining model, a total emission target ω is also an agenda of
negotiations.
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A competitive equilibrium of emissions trading satisfies the principle of

marginal cost pricing, p∗ = MCi(x
∗
i ) for all i ∈ N , and the equilibrium emission

reduction minimizes the total reduction cost for n countries. We denote by c(ω̄)

the minimum value of the total emissions reduction costs given the emission

target ω̄.

Anticipating the competitive equilibrium outcome of emissions trading,

countries negotiate for an emission allocation. Let di be the costs that coun-

try i has to burden when negotiations fail, referred to as the “business as

usual” case. The “business as usual” costs for countries are caused by the

delay of prevention of global warming, and are highly uncertain in charac-

ter. For an illustration, we simply assume here that an estimation of them is

available to negotiating countries. The cost vector d = (d1, · · · , dn) consists

of the disagreement point of the bargaining problem of emission reductions.

Assuming
∑

i∈N di > c(ω̄), Theorem 1 implies that n countries agree to an

asymmetric Nash bargaining solution ω∗ = (ω∗
1, · · · , ω∗

n) with a weight vector

θ = (θ1, · · · , θn) where the competitive equilibrium reduction cost cei (ω
∗
i ) of

country i is given by

cei (ω
∗
i ) = di + θi(c(ω̄)−

n∑
i=1

di).

An interesting question is whether the Kyoto protocol can be justified by

an asymmetric Nash bargaining solution. In Okada (2007), we examine this

question using actual data when three different weights of equality, GDP and

population are considered. We show that the Kyoto protocol can be justified

by an asymmetric Nash bargaining solution with equal weights and population

weights, provided that the EU and the US estimate their “business as usual”

costs high. For numerical results, see Okada (2007).
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6 Discussion

We have characterised a stationary subgame perfect equilibrium outcome when

players negotiate for side payments contracts according to a Rubinstein-type

sequential bargaining game. When players voluntarily participate in negoti-

ations, we have characterised a Markov perfect equilibrium outcomes for a

repeated bargaining game where incumbent participants renegotiate repeat-

edly for their side payments contracts with new participants (if any).

The basic conclusion of the paper can be summarised as follows. First,

when all players participate in negotiations, they can attain an efficient and

fair outcome (the Nash bargaining solution) immediately, given a Nash equi-

librium played in the failure of negotiations. Second, when players voluntarily

participate in negotiations, there exists an efficient Markov perfect equilibrium

outcome with the Nash bargaining agreement, and moreover the efficient out-

come that all players participate in a contract can be attained in the long run

with probability one in every Markov perfect equilibrium through a process of

renegotiations. In view of the results above, the Coase “Theorem” holds true

in our framework.

Let us discuss some of implications and restrictions of our results.

The nature of the Coase theorem

The Coase “Theorem” is not a mathematical theorem. It has not been

formalized in a vigorous way. Coase (1960) himself did not call it a theorem.20

Economists’ intuition behind the theorem may be called the efficiency principle

which says that “if people are able to bargain together effectively and can ef-

fectively implement and enforce their decisions, then the outcomes of economic

activity will tend to be efficient (at least for the parties to the bargain)”(Mil-

20Coase regards the case of zero transaction costs unrealistic. He writes:“while considera-
tion of what happen in a world of zero transaction costs can give us valuable insights, these
insights are, in my view, without value except as steps on the way to the analysis of the real
world of positive transaction costs.” (Coase 1981)
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grom and Roberts 1992, p.24). It is not meaningful to ask such questions as

whether the theorem is right or false, and whether the theorem always holds

true. Rather, in our view, an appropriate question is in what cases the theorem

holds, or to what extent an economist’s intuition supporting the theorem can

be justified. In this paper, we show a case where the theorem holds. It is quite

possible that the theorem does not hold in other cases. In fact, Jackson and

Wilkie (2005) show that the theorem does not always hold where players make

binding offers of side payments. Perhaps, one of the most simple cases where

the theorem does not hold is as follows. Two players simultaneously propose

allocations in the division problem of a fixed size. An allocation is agreed and

enforced if and only if their proposals coincide. This model is a reduced form of

the bargaining game of Ellingsen and Paltseva (2016) where players simultane-

ously make contract proposals, and choose at most one contract to be signed,

and a contract is enforced by unanimous consent of affected players. Due to its

coordination character, the bargaining model above have many Nash equilib-

ria. All efficient and inefficient allocations can be sustained by Nash equilibria.

Modelling negotiations

As we have discussed above, it is critical for us how to model negotiations

for the examination of the Coase theorem. Negotiation in real world is of-

ten complex and unstructured. As Schelling (1960) illustrates, many elements

such as bluffing, cheating, coalitions, commitment, communications, coordina-

tion, delegation, focal points, promise, threat, etc. are involved. Obviously, a

theoretical model is abstract and simple for tractability, and cannot include

all these elements. Based on the Rubinstein’s alternating-offers model, our

bargaining model focuses a sequence of offers and responses in negotiations.

A special character of our model is that of random proposers. It turns out

that the probability of each player’s being selected as a proposer is a source

of his bargaining power. Specifically, it determines the player’s weight in an

asymmetric Nash bargaining solution. Jackson and Wilkie (2005) emphasise
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players’ commitments or promises in negotiations. If we compare our proposer-

response model with Jackson and Wilkie’s (2005) unilateral promise model, we

can say that it is harder for players to attain an efficient outcome in their model

since players can refuse another player’s promised transfers only by announcing

a transfer that returns the other player’s transfer. Players use transfers to try

to manipulate other players’ behavior. In our model, every player can refuse

any transfer simply by rejecting it. In our view, it depends on a context which

of bargaining models is more appropriate. For example, the unilateral promise

model of Jackson and Wilkie (2005) fits well to international trade negotiations

where developed countries promises monetary transfer (investments) to devel-

oping countries, and a principal-agent relationship where a principal promises

a compensation schedule to an agent. Our proposal-response model is suitable

for the analysis of international treaty negotiations such as Kyoto protocol.

Disagreement points

One version of the Coase Theorem says that “the initial allocation of legal

entitlements does not matter from an efficiency perspective so long as they can

be freely exchanged” (Cooter 1989). The initial allocation of legal entitlements

determines the set of feasible actions for players, and thus induces an outcome

in the failure of negotiations, which corresponds to a disagreement point of the

Nash bargaining solution. Thus, our result confirms this version of the the-

orem. The legal entitlements of property rights does not affect the efficiency

in negotiations, but does a payoff allocation. Our asymptotic efficiency result

critically depends on the assumption that a threat point of renegotiation is

an on-going contract by incumbent participants. Although this assumption

seems to us reasonable since players can write such a renegotiation rule in the

initial contract, this does not always the case. If our assumption of a threat

point in renegotiation is not satisfied, for example, if a contract is effective

only in one period and players restart their negotiations in every round, the

asymptotic efficiency result in Theorem 4 does not hold. Gomes and Jehiel
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(2005) show the persistence of inefficiency in a general renegotiation process

under externality.

Towards future works

We close by noting a few future works. As Coase (1981) emphasizes, a

clear insight on negotiations in the case of zero transaction costs should be a

first step on the way to the analysis of the real world of positive transaction

costs. It is interesting to develop a bargaining model for a broad class of mech-

anisms ranging from direct (and indirect) mechanisms contingent on players

types (and messages) under incomplete information to relational contracts (re-

peated game strategies). A theory of mechanism bargaining in decentralized

environments can contribute to theories of mechanism design and implemen-

tation which assume the existence of a social planner (or a principal) to choose

and implement a mechanism. Endogenous formation of institutions to enforce

a contract is also in a list of future works.
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Appendix

Proof of Lemma 1. Let L = 1+maxi,a′,a′′{|ui(a
′)−ui(a

′′)|, |xi−ui(a
′)|}. We

construct a side payments contract t as follows. For any action profile a′ and

any i, let ki(a
′) be the number of players j 6= i who choose a′j 6= aj. Define

ti(a
′) =


xi − ui(a) if a = a′,

ki(a
′)L if ai = a′i and ki(a

′) > 0

ki(a
′)L− (n− 1)L otherwise.

The side payments contract t above is defined according to the rule that any

player i pays a large amount L to every other player if he deviates from ai. It

holds that
∑

i∈N ti(a
′) = 0 for every a′ ∈ A. By definition, xi = ui(a) + ti(a)

for all i ∈ N . Thus, condition (1) in the lemma is clearly satisfied. Under

t, it is a strictly dominant action for each player i to play ai. To check this,

consider the following two cases. Let a′i 6= ai be player i’s any action other

than ai, and let a′−i be any action profile for all players except i.

Case 1. a′−i = a−i. In this case, ui(a, t)−ui((a
′
i, a−i), t) = xi−ui(a

′
i, a−i)+

(n− 1)L. This value is positive by the definition of L.

Case 2. a′−i 6= a−i. In this case, ui((ai, a
′
−i), t)−ui((a

′
i, a

′
−i), t) = ui(ai, a

′
−i)−

ui(a
′
i, a

′
−i) + (n− 1)L. This value is positive by the definition of L, too. �

Proof of Theorem 1. Let x∗ = NB(θ, u(a)). It holds that x∗
i = ui(a) +

θi(M−
∑

k∈N uk(a)) where M is the maximum value of
∑

i∈N ui(a) over a ∈ A.

For every ε > 0 and every i ∈ N , define the payoff vector yi,ε ∈ Rn such that

yi,εj = (1− ε)x∗
j + ε · uj(a) for all j 6= i (A.1)

yi,εi = M −
∑
j 6=i

yi,εj . (A.2)

Let e ∈ A be an efficient action profile of the underlying game. Let t(yi,ε, e)
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be the side payment contract where yi,εk = uk(e, t(y
i,ε, e)) for every k and e

is a unique Nash equilibrium in the second-stage game under t(yi,ε, e). The

existence of t(yi,ε, e) is proved in Lemma 1.

We construct an SSPE strategy profile σ for the two-stage game Γε as

follows.

Stage 1:

Player i proposes the side payments contract t(yi,ε, e) if he is selected as a

proposer. When player i responds to a side payments contract t, he accepts it

if and only if ui(b(t), t) ≥ (1 − ε)x∗
i + ε · ui(a) where b(t) is an action profile

played in the second-stage game when t is agreed in the first-stage game.

Stage 2:

When a side payments contract t is agreed in the first-stage game, an

action profile b(t) in the second stage is defined by the following rule: play the

efficient action profile e if t = t(yi,ε, e) for any i, and otherwise play any Nash

equilibrium under t. When negotiations break down in the first stage, play the

Nash equilibrium a in the underlying game.

If σ is played, the side payments contract t(yi,ε, e) is agreed in the first-

stage game if player i is selected as a proposer, and the efficient action profile

e is played in the second-stage game. Thus, when σ is played, the expected

payoff Eui(σ) for every player i in the whole game is given by

Eui(σ) =
∑
j∈N

θj · yj,εi

= θi{M −
∑
j 6=i

((1− ε)x∗
j + εuj(a))}+ (1− θi)((1− ε)x∗

i + εui(a))

= θi{M −
∑
k∈N

((1− ε)x∗
k + εuk(a))}+ (1− ε)x∗

i + εui(a)

= εθi(M −
∑
k∈N

uk(a)) + (1− ε)x∗
i + εui(a) (by

∑
k∈N

x∗
k = M)

= ε(x∗
i − ui(a)) + (1− ε)x∗

i + εui(a) (by the definition of x∗
i )

= x∗
i .
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In the first-stage game, if player i rejects a side payments contract t pro-

posed by player j, then negotiation goes to the next round with probabil-

ity 1 − ε, and i receives the expected payoff Eui(σ) = x∗
i in the following

subgame. With probability ε, negotiations break down and the Nash equi-

librium a is played in the second-stage game by σ. Thus, player i receives

yj,εi = (1 − ε)x∗
i + ε · ui(a) by rejecting t. If player i accepts t, then i re-

ceives either payoff ui(b(t), t) or y
j,ε
i . Payoff yj,εi will be attained if any respon-

der after i rejects t. Thus, i’s response rule in σ, accepting t if and only if

ui(b(t), t) ≥ (1− ε)x∗
i + ε · ui(a), is his optimal choice.

We need only show that it is optimal for every player i to propose the side

payments contract t(yi,ε, e). If i proposes it, then it is accepted in σ and thus

the payoff profile yi,ε is attained in the second-stage game. Suppose that i

proposes t 6= t(yi,ε, e) such that ui(b(t), t) > yi,εi . Since the payoff vector yi,ε

is efficient, there exists some player j 6= i such that uj(b(t), t) < yi,εj . Player j

rejects t in σ, and thus player i receives (1− ε)x∗
i + ε · ui(a), which is smaller

than yi,εi . Player i is worse-off by proposing t.

Finally, it can be easily seen that for every i yi,ε converges to the Nash

bargaining solution x∗ = NB(θ, a) in the limit that ε goes to zero. �

Proof of Theorem 2. Let σ be an SSPE of the two-stage game Γε where the

Nash equilibrium a is played when negotiations break down. Theorem 1 guar-

antees the existence of such an SSPE. Let vi = Eui(σ) be the expected payoff

for every player i in Γε when σ is played. Suppose that player i is selected as

a proposer. If every responder j 6= i rejects a proposal of i, then j receives the

expected payoff cj = (1− ε)vj + ε · uj(a) since σ is stationary. By assumption,

the Nash equilibrium a is inefficient, and thus the payoff vector c = (cj) is

inefficient, too. Then, there exists some payoff vector x ∈ Rn such that (1)∑
j∈N xj =

∑
j∈N uj(e) where e ∈ A is an efficient action profile in the under-

lying game G, and (2) xj > cj for every j ∈ N . Let t(x, e) be a side payments

contract satisfying (1) xj = uj(e, t) for all j ∈ N and (2) e is a unique Nash
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equilibrium in the second-stage game given t(x, e). Lemma 1 guarantees the

existence of t(x, e). If proposer i proposes t(x, e), then by backward induction

it is shown that t(x, e) is agreed in the SSPE σ. Therefore, every proposer i

can make an accepted proposal in the SSPE σ. In fact, proposer i optimally

proposes the side payments contract t(yi,ε, e) and it is accepted in σ where the

payoff vector yi,ε is defined by (A.1) and (A.2) with x∗
i = vi for all i ∈ N .21 It

implies that the expected payoffs v = (vi) for σ satisfy for all i ∈ N

vi = θi{M −
∑
j 6=i

((1− ε)vj + ε · uj(a))}+ (1− θi)((1− ε)vi + ε · ui(a)) (A.3)

Let v̄ =
∑

j∈N vj and d̄ =
∑

j∈N uj(a). Then, (A.3) can be arranged as

vi = θi{M − (1− ε)v̄ − ε · d̄}+ (1− ε)vi + ε · ui(a). (A.4)

By summing both sides of (A.4) for all i ∈ N , we obtain v̄ = M . By substi-

tuting this into (A.4), we obtain

vi = ui(a) + θi (M −
∑
j∈N

uj(a)).

Thus, the expected payoffs for the SSPE σ is equal to the asymmetric Nash

bargaining solution NB(θ, u(a)) with the weight vector θ = (θi) and the dis-

agreement point u(a). In σ, the expected payoff profile and every player’s pay-

off obtained by an (accepted) equilibrium proposal are uniquely determined.

The equilibrium payoff profile in the second-stage game given the equilibrium

side payments contract converges to the Nash bargaining solution NB(θ, u(a))

when the stopping probability ε goes to zero, independent of a proposer. �

Proof of Theorem 3. We first introduce several notations. Let e ∈ A be an

efficient action profile in the underlying game G, and let x∗ = NB(θ, u(a0)) be

21While all responders are indifferent to accepting or rejecting the proposal, we have shown
that they accept it in equilibrium.
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the Nash bargaining solution of G with the disagreement point u(a0) where a0

is the default action profile. Let yi,ε is the payoff vector defined by (A.1) and

(A.2) where a = a0. For every subset S of N , let MS = maxa∈A
∑

i∈S ui(a)

subject to ai = a0i for all i /∈ S, and let eS ∈ A be the action profile attaining

MS. Let G(S) be the s-person strategic form game obtained from the under-

lying game G under the assumption that all non-participants j /∈ S choose

their default actions a0j . For an action profile aS ∈ Πi∈SAi for S and a payoff

vector x ∈ Rs satisfying
∑

i∈S xi =
∑

i∈S ui(aS, a
0
N−S), let t(x, aS) be the side

payments contract proved in Lemma 1 with respect to the game G(S). For

every contract t for S, choose a Nash equilibrium atS of G(S) under t,22 and let

ãtS be the action profile in G that prescribes atS for the members of S and does

their default actions for all non-participants. Define a payoff vector u(t) ∈ Rn

such that ui(t) = ui(ã
t
S) + ti(a

t
S) for every i ∈ S and uj(t) = uj(ã

t
S) for every

j /∈ S. Let x∗(t) = NB(θ, u(t)) be the Nash bargaining solution of G with the

disagreement point u(t).

We construct an equilibrium strategy profile σ∗ of Γε,∞ as follows. For

every k = 1, 2, · · · , let ωk = (Sk, t
k) be a state in round k.

Case 1. Sk = ∅.

• All players in N participate in negotiations.

• Let S be a set of participants either on or off the equilibrium play. When

S = N , every player i ∈ N employs the SSPE strategy constructed in

the proof of Theorem 1. When S 6= N , every player i ∈ S proposes

t = t(zi,ε, eS) such that a payoff vector zi,ε ∈ Rs is given by

zi,εj =
yi,εj − (1− ε)x∗

j(t)

ε
for all j ∈ S, j 6= i (A.5)

zi,εi = MS −
∑

j∈S,j 6=i

zi,εj , (A.6)

22If there exists no pure Nash equilibrium, choose a mixed Nash equilibrium. The following
proof is not affected in any critical way.
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where yi,εj is defined by (A.1) with a = a0, if (1− ε)x∗
i (t)+ εzi,εi ≥ yj,εi , and

otherwise makes an unacceptable proposal. Note that yj,εi is independent

of j(6= i). When a contract w for S is proposed, every responder j ∈ S

accepts it if and only if (1− ε)x∗
j(w) + εuj(w) ≥ yi,εj . When negotiations

stop with the agreement w for the set S of participants, ãwS is played.

Case 2. Sk 6= ∅.

Let tk be an on-going contract among participants in Sk.

• All players in N − Sk participate in negotiations.

• Let S be a set of participants either on or off the equilibrium play. When

S = N , every player i ∈ N proposes t(zi,ε, e) where a payoff vector

zi,ε ∈ Rn is given by

zi,εj = (1− ε)x∗
j(t

k) + εuj(t
k) for all j ∈ S, j 6= i (A.7)

zi,εi = M −
∑

j∈N,j 6=i

zi,εj . (A.8)

When a contract w for N is proposed, every responder j ∈ N accepts it

if and only if uj(w) ≥ zi,εj . When S 6= N , every player i ∈ S proposes

t = t(zi,ε, eS) where a payoff vector zi,ε ∈ Rs is given by

zi,εj =
εuj(t

k) + (1− ε)(x∗
j(t

k)− x∗
j(t))

ε
for all j ∈ S, j 6= i (A.9)

zi,εi = MS −
∑

j∈S,j 6=i

zi,εj , (A.10)

if (1−ε)x∗
i (t)+εzi,εi ≥ (1−ε)x∗

i (t
k)+εui(t

k), and otherwise makes an unac-

ceptable proposal. When a contract w for S is proposed, every responder

j ∈ S accepts it if and only if (1−ε)x∗
j(w)+εuj(w) ≥ (1−ε)x∗

j(t
k)+εuj(t

k).

When negotiations stop with the agreement w for the set S of partici-

pants, ãwS is played.

When σ∗ is played, all players participate in negotiations in round 1, and

they behave according to the SSPE defined in the proof of Theorem 1. That is,
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every player’s proposal is accepted and the expected payoff profile of players

is equal to the Nash bargaining solution x∗ = NB(θ, u(a0)) with the disagree-

ment point u(a0). The game ends in round 1.

When the game starts in round k(> 1) with a state ωk = (Sk, t
k) off the

play of σ∗, all players participate in negotiations, and every player’s proposal

is accepted. The game ends in round k. The expected payoff of every player

i ∈ N evaluated at the beginning of round k is given by

Eui(σ
∗) =

∑
j∈N

θj · zj,εi

= θi{M −
∑

j∈N,j 6=i

((1− ε)x∗
j(t

k) + εuj(t
k))}+ (1− θi)((1− ε)x∗

i (t
k) + εui(t

k))

= θi{M −
∑
j∈N

((1− ε)x∗
j(t

k) + εuj(t
k))}+ (1− ε)x∗

i (t
k) + εui(t

k)

= εθi(M −
∑
j∈N

uj(t
k)) + (1− ε)x∗

i (t
k) + εui(t

k) (by
∑
j∈N

x∗
j(t

k) = M)

= ε(x∗
i (t

k)− ui(t
k)) + (1− ε)x∗

i (t
k) + εui(t

k) (by the definition of x∗
i (t

k))

= x∗
i (t

k).

The expected payoff profile of players is equal to the Nash bargaining solution

x∗(tk) = NB(θ, u(tk)) of the underlying game G with the disagreement point

u(tk).

It is clear that σ∗ satisfies the Markov property. When negotiations stop

with an agreement w for the set S of participants, σ∗ prescribes the Nash

equilibrium ãwS of G(S) under w while all non-participants choose their default

actions. To prove that σ∗ is a subgame perfect equilibrium, it remains to show

that σ∗ prescribes the optimal choice of every player at his every move in the

two stages of participation and of negotiations in every round, given that σ∗

will be played in all future moves. We prove this in each case.

Case 1. When the set of participants is N , σ∗ prescribes the SSPE con-

structed in the proof of Theorem 1, and thus it satisfies the optimality of every

player’s choice in the stage of negotiations. Suppose that the set of partici-
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pants is S 6= N . When every player i ∈ S proposes a contract w for S, every

responder j receives the payoff (1 − ε)x∗
j(w) + εuj(w) if w is accepted, and

otherwise, does the payoff yi,εj . Thus, σ∗ prescribes the optimal response rule

for j. Given the optimal response rules for all other participants, the optimal

proposal for i must be the contract t = t(zi,ε, eS) defined by (A.4) and (A.5)

if its acceptance makes i better off than rejection. If t is accepted, proposer

i receives payoff (1 − ε)x∗
i (t) + εzi,εi while i receives payoff yj,εi by rejection.

Thus, it is optimal for i to propose t = t(zi,ε, eS) if (1 − ε)x∗
i (t) + εzi,εi ≥ yj,εi .

Otherwise, it is optimal for i to make an unaccepted proposal.

Finally, consider the participation stage. Suppose that any player h ∈ N

deviates from σ∗ and does not participate in negotiations. Then, the set of par-

ticipants is S = N−{h}. We shall examine what would happen in negotiations

among S. Every player i ∈ S proposes the equilibrium contract t = t(zi,ε, eS)

defined by (A.5) and (A.6) if its acceptance makes her better off than rejection.

When t is implemented, the payoff profile u(t) = (zi,ε, uh(e
S, a0h)) is attained.

For every j ∈ S with j 6= i, (A.5) implies

yi,εj = εzi,εj + (1− ε)x∗
j(t)

= εzi,εj + (1− ε){zi,εj + θj(M −
∑
m∈S

zi,εm − uh(e
S, a0h))}

= εzi,εj + (1− ε){zi,εj + θj(M −MS − uh(e
S, a0h))}. (A.11)

The last equality holds by (A.6). By definition of yi,εj in (A.1) and x∗
j , it holds

that

yi,εj = εuj(a
0) + (1− ε){uj(a

0) + θj(M −
∑
m∈N

um(a
0)}. (A.12)

It follows from (A.11) and (A.12) that

zi,εj − uj(a
0) = (1− ε)θj{MS + uh(e

S, a0h)−
∑
m∈N

um(a
0)}. (A.13)
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Since

εuj(a
0) + (1− ε)x∗

j = yi,εj = εzi,εj + (1− ε)x∗
j(t), (A.14)

(A.13) implies that

x∗
j − x∗

j(t) = εθj{MS + uh(e
S, a0h)−

∑
m∈N

um(a
0)}.

Since j can be any element of S = N − {h}, three cases may be possible: (i)

x∗
j > x∗

j(t) for every j ∈ S, (ii) x∗
j < x∗

j(t) for every j ∈ S, and (iii) x∗
j = x∗

j(t)

for every j ∈ S. In case (i), x∗
i > x∗

i (t) for proposer i ∈ S. Then, for any

sufficiently small ε > 0, it holds that

(1− ε)x∗
i (t) + εzi,εi < (1− ε)x∗

i + εui(a
0) = yi,εi .

Thus, it is not optimal for i to propose t, and negotiations fail. Non-participant

h receives payoff (1 − ε)x∗
h + εuh(a

0), which is smaller than x∗
h. In case (ii),

it is optimal for i to propose t for any sufficiently small ε > 0, and it is

accepted in σ∗. Since x∗(t) = NB(θ, u(t)) and x∗ = NB(θ, u(a0)), it holds

that
∑

m∈N x∗
m(t) =

∑
m∈N x∗

m = M . Since x∗
j < x∗

j(t) for every j ∈ N

with j 6= h, it must be that x∗
h > x∗

h(t). Non-participant h receives payoff

(1 − ε)x∗
h(t) + εuh(t), which is smaller than x∗

h for sufficiently small ε > 0.

In case (iii), it holds that x∗
j = x∗

j(t) for all j ∈ N since
∑

m∈N x∗
m(t) =∑

m∈N x∗
m = M . Also, it follows from (A.14) that zi,εj = uj(a

0) for every

j ∈ N with j 6= h. Since x∗ and x∗(t) are the Nash bargaining solutions with

disagreement points u(a0) and u(t) = (zi,ε, uh(e
S, a0h)), respectively, it must

be that uh(a
0) = uh(e

S, a0h). Thus, regardless of the outcome of negotiations,

non-participant h receives payoff (1− ε)x∗
h+ εuh(a

0), which is smaller than x∗
h.

In all three cases, non-participant h is strictly worse off by deviating from σ∗.

This means that σ∗ prescribes a strict Nash equilibrium in the participation

stage.

Case 2. Let ωk = (Sk, t
k) be a state in round k. Suppose that the set of
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participants is N . When every player i ∈ N proposes a contract w for N ,

every responder j receives the payoff uj(w) if w is accepted, and otherwise,

does the payoff zi,εj = (1− ε)x∗
j(t

k) + εuj(t
k). Note that negotiations stop with

probability one if w is accepted. Thus, σ∗ prescribes the optimal response rule

for j. It is optimal for i to propose the contract t(zi,ε, e) defined by (A.9) and

(A.10) since

zi,εi = M −
∑

j∈N,j 6=i

zi,εj

= M −
∑

j∈N,j 6=i

{(1− ε)x∗
j(t

k) + εuj(t
k)}

= M −
∑
j∈N

{(1− ε)x∗
j(t

k) + εuj(t
k)}+ (1− ε)x∗

i (t
k) + εui(t

k)

= ε(M −
∑
j∈N

uj(t
k)) + (1− ε)x∗

i (t
k) + εui(t

k) (by
∑
j∈N

x∗
j(t

k) = M)

> (1− ε)x∗
i (t

k) + εui(t
k) = zj,εi (by Assumption 2 (i)).

Next, suppose that the set of participants is S 6= N . When every player i ∈ S

proposes a contract w for S, every responder j receives the payoff (1−ε)x∗
j(w)+

εuj(w) if w is accepted, and otherwise, does the payoff (1− ε)x∗
j(t

k) + εuj(t
k).

Thus, σ∗ prescribes the optimal response rule for j. Given the optimal response

rules for all other participants, the optimal proposal for i must be the contract

t = t(zi,ε, eS) defined by (A.9) and (A.10) if its acceptance makes i better off

than rejection. If w is accepted, proposer i receives payoff (1− ε)x∗
i (w) + εzi,εi

while i receives payoff (1− ε)x∗
i (t

k) + εui(t
k) by rejection. Thus, it is optimal

for i to propose t = t(zi,ε, eS) if (1 − ε)x∗
i (t) + εzi,εi ≥ (1 − ε)x∗

i (t
k) + εui(t

k).

Otherwise, it is optimal for i to make an unaccepted proposal.

Finally, consider the participation stage. By the same arguments as in case

1, we shall show that σ∗ prescribes a strict Nash equilibrium in the partici-

pation stage. Suppose that any player h ∈ N deviates from σ∗ and does not

participate in negotiations. The set of participants is S = N − {h}. Every

player i ∈ S proposes the equilibrium contract t = t(zi,ε, eS) defined by (A.9)
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and (A.10) if its acceptance makes her better off than rejection. For every

j ∈ S with j 6= i, (A.9) implies

εzi,εj + (1− ε)x∗
j(t) = εuj(t

k) + (1− ε)x∗
j(t

k). (A.15)

By definitions of x∗
j(t) and x∗

j(t
k), it holds that

εzi,εj + (1− ε){zi,εj + θj(M −MS − uh(e
S, a0h))}

= εuj(t
k) + (1− ε){uj(t

k) + θj(M −
∑
m∈N

um(t
k))}.

By arranging the equation above, we obtain

zi,εj − uj(t
k) = (1− ε)θj{MS + uh(e

S, a0h)−
∑
m∈N

um(t
k)}. (A.16)

It follows from (A.15) and (A.16) that

x∗
j(t

k)− x∗
j(t) = εθj{MS + uh(e

S, a0h)−
∑
m∈N

um(t
k)}.

Similarly to case 1, three cases may be possible: (i) x∗
j(t

k) > x∗
j(t) for every

j ∈ S, (ii) x∗
j(t

k) < x∗
j(t) for every j ∈ S, and (iii) x∗

j(t
k) = x∗

j(t) for every

j ∈ S. In case (i), x∗
i (t

k) > x∗
i (t) for proposer i ∈ S. Then, for any sufficiently

small ε > 0, it holds that

(1− ε)x∗
i (t) + εzi,εi < (1− ε)x∗

i (t
k) + εui(t

k).

Thus, it is not optimal for i to propose t, and negotiations fail. Non-participant

h receives payoff (1− ε)x∗
h(t

k) + εuh(t
k), which is smaller than x∗

h(t
k). In case

(ii), it is optimal for i to propose t for any sufficiently small ε > 0, and

it is accepted in σ∗. Since x∗(t) = NB(θ, u(t)) and x∗(tk) = NB(θ, u(tk)),

it holds that
∑

m∈N x∗
m(t) =

∑
m∈N x∗

m(t
k). Since x∗

j(t
k) < x∗

j(t) for every

j ∈ N with j 6= h, it must be that x∗
h(t

k) > x∗
h(t). Non-participant h re-
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ceives payoff (1− ε)x∗
h(t) + εuh(t), which is smaller than x∗

h(t
k) for sufficiently

small ε > 0. In case (iii), it holds that x∗
j(t

k) = x∗
j(t) for all j ∈ N since∑

m∈N x∗
m(t) =

∑
m∈N x∗

m(t
k). Also, it follows from (A.15) that zi,εj = uj(t

k)

for every j ∈ N with j 6= h. Since x∗(tk) and x∗(t) are the Nash bargaining

solutions with disagreement points u(tk) and u(t) = (zi,ε, uh(e
S, a0h)), respec-

tively, it must be that uh(t
k) = uh(e

S, a0h). Thus, regardless of the outcome of

negotiations, non-participant h receives payoff (1− ε)x∗
h(t

k)+ εuh(t
k), which is

smaller than x∗
h(t

k). In all three cases, non-participant h is strictly worse off

by deviating from σ∗. �

Proof of Theorem 4. Let σ be any Markov perfect equilibrium of Γε,∞.

We use the same notations introduced in the proof of Theorem 3. Specifically,

for a subset S of N and a contract t for S, u(t) ∈ Rn is the payoff vector for

all n players where all participants in S choose the Nash equilibrium of the

game G(S) assigned by σ under t and all non-participants choose their default

actions.

We will show that in every round k with a state ωk = (Sk, t
k) satisfying

Sk 6= N , σ does not prescribe that no players outside Sk participate, given

that σ is played in the following subgame of Γε,∞. By way of contradiction,

suppose that σ prescribes so. If no players participate in round k, then the

negotiation stage is vacuous, and the game may stop with probability ε. If this

happens, tk becomes the final agreement and all players receive payoffs u(tk).

With probability 1 − ε, negotiations may continue in the next period k + 1

with the same state ωk+1 = (Sk, t
k) as in round k. Since σ has the Markov

property, it induces the same play in round k + 1 as in round k. This means

that the expected payoff profile for players in σ from round k + 1 (and also

from round k) is equal to u(tk).

Suppose that any one player h /∈ Sk deviates from σ and participate in

negotiations. Then, negotiations take place among S = Sk ∪ {h}. Suppose

further that every player i ∈ S, if selected as a proposer, proposes the contract

45



t = t(zi,δ, eS) where a payoff vector zi,δ ∈ Rs is given by

zi,δj = uj(t
k) + δ for all j /∈ S, j 6= i

zi,δi = MS −
∑

j∈S,j 6=i

zi,δj ,

where δ > 0 is any sufficiently small positive number. If t is accepted, every

responder j receives payoff (1 − ε)uj(σ|(S, t)) + εzi,δj where uj(σ|(S, t)) is the

payoff that j receives according to σ in the subgame of Γε,∞ starting at round

k + 1 with a state (S, t), that is, uj(σ|(S, t)) is j’s continuation payoff by σ

after t is agreed by S. Since uj(σ|(S, t)) ≥ uj(t) = zi,δj > uj(t
k), it holds that

(1 − ε)uj(σ|(S, t)) + εzi,δj > uj(t
k). Thus, every j accepts t since his payoff is

uj(t
k) by rejection. Then, proposer i receives payoff

(1− ε)ui(σ|(S, t)) + ε(MS −
∑

j∈S,j 6=i

zi,δj )

= (1− ε)ui(σ|(S, t)) + ε{MS −
∑

j∈S,j 6=i

uj(t
k)− (s− 1)δ}

= (1− ε)ui(σ|(S, t)) + ε{MS −
∑
j∈S

uj(t
k)− (s− 1)δ}+ εui(t

k)

> ui(t
k).

The last inequality comes from the fact that MS −
∑

j∈S uj(t
k)− (s− 1)δ > 0

for any sufficiently small δ > 0 by Assumption 3 applied to S = Sk ∪ {h},

together with ui(σ|(S, t)) > ui(t
k). Therefore, proposer i optimally makes an

accepted proposal (which may be different from the t above) and receives a

higher payoff than ui(t
k). The arguments above show that every player i in

S can receive an expected payoff higher than ui(t
k) in the negotiation stage.

Thus, player h /∈ Sk is better off by participating in negotiations in σ. This

contradicts that σ prescribes a Nash equilibrium in the participation stage.

By the proof above, σ assigns either a strict pure Nash equilibrium where

at least one player participate in negotiations, or a mixed Nash equilibrium

where at least one player may participate in negotiations with a positive prob-

46



ability. In either case, in every round k with a state ωk = (Sk, t
k) satisfying

Sk 6= N , at least one player outside Sk may participate in negotiations with a

positive probability η > 0 on the play of σ. It implies that all n players may

participate in negotiations by round n at least with probability ηn.23 Thus, all

n players may not participate in negotiations by round rn at most with prob-

ability (1− ηn)r. In the limit that r → ∞, the probability that all players do

not participate in negotiations converges to zero. When all players participate

in negotiations, they agree to an efficient payoff allocation with probability

one. �
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