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Abstract

A power packet is a unit of electric power composed of a power pulse and an information tag. In
Shannon’s information theory, messages are represented by symbol sequences in a digitized manner.
Referring to this formulation, we define symbols in power packetization as a minimum unit of power
transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider
packetized power in networks for a finite duration, giving symbols and their energies to the networks.
A network structure is defined using a graph whose nodes represent routers, sources and destinations.
First, we introduce the concept of a symbol propagation matrix (SPM) in which symbols are transferred
at links during unit times. Packetized power is described as a network flow in a spatio-temporal
structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the
possibility to represent given energies at sources and destinations during the finite duration. To select
an SPM, we consider a network flow problem of packetized power. The problem is formulated as an M-
convex submodular flow problem which is a solvable generalization of the minimum cost flow problem.
Finally, through examples, we verify that this formulation provides reasonable packetized power.
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1 Introduction

Electric power has been considered as a continuous flow based on circuit theory, in which power
flow is governed by Kirchhoff Laws and Tellegen’s theorem [1]. The circuit theory can be generalized to
represent various nonlinear complex systems in the system topology with energy dissipation and energy
storage as a network thermodynamics [2]. Here, energy flow is handled in a continuous manner under
the conservation of energy. On the other hand, it is shown in Shannon’s information theory [3] that “all
technical communications are essentially digital; more precisely, that all technical communications are
equivalent to the generation, transmission and reception, of random binary digits” [4]. Communication
networks have been developed in a digitized manner by using packet switching, which breaks messages
into smaller pieces named “packets”, for dynamic assignment of network resources [5]. If we handle
electric power in a digitized manner, power distribution will be changed completely different from the
conventional. In this paper, we consider electrical energy networks in which power is digitized and
quantized through power packetization [6–15].

The concept of power packet was proposed in the 1990s to manage complicated power flows in
power systems caused by various power transactions after deregulation [16]. In the proposal, electric
energy routers, which include energy storage devices, were installed into the electrical energy networks.
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Figure 1: A schematic of power packet dispatching network.

The router manipulates its own storage device according to the flow control data transferred with
the power packet so as to compensate for the difference between the generation schedule and the
demand schedule. Referring to this work, power packet transactions were proposed for an electric
power distribution system [17]. The concept of power packet also appeared in [18]. He et al. [19]
proposed an electric power architecture, rooted in lessons learned from the Internet and microgrids, to
produce a grid network designed for distributed renewable energy, prevalent energy storage and stable
autonomous systems. “Energy packet networks” were also proposed to provide energy on demand to
Cloud Computing servers [20]. There is a proposal for a controllable-delivery power grid in which
electrical power is delivered through discrete power levels directly to customers [21]. In the physical
layer, a universal power router is designed and evaluated for residential applications [22]. On the other
hand, in most of these proposals, electric energy and information are separately transferred or the
physical design is not mentioned. It has been difficult to realize the practical hardware to deal with
electric power in the same way as information because of different physical scales: electric power has
been high-power and low-frequency electricity, while information has been processed with low-power
and high-frequency electricity. For ensuring consistency between the physical layer and the logical layer,
the synchrony between energy and information is crucial for managing power.

Recently, wide-bandgap power semiconductors, such as silicon carbide (SiC) and gallium nitride
(GaN), have shown material properties enabling power device operation at potentially higher temper-
atures, voltages and switching speeds than the current Si technology [23, 24]. High-speed gate drive
circuits have been developed to achieve high-frequency switching over 1 MHz [25, 26]. This work en-
ables us to handle high-power and high-frequency electricity, and moreover, to digitize power with power
packetization [6, 8, 9]. In the developed system, an information tag is directly and physically attached
to each packet with its voltage waveform. In this way, energy and information are integrated at an
individual packet level. A schematic of the power packet dispatching network is shown in figure 1.
The system consists of network lines and routers which stores and forwards power packets according
to the tag’s information. In the network, the information tag identifies different kinds of power due to
different sources, destinations, voltages, control commands and so on. When we send the power packets
using time-division multiplexing, it becomes possible to distinguish the power at each line by using the
information tag as an index. The router has multiple storage units to identify the different kinds of
power flow. Here, power is given by the density of power packets between routers [10, 14,15].

Now, we consider a packet-centric framework of energy transfer. In Shannon’s information theory,
messages are represented by symbol sequences in a digitized manner [3]. Referring to this formulation,
we define symbols in power packetization as a minimum unit of power transferred by a power pulse
with an information tag [12, 13]. Because a symbol is a minimum unit of power, we ignore the variety
of ways in which a symbol can be transferred during a unit time in the physical layer. Then, the energy
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of each symbol is uniquely determined as a real number.1,2 Here, power packetization is a simultaneous
representation of messages and energy with symbol sequences [12, 13]. In information theory, the
representation of messages is treated as a coding problem, in which the goal is to minimize the cost
such as the length of codewords. In power packetization, however, it is important to represent the given
energy during a finite duration as the total amount of energy of symbols. Thus, energy representation is
a problem unique to power packetization. In [12,13], this problem was considered with a set of symbol
sequences which represent a given energy as the total amount.

In this paper, we consider the problem of energy representation, which was introduced in [12], in
networks for a finite duration and formulate the optimization problem of power packetization. Here,
the set of symbols and their energies are given to the networks. Then, packetized power is spatially
and temporally transferred as symbols in a digitized and quantized manner: a symbol is transferred at
a link during a unit time; at each node, energy is represented with symbols sent to and received from
neighbouring nodes during a finite duration.

To mathematically represent the transmission of packetized power, we refer to the work about
detecting bipedal motion using point trajectories in video sequences [27, 28]. In this work, to obtain
discriminative point trajectories from image sequences over a sufficiently long time period under both
image noise and occlusion, probabilistic trajectories are designed by prioritizing the concept of temporal
connectedness. They are extracted from directed acyclic graphs whose edges represent temporal point
correspondences and are weighted with their matching probability in terms of appearance and location.

Here, we introduce symbol propagation matrix (SPM), a new concept to represent packetized power,
considering the transfer of a symbol as a spatio-temporal correspondence. In power packetization, unlike
the probabilistic trajectories [27, 28], each symbol has its energy and packetized power is represented
as a network flow. The temporal connectedness is important in power packetization to transfer power
in networks with low “strain”, i.e. the spatial difference of power, which is equal to the temporal
change of energy stored in each router. Then, we consider the problem of selecting an SPM in terms of
transferability, that is, the possibility to represent given energies at sources and destinations during the
finite duration. To select an SPM, we consider a network flow problem of packetized power, weighting
supplied energy from sources and supplied energy to destinations (V1), transferred energy at each link
during each unit time (V2) and change of stored energy in each router (V3). The problem is formulated
as an M-convex submodular flow problem which is a solvable generalization of the minimum cost flow
problem [29].

Finally, through examples, we verify that the formulation provides reasonable transmission of pack-
etized power. Here, while we consider packetized power with a network flow problem, Gelenbe and
colleagues have theoretically investigated energy packet networks with queueing theory [30–32]. Al-
though these approaches are fundamentally different from our problem, it is worth studying common
aspects which can be done by analysing a specific system similar to the models and the examples
considered in [32]. Thus, we also discuss our formulation referring to the energy packet network model.

2 Packetized power in networks

Here, we introduce the concept of an SPM as a representation of packetized power transferred by
symbols in a digitized and quantized manner. Via SPM, packetized power is represented as a network
flow in a spatio-temporal structure.

1With the application of a power factor correction circuit (PFC), any load can be treated as resistive. Thus, power
is discussed in real numbers without loss of generality.

2In this setting, power pulses with the same energy can be represented by a single symbol. The properties that symbols
do not specify are treated by indexing the symbols. The index becomes important in terms of redundancy of the system.
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2.1 Symbol propagation matrices

The set of symbols ΣT and their energies E : ΣT → R>0 are given to the network. The symbols
have a partition {Σm}M−1

m=0 , whose cell represents a distinct power flow.3 For each distinct power flow,
energy is represented as a summation of the symbol’s energy. Here, symbols of the same cell can be
exchanged under the conservation of energy.

The network structure is given as a directed graph G = (Ṽ , A), where Ṽ is a disjoint union of the set
of routers V , sources VS and destinations VD, and A is the set of links. Here, sources and destinations
represent the external system of the network. The incidence relation is a couple of functions ∂+ : A → Ṽ
and ∂− : A → Ṽ . Another representation of the incidence relation is introduced as a couple of functions
δ+ : Ṽ ∋ v #→ {a | ∂+a = v} ∈ 2A and δ− : Ṽ ∋ v #→ {a | ∂−a = v} ∈ 2A [29, 33]. As for the link, power
is kept between nodes. The directions of links are assigned with power directions.

Next, we set that the network is synchronized and symbols are transferred during the same unit
times T = {t0, t1, · · · , tN−1}, where N is a positive integer, tn := [tn, tn+1), and t0 < t1 < · · · < tN .
Here, energy is transferred by N unit times. Although various power pulses can transfer the energy of
the same symbol during a unit time, we ignore the variety and focus on the integrated value of power
during the unit time.

Now, we focus on a single cell Σm. At each link a ∈ A during each unit time t ∈ T , there are three
cases of transfer of symbols Σm: Case 1: a single symbol σ ∈ Σm is transferred from node ∂+a to node
∂−a; Case 2: a single symbol σ ∈ Σm is transferred from node ∂−a to node ∂+a; Case 3: no symbol is
transferred.4 Therefore, packetized power is given by a map, which we name SPM:

SPMm : T ×A → Σm × {f, b} ∪ {σ∅}, (1)

where σ∅ is an element which does not belong to ΣT. SPMm(t, a) = (σ, f) and SPMm(t, a) = (σ, b)
denote that σ is transferred from node ∂+a to node ∂−a and from node ∂−a to node ∂+a, respectively.
SPMm(t, a) = σ∅ denotes that no symbol is transferred.

2.2 Packetized power as a network flow

Here, we introduce packetized power as a network flow [29, 33]. First, we define a graph with
spatio-temporal structure induced by the network structure G and unit times T as

Ĝ = (T × Ṽ , T ×A), (2)

whose incidence relation is defined by

∂̂+ : T ×A ∋ (t, a) #→ (t, ∂+a) ∈ T × Ṽ (3)

and
∂̂− : T ×A ∋ (t, a) #→ (t, ∂−a) ∈ T × Ṽ . (4)

Then, packetized power is introduced as a network flow on Ĝ, i.e.

u : T ×A → R, (5)

and its boundary ∂u : T × Ṽ → R is defined by

∂u(t, v) =
∑

a∈δ+v

u(t, a)−
∑

a∈δ−v

u(t, a) (t ∈ T , v ∈ Ṽ ). (6)

3In power packetization, energy is transferred with time division multiplexing (TDM) at links and stored in the
corresponding storage unit in routers. Thus, power flow can be distinguished by the information tags of power packets.

4Here, more than one symbol is not transferred during unit time because we do not care about the various ways that
power may be transferred. For example, if twice the amount of energy of a symbol σ1 ∈ Σm is transferred, then we
consider a symbol σ2 ∈ Σm with an energy E(σ2) = 2E(σ1)
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Figure 2: Schematic of a symbol propagation matrix and packetized power. We set a directed graph
G = (Ṽ , A), where Ṽ = {v0, v1, v2} and A = {a0, a1}, and unit times T = {t0, t1}. (a) A schematic
diagram of symbol propagation. A symbol σ ∈ Σm is transferred at link a0 during unit time t0 and at
link a1 during unit time t1. (b) A symbol propagation matrix shown as a table. (c) Packetized power
as a network flow on Ĝ = (T × Ṽ , T ×A).

Each link of Ĝ, i.e. (t, a) ∈ T×A, represents a spatio-temporal correspondence at which each symbol
is transferred. Each cell Σm represents packetized power um : T × A → R and um is given by SPMm

as

um(t, a) =

⎧
⎪⎨

⎪⎩

E(σ) (SPMm(t, a) = (σ, f)),

−E(σ) (SPMm(t, a) = (σ, b)),

0 (SPMm(t, a) = σ∅).

(7)

Here, we assume the conservation of energy; more precisely, we assume that all energy exchanges in
each node v ∈ Ṽ are represented with symbols transferred through the adjacent links5 a ∈ δ+v ∪ δ−v.
Then, −∂um(t, v) is equal to the increment of stored energy corresponding to Σm in the node v ∈ Ṽ
during the unit time t ∈ T . Here, packetized power is represented as a network flow, in which energy is
transferred with symbols in the digitized and quantized form.

2.3 Example of symbol propagation matrix

Here, we illustrate the definitions mentioned above. Figure 2 shows a schematic of an SPM and
packetized power. In this example, we set a directed graph G = (Ṽ , A), where Ṽ = {v0, v1, v2} and
A = {a0, a1}, and unit times T = {t0, t1}. As schematically shown in figure 2(a), we consider a
transmission of symbols Σm, in which a symbol σ ∈ Σm is transferred at link a0 during unit time t0
and at link a1 during unit time t1. Then, we have the SPM shown in figure 2(b).

In this example, the graph Ĝ = (T × Ṽ , T × A) with spatio-temporal structure is defined as shown
in figure 2(c). Then, packetized power um, which is represented by the cell Σm, is introduced as
a network flow on this graph. Here, we have um(t0, a0) = E(σ), um(t0, a1) = 0, um(t1, a0) = 0 and
um(t1, a1) = E(σ). The boundary ∂um is equal to the change of stored energy corresponding to Σm. For
example, we have −∂um(t0, v1) = E(σ) as the “strain”, i.e. as the spatial difference of the packetized
power um, and this value is equal to the increment of the stored energy in v1 during the unit time
t0 = [t0, t1).

5In practical systems, energy can be dissipated at links and in nodes, and symbols may not be able to keep constant
energy between nodes. These can become noise of power packetization, which is one of the future works of this paper.
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3 Power packet transferability

To meet supply and demand, i.e. to represent given energies at sources and destinations with
symbols, it is necessary to select a symbol at each link a ∈ A during each unit time t ∈ T . Here,
different choices lead to different transferability, that is the possibility to represent the given energies
by transmission of symbols. In this section, we develop a framework to select an SPM in terms of
transferability as a network flow problem of packetized power. To make the problem solvable, we focus
on a single power flow represented by cell Σ ∈ {Σm}M−1

m=0 . Besides, we set that E(Σ) to be successive
integers {1, 2, · · · }, that is, we consider integer flow u : T × A → Z. Because power packet is a unit of
power, it is natural to consider integer flow.

3.1 Features of packetized power contributing to transferability

In networks, packetized power appears as follows:

V1: supplied energy from sources and supplied energy to destinations,

V2: transferred energy at each link during each unit time, and

V3: change of stored energy in each router.

In terms of transferability, V1 needs to satisfy the given energies at sources and destinations, while V2
and V3 need to be small. V2 should be small to effectively use limited density of power packets between
different kinds of power flows. In addition, by minimizing the summation of transferred energy, we can
obtain the network flow in which energy is supplied to each destination from sources placed near the
destination. As for V3, change of stored energy in routers should be suppressed to keep symbol’s energy
controllable with density modulation of power packets between routers.

Thus, we select the features of packetized power u : T ×A → Z contributing to transferability as V1,
V2 and V3. V2 is a value of the network flow u(t, a) ((t, a) ∈ T × A), while V1 and V3 are calculated
from the values of the boundary ∂u(t, v) ((t, v) ∈ T × Ṽ ). V1 and V3 include time integral, such as

total supplied energy from a source s ∈ VS, i.e.
∑N−1

n=0 ∂u(tn, s).
We introduce a cost function of the network flow problem as the summation of costs on these values.

Because our features include not only values of network flow but also values of boundary and their time
integrals, it is impossible to formulate the problem as the conventional minimum cost flow problem on
the spatio-temporal graph Ĝ(T × Ṽ , T ×A). Thus, in the next subsection, we provide the formulation
using an M-convex submodular flow problem [29] which is the generalization of the minimum cost flow
problem.

3.2 Formulation as M-convex submodular flow problem

Now, we formulate the network flow problem to provide transferable packetized power. In the
spatio-temporal structure, the M-convex submodular flow problem is to find a packetized power u :
T ×A → Z which minimizes the total cost Γ (u); more precisely, the problem is described by the graph
G(T × Ṽ , T ×A), univariate discrete convex functions6 f(t,a) : Z → R ∪ {+∞} ((t, a) ∈ T ×A), and an

M-convex function f : ZT×Ṽ → R ∪ {+∞} as in [29]

Minimize Γ (u) =
∑

(t,a)∈T×A

f(t,a)(u(t, a)) + f(∂u) (9)

6A function φ : Z → R ∪ {+∞} is called a univariate discrete convex function if we have

φ(x− 1) + φ(x+ 1) ≥ 2φ(x) for all x ∈ Z (8)

and domφ ̸= ∅ [29]. Note that, if a function φ : R → R ∪ {+∞} is convex, φ satisfies (8).
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subject to u(t, a) ∈ dom f(t,a) ((t, a) ∈ T ×A), (10)

∂u ∈ dom f, (11)

u(t, a) ∈ Z ((t, a) ∈ T ×A). (12)

Here, (10) denotes capacity constraints of links, because f(t,a) is convex, and hence dom f(t,a) is an

interval. Therefore, we can set an upper capacity ĉ : T × A → Z ∪ {+∞} and a lower capacity
č : T × A → Z ∪ {−∞}, where it is assumed that ĉ(t, a) ≥ č(t, a) for each (t, a) ∈ T × A, by defining
cost functions f(t,a) whose effective domain is equal to the interval [č(t, a), ĉ(t, a)] ((t, a) ∈ T ×A).

Then, we introduce the cost function of the boundary as the summation of the costs on V1 and V3.
To this end, we prove in Sect. 3.3 that, for a laminar family7 T of subsets of T × Ṽ and univariate
discrete convex functions fX : Z → R ∪ {+∞} indexed by X ∈ T , the function defined by

f(∆u) =

{∑
X∈T fX(∆u(X)) (∆u(T × Ṽ ) = 0),

+∞ (otherwise)
(14)

is an M-convex function. Here, we use the notation ∆u(X) =
∑

(t,v)∈X ∆u(t, v) for ∆u ∈ ZT×Ṽ and

X ⊂ T × Ṽ . In (14), we can set costs on V1 and V3 by setting a laminar family T and univariate

discrete convex functions {fX}X∈T . For example, we can treat total supplied energy
∑N−1

n=0 ∂u(tn, s)
at source s ∈ VS by including T × {s} in T . In the following, we set that the laminar family T is a
disjoint union of a laminar family TS,D of subsets of T × (VS ∪ VD) and laminar families Tv of subsets
of T × {v} (v ∈ V ).

To sum up, we introduce the cost function Γ of packetized power u as

Γ (u) =
∑

X∈TS,D

fX(∂u(X)) +
∑

(t,a)∈T×A

f(t,a)(u(t, a)) +
∑

v∈V

∑

X∈Tv

fX(∂u(X)). (15)

The first, the second and the third term in the right-hand side of (15) correspond to the costs of V1,
V2 and V3.

3.3 Proof of the M-convexity of the function f in (14)

In general, a laminar convex function has M♮-convexity8 [29]. The following corollary shows that,
if a laminar convex function is restricted to the hyper-plane, the function has M-convexity. From this
corollary, we can confirm that the function f in (14) satisfies M-convexity. This is proved referring to
Note 9.31. in [29] with a slight modification.

Corollary 3.1. For a finite set V , a laminar family T of subsets of V , univariate discrete convex
functions fX (X ∈ T ), and an integer r ∈ Z, a function f : ZV → R ∪ {+∞} is defined by

f(x) =

{∑
X∈T fX(x(X)) (x(V ) = r),

+∞ (otherwise).
(16)

Then, f has M-convexity.

7By a laminar family, we mean a non-empty family T such that [29]

X,Y ∈ T ⇒ X ∩ Y = ∅ or X ⊂ Y or X ⊃ Y. (13)

8M♮-convex functions are variants of, and essentially equivalent to, M-convex functions. ”M♮-convex” should be read
“M-natural-convex” [29].

7



Proof of corollary 3.1. Without loss of generality, we assume that ∅ ∈ T , V ∈ T , and every singleton
set belong to T . We represent T by a directed tree G = (U,A;S, T ) with root u0, where U = {uX |
X ∈ T } ∪ {u0}, A = {aX | X ∈ T }, S = {u0}, T = {u{v} | v ∈ V }, and ∂−aX = uX and ∂+aX = uX̂

for X ∈ T , where X̂ denotes the smallest member of T that properly contains X (and V̂ = 0 by
convention). We associate the given function fX with arc aX for X ∈ T . We define an M-convex
function f ′ : ZS → R ∪ {+∞} by

f ′(y) =

{
0 (y = r),

+∞ (otherwise).
(17)

Then, f is the result of flow type transformation:

f(x) = inf
ξ,y

{
f ′(y) +

∑

X∈T
fX(ξ(aX))

∣∣∣∣∣ ∂ξ = (y,−x,0),

ξ ∈ ZA, (y,−x,0) ∈ ZS × ZT × ZU\(S∪T )

}
(x ∈ ZT ). (18)

Therefore, from Theorem 9.27. in [29], f has M-convexity.

4 Examples

In this section, we verify that the formulation in Sect. 3 provides reasonable packetized power. First,
we illustrate some properties of the problem, comparing three cost functions on a mesh graph. Then,
we consider the formulation referring to the energy packet network model [32].

4.1 Illustration with three cost functions

Here, the power packet transferability is discussed through the following M-convex submodular flow
problem:

Minimize Γ (u) =
∑

V ′∈TVS∪VD

fT×V ′(∂u(T × V ′)) +
∑

(t,a)∈T×A

β(a)
∣∣u(t, a)

∣∣ (19)

subject to č(a) ≤ u(t, a) ≤ ĉ(a) ((t, a) ∈ T ×A), (20)

∂u(t, v) = 0 ((t, v) ∈ T × V ), (21)

u(t, a) ∈ Z ((t, a) ∈ T ×A), (22)

where TVS∪VD is a laminar family of VS ∪ VD. Note that {T × V ′ | V ′ ∈ TVS∪VD} is a laminar family of
T × (VS ∪ VD). This problem is a special case in which we set the following:

• Total supplied energy is the only concern at sources and destinations. More precisely, TS,D is set
to be {T × V ′ | V ′ ∈ TVS∪VD}.

• Each cost function f(t,a) is defined as an absolute value function with effective domain [č(a), ĉ(a)]

((t, a) ∈ T × A). The coefficients β(a) (a ∈ A) are non-negative real numbers. Here, f(t,a) does

not depend on unit times T .

• Boundary of flow is set to be zero at routers V in (21) in order to transfer power without strain.
Note that, because of this constraint, we have ∂u({t}×VS) = −∂u({t}×VD) (t ∈ T ) for a feasible
flow u.
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Figure 3: Network structure given as a mesh graph. For links between routers a ∈ {0, 1, · · · , 11}, we
set β(a) = 1, č(a) = −1, and ĉ(a) = 1, which imply u(t, a) ∈ {−1, 0, 1} (t ∈ T ). For the other links
a ∈ {12, 13, 14, 15}, we set β(a) = 0, č(a) = −∞ and ĉ(a) = +∞, which imply u(t, a) ∈ Z (t ∈ T ).

Table 1: Optimal flows u in E1 and their costs with various settings of given energy U1.

N U1(s1), U1(s2) U1(d1), U1(d2) cost Γ1(u) an optimal flow
1 0, 0 0, 0 0 α0

1 1, 0 −1, 0 2 α1

1 1, 1 −1, −1 4 α2

1 1, 1 0, −2 6 α3

1 2, 1 −1, −2 8 α4

1 2, 1 −2, −1 8 α5

In the following, we investigate the aforementioned problem with a mesh graph as an example.
The network structure is shown in figure 3, where V = {0, · · · , 8}, VS = {s1, s2}, VD = {d1, d2} and
A = {0, 1, · · · , 15}. For links between routers a ∈ {0, 1, · · · , 11}, we set β(a) = 1, č(a) = −1, and
ĉ(a) = 1. This capacity constraint implies u(t, a) ∈ {−1, 0, 1} (t ∈ T , a ∈ {0, 1, · · · , 11}). For the other
links a ∈ {12, 13, 14, 15}, we set β(a) = 0, č(a) = −∞, and ĉ(a) = +∞, and hence we have u(t, a) ∈ Z
(t ∈ T ).

We consider three examples of the problem, in which energy is given at the sources and the destina-
tions in different ways: in the first example (E1), energy is given at each source and each destination by
U1 : VS ∪ VD → Z; in the second example (E2), energy is given at each destination by U2 : VD → Z≥0;
in the third example (E3), the total supplied energy is given by U ∈ Z≥0. In E1, U1 is set to satisfy∑

s∈VS
U1(s) = −

∑
d∈VD

U1(d) because power is transferred without strain in this example. In E1, E2,
and E3, the objective functions are defined respectively as

Γ1(u) =
∑

v∈VS∪VD

1000
∣∣∂u(T × {v})− U1(v)

∣∣+
∑

(t,a)∈T×A

β(a)
∣∣u(t, a)

∣∣ , (23)

Γ2(u) =
∑

v∈VD

1000
∣∣∂u(T × {v}) + U2(v)

∣∣+
∑

(t,a)∈T×A

β(a)
∣∣u(t, a)

∣∣ (24)

and
Γ3(u) = 1000

∣∣∂u(T × VD) + U
∣∣+

∑

(t,a)∈T×A

β(a)
∣∣u(t, a)

∣∣ . (25)

In these functions, the coefficients of the first terms are set to be 1000. This value is large enough to
give priority to the representation of the given energy over minimization of energy transferred through
links.

Now, we discuss these examples, solving them using the cycle-cancelling algorithm [29]. First, with
Γ1 in E1, we set N = 1 and show an optimal flow for each setting of U1 in figure 4. The six optimal

9



(a) (b) (c)

(d) (e) (f)

Figure 4: Optimal flows with Γ1 and N = 1. The energies given to the sources and the destinations are
shown in the corresponding nodes. (a) an optimal flow α0, (b) an optimal flow α1, (c) an optimal flow
α2, (d) an optimal flow α3, (e) an optimal flow α4 and (f) an optimal flow α5.

Table 2: Optimal flows u in E2 and their costs with various settings of N and given energy U2. Here,
optimal flows are denoted by the sequence of {αi}5i=0 in time order.

N U2(d1), U2(d2) cost Γ2(u) an optimal flow
2 3, 3 16 α4α5

3 3, 3 12 α2α2α2

5 3, 3 12 α2α2α2α0α0

2 5, 2 1016 α5α5

3 5, 2 18 α5α5α1

5 5, 2 14 α2α2α1α1α1

Table 3: Optimal flows u in E3 and their costs with various settings of N and given energy U . Here,
optimal flows are denoted by the sequence of {αi}5i=0 in time order. The settings of N and U correspond
to the settings in table 2 through the relationship

∑
d∈VD

U2(d) = U .

N U cost Γ3(u) an optimal flow
2 6 16 α4α4

3 6 12 α2α2α2

5 6 12 α2α2α2α0α0

2 7 1016 α4α4

3 7 16 α4α2α2

5 7 14 α2α2α2α1α0

10



flows are named as {αi}5i=0. The optimal flows u are listed in table 1 with their settings and costs Γ1(u).
Next, with Γ2 in E2 and with Γ3 in E3, we list optimal flows as shown in tables 2 and 3, respectively.
Here, each optimal flow is denoted by a sequence of {αi}5i=0 in time order. Note that the settings of N
and U in table 3 correspond to the settings in table 2 through the relationship

∑
d∈VD

U2(d) = U . In
the optimal flows in which costs exceed 1000, the given energy is not represented.

From figure 4 and table 1, the following properties are confirmed at N = 1:

• By minimizing the cost of V1, given energy U1 is represented at each source and each destination.

• By minimizing the cost of V2, energy is transferred with the smallest number of links. Note that,
in flow α2 in figure 4c, the destinations d1 and d2 are supplied from the nearest sources, i.e. s1
for d1 and s2 for d2.

• By imposing the constraint on V3 as shown in (21), energy is transferred without strain, i.e.
without change of stored energy.

Tables 2 and 3 imply the following properties:

• The cost of the optimal flow decreases as the number of time step N increases up to a certain
point. From N exceeding the point, the cost takes a constant value and α0, in which symbols are
not transferred, is added to the optimal flow.

• The cost of the optimal flow decreases when the distribution of supplied energy is not specified
and the total supplied energy is given. For example, the cost becomes Γ2(u) = 18 when we set
N = 3, U2(d1) = 5, and U2(d2) = 2 in E2, while the cost becomes Γ3(u) = 16 when we set N = 3
and U = 7, which is equal to

∑
d∈VD

U2(d) = 5 + 2, in E3.

In other words, a more transferable SPM can be selected if symbols are transferred with less temporal
and spatial restriction. These properties show that power can be packetized and be controllable while
preserving reasonable properties of power.

4.2 Example referring to the energy packet network model

Here, we discuss our formulation referring to the energy packet network (EPN) model [32]. Although
EPNs are considered with queueing theory while we consider packetized power with a network flow
problem, it is worth studying common aspects of the two different approaches.

First, we clarify the features of the EPN model which we focus on in this example system9 [32]:

• Power flow is represented by a random flow of arriving “energy packets (EPs)”, which is a discrete
unit of energy.

• An “energy storage unit” is modelled as a queue of EPs. EPs enter each energy storage unit at a
specific rate.

• A “workstation” is modelled as a queue of jobs. Jobs enter each workstation at a specific rate. A
job requires an EP to accomplish the work.

• One of the proposed cost functions considers “the needs of the consumers” with the weighted
probability that more than a given number of jobs exist in the workstation, and “the desire to
maintain some reserve energy” with the weighted probability that a given number of EPs does
not exist in the energy storage unit.

9The EPN model also includes the other features, such as movement of energies between different energy storage units,
movement of jobs between workstations, losses of EPs at energy storage units and losses of jobs at workstations. However,
we do not consider these features for simplicity.
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Figure 5: Network structure for comparing our formulation with the EPN model [32]. This structure
appears in an example system discussed in [32].

The EPN model was illustrated with a numerical example which has three destinations and is fed by two
sources [32]. The three destinations require different amounts of energy and have different priorities.
At each source, there is a maximum total rate at which the source can transmit EPs. The numerical
results show the following properties:

• When “the needs of the consumers” are emphasized, each energy storage unit transmits EPs at
the maximum total rate.

• When “the desire to maintain some reserve energy” is emphasized, each energy storage unit does
not transmit EPs at the maximum total rate.

Now, we consider an M-convex submodular flow problem for analysing a system similar to the above-
mentioned EPN model and its numerical example. The problem is investigated with the graph shown
in figure 5, where VS = {s1, s2}, VD = {d1, d2, d3}, V = {0, 1} and A = {0, 1, · · · , 7}. In this graph, the
energy storage units are treated as sources and the workstations are treated as destinations. Because
a job requires an EP to accomplish the work, jobs are treated as negative energy.10 Node v ∈ V is
introduced as a bifurcation of the lines and does not store energy. Here, a significant difference exists
in the representation of sources and destinations: In the EPN model, energy supplied from sources is
treated as the arrival rate of EPs and energy required from destinations is treated as the arrival rate
of jobs; In our formulation, energies are given to sources and destinations for a finite duration and are
represented during the duration as the total amount of energy of symbols.

As a physical quantity corresponding to the queues in the EPN model, we consider stored energy
in the sources and destinations at each time t ∈ {t0, t1, · · · , tN}. As stored energy at time t0, we give
energy Us ∈ Z to each source s ∈ VS and energy Ud ∈ Z to each destination d ∈ VD. Here, Us is supposed
to be non-negative (s ∈ VS), while Ud is supposed to be non-positive because Ud represents required
energy (d ∈ VD). Because −∂u(t, v) is equal to the increment of stored energy in node v ∈ VS ∪ VD

during unit time t ∈ T , the stored energy in node v at time tn+1 is equal to Uv +
∑n

n′=0(−∂u(tn′ , v))
(n ∈ {0, 1, · · · , N − 1}, v ∈ VS ∪ VD).

Then, we set the following problem:

Minimize Γ4(u) =
∑

s∈VS

γ(s)
N−1∑

n=0

fs(Us +
n∑

n′=0

(−∂u(tn′ , s)))

+
∑

d∈VD

γ(d)
N−1∑

n=0

fd(Ud +
n∑

n′=0

(−∂u(tn′ , d))) (26)

10The requests for energy by jobs can be considered as an up-stream dispatching of required power to sources [14,34].
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subject to 0 ≤ u(t, a) ≤ ĉ(a) ((t, a) ∈ T × {0, 1}), (27)

u(t, a) ≥ 0 ((t, a) ∈ T × {2, 3, · · · , 7}), (28)

∂u(t, v) = 0 ((t, v) ∈ T × {0, 1}), (29)

u(t, a) ∈ Z ((t, a) ∈ T ×A), (30)

where fs : Z → R ∪ {+∞} and fd : Z → R ∪ {+∞} are univariate discrete convex functions (s ∈ VS,
d ∈ VD). The coefficients γ(v) (v ∈ VS ∪ VD) are non-negative real numbers. In (27), ĉ(0) and ĉ(1)
represent the upper capacities of energy which can be transmitted during each unit time from source
s1 and from source s2 respectively. Noting that

∑n
n′=0(−∂u(tn′ , v)) is equal to −∂u({t0, · · · , tn}× {v})

(n ∈ {0, 1, · · · , N − 1}, v ∈ VS ∪ VD) and {{t0, · · · , tn} × {v} | n ∈ {0, 1, · · · , N − 1}, v ∈ VS ∪ VD} is
a laminar family, we can confirm that Γ4 is a special case of the cost function in (15), and hence the
problem is an M-convex submodular flow problem.

Referring to the cost function in [32], we define a concrete form of fs and fd so that the first term
of (26) represents “the desire to maintain some reserve energy” and the second term of (26) represents
“the needs of the consumers”:

fs(U) =

⎧
⎪⎨

⎪⎩

+∞ U < 0

Ks − U 0 ≤ U < Ks

0 U ≥ Ks

, (31)

fd(U) =

⎧
⎪⎨

⎪⎩

−Kd − U U < −Kd

0 −Kd ≤ U ≤ 0

+∞ U > 0

, (32)

where Ks and Kd are non-negative integers (s ∈ VS, d ∈ VD). Note that, if fs were defined as fs(U) = 1
for 0 ≤ U < Ks, the first term of (26) would be a good approximation of the weighted percentage of the
period during which Ks energy was not stored in source s. Similarly, if fd were defined as fd(U) = 1 for
U < −Kd, the second term of (26) would be a good approximation of the weighted percentage of the
period during which more than Kd energy was required in destination d. To define univariate discrete
convex functions, fs is defined to be larger if less energy is stored in (31), and fd is defined to be larger
if more energy is required in (32).

Here, we set the parameters as shown in table 4. In a similar manner to the setting of the numerical
example in [32], each destination d ∈ VD requires a different amount of energy Ud and has different
priorities γ(d). As for sources, the total amount of supplied energy, i.e. Us1 +Us2 , is set to be less than
the total amount of required energy, i.e. −(Ud1 +Ud2 +Ud3). The number of time step N and the upper
capacities ĉ(0) and ĉ(1) are set to be large enough for each source s ∈ VS to transmit all given energy
Us during the duration [0, tN ). Ks1 and Ks2 are set to be 1, so that the cost of each source arises only
at the time when the stored energy becomes zero. On the other hand, Kd1 , Kd2 and Kd3 are set to be
0, so that the cost of each destination at each time is proportional to the required energy.

Table 4: Parameters used in the example.

parameters values parameters values
Ud1 −10 Us1 4
Ud2 −4 Us2 8
Ud3 −1 N 4
γ(d1) 2 ĉ(0), ĉ(1) 2
γ(d2) 1 Ks1 , Ks2 1
γ(d3) 10 Kd1 , Kd2 , Kd3 0
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Table 5: An optimal flow and its cost for different settings of γ(s1) and γ(s2). For each optimal flow,

the total supplied energy from source s ∈ VS, i.e. the value of
∑N−1

n=0 ∂u(tn, s), and the total supplied

energy to destination d ∈ VD, i.e. the value of
∑N−1

n=0 (−∂u(tn, d)), are shown.

γ(s1), γ(s2) an optimal flow cost Γ4(u) s1 s2 d1 d2 d3
0.1 α′

0α
′
1α

′
3α

′
5 37.4 4 8 10 1 1

1 α′
0α

′
1α

′
3α

′
4 41 4 7 10 0 1

10 α′
0α

′
2α

′
3α

′
4 44 3 7 9 0 1

100 α′
0α

′
2α

′
3α

′
4 44 3 7 9 0 1

(a) (b) (c)

(d) (e) (f)

Figure 6: Definition of flows {α′
i}5i=0. Decrements of stored energy are shown in the corresponding

nodes. (a) α′
0, (b) α

′
1, (c) α

′
2, (d) α

′
3, (e) α

′
4 and (f) α′

5.

Now, we discuss the example, solving the problem using the cycle-canceling algorithm [29]. The
optimal flows are shown in table 5 for different settings of γ(s1) and γ(s2). Note that “the needs of the
consumers” are emphasized if γ(s1) and γ(s2) become small, while “the desire to maintain some reserve
energy” is emphasized if γ(s1) and γ(s2) become large. Here, six flows are named as {α′

i}5i=0 in figure
6, and each optimal flow is denoted by a sequence of {α′

i}5i=0 in time order. For each optimal flow, we

calculate the total supplied energy from source s ∈ VS, i.e. the value of
∑N−1

n=0 ∂u(tn, s), and the total

supplied energy to destination d ∈ VD, i.e. the value of
∑N−1

n=0 (−∂u(tn, d)).
From table 5, we find the following properties:

• When γ(s1) = γ(s2) = 0.1, s1 and s2 transmit all given energies. As a result, d3 and d1, which
have the highest priority and the second highest priority respectively, receive the whole required
energy.

• When γ(s1) = γ(s2) = 100, s1 and s2 maintain reserve energy, i.e. in both the sources, not less
than Ks1 = Ks2 = 1 energy is stored at each time. As a result, d2, which has the lowest priority,
does not receive any energy and d1 does not receive the whole required energy.
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These properties agree with the results of [32] which show that more energy is transmitted from sources
when “the needs of the consumers” are emphasized, while less energy is transmitted from sources
when “the desire to maintain some reserve energy” is emphasized. Because similar optimal flows are
obtained by the two fundamentally different approaches, it is confirmed that our formulation captures
fundamental properties of packetized power.

5 Conclusion

In this paper, we have established the packet-centric framework of electrical energy networks, defining
symbols in power packetization as a minimum unit of electric power transferred by a power pulse with
an information tag. Here, packetized power is spatially and temporally transferred as symbols in a
digitized and quantized manner. At each node, the energy is represented as the total amount of energy
of symbols which are sent to and received from neighbouring nodes during a finite duration.

To mathematically represent such transmission of packetized power, we introduced the SPM, in
which a symbol is transferred at a link during a unit time. Via SPM, packetized power is described as a
network flow in a spatio-temporal structure. Then, we considered a network flow problem for selecting
an SPM in terms of transferability, that is, the possibility to represent given energies at sources and
destinations during the finite duration. In networks, packetized power appears as supplied energy from
sources and supplied energy to destinations (V1), transferred energy at each link during each unit time
(V2), and change of stored energy in each router (V3). Setting a laminar family of subsets of nodes in
spatio-temporal structure for the costs of V1 and V3, we can formulate this problem as an M-convex
submodular flow problem which is a solvable generalization of the minimum cost flow problem. Unlike
conventional minimum cost flow problems, here, we weighted not only values of network flow (V2) but
also values of boundary of network flow and their time integrals (V1 and V3). Finally, the formulation
was discussed through examples and it is shown that power can be packetized and be controllable while
preserving reasonable properties of power.

The established packet-centric framework is completely different from the circuit theory, in which
power is handled in a continuous manner and is governed by Kirchhoff Laws and Tellegen’s theorem [1].
Here, the concept of a power packet is introduced as a unit of electric power, so that power is digitized
and quantized. The results of this paper suggest a mathematical framework which integrates energy
and information in electrical energy networks.
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