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1.1 Introduction

This is a summary of the author’s thesis [9] entitled “Asymptotic behaviors or random walks;
application of heat kernel estimates”. The main focus of the thesis is to analyze asymptotic behavior
for random walks (RWs) on graphs. More specifically, we deal with the following two topics:

• Escape rates of random walks in random environments.

• Cutoff phenomena for lamplighter chains.

Heat kernel estimates (HKEs) are obtained for various classes of stochastic processes such as diffu-
sions on Rd, Riemannian manifolds, fractals, metric measure spaces and random walks on graphs,
random environments, and so on. In this thesis, we discuss the above two topics as applications of
the study of HKEs.

1.1.1 The random conductance model

The study of random walks in random environments has been one of the central topics in probability
theory. The random conductance model, which is described below, is a specific class of random
environments. The conductance model consists of a pair (G,ω) of a graph G = (V (G), E(G))
and a function ω : V (G) × V (G) → [0,∞), ω 7→ ωxy such that ωxy = ωyx and ωxy > 0 iff
{x, y} ∈ E(G). The function ω is called the conductance. When ω is a random variable defined on
a probability space (Ω,F ,P), then the pair is called the random conductance model (RCM). For
a given RCM, we consider discrete-time RW {Xω

n }n≥0 and continuous-time RW {Y ω
t }t≥0 whose

transition probabilities are given by

Pω(x, y) =
ωxy

ωx
, where ωx =

∑
y:{x,y}∈E(G)

ωxy,

denoting the corresponding heat kernels for both discrete and continuous time RWs by

pωn(x, y) =
Pω
x (Xn = y)

ωy
and qωt (x, y) =

Pω
x (Yt = y)

ωy
.

One of the most important models is the percolation on Zd, which descries how liquid percolates
porous materials. The model is defined as follows: For each edge of Zd, flip a (possibly unfair) coin
which takes head and tail with probability p and 1 − p respectively, and leave (resp. remove) the
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edge when the coin takes head (resp. tail). It is known that there exists pc = pc(d) such that
the resulting graphs have a unique infinite component for p > pc(d) and no infinite component for
p < pc(d). The level sets of discrete Gaussian free field (DGFF) and the random interlacements are
also interesting and important: The DGFF on Zd(d ≥ 3) is a family of centered Gaussian random
variables {φx}x∈Zd such that the covariance is given by the Green function of a simple random walk
on Zd. The level sets of the DGFF are the sets of the form Eh := {x ∈ Zd | φx ≥ h}. The random
interlacements is, roughly speaking, the random set visited by infinitely many independent random
walks on Zd (d ≥ 3). See [5] for more details of the random interlacements. We can regard these
models as percolations with long range correlations.

Some properties of RWs on a certain class of the RCM for G = Zd are similar to those of simple
random walks on Zd. One of such properties is the long-time Gaussian HKEs. In fact, for a class of
the RCM, there exists a family of random variables {Nx}x∈V (G) such that discrete-time RWs enjoy

pωn(x, y) ≤
c

nd/2
exp

[
−1

c

d(x, y)2

n

]
, (1.1)

pωn(x, y) + pωn+1(x, y) ≥
1

cnd/2
exp

[
−c

d(x, y)2

n

]
(1.2)

for all n, x, y ∈ V (G) with d(x, y) ∨Nx ≤ n, and continuous-time RWs enjoy

qωt (x, y) ≤


c

td/2
exp

[
− 1

c

(
d(x,y)2

t

)]
, if t ≥ d(x, y),

c exp
[
− 1

cd(x, y)
(
1 ∨ log d(x,y)

t

)]
, if t ≤ d(x, y),

(1.3)

qωt (x, y) ≥
1

ctd/2
exp

[
−c

(
d(x, y)2

t

)]
(1.4)

for almost all ω ∈ Ω, all x, y ∈ V (G) and t ≥ 0 with d(x, y)1+ϵ ∨Nx(ω) ≤ t, where d is the graph
distance and c ∈ (0,∞) is a constant which is independent of ω. Moreover, the following form of
estimate of tail probability of Nx is obtained for a class of RCMs:

P(Nx ≥ n) ≤ f(n), for some non-increasing function f. (1.5)

For the uniform elliptic case (c−1 ≤ ωxy ≤ c for all xy ∈ E(G) with some finite constant c),
such results were obtained by Delmotte [4] for discrete and continuous time RWs with Nx ≡ 0.
Later, Barlow [1] obtained the above HKEs for the super-critical percolation cluster with f(n) =
c exp(−c−1n) with a finite constant c. Barlow and Deuschel [3] obtained the coutinuous time HKEs
in the case ωxy ∈ [1,∞) with f(n) = c exp(−c−1n). Sapozhnikov [12] obtained the HKEs for the
percolation cluster with long range correlation with f(n) = c exp(−c−1(log n)1+δ) (δ > 0).

1.1.2 Lamplighter random walks on fractals

Suppose that each vertex of a graph G is equipped with a lamp (= {0, 1}), and we consider a random
walk that moves on the graph and also switches lamps uniformly at random before it moves to one
of the nearest vertices of G. Such a random walk is called the lamplighter random walk, and is
formulated on the wreath product Z2 ≀G.

The wreath product Z2 ≀G is endowed with a group structure when G is a discrete group, and
the lamplighter random walks have been studied in the context of random walks on discrete groups
(see e.g. [13, 10, 7, 11] and the references therein).
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The mixing time and the cutoff phenomenon are interesting topics in the study of finite Markov
chains. To describe these two notions, let {H(N)} be a sequence of finite graphs, and {Y (N)} be
irreducible and aperiodic Markov chains on H(N) with transition probability P (N). For each N ,
there exists a unique invariant distribution π(N): π(N) is the probability distribution on V (H(N))
which satisfies

π(N)P (N) = π(N),

(equivalently,
∑

y∈V (H(N)) π
(N)(y)P (N)(y, x) = π(N)(x) for all x ∈ V (H(N))). Moreover, π(N) is

given by the limit of the distribution of the Markov chain:

π(N)(y) = lim
n→∞

(P (N))n(x, y), ∀x, y ∈ V (H(N)).

It is interesting to see the speed of the above convergence. The (ϵ-)mixing time is the first time
that the total variation distance

d(N)(n) := max
x∈V (H(N))

∥Px(Y
(N)
n = ·)− π(N)(·)∥TV

=
1

2
max

x∈V (H(N))

∑
y∈V (H(N))

|Px(Y
(N)
n = y)− π(N)(y)|

is less than ϵ, i.e.

Tmix(H
(N); ϵ) := inf{n ≥ 0 | d(N)(n) ≤ ϵ}.

We say that the pair ({H(N)}, {Y (N)}) has a cutoff if there exists a sequence {aN} such that

lim
N→∞

Tmix(H
(N); ϵ)

aN
= 1, ∀ϵ ∈ (0, 1).

In this thesis, we discuss the cutoff phenomena when H(N) = Z2 ≀G(N) and G(N)’s are finite fractal
graphs.

It is known that, for a class of fractals, the number of vertices in a ball of radius r satisfies the
df -set condition. Namely, there exists a positive and finite constant c such that, for any vertex x
and r > 0,

c−1rdf ≤ ♯B(x, r) ≤ crdf .

Another typical property of random walks on (countably infinite) fractal graphs is the sub-diffusivity.
Namely, there exists dw (called the escape rate or the walk dimension) and a constant c ∈ (0,∞)
such that c−1n1/dw ≤ E[d(X0, Xn)] ≤ cn1/dw . For many fractals, dw > 2 in contrast to dw = 2 in
the case of Zd. In fact, random walks on a class of fractal graphs enjoy the following HKEs:

pn(x, y) ≤
c

ndf/dw
exp

[
−c−1

(
d(x, y)dw

n

)1/(dw−1)
]
, (1.6)

pn(x, y) + pn+1(x, y) ≥
1

cndf/dw
exp

[
−c

(
d(x, y)dw

n

)1/(dw−1)
]
. (1.7)
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Note that, for the case dw = 2, (1.6) and (1.7) are called the Gaussian HKEs.

In the study of HKEs, it is also known that HKEs are equivalent to other conditions such as
volume doubling property (VD), Poincaré inequality (PI), a cutoff Sobolev inequality (CS), and a
parabolic Harnack inequality (PHI). In fact, the following conditions are known to be equivalent
for a class of random walks (see [2]).

(a) (VD), (PI) and (CS),

(b) (HKE(dw)),

(c) (PHI(dw)).

1.2 Main results

The thesis [9] consists of three papers:

• Chapter 2 : T. Kumagai and C. Nakamura, Laws of the iterated logarithm for random walks
on random conductance models. Stochastic analysis on large scale interacting systems, 141–
156, RIMS Kôkyûroku Bessatsu, B59, Res. Inst. Math. Sci. (RIMS), Kyoto, 2016.

• Chapter 3: C. Nakamura, Rate functions for random walks on random conductance models
and related topics. Kodai Math. J. 40 (2017), no. 2, 289–321.

• Chapter 4 : A. Dembo, T. Kumagai and C. Nakamura, Cutoff for lamplighter chains on
fractals. Preprint.

We summarize the main results of the thesis.

1.2.1 Main results in Chapter 2

In Chapter 2 of [9], we study the laws of the iterated logarithm (LIL) for a discrete-time RW on
the RCM.

The first result is the following (see [9, Theorem 2.1.2] for the precise statement).

Theorem 1.1 (Theorem 2.1.2 in Chapter 2). Suppose that a RW on the RCM enjoy long-time
Gaussian HKEs (1.1) (1.2), and f(n) of (1.5) satisfies an integrability condition

∑
n n

2df(n) < ∞.
Then, for almost all environment ω ∈ Ω, there exist positive constants C1 = C1(ω) and C2 = C2(ω)
such that the following hold.

lim sup
n→∞

d(Xω
0 , X

ω
n )

n1/2(log log n)1/2
= C1, Pω

x -a.s. for all x ∈ V (G), (1.8)

lim inf
n→∞

max0≤ℓ≤n d(X
ω
0 , X

ω
ℓ )

n1/2(log log n)−1/2
= C2, Pω

x -a.s. for all x ∈ V (G). (1.9)

As we discussed in Section 1.1.1, the Gaussian HKEs are obtained for various examples, and
the above results are applicable to those models.

Note that the constants C1 and C2 in Theorem 1.1 may depend on the random environment.
The next result, which is motivated by [6, Sections 3 and 4], states that we can take the constants
C1 and C2 independently from the random environment when we consider ergodic environments.
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Theorem 1.2 (Theorem 2.1.4 in Chapter 2). Suppose the same conditions as in Theorem 1.1. In
addition, suppose that the random environment ω is ergodic w.r.t. the shifts on Zd. Then we can
take C1 and C2 in Theorem 1.1 as deterministic constants (which do not depend on ω).

We give a sketch of the proof (see [9, Chapter 2] for more details). By estimating Px(d(X
ω
0 , X

ω
n ) ≥

λn1/2(log log n)1/2) from above and below by using HKEs, and then, using the Borel-Cantelli lemma
we can deduce

c1 ≤ lim sup
n→∞

d(Xω
0 , X

ω
n )

n1/2(log log n)1/2
≤ c2, Pω

x -a.s. for all x ∈ V (G).

Finally, by employing 0-1 law for the tail events, we conclude (1.8).

To show (1.9), we first deduce the following LIL for the first exiting time τB(x,r) from the ball
B(x, r):

c1 ≤ lim sup
n→∞

τB(x,r)

r2(log log r2)
≤ c2, Pω

x -a.s. for all x ∈ V (G), (1.10)

by estimating Px(τB(x,r) ≥ λr2(log log r2)) from above and below by using HKEs and using the
Borel-Cantelli lemma. By putting n = r2(log log r2) into (1.10) and by the 0-1 law for the tail
events, we can deduce (1.9).

To show Theorem 1.2, we employ the notion of the random environment seen from the particle.
Then the conclusion follows by the ergodic theorem.

1.2.2 Main results in Chapter 3

In Chapter 3 of [9], we study the escape rate of continuous-time RWs on a class of the RCMs.
The first result is the LIL for continuous-time RWs.

Theorem 1.3 (Theorem 3.1.5 in Chapter 3). Suppose that a RW on the RCM enjoys the long-time
Gaussian HKEs (1.3) (1.4), and f(n) in (1.5) satisfies the integrability condition

∑
n n

2df(n) < ∞.

(1) For almost all ω ∈ Ω there exist positive numbers c1 = cω1 and c2 = cω2 such that

lim sup
t→∞

d(Y ω
0 , Y ω

t )

t1/2(log log t)1/2
= c1, Pω

x -a.s. for all x ∈ V (G),

lim sup
t→∞

sup0≤s≤t d(Y
ω
0 , Y ω

s )

t1/2(log log t)1/2
= c2, Pω

x -a.s. for all x ∈ V (G).

(2) For almost all ω ∈ Ω there exists a positive number c3 = cω3 such that

lim inf
t→∞

sup0≤s≤t d(Y
ω
0 , Y ω

s )

t1/2(log log t)−1/2
= c3, Pω

x -a.s. for all x ∈ V (G).

The next result is concerning the escape rate for RWs on a class of RCM.
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Theorem 1.4 ((d ≥ 3) Theorem 3.1.6 in Chapter 3). Let h be a non-increasing function, and
suppose that a RW on a class of RCMs enjoys the long-time Gaussian HKEs (1.3) and (1.4), and
f(n) in (1.5) satisfies the integrability condition

∑
n n

df(nh(n2)) < ∞. Then, either

Pω
x

(
d(x, Y ω

t ) ≥ t1/2h(t) for all sufficiently large t
)
= 1

for almost all ω ∈ Ω and all x ∈ V (G), or

Pω
x

(
d(x, Y ω

t ) ≥ t1/2h(t) for all sufficiently large t
)
= 0,

for almost all ω ∈ Ω and all x ∈ V (G), according as
∫∞
1

1
th(t)

d−2dt < ∞ or = ∞.

Theorems 1.3 and 1.4 are applicable to various examples such as a RW on the supercritical
percolation cluster, the case ωxy ∈ [1,∞), the level sets of DGFF and the random interlacements.

As in the discrete-time case, the constants in Theorem 1.3 are deterministic when the random
environment is ergodic.

Theorem 1.5 (Theorem 3.1.8 in Chapter 3). Suppose that the same assumptions as in Theorem
1.3 are fulfilled and suppose in addition that the random environment is ergodic w.r.t. the shifts
on Zd. Then we can take c1, c2 and c3 in Theorem 1.3 as deterministic constants (i.e. they do not
depend on ω).

The strategy of the proof of Theorem 1.3 is similar to that of Theorem 1.1, so we explain the
strategy of the proof of Theorem 1.4. To prove Theorem 1.4, we need to estimate the probability
that RW returns to balls centered around its starting point. In fact, we have the following estimates:

c−1
1 rd−2t

td/2
≤ Pω

x (d(x0, Y
ω
s ) ≤ 2r for some s > t) ≤ c1r

d−2t

td/2
,

where d(x0, x) ≤ r. By the above inequalities and the Borel-Cantelli lemma, we obtain the desired
results.

1.2.3 Main Result in Chapter 4

In Chapter 4 of [9], we discuss the cutoff phenomena for the lamplighter random walks on fractals.
Miller and Peres [8] gave a general framework for the cutoff phenomena with threshold 1

2Tcov(G
(N)),

where Tcov(G
(N)) is the expected cover time of the RW on G(N) (i.e. the expected time that

a random walk visits all the vertices of G(N)). A key assumption is uniform elliptic Harnack
inequalities. We replace the uniform elliptic Harnack inequalities by uniform parabolic Harnack
inequalities, and as a result, we derive a dichotomy result for the cutoff phenomena for lamplighter
chains. Our main result is the following (see Theorem [9, Theorem 4.1.4] for the precise statement):

Theorem 1.6 (Theorem 4.1.4 in Chapter 4). Suppose that an increasing sequence of finite graphs
{G(N)}N satisfies (i) df -set condition and (ii) uniform parabolic Harnack inequalities with order
dw. Then,

(a) if df < dw, then the lamplighter random walks on G(N) do NOT have a cutoff.
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(b) if df > dw, then the lamplighter random walks on G(N) have a cutoff with threshold aN =
1
2Tcov(G

(N)).

For examples, a sequence of finite graphs of a class of fractals satisfies the assumptions. As an
analogue we discussed in Section 1.1.2, the uniform parabolic Harnack inequalities are equivalent
to a finite analogue of HKEs.

The proof of Theorem 1.6 (b) is conducted by confirming the conditions given by [8]. To show
Theorem 1.6 (a), we need to establish the following upper bound of the cover time:

sup
z∈V (G(N))

{Pz(τcov(G
(N)) > t)} ≤ c0e

−t/(c0TN )

for all t,N , where TN := (diam{G(N)})dw . Moreover, we derive the following upper and lower
bounds of total variation estimates:

c−1
1 e−c1t/TN − c2(diam{G(N)})−df ≤ max

x∈V (Z2≀G(N))
∥P ∗

t (x, ·;G(N))− π∗(·;G(N))∥TV

≤ max
x∈V (G(N))

Px(τcov(G
(N)) > t) +

√
SN

2
√
t
,

where SN := maxx,y∈V (G(N)){R
(N)
eff (x, y)}. Combining the above we obtain the desired result.
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