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Chapter 1

Introduction

1.1 General introduction

The main focus of this thesis to analyze asymptotic behavior for random walks (RWs)
on graphs. More specifically, we deal with the following two topics:

e Escape rates of random walks in random environments.
e Cutoff phenomena for lamplighter chains.

Heat kernel estimates (HKESs) are obtained for various classes of stochastic processes
such as diffusions on R?, Riemannian manifolds, fractals, metric measure spaces and
random walks on graphs, random environments, and so on. In this thesis, we discuss
the above two topics as applications of the study of HKEs.

1.1.1 The random conductance model

The study of random walks in random environments has been one of the central topics
in probability theory. The random conductance model, which is described below, is
a specific class of random environments. The conductance model consists of a pair
(G,w) of a graph G = (V(G), E(G)) and a function w : V(G) x V(G) — [0,00),
W > wyy such that w,, = wy, and w,, > 0 iff {z,y} € E(G). The function w is
called the conductance. When w is a random variable defined on a probability space
(Q, F,P), then the pair is called the random conductance model (RCM). For a given
RCM, we consider discrete-time RW {X¥}, 5o and continuous-time RW {Y*};>



whose transition probabilities are given by

PY(z,y) = wxy, where w, = Z Way,

wl‘
yi{zy}eE(G)

denoting the corresponding heat kernels for both discrete and continuous time RWs
by
p(a,y) = 2 =) X2 =9) ang @ (oyy) = =Y %=y)
Wy Wy

One of the most important models is the percolation on Z?, which descries how
liquid percolates porous materials. The model is defined as follows: For each edge
of Z%, flip a (possibly unfair) coin which takes head and tail with probability p and
1 — p respectively, and leave (resp. remove) the edge when the coin takes head (resp.
tail). It is known that there exists p. = p.(d) such that the resulting graphs have
a unique infinite component for p > p.(d) and no infinite component for p < p.(d).
The level sets of discrete Gaussian free field (DGFF) and the random interlacements
are also interesting and important: The DGFF on Z¢(d > 3) is a family of centered
Gaussian random variables {¢, },cze such that the covariance is given by the Green
function of a simple random walk on Z?. The level sets of the DGFF are the sets of
the form Ej, := {x € Z¢ | ¢, > h}. The random interlacements is, roughly speaking,
the random set visited by infinitely many independent random walks on Z2 (d > 3).
See [26] for more details of the random interlacements. We can regard these models
as percolations with long range correlations.

Some properties of RWs on a certain class of the RCM for G = Z¢ are similar
to those of simple random walks on Z¢. One of such properties is the long-time
Gaussian HKEs. In fact, for a class of the RCM, there exists a family of random
variables { N, },ev () such that discrete-time RWs enjoy

o c ld(z,y)*

pr(x,y) < 2 exp {_ET , (1.1.1)
w y 1 d(z,y)?

PR, y) + P (@, y) 2 —7 exp {—CT (1.1.2)



for all n, z,y € V(G) with d(x,y) V N, < n, and continuous-time RWs enjoy
xT 2 .
4 \T,Y) > 1.
! cexp [—%d(w,y) (1 V log @)} , ittt <d(x,y),
. 1 d(z,y)*
g’ (z,y) > 73 OXP {—c . (1.1.4)

for almost all w € 2, all z,y € V(G) and t > 0 with d(x,y)' ™V N,(w) < ¢, where
d is the graph distance and ¢ € (0,00) is a constant which is independent of w.

Moreover, the following form of estimate of tail probability of N, is obtained for a
class of RCMs:

P(N, > n) < f(n), for some non-increasing function f. (1.1.5)

For the uniform elliptic case (¢! < w,, < ¢ for all zy € E(G) with some finite
constant ¢), such results were obtained by Delmotte [24] for discrete and continuous
time RWs with N, = 0. Later, Barlow [4] obtained the above HKEs for the super-
critical percolation cluster with f(n) = cexp(—c~'n) with a finite constant c. Barlow
and Deuschel [12] obtained the coutinuous time HKEs in the case w,, € [1,00)
with f(n) = cexp(—c~'n). Sapozhnikov [63] obtained the HKEs for the percolation
cluster with long range correlation with f(n) = cexp(—c~!(logn)'*%) (6 > 0).

1.1.2 Lamplighter random walks on fractals

Suppose that each vertex of a graph G is equipped with a lamp (= {0, 1}), and we
consider a random walk that moves on the graph and also switches lamps uniformly
at random before it moves to one of the nearest vertices of G. Such a random walk is
called the lamplighter random walk, and is formulated on the wreath product ZsG.

The wreath product Zy!G is endowed with a group structure when G is a discrete
group, and the lamplighter random walks have been studied in the context of random
walks on discrete groups (see e.g. [74, 58, 28, 62] and the references therein).

The mixing time and the cutoff phenomenon are interesting topics in the study
of finite Markov chains. To describe these two notions, let {H™} be a sequence of
finite graphs, and {Y ™} be irreducible and aperiodic Markov chains on H™) with
transition probability PN). For each N, there exists a unique invariant distribution
7N 7N) is the probability distribution on V (H™)) which satisfies

AN pN) — (%)



(equivalently, > <y (o) M () PN (y, z) = 7N (2) for all z € V(HWM)). More-

N)

over, 7) is given by the limit of the distribution of the Markov chain:

7™ (y) = lim (PY)"(z,y),  Va,y e V(HD).

It is interesting to see the speed of the above convergence. The (e-)mixing time is
the first time that the total variation distance

dW(n) = max ||P(YY =) =7 (lly
zeV (HWN))

1

== P (YN =) — z(V)

2 omax, >, B =y) - aM(y)
yeV(HWN))

is less than e, i.e.

Toix(H™; €) :=inf{n > 0| d™(n) < €}.
We say that the pair ({H®™} {Y(™1) has a cutoff if there exists a sequence {ay}
such that

Tmix ™),
lim —<H )
N—oco an

=1, Ve € (0,1).
In this thesis, we discuss the cutoff phenomena when H™) = Z, } G™ and GM)’s
are finite fractal graphs.

It is known that, for a class of fractals, the number of vertices in a ball of radius
r satisfies the dy-set condition. Namely, there exists a positive and finite constant c
such that, for any vertex x and r > 0,

it <4B(x,7) < er.

Another typical property of random walks on (countably infinite) fractal graphs
is the sub-diffusivity. Namely, there exists d,, (called the escape rate or the walk
dimension) and a constant ¢ € (0,00) such that ¢~ 'n/4 < E[d(Xo, X,)] < cn'/de,
For many fractals, d,, > 2 in contrast to d,, = 2 in the case of Z¢. In fact, random
walks on a class of fractal graphs enjoy the following HKEs:

e y>dw)”<"w‘”

p : (1.1.6)

& _
pn(xuy) < WGXP [—C ! (

1 d(z,y)de 1/(dw—1)
Pu(2,Y) + Pt (z,y) = —5—exp | —c dw,y)™ . (1.1.7)
cn 7/ dw



Note that, for the case d,, = 2, (1.1.6) and (1.1.7) are called the Gaussian HKEs.

In the study of HKESs, it is also known that HKEs are equivalent to other con-
ditions such as volume doubling property (VD), Poincaré inequality (PI), a cutoff
Sobolev inequality (CS), and a parabolic Harnack inequality (PHI) (see Section 4.2.1
for these conditions.) In fact, the following conditions are known to be equivalent
for a class of random walks (see [8]).

(a) (VD), (PI) and (CS),
(b) (HKE(dy)),
(c) (PHI(dy)).

1.2 Main results

This thesis consists of three papers:

e Chapter 2 : T. Kumagai and C. Nakamura, Laws of the iterated logarithm
for random walks on random conductance models. Stochastic analysis on large
scale interacting systems, 141-156, RIMS Kokytroku Bessatsu, B59, Res. Inst.
Math. Sci. (RIMS), Kyoto, 2016.

e Chapter 3: C.Nakamura, Rate functions for random walks on random conduc-
tance models and related topics. Kodai Math. J. 40 (2017), no. 2, 289-321.

e Chapter 4: A. Dembo, T. Kumagai and C. Nakamura, Cutoff for lamplighter
chains on fractals. Preprint.

We summarize the main results of this thesis.

1.2.1 Main results in Chapter 2

In Chapter 2, we study the laws of the iterated logarithm (LIL) for a discrete-time
RW on the RCM.
The first result is the following (see Theorem 2.1.2 for the precise statement).

Theorem 1.2.1 (Theorem 2.1.2 in Chapter 2). Suppose that a RW on the RCM enjoy
long-time Gaussian HKFEs (1.1.1) (1.1.2), and f(n) of (1.1.5) satisfies an integrability



condition Y, n**f(n) < oo. Then, for almost all environment w € ), there exist
positive constants C1 = C1(w) and Cy = Cy(w) such that the following hold.
. d(Xg, X3) w
hgl_itip 2 (loglog )12 Ch, P?-a.s. for all x € V(G), (1.2.1)
lim inf o 0Stsn d( X5, X7)
n—oo  nl/2(loglogn)=1/2

= (y, PY-a.s. for all x € V(G). (1.2.2)

As we discussed in Section 1.1.1, the Gaussian HKEs are obtained for various
examples, and the above results are applicable to those models.

Note that the constants C; and C5 in Theorem 1.2.1 may depend on the ran-
dom environment. The next result, which is motivated by [27, Sections 3 and 4],
states that we can take the constants C| and Cs independently from the random
environment when we consider ergodic environments.

Theorem 1.2.2 (Theorem 2.1.4 in Chapter 2). Suppose the same conditions as in
Theorem 1.2.1. In addition, suppose that the random environment w is ergodic w.r.t.
the shifts on Z*. Then we can take Ci and Cy in Theorem 1.2.1 as deterministic
constants (which do not depend on w).

We give a sketch of the proof (see Chapter 2 for more details). By estimating
P.(d(X¥, X¥) > An'/?(loglog n)'/?) from above and below by using HKEs, and then,
using the Borel-Cantelli lemma we can deduce

d( Xy, X¥
c; < limsup (X5, X5)

e’ 1/2(log log n)1/2 < ¢, Pr-as. for all z € V(G).

Finally, by employing 0-1 law for the tail events, we conclude (1.2.1).

To show (1.2.2), we first deduce the following LIL for the first exiting time 75, .
from the ball B(z,r):

-
c1 < limsup Blar)

- < PY-a.s. for all 1.2.
MU e log 1) = Ca, “_a.s. for all z € V(G), (1.2.3)

by estimating P, (7p(z > Ar*(loglogr?)) from above and below by using HKEs and
using the Borel-Cantelli lemma. By putting n = r?(loglog r?) into (1.2.3) and by the
0-1 law for the tail events, we can deduce (1.2.2).

To show Theorem 1.2.2, we employ the notion of the random environment seen
from the particle. Then the conclusion follows by the ergodic theorem.



1.2.2 Main results in Chapter 3

In Chapter 3, we study the escape rate of continuous-time RWs on a class of the

RCMs.
The first result is the LIL for continuous-time RWs.

Theorem 1.2.3 (Theorem 3.1.5 in Chapter 3). Suppose that a RW on the RCM
enjoys the long-time Gaussian HKFEs (1.1.3) (1.1.4), and f(n) in (1.1.5) satisfies the
integrability condition > n*!f(n) < oco.

(1) For almost all w € Q there exist positive numbers ¢, = ¢ and co = ¢ such
that

. d(Yg", Yy) »
hrtliigp 2(loglog )12 1, P?-a.s. for all x € V(GQ),

. SUPg<s<t d(YO‘“, st) . w
hlziilolp T2 (loglog )72 Ca, Pe-a.s. for all x € V(G).

(2) For almost all w € §) there exists a positive number cg = ¢ such that

.. SUPg<s<t d(Yy”, Yy w
hggf 172(log Tog £)1/2 = ¢, P?-a.s. for all x € V(G).

The next result is concerning the escape rate for RWs on a class of RCM.

Theorem 1.2.4 ((d > 3) Theorem 3.1.6 in Chapter 3). Let h be a non-increasing
function, and suppose that a RW on a class of RCMs enjoys the long-time Gaussian
HKEs (1.1.3) and (1.1.4), and f(n) in (1.1.5) satisfies the integrability condition
>, ntf(nh(n?)) < co. Then, either

P2 (d(x,Y,?) > t2h(t) for all sufficiently large t)=1
for almost all w € Q and all z € V(G), or
Py (d(x, Y©) > tY21h(t) for all sufficiently large t) =0,
for almost all w € Q and all x € V(G), according as [~ $h(t)*2dt < 0o or = 0.

Theorems 1.2.3 and 1.2.4 are applicable to various examples such as a RW on the
supercritical percolation cluster, the case w,, € [1,00), the level sets of DGFF and
the random interlacements.

As in the discrete-time case, the constants in Theorem 1.2.3 are deterministic
when the random environment is ergodic.



Theorem 1.2.5 (Theorem 3.1.8 in Chapter 3). Suppose that the same assumptions
as in Theorem 1.2.3 are fulfilled and suppose in addition that the random environment
is ergodic w.r.t. the shifts on Z¢. Then we can take ci,cy and c3 in Theorem 1.2.3
as deterministic constants (i.e. they do not depend on w).

The strategy of the proof of Theorem 1.2.3 is similar to that of Theorem 1.2.1,
so we explain the strategy of the proof of Theorem 1.2.4. To prove Theorem 1.2.4,
we need to estimate the probability that RW returns to balls centered around its
starting point. In fact, we have the following estimates:
—1,.d—2 d—2

cp rt o w cr®t

1td—/2 < P? (d(xo, YY) < 2r for some s > t) < iz
where d(zg,x) < r. By the above inequalities and the Borel-Cantelli lemma, we
obtain the desired results.

1.2.3 Main Result in Chapter 4

In Chapter 4, we discuss the cutoff phenomena for the lamplighter random walks on
fractals. Miller and Peres [54] gave a general framework for the cutoff phenomena
with threshold %TCOV(G(N )), where Tio (GMY)) is the expected cover time of the RW
on G (i.e. the expected time that a random walk visits all the vertices of G(V)).
A key assumption is uniform elliptic Harnack inequalities. We replace the uniform
elliptic Harnack inequalities by uniform parabolic Harnack inequalities, and as a
result, we derive a dichotomy result for the cutoff phenomena for lamplighter chains.
Our main result is the following (see Theorem 4.1.4 for the precise statement):

Theorem 1.2.6 (Theorem 4.1.4 in Chapter 4). Suppose that an increasing sequence
of finite graphs {G™)} y satisfies (i) dg-set condition and (ii) uniform parabolic Har-
nack inequalities with order d,,. Then,

(a) if dy < d, then the lamplighter random walks on G™) do NOT have a cutoff.

(b) if dy > d, then the lamplighter random walks on GWN) have a cutoff with
threshold ay = $Toon (GM).

For examples, a sequence of finite graphs of a class of fractals satisfies the assump-
tions. As an analogue we discussed in Section 1.1.2, the uniform parabolic Harnack
inequalities are equivalent to a finite analogue of HKEs.



The proof of Theorem 1.2.6 (b) is conducted by confirming the conditions given
by [54]. To show Theorem 1.2.6 (a), we need to establish the following upper bound
of the cover time:

sup {PZ(TCOV(G(N)) > t)} < coe*t/(coTN)
2€V(GWV)

for all £, N, where Ty := (diam{G™})% . Moreover, we derive the following upper
and lower bounds of total variation estimates:

e TN — oy (diam{G™M}) " < max [P (z, GN) — 77 (5 G ||y

T zeV(ZaG(N)
VS
< max Pw(TCOV(G(N)) >t) + VoN ,
2eV(G) 21/t

c

where Sy := maxx,yev((;(N)){Rg)(x, y)}. Combining the above we obtain the desired
result.
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Chapter 2

Laws of the iterated logarithm for
random walks on random
conductance models

We derive laws of the iterated logarithm for random walks on random conductance
models under the assumption that the random walks enjoy long time sub-Gaussian
heat kernel estimates.

2.1 Introduction

Random walks in random environments have been extensively studied for several
decades in probability and mathematical physics. Random conductance model (RCM)
is a specific class in that random walks on the RCMs are reversible, and that the class
includes many important examples. Recently, there has been significant progress in
the study of asymptotic behaviors of random walks on RCMs. In particular, asymp-
totic behaviors such as invariance principles and heat kernel estimates are obtained
in the quenched sense, namely almost surely with respect to the randomness of the
environments, even for degenerate cases. One of the typical examples is the random
walk on the supercritical percolation cluster on Z9. In this case, Barlow [4] obtained
quenched long time Gaussian heat kernel estimates such as (2.1.3) and (2.1.4) below
with o = d, 8 = 2. Soon after that, the quenched invariance principle was proved
in [65] for d > 4 and later extended to all d > 2 in [16, 53]. Namely, for a simple
random walk {Y“},>¢ on the cluster, it was proved that €Y|{).2) converges as € — 0

to Brownian motion on R? with covariance o2, ¢ > 0, for almost all environment
w. We note that the proof for d > 3 uses the heat kernel estimates given in [4].

10



The RCM on a graph is a family of non-negative random variables indexed by
edges of the graph. Supercritical bond percolation cluster is a typical (degenerate)
RCM which endows each edge of Z¢ with i.i.d. Bernoulli random variable. The
quenched Gaussian heat kernel estimates are established for various other RCMs, for
example

(a) uniformly elliptic conductances ([24]),

(b) i.i.d. unbounded conductances bounded from below by a strictly positive con-
stant ([12]),

(c) ii.d. conductances bounded from above and some tail condition near 0 ([15]),

(d) random walks on the level sets of Gaussian free fields and the framework of
random interlacements ([63]),

(e) positive conductances with some integrability condition ([2]).

Note that conductances in (a), (d), (e) are not necessarily i.i.d. Note also that,
while (b)-(d) are discussed on Z4, (a) and (e) are discussed for more general graphs
with some analytic properties. Quenched invariance principles for the random walks
on RCMs are also established extensively. For more details, see [17, 49] and the
references therein.

We are interested in further quenched asymptotic behaviors of the random walks
on RCMs. The aim of this paper is to establish the laws of the iterated logarithm
(LILs) for the sample paths of the random walk such as (2.1.6) and (2.1.7) below
in the quenched level. In fact, for the random walk on the supercritical percolation
cluster, Duminil-Copin [27] obtained the standard LIL (limsup version as in (2.1.6))
by using the results of [4]. Also, in [48] the LIL is obtained for a class of transient
random walk in random environments. The novelty of this paper is twofold.

e We establish another law of the iterated logarithm (liminf version as in (2.1.7)).
e We establish quenched LILs for random walks on much more general RCMs.

Our approach is through the heat kernel estimates. Namely, we assume the quenched
heat kernel estimates (Assumption 2.1.1) and establish the quenched LILs (Theorem
2.1.2). Since the quenched heat kernel estimates are established for many RCMs,
our theorem applies for those examples as we discuss in Section 2.1.2.

The organization of the paper is as follows. We first explain the framework and
main results of this paper. In Section 2.2, we give the preliminary estimates to

11



prove the main results. In Section 2.3 we prove the LIL and in Section 2.4 we prove
another LIL. Finally in Section 2.5, we assume the ergodicity of the media when
G = Z¢ and prove that the constants appearing in the limsup and liminf in the LILs
are deterministic.

2.1.1 Framework and main results

Let G = (V, E) be the countably infinite, locally finite and connected graph. We
can define the graph distance d : V' x V' — [0, 00) in the usual way, i.e. the shortest
length of path in G. Write B(z,r) = {y € V(G) | d(z,y) < r}. Throughout this
paper we assume that there exist a > 1 and ¢y, ¢ > 0 such that

cr® < gB(x,r) < cor® (2.1.1)

holds for all z € V(G) and r > 1.

We assume that the graph G is endowed with the non-negative weights (or con-
ductance) w = {w(e) | e € E} which are defined on a probability space (2, F,P).
We write w(e) = we = wyy if e = xy. We take the base point zy of G and set
V(G¥) = {v € V(G) | ¢ += v}, where 7y +— v means that there exists a path
v = ejeq - - - e from xg to v such that w(e;) > 0 foralli =1,2,--- k. We also define
C(w) as the set of all vertices  which satisfy 2 <~ oo, i.e. there exists an infinite
length and self-avoiding path v = ejeq - - - starting at = which satisfies w(e;) > 0 for
all 7. Note that if each weight w(e) is strictly positive, then V(G¥) = C(w) = V(G).
Let p“(x) = >, n Wey be the weight of z, V¥(A) = Z p“(y) be the volume

yeANV(G»)
of AC V(G) and V¥(x,r) = V¥(B(x,r)) be the volume of the ball B(z,r). We also
denote BY(z,r) = B(z,r) NV (GY).

Next we define the random walk on the weighted graph. Let {X¥},>¢ be the dis-
crete time random walk on V(G*) whose transition probability is given by P“(z,y) =

wzy). We write P¥(z,y) = P¥(X% = y). The heat kernel is denoted by p%(x,y) =
e (x
Pr(x,y)
1o (y)
For our main results, we assume the following conditions. Note that o > 1 is the
same as in (2.1.1).

Assumption 2.1.1. There exist Qo € F with P(Qy) = 1, positive constants ¢ 1, 1.2,
-, 16, 0,6, with e +1 < 8 and random variables N, (w) (z € V(G),w € Q) such
that the following hold.

12



(1) For allw € Qp, x € V(G¥) and r > N, (w), it holds that

cLar® < V(1) < epar. (2.1.2)

(2) For all w € Qp, {X%}n>0 enjoys the following heat kernel estimates;

B/(B-1)
w C1. d(r,y
p(z,y) < n;/gﬁ exp [—61.4 < ill/ﬁ)) ] (2.1.3)

for d(z,y) V Ny (w) <n, and

T B/(B-1)
P, y) + () > /ﬁexp[ o (50 ] (21.4)

for d(z,y)'* V Npe(w) < n.

(3) There exists a non-increasing function fc(n) which satisfies

P(N,.>n) < fdn) and ZnaﬁfE . (2.1.5)

n>1

Now we state the main result of this paper.

Theorem 2.1.2. Suppose that Assumption 2.1.1 holds. Then for almost all envi-
ronment w € §Q there exist positive constants Cy = Cy(w) and Cy = Cy(w) such that
the following hold.

d(Xg, X37)

ligls;}p 2173 (log log n) =177 = C, P?-a.s. for all x € V(G®), (2.1.6)
Ld(XE, X%
lim inf 2X0sen MG XE) o pe e v, (21)

n—00 nl/ﬁ(log log n)*l/ﬁ

We note that we can replace d(X¢, X2') in (2.1.6) to Jnax d(XSJ, X7’) with possibly

different C;. We also note that if the random walk can be embedded into Brownian
motion in some strong sense (which seems plausible in various concrete models), then
(2.1.6),(2.1.7) can be shown as a consequence ([18]). It would be very interesting to
prove such a strong approximation theorem.

The constants C; above may depend on the environment w. In order to guarantee
that they are deterministic constants, we need to assume the ergodicity of the media.
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For the purpose, we now consider the case G = Z?. In this case, we can define the
shift operators 7, : Q — Q (z € Z4) as

(T2w)yz = Wyta,zta-
We assume the following ergodicity of the media.
Assumption 2.1.3. Assume that (2, F,P) satisfies the following conditions;

(1) P is ergodic with respect to the translation operators 7, i.e. Po1, =P and for

any A € F with 7,(A) = A for all x € Z¢ then P(A) =0 or 1.

(2) For almost all environment w, C(w) contains an unique infinite connected com-
ponent.

Theorem 2.1.4. Suppose that Assumption 2.1.1 and Assumption 2.1.8 hold. Then
we can take Cy,Cy in Theorem 2.1.2 as deterministic constants (which do not depend
onw).

Remark 2.1.5. In this paper, we only consider discrete time Markov chains, but
similar results hold for continuous time Markov chains (constant speed random walks
and variable speed random walks); see [57].

2.1.2 Examples
In this subsection, we give examples for which our results hold.

Example 2.1.6 (Bernoulli supercritical percolation cluster). Barlow [/, Theorem
1] proved that heat kernels of simple random walks on the super-critical percola-
tion cluster for 7%, d > 2 satisfy Assumption 2.1.1 with o« = d, f = 2 and
fo(n) = cexp(—=c'n®) for some c,c',6 > 0. (In [4], heat kernels for continuous time
random walk were obtained. See the remark after [4, Theorem 1] and [16, Section
A] for discrete time modifications.) Since the media is i.i.d. and there exists an
unique infinite connected component, we can obtain the LILs (2.1.6) and (2.1.7) with
deterministic constants. Note that (2.1.6) for the supercritical percolation cluster was
already obtained by [27, Theorem 1.1].

Example 2.1.7 (Uniform elliptic case). Suppose the graph G = (V, E) endowed
with weight 1 on each edge satisfies (2.1.1) and the scaled Poincaré inequalities. Put
random conductance on each edge so that ¢; < w(e) < ¢y for all e € E and for
almost all w, where c1,co > 0 are deterministic constants. Then Assumption 2.1.1

holds with 8 =2 and N, = 1. So the LILs (2.1.6) and (2.1.7) hold.

14



Example 2.1.8 (Gaussian free fields and random interlacements). Sapozhnikov
[63, Theorem 1.15] proved that for Z2, d > 3, the random walks on (i) certain level
sets of Gaussian free fields; (ii) random interlacements at level u > 0; (iii) vacant sets
of random interlacements for suitable level sets, satisfy our Assumption 2.1.1 with
a =d, 8 =2 and the tail estimates of N, (w) as f.(n) = cexp(—c (logn)'*®) for
some ¢,c’, 0 > 0. This subexponential tail estimate is sufficient for Assumption 2.1.1
(3). Since the media is ergodic and there is an unique infinite connected components
(see [60], [66, Corollary 2.3] and [71, Theorem 1.1]), the LILs (2.1.6) and (2.1.7)
hold with deterministic constants.

Example 2.1.9 (Uniform elliptic RCM on fractals). Let a; = (0,0),ay = (1,0),

as = (1/2,v/3/2), I = {1,2,3} and set Fy(x) = (v — a;)/2 + a; fori € I. Define

V:U<2n U Z"’Lo'..oﬂl(ai))’ E:U<2n U F;:"LO...OEI(BO))’
neN ii1,e in€l neN i1y inel

where By = {{z,y} : * # y € {a1,a2,a3}}. G = (V,E) is called the 2-dimensional
pre-Sierpinski gasket. Put random conductance on each edge so that ¢; < w(e) < ¢
for all e € E and almost all w, where ¢1,co > 0 are deterministic constants. Then
Assumption 2.1.1 holds with oo = log3/log2, f =logb/log2 > 2 and N, =1. (In
fact, this can be generalized to the uniform finitely ramified graphs for some a > 1
and B8 > 2; see [37].) So the LILs (2.1.6) and (2.1.7) hold.

We note that among the examples mentioned at the beginning of this paper, (b),
(c) and (e) are for continuous time Markov chains, so the LILs will be discussed in

[57].
2.2 Consequences of Assumption 2.1.1

In this section, we prepare the preliminary results of Assumption 2.1.1.

2.2.1 Consequences of heat kernel estimates

We first give consequences of the heat kernel estimates (2.1.3) and (2.1.4).

Lemma 2.2.1. (1) There exist c1,cy > 0 such that for almost all w € Q,

w w ,r.ﬁ ﬁ
P (e 52 ) < (“’2 () )
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holds for allm > 1,r > 1 and x,y € V(G*) with max N, . (w) < r and

z€B(y,2r)
d(z,y) <r.

(2) There exist c3,cq, Ry > 0 such that for almost all w € Q,
w w w n
P (01%1%); d(Xg, X7) < r) < cgexp (—C4T—B)

holds for alln > 1,7 > Ry and x € V(G*) with I%E(LX : Nye(w) < 2r.
yeB(x,r

(3) Suppose € +1 < B. Then there exist c5,cg > 0 and n > 1 such that for almost
all w € €,

Py (max d(Xg, X7) < r) > c5 exp <—06%>
,

0<j<n

holds for all x € V(G¥) and n > 1,r > 1 with gzax )Nz,e(w) < ri/8,
z€B(x,3nr

Since the computations are standard, we omit the proof. Indeed, (1) can be
proved by simple modifications of [3, Lemma 3.9], and (2) can be proved similarly
to [51, Lemma 3.2]. (3) is simple modification of [51, Proposition 3.3] respectively.

Let ¢5,c6 > 0 be as in Lemma 2.2.1 (3). Define ag, by, A, ug, oy as follows:

k-1
al = e, by = e, A = cgtlog(es(1 4 k)¥3), wp = \al, op = Zul (2.2.1)
i=1

Corollary 2.2.2 (Corollary of Lemma 2.2.1(3)). Letn > 1 be as in Lemma 2.2.1 (3).
Then the following holds for almost all w € Q, all x € V(G¥) and k > 1 with

max N, (w) < a,lg/ﬁ,
z€B(z,4nay,)

1
min PY < max d(X7,X?) < ak) >

z€BY(z,ak) # \0<s<uk - (]. + k>2/3 ’
The heat kernel estimates (2.1.3) and (2.1.4) also give the triviality of tail events.
Theorem 2.2.3 (0—1 law for tail events). For almost allw € Q, the following holds;

Let A% be a tail event, i.e. A” € ﬂ o{ Xy : k> n}. Then either PY(A¥) =0 for all

n=0
x or PY(A¥) =1 for all x holds.

The proof of Theorem 2.2.3 is quite similar to that of [14, Proposition 2.3], so we
omit the proof.
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2.2.2 Consequences of the tail estimate (2.1.5)

We next give simple consequences of the tail estimate (2.1.5). Recall the notations
in (2.2.1), and set ®(q) = ¢'/?(loglog q)*~/.

Lemma 2.2.4. (1) Suppose that f.(n) satisfies Znafe(n) < 00. Then for any

1,72 > 0 and for almost all w € Q, there exists Ly eqy 4, (w) > 0 such that the
following hold for all n > Ly ¢, 4, (w),

a, > max N, . (w b, > max N, . (w).
Mln = z€B(x,v2an) Z’E( )’ "10n = z€B(x,v2bn) z,e( )

(2) Suppose that f.(n) satisfies Zno‘fg(n) < o0o. Then for any v1,72 >0, ¢ > 1

and for almost all w € S, there exists Ly ¢, 4y.q(w) > 0 such that the following
hold for all n > Ly ¢~y ~p q(W),

d(g"™) > max N, (w), (n=1)/8 > max N, (w).
n (q ) o z€B(z,v2®(q")) ’ ( ) i - 2€B(z,72¢(n=1)/B) ’ ( )

(3) Suppose that f.(n) satisfies Zno‘ﬁfe(n) < 0o. Then for all v1,7v2 > 0 and for

almost all w € Q, there exists Ky ¢, ~,(w) > 0 such that the following holds for
alln > Ky ey (W),

1al® > max N, (w).
z€B(z,v2an) ’

Proof. We only prove the first inequality in (1). It is easy to see that

P ( max N, > fym) < Z P(N,e>nn) < ci(y2n)fe(nn).

2€B(x,y2n) 2€B(w,72n)

The assumption implies > n®f.(y1n) < 0o, so the conclusion follows by the Borel-
Cantelli Lemma. ]

2.3 Proof of LIL

In this section, we prove (2.1.6) in Theorem 2.1.2. We continue to use the notation
®(q) = ¢*/%(loglog ¢)*~'/# in this section.
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Theorem 2.3.1. Suppose that Assumption 2.1.1 holds. Then there exists ¢, > 0
such that the following holds for almost all w € €2,

lim su maxosp<n (X, Xi) c
ool n'/B(loglogn)i-1/8 =

Proof. By Lemma 2.2.1 (1) we have

Py ( max d(Xy, Xy) > ?7<I>(q")> < crexp [_02 <M) L]

P?-a.s. for all x € V(G*).

0<k<gq" q"

) canP/(B=1)
= crexp [~/ Vloglog¢"] = 1 <n10g q)

for all ¢ > 1, almost all w and n with B(maq})(( ))NZ,E(w) < ®(q"). Therefore the
z€B(z,2®(g™
above estimate holds for n > L, c124(w) by Lemma 2.2.4 (2).

So taking n > 0 large enough and using the Borel-Cantelli Lemma, we have

maxop<g<gn d(XSJ, XI;U)

lim sup <.
n—»00 <I>(q”)
We can easily obtain the conclusion from the above inequality. ]

Theorem 2.3.2. Suppose that Assumption 2.1.1 holds. Then there exists c. > 0
such that the following holds for almost all w € €1,
d(X§, X))

li >co PY-a.s. “).
im sup 177 (log log n) =177 = c_, 2-a.s. for all x € V(G*)

Proof. Note that d(Xg, Xz) > d(Xg-1, Xgn) — d(Xg, Xi-1) for any ¢ > 1. By
Theorem 2.3.1, for almost all w € €2 and Py-a.s. there exists a constant M, such
that

d(X§, Xga) _ d(XG XG0 (g™ _ 2e4

o) () (g T ¢P
holds for any n > M,, where c; is as in Theorem 3.1. The right hand side of the
above inequality can be small enough by taking ¢ sufficiently large. So it is enough to
show that there exists a positive constant ¢_ independent of ¢ such that the following
holds,

d Xwn—l bl Xwn
lim sup (q—q)

m s S 2o (2.3.1)
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We may and do take ¢ > 2. To prove (2.3.1), let F¥ = o (X |k <n) and
th, = ¢ —¢" 1. Set kK > 0 so that ¢;1k® —c1o > 1. Let A > 0 be a small
constant so that kA < 1. By Theorem 2.3.1 there exists a constant ¢/ such that
d(X§, X)) < . ®(g" ") for almost all w and for sufficiently large n. We first note
that

P (d( X, X)) = A0(¢")| Fonr)

> P2 (d(Xgmr X) 2 AD(q"), (XS Xs) < ¢, 0(q" )| o)

= Navss xg, oz wieny gy (405 X5) 2 A0(0)

> 3 w w w > n

- (yEB‘“(;E’ig(qn_l)) Py (d0X5, Xi) 2 A%(g ))) 1{d<X8’»X;’n,1)Sc’ (g1} (2.3.2)
We estimate the first term of (2.3.2). For any n with A®(¢") > N, (w), using (2.1.2)
we have

1 (B(y, sA®(q")) \ By, A®(q"))) > c1i(kAP(q"))" — c12(AP(¢"))" > (AD(¢"))".

So for such n and for y € B“(xz,d/ ®(¢"')) we have

Py (A0(¢") < d(XF, X)) < wAD(¢")) > > i (y, 2)p(2)

z€B¥ (y,kA2(q™))\B¥ (y,A®(q™))
1
AD(g™))B 1
> L oxp [—01.6 <—<K ") )
t?z/ﬁ

tn
1 CQ(RA)B/(ﬁ—l)
> (5) )

where we can take cq, ¢y as the constants which do not depend on ¢. Therefore for

any n with max N, (w) < AO(¢") we have
ynwith | omax N () < M0()

p (B(y, kA®(q")) \ By, A®(¢")))

1 ca(kA)P/(A-1)
min P (d(X§, X)) > A0(q")) > e (—) .

yEBY (z,c/ ®(q" 1)) n

By L 2.2.4(2 N, .(w) < AB(¢") for all n > Lyoyw o(w). A
Lemma 224(2), x| Ny(o) € A0 for all n > Ly g ). As
we mentioned before, d(X§, X% 1) < ¢, ®(¢""") for sufficiently large n. Thus for

sufficiently small A\ we have

> P (d(Xg, X5) = A(q") | For) = oo
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Hence by the second Borel-Cantelli lemma, we have

d(Xe, ., X&
lim sup M >\
n—00 @(q")
We thus complete the proof. ]

By Theorem 2.2.3, Theorem 2.3.1 and Theorem 2.3.2, we complete the proof of
(2.1.6) in Theorem 2.1.2.

2.4 Proof of another LIL

In this section, we prove (2.1.7) of Theorem 2.1.2.

Theorem 2.4.1. Suppose that Assumption 2.1.1 holds. Then for almost all w € §2
there exists ¢ = c¢(w) > 0 such that the following holds,

. maXop<s<n d<X8]7 XZJ) _ w w
h,?i{folf WA (loglogn) 77— c, P?-a.s. for all x € V(G*). (2.4.1)

Proof. We follow the strategy in [46]. It is enough to prove that there exist positive
constants ¢y, co > 0 such that the following holds,

c1 < lim sup __TBen < ¢9,
T 5 rP(loglogrf) T

Pr-as. for all x € V(GY), (2.4.2)
where 73,y = inf{n > 0 | X}/ ¢ B(z,r)}. Indeed, putting n = r?(loglog r?) into
(2.4.2) and using Theorem 2.2.3, we can easily obtain (2.4.1). In the following, we
use the notation in (2.2.1).

Lower bound of (2.4.2); It is enough to show that there exist constants n > 0 and
J(w) > 0 such that

TH(ar) 14
P¥ — < —mY 2.4.3
r <amr<rﬁ)§zm rB(loglogr?) — 77) < exp(=m ") ( )

holds for all m > J(w), since the lower bound of (2.4.2) follows by (2.4.3) and the
Borel-Cantelli Lemma.

20



First, we estimate the left hand side of (2.4.3) as follows,

TW Tw
P;"( max %§n>§P;<maXM§1)

2am <r<2az, 177 (loglog 8 m<k<2m

7w
< p ( max _2@2ak) < 1) < Py < m { max d(Xg, X)) > 2ak}>
m<k<2m 0<5<0)+1

Ok

m<k<2m
— Pr(A2), (2.4.4)
2m
where we define D} = { max d(X7,X?) > Qak} and use A = ﬂ Dy in the
0<s<opi1 e

last equation. In order to estimate P¥(AY), set

— { max  d(X; , XJ) > ag, d( X5, X, ) < ak},

oL’
o <s<opt1 k

HY = { max d(X7, X)) > ak}.

0<s<o}

We can easily see Dy C G UH. Let n > 1 be as in Corollary 2.2.2. For any k with
max N, (w) < a,lc/ﬂ, we have
z€B(z,4nay)

( max d(Xg, X?) > ak)]

0<s<ug

P2 (GY) = EY |:1{d(z,X§;’k)<ak}wa

%k

T 2€B¥(z,a1) 0<s<uy

< max P¢ ( max d(z, XZ) > ak)

=1— min )PZ” ( max d(z, X?) < ak>

zEB¥ (x,ay, 0<s<ug

1 —2/3
Sl—mﬁexﬁ’(—csk /)>

where we use Corollary 2.2.2 in the forth inequality. So, it holds that

max P2(GY) < exp (—ezk™??) (2.4.5)

z€BY(x,a)

for any k£ with Br?ag( )Nz7e(w) < a,lg/’g. Hence, by Lemma 2.2.4(3), (2.4.5) holds
zeb(x,ona
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for kK >m > K, 15,(w). For any k > m > L, 9/31/3(w) we have

4\ 1/(5-1)
w w Ay
PY(HY) < cqexp |—cs <—)

B 1/(B-1)
<c exXp [ —¢ k
> Cg 7 3
(k — 1))\]{,16% 1

o2k \ /(A1)
< cgexp | —cg ( ) : (2.4.6)

klog k

where we use Lemma 2.2.1 (1) and Lemma 2.2.4 (1) in the first inequality. We can

easily see
2m 2m
A C (ﬂ G‘;;) U (U H,“;).
k=m k=m

Using the Markov property, (2.4.5) and (2.4.6) we have

2m s 2m o2k 1/(8-1)
Pr(Ax) < —cgk™ -
> ( m)_I_Iexp( 3 )—l—CgZeXp Co (klogk)

k=m k=m

< exp(—com!/?) (2.4.7)
for any m > Ky c150(w) V Lgc2/3,1/3(w). By (2.4.4) and (2.4.7) we obtain

ZP“’ max __Bn) <n)<oo
— " \20m<r<2az, rB(loglog rf) —

and thus by the Borel-Cantelli lemma, we obtain the lower bound of (2.4.3).

. Y _ TB(zr)
Upper bound; Define By = bkgrgggiﬂ W > 77}. Then by Lemma
2.2.1(2) and Lemma 2.2.4 (1), for any k > L, (21(w) we have
PE(BE) < P2 (T80, > b} loglog )

xzkarl)

< PY < max d(Xy,X?) < bk+1>

Oﬁsgnbf loglog bg

ciam/e
—p ( max (XY, X?) < ka) < (2) "

B
Ogsggkarl log k k
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Since the right hand side of the above is summable for sufficient large 7, by the
Borel-Cantelli lemma we have

. Tg(x r)

1 _ < P?-a.s.

lglsogp bkgflggfﬂl rf(loglogrf) — " z 85
We can easily obtain the upper bound of (2.4.2) from the above inequality. We thus
complete the proof. O

2.5 Ergodic media

In this section, we consider the case G = (V, E) = Z% and obtain Theorem 2.1.4
under Assumption 2.1.1 and Assumption 2.1.3.

2.5.1 Ergodicity of the shift operator on (7

Let = [0,00)F and define % as the natural o-algebra (generated by coordinate
maps). We write X = Qf 27 = %%’ and denote a shift operator by 7., i.e.
(Taw)e = wyre. If each conductance may take the value 0, we regard 0 as the base
point and define Cy(w) = {z € Z? | 0 +Z= z}, where 0 = x means that there exists
a path v = ejey - - - €; from 0 to x such that w(e;) > 0 for all i = 1,2,--- | k. Define
Qy ={w e Q| 1Ci(w) = oo} and Py = P(- | ).

Next we consider the Markov chain on the random environment (called the
environment seen from the particle) according to Kipnis and Varadhan [47]. Let
wn(-) = w(- + X¥) = 7xow(-) € Q. We can regard this Markov chain {wy}n,>0 as
being defined on X = Q%. We define a probability kernel @Q : Qg x £ — [0,1] as

1

Z W E wO’U]'{TUOJGA}'
erlel=1We Ao

Q(w’ A) =

This is nothing but the transition probability of the Markov chain {wy, },>0-
Next we define the probability measure on (X, Z") as

2 ((w*m e 7wn) € B) = /BPO(dwn)Q(wm dwfnJrl) e Q(wnfla dwn)

By the above definition, {7x«w}r>o has the same law in Eo(Fy(-)) as (wo,wr, )
has in p, that is,

Eo [Py ({7xew}izo € B)] = p((wo,w1,--+) € B) (2.5.1)
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holds for any B € Z.
We need the following theorem to derive Theorem 2.1.4. Let T': X — X be a
shift operator of X', that is,

(TCL))n - (JJn+]_.
Theorem 2.5.1. Under Assumption 2.1.3, T is ergodic with respect to p.

The proof is similar to [16, Proposition 3.5], so we omit it.

2.5.2 The Zero-One law

The purpose of this subsection is to give the proof of Theorem 2.1.4. We need the
following version of the 0-1 law. Let a > 0 and A{(a), A§(a) be the events

wiy _ I d(X5, X3))
Af(e) = {hff;ip n'/8(loglogn)'-1/8 o a} ’

w - .. maxop<k<n d(X(u)Ja XI(;))
Aj(a) = {hggulf n'/B(loglogmn)—1/# -

Define
Ai(a) = {w € Q| A¥(a) holds for P*-a.s. and for all z € Cy(w)} .

Proposition 2.5.2. Py(A;(a)) is either 0 or 1.

Proof. We follow the proof of [27, Corollary 3.2]. Let F; : © — [0,1] be F;(w) =
Fy (A% (a)). By the Markov property of {w, = Txwv(w)}, we have

B (AP (a) | F) = Fi(wn),

where FY = o(Xy¥ | k < n). So {Fj(wy)}, is FY-martingale. By the martingale
convergence theorem we see

E(wn) — 1Af(“) ng—a.s.

Therefore

=

-1

. 1
Eo | Fy (&E}})ON Fi(wn) = 1A2"(a)>] = 1.

3
Il
o
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Next we define F, : Q% — [0,1] by Fj(@) = Fy(@). Since T is ergodic w.r.t. pu,
Birkhoft’s ergodic theorem gives

1 ~
n=0
1A‘i"(a) = /F;d/j,

So, either AY(a) holds almost surely or it does not hold almost surely. We thus
complete the proof. ]

Ve
2
¢
8
2 |
2

By (2.5.1) we see

Theorem 2.1.2 and Proposition 2.5.2 immediately give Theorem 2.1.4.
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Chapter 3

Rate functions for random walks
on Random conductance models
and related topics

We consider laws of the iterated logarithm and the rate function for sample paths of
random walks on random conductance models under the assumption that the random
walks enjoy long time sub-Gaussian heat kernel estimates.

3.1 Introduction

The random conductance model (RCM) is a pair of a graph and a family of non-
negative random variables (random conductances) which are indexed by edges of the
graph. The RCM includes various important examples such as the supercritical per-
colation cluster, whose random conductances are i.i.d. Bernoulli random variables.
In the recent progress on the RCM, various asymptotic behaviors of random walks
are obtained on a class of RCM such as invariance principle, functional CLT, local

CLT and long time heat kernel estimates. Here is a partial list of examples of the
RCM;

1. Uniform elliptic case [24],
2. The supercritical percolation cluster [4],
3. Li.d. unbounded conductance bounded from below [12],

4. Li.d. bounded conductance under some tail conditions near 0 [15],
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5. The level sets of Gaussian free field and the random interlacements [63].

We refer to [16], [53], [65] for the invariance principle for random walks on the
supercritical percolation cluster, [13] for the local limit theorem for random walks on
the supercritical percolation cluster, [1] for the invariance principle on general i.i.d.
RCMs, [2] for the Gaussian heat kernel upper bound on the possibly degenerate
RCMs. We also refer to [17] and [49] for more details about the RCM.

In [50], we discussed the laws of the iterated logarithms (LILs) for discrete time
random walks on a class of RCM under the assumption on long time heat kernel
estimates. The aims of this paper are to establish the laws of the iterated logarithm
and to describe the rate functions for the sample paths of continuous time random
walks on the RCM.

The LILs describe the fluctuation of stochastic processes, which was originally
obtained by Khinchin [42] for a random walk. We establish the LIL w.r.t. both
sup d(Yy’,Yy) and d(Yy,Y), and another LIL, which describes liminf behavior of

s
0<s<t

sup d(Yy', YY), where {Y“}i>0 is a continuous time random walk on the random
0<s<t

environment w.
The rate function describes the sample path ranges of stochastic processes. For
d-dimensional Brownian motion B = {B;}:>¢, the Kolmogorov test tells us that

1
P (|B:| > tY/2h(t) for sufficiently large ¢ ) = {O

1 0?2 <
gI~L(zf)de—h(z>)d1t{ >

= 00,

according as /
1

where h(t) is a positive function such that h(t) / oo as t — oo. For d > 3, the
Dvoretzky and Erdos test tells us that

1
P (|B;| > t'/?h(t) for sufficiently large ¢ ) = {O

1
according as / ;h(t)d’th {< > (3.1.1)
1

= OO’
where h(t) is a positive function such that h(t) N\, 0 as ¢ — oo. These results were

extended to various frameworks such as symmetric stable processes on R¢, Brownian
motions on Riemannian manifolds, symmetric Markov chains on weighted graphs
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and [ stable like processes (f > 2). We refer to [38], [43], [44], [69], [70] for stable
processes on R?, [31], [35] for Brownian motions on Riemannian manifolds, [39], [40]
for symmetric Markov chains on weighted graphs, [64] for § stable like processes. We
establish an analogue of (3.1.1) w.r.t. random walks on the RCM.

Our approach is as follows; We assume quenched heat kernel estimates and es-
tablish both quenched LILs and an analogue of the Dvoretzky and Erdds test. As
we will see in Section 3.1.2, our results are applicable for various models since heat
kernel estimates are obtained for random walks on various RCMs. The concrete
examples are given in Section 3.1.2.

The organization of this paper is as follows. First, we give the framework and
main results of this paper in Section 3.1.1 and examples in Section 3.1.2. In Section
3.2 we establish some preliminary results. In Section 3.3 we give the proof of the
LILs. In Section 3.4 we establish an analogue of (3.1.1). Finally in Section 3.5 we
discuss the case where G = Z¢ and the media is ergodic.

In this paper, we use the following notation.

Notation 3.1.1. (1) Weusec,C,cy,cq,- - as the deterministic positive constants.
These constants do not depend on the random environment w, time parameters
t,s---, distance parameters r,-- -, and vertices of graphs.

(2) We define aV b := max{a,b} and a Ab:= min{a, b}.

3.1.1 Framework and Main results

Let G = (V,E) = (V(G), E(G)) be a countable and connected graph of bounded

degree, i.e. M := sup degz < co. We write x ~ y if (z,y) € E(G). A sequence
zeV(G)

Uy + & = 20,21, - ,T, = y on G is called a path from z to y if x; ~ x,4; for all

i=0,1,---,n—1. We write d(-,-) as the usual graph distance, that is, the length

of a shortest path in G, and denote B(xz,r) = {y € V(GQ) | d(z,y) < r}.

Throughout of this paper we assume that there exist a > 1, ¢y, co > 0 such that
or® <tgB(x,r) < cor® (3.1.2)

for any x € V(G) and r > 1.
We introduce the random conductance model below. Let w = {we = Way }e—(a,y)cB(G)
be a family of non-negative weight which is defined on a probability space (€2, F,P).
We call w the random conductance. For non-negative weights w = {w,}., we define
m™(x) = Z Wey and v*¥(x) = 1. We fix a base point zy € V(G), and define graphs
y

Y~z
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GY = (V(G¥),E(GY)) as

V(G) = {y e V()

There exists a path €y, : o, 1, -+ , 2, = y such that
W, >0foralli=0,1,---,n—1. ’

E(GY)={e=(z,y) € E(G) | z,y € V(G*) and w,, > 0}.

Tit1

We denote d“(-,-) as the graph distance of G¥. Note that G¥ = G and d* = d if
conductance w is strictly positive.

We will consider two types of random walks, constant speed random walk (CSRW)
and variable speed random walk (VSRW) associated to w € 2. Both CSRW and
VSRW are continuous time random walks whose transition probability is given by

P (z,y) = wzy). For the CSRW, the holding time distribution at x € V(G¥) is
m(x

Exp (1), whereas for the VSRW], the holding time distribution at z € V(G%) is Exp
(m(x)). We write Lj for the generator which is given by

£31(@) = gy 3 () = )y

Yy~

and we also write the corresponding heat kernel as

Q:td(xay) = %7

where 0¥ = n* for the CSRW case and 6“ = 1 for the VSRW case. We write
Y¥ = {Y}+1>0 as either the CSRW or the VSRW, P¥ as the law of the random walk
Y“ which starts at x, and

r=1p=f{t >0|Y & F}, op=ocp=mf{t>0|Y" e F},
of =of=inf{t >0|Y* € F}. (3.1.3)

We denote F* = F N V(GY), VU(F) = X cpnyu 0“(y) for F C V(G) and
Ve (x,r) =V¥(B(z,r)). We write T’ = 0 and T}, = inf{t > T}» | V¥ # Y7}, and
introduce a discrete time random walk {X* := Y3, },.>0.

First, we state the results about LILs. To do tﬁis, we need the following assump-
tions.

Assumption 3.1.2. There exist positive constants €, 8 such that ¢ < f+ 1 and a
family of non-negative random variables {Ny, = Ny c}zev(q) such that the following
hold;
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(1) There exist positive constants ¢y 1, c1.2,C1.3,C1.4 sSuch that

1/(8-1)
175 exp <—01.2 (d(zgy)ﬁ) ) : ift > d(x,y),
C1.3 €XpP (—01.4d(5€>y) (1 V log @)) , ift <d(w,y),

for almost allw € Q, all x,y € V(G¥) and t > N,(w).

q; (x,y) < (3.1.4)

(2) There exist positive constants cy1, oo such that

. A, )P\ VD
q (z,y) = tj—/'/lgexp <—02.2 < (z.9) ) (3.1.5)

t

for almost all w € Q, all z,y € V(G¥) and t > 0 with d(z,y)' TV N,(w) < t.
(3) There exist positive constants cs1,c32 such that
c3ar® < V9 (x,r) < cgor® (3.1.6)
for almost allw € Q, all x € V(G¥) and r > N (w).

(4) There exist positive constants c41,Ca2,Cs3,Ca4,Css Such that

S exp (—cMM) , if t > cazd(z,y),
¢ (z,y) < { V&@EW t
e P <_C4‘5d(x’ 2 (1 vlog @» - i< cdoy),

(3.1.7)
for almost allw € Q, allt > 0 and z,y € V(G¥) with d(z,y) > Ny(w) A Ny(w).

Note that (3.1.4) holds for ¢t > N,(w) while (3.1.7) holds for all ¢ > 0. (3.1.7)
is called the Carne-Varopoulos bound. This type of bound were originally obtained
by [19], [75]. It is known that (3.1.7) holds under general conditions which will be
described in the following Proposition (see [29, Theorems 2.1, 2.2]).

Proposition 3.1.3. Let {N,} be as in Assumption 3.1.2 and dj(-,-) be a metric on
GY = (V(G¥), E(G¥)) which satisfies

1
0« (x)

If there exists a positive constant ¢ such that dy(x,y) > cd(x,y) for all x,y € V(G¥)
with d(z,y) > Ny(w) A Ny(w), then (3.1.7) holds.

Z d5 (z,y)?wsy < 1. (3.1.8)
yeV(G¥)
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Next we assume the following three types of integrability conditions.

Assumption 3.1.4. Let {N,}.cv(a) be as in Assumption 3.1.2 and define f(t) =
fe(t) = P(N, > t). We impose one of the following three types of integrability
conditions on f(t).

(1) 3 n f(n) < oo,

n>1

(2) 3 0 f(n) < oo,

n>1

(3) For positive and non-increasing function h(t), Znaf(nh(nﬁ)) < 0.

We now state the main results of this paper.

Theorem 3.1.5. (1) Under Assumption 3.1.2 (1) (2) (3) and Assumption 3.1.4
(1), for almost all w € Q there exists positive numbers c; = ¢&,ca = & such
that

. d(Yy’, Y,)
hrfligp t1/8(log log t)1-1/8
SUDPp<s<t d(%w7 Yw)

hrtri}ilp 1173 (log log £)1-1/7 = ¢, P?-a.s. for all x € V(G¥).

=, P?-a.s. for all x € V(G¥),

(3.1.9)

(2) Under Assumption 3.1.2 (1) (2) (3) and Assumption 3.1.4 (2), for almost all
w € () there exist a positive number c3 = c§ such that
.. SUDPp<s<t d(Yy”, Yy . W w
hggclélf M (oglogt) /7~ 3, P?-a.s. for allx € V(G¥). (3.1.10)
Theorem 3.1.6. Suppose Assumption 3.1.2 (1) (2) (3) (4) and /5 > 1. In addition
0“(z) = m(xz) > ¢ for a positive constant ¢ > 0 in the case of CSRW. Let h :
(1,00) — (0,00) be a function such that h(t) N\, 0 as t — oo and the function
©(t) == tYPh(t) is increasing. If h(t) satisfies Assumption 3.1.4 (3), then

Py (d(z,Y?) > tYPh(t) for all sufficiently large t)=1

for almost all w € Q and all z € V(GY), or
Py (d(:v, V) > tYPh(t) for all sufficiently large t) =0

o0

for almost all w € Q and all v € V(G¥), according as |
respectively.

Th(t)*Pdt < 0o or = o0
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Note that the condition /3 > 1 implies the transience of {Y*}+>o.

Finally we discuss the constants ¢, co,c3 in (3.1.9) and (3.1.10). When we con-
sider a case of G = Z¢, we can take c;,cy as deterministic constants under some
appropriate assumptions. To state this, we take the base point 2o = 0 € Z¢ and we
write shift operators as 7., (r € Z49), where 7, is given by

(wa)yz = Wx+y7x+z. (3111)
We assume the following conditions.
Assumption 3.1.7. Assume that (2, F,P) satisfies the following conditions;

(1) P is ergodic with respect to the translation operators ., namely Po7, =P and

if T,(A) = A for all x € Z% and for all A € F then P(A) =0 or 1.

(2) For almost all environment w, V(G¥) contains a unique infinite connected com-
ponent.

(3) (VSRW case) E |:7T“’1(0):| € (0, 00).

Theorem 3.1.8. Suppose that the same assumptions as in Theorem 3.1.5 are fulfilled
and suppose in addition Assumption 3.1.7. Then we can take c1, ¢y, c3 in (3.1.9) and
(3.1.10) as deterministic constants (i.e. do not depend on w).

3.1.2 Example

In this subsection, we give some examples for which our results are applicable.

Example 3.1.9 (Bernoulli supercritical percolation cluster). Let G = (Z4, E,) be
a graph, where Eq = {{z,y} | =,y € Z% |xv —y|y = 1}. Put a Bernoulli random
variable we with P(n, = 1) = p on each edge. This model is called bond percolation.
We write p.(d) as the critical probability. It is known that there ezists a unique
infinite connected component when p > p.(d). See [34] for more details about the
percolation.

Barlow [4] proved that heat kernels of CSRWs on the super-critical percolation
cluster (that is, when p > p.(d)) on Z%, d > 2 satisfy Assumption 3.1.2 (1) (2) (3)
(4), Assumption 3.1.4 (1) (2) with o = d, 8 = 2 and f.(t) = cexp(—ct®) for some
¢, d,6 > 0. Since the media is i.i.d. and there exists an unique infinite connected
component, we can obtain Theorem 3.1.5 with deterministic constants by Theorem
3.1.8.
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In addition, we can easily check that h(t) ) for k > 0 satisfy the

log t)r/(d=2
conditions in Assumption 3.1.4 (3) and the assumjgtifnz of Theorem 3.1.6 in the case
of d > 2. Thus P¥ (d(x, Y#) > tYBh(t) for all sufficiently large t ) = 1,0 according
as k > d —2,< d— 2 respectively by Theorem 3.1.6.

Note that (3.1.9) for the supercritical percolation cluster was already obtained by
[27, Theorem 1.1].

Example 3.1.10 (Gaussian free fields and random interlacements). Gaussian free
field on a graph G = (V, E) is a family of centered Gaussian variables {¢; }zcq with
covariance Elpqp,] = g(x,y), where g(z,y) is the Green function of a random walk
on G. Here we are interested in the level sets of the Gaussian free field By, = {z €
V' | px > h}. We can regard the level sets as one of the percolation models which has
correlation among the vertices in V. See [67] for the details.

The random interlacements concern geometries of random walk trajectories, e.g.
how many random walk trajectories are needed to make the underlying graph discon-
nected? Sznitman [66] formulated the model of random interlacements. Although the
model of random interlacements is defined through Poisson point process on a tra-
jectory space, we can also regard this model as the percolation model with long range
correlation.  From the viewpoint of the RCM, we can regard the model of random
interlacements as one of the RCM whose conductances take the value 0 or 1 and the
conductances are not independent. See [26] for the details.

Sapozhnikov [63, Theorem 1.15] proved that for Z¢, d > 3, the CSRWs on (i)
certain level sets of Gaussian free fields; (ii) random interlacements at level u > 0;
(i1i) vacant sets of random interlacements for suitable level sets, satisfy our As-
sumption 3.1.2 (1) (2) (3) with o = d, f = 2 and the tail estimates of N,(w) as
fo(t) = cexp(—c(log t)'+°) for some c¢,c’,§ > 0. As the same reason with the case of
Bernoulli supercritical percolation cluster, Assumption 3.1.2 (3) is also satisfied in
these models. This subexponential tail estimate is sufficient for Assumption 3.1.4 (3)
with h(t) = W for k > 0. Since the media is ergodic and there is an unique
infinite connected components (see [60], [66, Corollary 2.3] and [71, Theorem 1.1]),
Theorem 3.1.5 holds with deterministic constants by Theorem 3.1.8, and Theorem

3.1.6 holds with h(t) = ) for k >d—2, < d— 2 respectively.

1
(log t)r/(d=2
Example 3.1.11 (Uniform elliptic case). Suppose that a graph G = (V, E) is en-
dowed with weight 1 on each edge and satisfies (3.1.2) and the scaled Poincaré in-
equalities. Take ¢y, co as positive constants and put random conductances on all edges
so that ¢y < w(e) < ¢o for all e € E and for almost all w. Delmotte [24] obtained
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Gaussian heat kernel estimates for CSRWSs in this framework. Thus Assumption
3.1.2 (1) (2) (3) hold with B =2 and N, = 1. Hence Theorem 3.1.5 holds.

In addition, this model satisfies Assumption 3.1.2 by [23, Corollary 11, 12]. (See
also Proposition 3.1.3, note that the graph distance satisfies (3.1.8) for CSRW case.)

Thus Theorem 3.1.6 holds with h(t) = g 1)@ (k > d—2, < d—2 respectively).
Example 3.1.12 (Unbounded conductance bounded from below). Let G = Z4
(d > 2) and put random conductances w = {wyy tsyer which take the value [1,00).
Barlow and Deuschel [12, Theorem 1.2] proved that the heat kernels of VSRW sat-
isfy Assumption 3.1.2 (1) (2), Assumption 3.1.4 (1) (2) with « = d, § = 2 and
fo(t) = crexp(—cyt®) for some ci,cy,8 > 0. (Note that Assumption 3.1.2 (3) is
trivial since V¥ (x,r) = §B(x,r) for the VSRW.) Hence Theorem 3.1.5 holds.

In addition, this model satisfies Assumption 3.1.2 (4) by either [12, Theorem 2.3,
Theorem 4.3 (b)] or [29, Theorem 2.1, Theorem 2.2]. Thus Theorem 3.1.6 for the

VSRW holds with h(t) = ) (k > d—2, < d— 2 respectively).

(log t)~/(@~2
Moreover, if the conductances {we}e satisfy Assumption 3.1.7 (3) then Theorem
3.1.5 holds with deterministic constants.

3.2 Consequences of Assumption 3.1.2

In this section we give some preliminary results of our assumptions.

3.2.1 Consequences of heat kernel estimates

In this subsection, we give preliminary results of Assumption 3.1.2 (1) (2) (3).
Recall the notations in (3.1.4).

Lemma 3.2.1. Suppose Assumption 3.1.2 (1) (3). For all 6 € (0,c19 A c1.4) there
exist positive constants ¢y = c1(0),ca = ¢2(9), c3 = c3(0) such that

P2 (d(z,Yy") > 1) < crexp {—(01,2 —9) (tl%)ﬁél} + e exp (—cst) (3.2.1)

for almost allw € Q, all x € V(G¥), r > Ny(w) and t > N (w).

This lemma is standard except for the part of estimates of Poissonian regime (the
bottom line of (3.1.4)). For the sake of completeness we give the proof here.
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Proof. We first prepare some preliminary facts to estimate PY (d(x,Y) > r). Set
hi(n,s) = exp [—nsﬂ/(ﬁ_l)] and hy(n, s) = exp [—ns|. For hi(n,s), we can easily see
that there exists a constant (y > 1 such that

hl (777 CS) S h1(77> 1)h1(777 S) (322)

for all { > (o, » > 0 and s > 1. (We can take (y as the positive number which
satisfies Cg/(ﬂ_l) — 1 =1.) For hy(n, s), we can easily see that

ha(n, Cs) < ha(n, 1)ha(n, s) (3.2.3)

for all ( > 2, 7 > 0 and s > 1. Next, we easily see that for all ( > 1 there exists
¢1 = c1(¢) such that for almost all w € €2

Ve (z,r() < aV¥(z,r) (3.2.4)

for all z € V(G) and for all » > N,(w). (Use (3.1.6) and take ¢; = %) Thirdly,
it is also easy to see that for all § € (0,c;.2) there exists co(d) such that

sY exp [—01.236/('8_1)] < cp(d) exp [—(01_2 — 5)35/(5_1)} (3.2.5)

for all s > 1, where ¢; 5 is the same constant as in (3.1.4). We can also see that for
all § € (0, c14) there exists a positive constant ¢z = ¢3(d) such that

s¥exp [—c1.48] < c3(0) exp[—(c1.4 — 0)s] (3.2.6)

for all s > 1. Using (3.2.5), we can see that for d(z,2) > s > t'/% and § € (0, ;)
C1.1 d(z, z) B/(B=D) o d(z,2)\* d(z, 2) B/(B-1)
ta/B eXp | —C1.2 /8 = d(z, 2)° /B exXp | —Ci1.2 1175

e . % B/(6-1)
< () exp [—(01.2 — ) (d(tl/’ﬂ )) ] (use (3.2.5))

d(z,z)

< Cz(j) exp {—(01.2 —0) (%)W(ﬁ_l)] , (use d(z,2) > s). (3.2.7)

Now we estimate P*(d(z,Y*) > r). We first consider the case r < t'/#. Since
s+ hi(n,s), (n > 0) is non-increasing, we have

hy (01.2, ﬂ%)

Pi(d(z,Y) >r) <1<
x(( t) ) hl(Cl.Q,l)

r
= C5h1 <C1.2, m) s (328)
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where we set ¢5 = 1/h(c12,1). So we may and do assume r > t1/8. Take ¢ > (yV 2
so that (3.2.2), (3.2.3) and (3.2.4) hold. We divide P¥(d(z,Y) > r) into

K-1

> > + 3 ¢ (@, 2)6°(2),

k=0 zeBw(z,r¢kt1\B¥ (z,r¢k)  2€B¥(x,|t])\BY¥(z,r(K)

> + > 3 ¢ (2, 2)6°(2),

2€BY(z,r(KHO\BY (a,[t])  k=K+1 2B (z,r{F1)\BY (2,r¢F)

(3.2.9)

where K is the positive integer which satisfies r¢(* < ¢ < ¢! and [¢] is the
greatest integer which is less than or equal to ¢. We have for t > N, (w), 7 > N,(w)
and using (3.1.4)

(The first term of (3.2.9))

K B/(6-1)
c. d(x, z »
Z Z t:—/;exp [—01.2 ( 551/5 )) ] 0 (2)

k=0 ze B« (z,r(k+1)\B¥ (z,rCk)

IN

IN

M= T

6 ok A1)
(rC(’f))“ exp [—(01.2 —6) <tl%> ] (r¢h e (use (3.2.7) and (3.1.6) )

<

k
07(57 Ohl (01.2 -9, ;%)

=
Il

0

K
S C7((5, C)hl (Cl.g — 5, tl%) kz_o hl (01.2 — (5, 1)k (USG (322))

< cg(0,() exp [—(01.2 —9) (#)ﬁ/(ﬂl)} : (since hy(c12 —6,1) < 1). (3.2.10)
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For the second term of (3.2.9), using (3.1.4), t > N,(w) and r > N,(w) we have

(The second term of (3.2.9))

< i 3y C13 eXp {—cl_4d(x, 2) (1 V log d@; z))} 0 (2)

k=K ze B¥ (z,r(kt1)\BY (z,r¢k)

< Z Z c13exp [—ci4d(z, 2)] 0¥ (2) (Since 1Vlog d@,2) > 1)

k=K ze B« (x,r(kt1)\ B (z,r(k) t

o0

< coexp [—era(r¢h)] (r¢F e (use (3.1.6))
k=K

< 10(¢,0) Y exp [ (cra — 0)r¢] (use (3.2.6))

= ClO(C; (5) Z h2 (Cl.4 - 67 Tck)
k=K

< ei1(¢,0)ha(cra — 0,7¢%) Z ho(ciq — 6, 1)" (use (3.2.3))
k=0
< ciz(G,0) exp [—eis(C )], (since r¢™ <t <) (3.2.11)

Therefore, by (3.2.8), (3.2.10), (3.2.11) and adjusting the constants, we obtain
(3.2.1). We thus complete the proof. O

Again recall the notations ¢; 5 and ¢; 4 in (3.1.4).

Lemma 3.2.2. Suppose Assumption 3.1.2 (1) (3). For all 6 € (0,c19 A c1.4) there
exist positive constants ¢y = ¢1(9),ca = ¢2(0), c3 = ¢3(9) such that

B/(B-1)
r
P; (Oiugt d(qj’ Y;w) Z 2’[") S C1 eXp —(01_2 — (5) (W) + Co €XD [—Cgt]

(3.2.12)

B/(8-1)]
r
Py (Oiugtd(y, Y¥) > 4r> <crexp |—(c10 —0) (W) + o exp [—cst]

(3.2.13)
for almost all w € Q, all z,y € V(G¥), t > 1 and r > 1 with d(xz,y) < 2r,
t> max Ny(w) andr > max N,(w).

u€B(x,2r) u€B(z,2r)
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Proof. This is standard (see the proof of [3, Lemma 3.9 (¢)]), so we omit the proof.
[

Lemma 3.2.3. Suppose Assumption 3.1.2 (1) (2) (3). Then there exist positive
constants n > 1,cy,co > 0 such that

t
Py (Sup d(z, YY) < 3777") > ¢y exp {—02—4 (3.2.14)
r

0<s<t

for almost allw € Q, all z € V(G¥), t >r > 1 with r'/? > g%a?f )Nz(w).
zeb(y,3nr

Proof. The proof is quite similar to that of [51, Proposition 3.3], so we omit the
proof. O

Let ¢1,¢o be as in Lemma 3.2.3. Note that we can assume that ¢; < 1 (and
therefore ¢; exp[—co] € (0,1)). We define pq, ax, by, Ag, uk, o) as
p1 = ¢1 exp|—cal, ag = ek2, bf = eF,
i (3.2.15)
k=g log(1+k), w = ey, o = Us.
3oz 1 ) SR
Corollary 3.2.4 (Corollary of Lemma 3.2.3 ). Let n > 1 be as in Lemma 3.2.5.
Then under Assumption 3.1.2 (1) (2) (3) we have

inf P < sup d(z, YY) < 377ak> > py* (3.2.16)

z
z€B(z,ar) 0<s<uy

for almost allw € Q, all k with  max N,(w) < a,lc/ﬁ.
z€B(z,4nay,)

Proof. We can see from Lemma 3.2.3 that

0<s<ug

Py ( sup d(z,Y?) < 377%) > 1 exp [—CQU—;] > pi\’“
Ay,

for all K > 1 with max N,(w) < a,i/ﬁ. Hence (3.2.16) holds for k£ with

vEB(z,3nax)

max max N,(w) < a,lc/ﬁ.
z€B(z,ar) vEB(z,3nax)
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Lemma 3.2.5. Suppose Assumption 3.1.2 (1) (3). Then there exist positive con-
stants c1, co such that

t
Py (sup d(xz,Y?) < T) < cpexp (—02—)
0<s<t T’B
for almost all environmentw € Q, allx € V(G¥),t > 1 andr > 1 with r%z(amx : Ny(w) <
yeB(x,r
2r.
Proof. The proof is quite similar to that of [51, Lemma 3.2], so we omit it. O

We will need the following version of 0-1 law.

Theorem 3.2.6 (0 — 1 law for tail events). For almost all environment w € €, the

following holds; Let A¥ be a tail event, i.e. AY € ﬂa{Ys“’ : s > t}. Then either
t=0

PY(A%) =0 for all x or PY(A“) =1 for all x.

The proof of the above theorem is quite similar to that of [14, Proposition 2.3]
(see also [4, Theorem 4]), so we omit the proof here.

3.2.2 Green function

In this subsection, we deduce the Green function estimates. We define the Green
function as

g°(x,y) = /000 q (z,y)dt. (3.2.17)

Recall that 6“(z) = n¥(z) in the case of CSRW and 6“(z) = 1 in the case of
VSRW.

Proposition 3.2.7. Let o > 8 and suppose Assumption 3.1.2 (1) (2) (4). In ad-
dition we assume there exists a positive constant ¢ > 0 such that 0“(zx) > ¢ for all
x € V(G¥) in the case of CSRW. Then there exist positive constants cy,co such that

Cq Co
- < ¥ < — 2.1
d(z,y)o? =7 (#,9) < d(z,y)*=F (3:218)

for almost allw € Q, all x,y € V(G¥) with d(x,y) > Ny(w) A Ny(w).

39



Proof. This proof is similar to [13, Proposition 6.2]. We first prove the upper bound
of (3.2.18).

9°(z,y)
(ca.3d(x,y)) ANz (w) Ng(w) d(z,y)
= / g (z,y)dt + / g (z,y)dt + / g (z,y)dt
0 (ca.3d(z,y)) ANy (w) Nz (w)
+ / g (v, y)dt
d(z,y)

We estimate Ji, Jo, J3, J4 as follows.

Coadea)ANe) o
Ji < / ————————exp[—cysd(z,y)] dt (use (3.1.7))
0

0~ ()0 (y)
< crd(z, y) exp [—cad(z,y)]
el c d(x,y)*
Jy < / éexp {—04_2 . } dt (use (3.1.7))
(ca.3d(2,9)) ANz (w) \/ 0% (2)0% (y) t

d(z,y)?
N, (w)

< 3N, (w) exp {—04 } < csd(z,y) exp [—ead(z,y)]  (use d(z,y) > Ny(w)),

d(z,y)
Js < / cLyoxp[—eiid(z,y)dt (use (3.1.4))
Ng(w)

< Cl.gd(l’, y) €xXp [_Cl.4d<m7 y)] )

00 B/(B-1)
C1.1 d(%y) Cs
Jy < / exp | —C1.2 ( dt < ————.
day) 17 [ t1/p d(z,y)>"?

< W for d(z,y) > N,(w). Note

that ¢“(x,y) = ¢*(y,x). Thus we complete the upper bound of (3.2.18).
Next we prove the lower bound of (3.2.18). We can obtain the lower bound in
the following way:.

) 0o B/(B-1)
w w C2.1 d(z,y)
9°(z,y) Z/d q; (w, y)dt Z/ Ja/B OXP [_02-2 ( 1178 dt

(Z,’y)’g d(l’,y)B

(3.2.20)

By (3.2.19) and (3.2.20) we have ¢“(z,y)

>__
~ d(z,y)h
We thus complete the proof. O
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3.2.3 Consequences of the Green function and Assumption
3.1.2

In this subsection we give some preliminary results of Assumption 3.1.2 (1) (2) (3)
(4) in the case of @ > . This subsection is based on [64, Section 4.1]. In this
subsection we assume the following conditions.

Assumption 3.2.8. (1) a> £,

(2) (CSRW case) There ezists a positive constant ¢ such that 0*(x) > c for all
r e V(GY).

Recall that Proposition 3.2.7 holds under Assumption 3.1.2 (1) (2) (4) and As-
sumption 3.2.8.

We write ef(z) = P2 (0f =00)1p(z) as the equilibrium measure of F C

V(G¥), and define Cap“(F) = > pet(2)0”(x) as the capacity of F' C V(G¥).
Then we have

Py (o < 00) Zg z,y)en(y)6”(y) (3.2.21)
yeF

for any finite set F' and for any x € V/(G¥) since
Py (o < 00)

/ Z P2 (YY =y, Y? & F for any s > t)dt (last exit decomposition)

yeF

/ Z g (z,y)0" (y) Py (0% = oo) dt  (by the Markov property)

yel

=Y ¢ 9)er) (y).

yeF

Lemma 3.2.9. Under Assumption 3.1.2 (1) (2) (3) (4) and Assumption 3.2.8, there
exists a positive constant ¢ such that

Cap®(B“(x,2r)) > cr*™?

for almost allw € Q, all x € V(G¥) and r > 1 with r > r%z(lx : Ny(w).
vep(z,r
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Proof. Recall the notations in (3.1.3).

L= B;m Z by <UB(:1: 2r) < OO> 0 (y)
0+ (B(z, ))yeBw(m)
BT Y D 0 (W)

yGBw (x,r) ze B (x, 2r)
d(z,z)=2

c1 1 w
< 6(B(z, 1)) 1o ? Z Z B (.20 (2)07(2)07 (y)

z€BY(x,2r) yeBY (z,r)
d(z,z)=2r

( since d(y, z) > r > Ny(w) and Proposition 3.2.7 )

= B S e (8)

» B
0 (B(Iv T)) re 2€B* (x,2r)
d(z,z)=2r

“(BY(z,2r)).

We thus complete the proof.

Recall the notations in (3.1.3) and set

epia) = P (Vi e k)

7 p(dt, Ky) = P ( “ €Ky} € dt)

(we use (3.2.21))

for F\ Ky, Ky C V(G¥). Note that / T p(dt, K) = 75 p(K) and vy p(F) =
0

PY (o4 < 00).

Lemma 3.2.10. For almost all w € €,

zy) =Y g°0, 978 pe(v)

veEFw

(3.2.22)

for any finite set F* C V(G¥), v ¢ F¥ and y € F*. In particular we have

9°(z,y)

P2 (Y € F* for somet > 0) < inf (

yeFe \inf,cpw g*(2,y)
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Proof. We write F = F¥ and o = 0% = inf{t > 0 | Y* € F} for notational
simplification. Then for any x € F, y € I’ we have

P (Y =y) = B [lpen P (Y, =9)] = D BY [Loanlpyp=n Py, (V20 = v)]

vEF
t
-y / P2 YE, = y] o p(ds, v).
0

veF

Hence we have

(o] t o] (o]
g(z,y) = / > / 655 (v, y)ms p(ds, v)dt = / > / Gy (v, y)dtms p(ds, v)
0 0 0

veF veF VS
— [ el o) = 3 60 v).
0 wer vEF
We thus complete the proof of (3.2.22). (3.2.23) is immediate from (3.2.22). O

Lemma 3.2.11. Under Assumption 3.1.2 (1) (2) (3) (4) and Assumption 3.2.8 there
exist positive constants ci, co such that for almost all w € Q the following hold.

ro—>~
1 Pw< T < ) <
(1) P, OB(zg2r) S ) = G (d(z, z0) — 1)~

d(x,z0) >2r+1 andr > max N,(w).
veEB(xo,r)

3 for all z,zy € V(G¥), r > 1 with

a—f
w +w r w i
(2) P, (UB(;EO,QT) < OO> (d(z.70) + 2r)oP for all x,z9 € V(G¥), r > 1 with

2
d(x,x0) > 2r, r > Ny(w) and r > r}xgl(ax )Nv(w).
veb(xo,r

C

v

Proof. We first prove (1) by using (3.2.23). Let z,2¢ € V(G¥) satisfy d(z,z) >
2r 4+ 1. For any y € B(xg,r) we have

d($7y) Z d(ﬂf,l’o) - d($07y) Z d(l‘,JTo) -r 2 2r —r=r.

By Proposition 3.2.7, for any y € B“(z,r) and for any r with r > Ig(ax )Ny(w) we
yeb(xo,r

have

C1 < C1
7,y)* T (d(w, xo) — 1)

9“(z,y) < a0 (3.2.24)
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Next note that B(xzg,2r) C B(y,3r) for any y € B(xg,r). Since ¢¥(-,y) is a super-
harmonic function, using the minimum principle and Proposition 3.2.7 we have

. . . C2
inf “(z,y) > inf “(z,y) > inf “(z,y) > 3.2.25
ptd 0 (zy) 2 o Y (2,9) —ze(ngy,ng)g (=) 2= )
d(y,z)=3r+1

for all » > 1 and y € B“(xg,r) with 3r +1 > Iél(aX )Nv(w). Hence by (3.2.23),
veB(xo,r
(3.2.24) and (3.2.25) we have

. g(z,y) re?
Py <0+ < oo) < inf ( ) <c
B(zo,2r) yeB=(z0,r) \INf e po(zo.2r) 9(2, V) ’ (d(x,x0) —1)oh
for all r with r > rg(ax )Nv(w). Thus we complete the proof of (1).
veB(xo,r
Next we prove (2). Note that

P (0520 <o) = 30 @0 () (use (3:2.21))

yEBY (z0,2r)

> i f v w ew
B <yEB‘1"r(l:E0,2r)g (mjy)> Z eB(wo,Zr)(y) (y)

yEBY (z0,2r)

:( inf gw(aj,y)) Cap®(B(xo, 2r)).

yEBY (z0,2r)

By B(xo,2r) C B(z,d(x,x¢) + 2r), the minimum principle for superharmonic func-
tions and our assumptions we have

inf “(,y) > inf “(x,y) > inf
yeBw(mo,ZT)g ( y) T yeBw(x,d(x,x0)+2r) g ( ) T yEBY(x,d(x,x0)+2r+1)
d(y,x)=d(x,z0)+2r+1

9°(z,y)

Cyq

= (. 0) + 2907

for r > N,(w). By Lemma 3.2.9 Cap®”(B(z¢,7)) > c57* " for 7 > max N,(w).

veB(zo,r)
Hence

CgTa_B
x,xg) + 2r)*B

P;U <OE‘&0,2T) < OO) 2 (d(

for r > N,(w) and r > %(ax )Nv(w). We thus complete the proof.
veb(xo,r
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Lemma 3.2.12. Under Assumption 3.1.2 (1) (2) (3) (4) and Assumption 3.2.8 there
exist positive constants ¢; and Ty such that

ey Bt

P2 (d(xo, YY) < 2r for some s > t) < —aTr

for almost allw € Q, allt > Ty, r > 1 and x, 29 € V(G®) with t'/% > r, d(x,z0) <7

andr > max N,(w).
2€B(zo,r)

Proof. First note that

P2 (d(zo, YY) < 2r for some s > t)

= Z Py (Y =y) Py (d(zo,Y”) < 2r for some s > 0)
yeV(G«)

= Z P2 (Y =y) P (d(zo, YY) < 2r for some s > 0)

y
y;tt/ B <d(zo,y)—r

+ Z Py (Y =y) Py (d(wo,Yy") < 2r for some s > 0)
yir<d(zo,y)—r<tl/f
+ Z Py (Y =y) Py (d(wo,Y”) < 2r for some s > 0)
y;d(zo,y)<2r
= Jl + J2 -+ Jg.

We estimate Jp, Jo and J3 in the following way.

For t,r > 1 with t > N,(w) and r > %(ax )NZ (note that ¢ > N,(w) follows
zeb(xo,r
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from our assumptions), using (3.1.4), Lemma 3.2.11, (3.1.6) we have

cqreh
Ji < Z _ T)afﬂ

y;tt/ B <d(zo,y)—r (dly, o)

B
C1.1 d(:zc y)\ 7T
ta/B CXp | —C12 /B

(use (3.1.4) and Lemma 3.2.11)

o

< >

=1 yid(z0,y)E[etL/ B4r, (04+1)t1/ B 47

+ crgexp [—crad(z,y)] } 0“(y)

B

CQTQ_ﬁ 1 d(y,ﬂ?o)—r p-1 Hv
(@ w0) s P |\ T )| )

[ee) Cg?“a_ﬁ
3 2. @ ae) 7y O [Fera(d(y. 20)

=1 yid(wo,y) et/ O tr,(L+ 1)1/ P ]
(since d(x,y) > d(y, xo) — d(zo, x) and d(zg,x) < 1)

a—f3
627’ 5 .
< Z ap to‘/ﬁ exp [_Cl,Qgﬁ*1i| 0 (B(:L‘Oy ([ + 1)t1/6 + T‘))

oo a— 6
+ Z (gi’/r,m exp [—01,46751/5} 9~ (B(xo, (0 + l)tl/ﬂ X T))

7/3 o

B B/B— o/B B 1/

ta/ﬁ il Z€ exp 012€ }—i— o /B 115 ZE exp 014& }
(use 9”( (20, (0 + D)tY5 4 1)) < c(t/P) since t1/8 > 1)

cgr® ™"

to/B-1"

| /\

< (since t — /B Z 0% exp [—01,4&1/5} is bounded).

(=1

—7)]6°(y)

Next we see Jp. First, set ¢,(k) = (r + k)?(k,r > 1). We can easily see that

6,(K) < 5. (4rk)
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for all £ > 1. Using this inequality we see that for r > N, (w)

oy 0“(B(x0, k) \ Bzo, k — 1))
y;réd(wc%):—rétl/ﬂ (d(y, wo) = r)*=7 ke[anT-&:-tl/ﬁ] (k — 7)o
ewBﬂfo,k’ B.Z'o,k—l
< X > (B( (k>_\r) ()

2€[0,(t1/B —r) /(4r)+1] kE[2r+4rL,2r+4r ((41)]

1/8 _ B
< o7 > (r+4r0)7 < cg {r + 4r (t " - 1)} (use (3.2.26))

£c]0,(t1/B—r) /(4r)+1]

< cot, (use tY/2 > 7). (3.2.27)

We go back to estimate .J,. Note that for y with r < d(xg,y) — r < /8 we see
d(z,y) < d(x,x0) + d(20,y) < 3tYP. For r > 1, t > 1 with t > Tp := 3%/65-Y (s0

that 3t'/% <t for t > Tp) and r > rg(ax )Nz(w) (in particular t > N,(w)), using
zeb(xo,r

Lemma 3.2.11, (3.1.4) and (3.2.27) we have

a—F ew( )
Ci10T Y
>
R — )P tolB
yir<d(zo,y)—r<tt/f (d(y, iL‘O) 7“) t

_ cror® P Z 0“(y)

te/o (d(y, o) —1)>F

y;r<d(zo,y)—r<t'/8
C11 Ta_ﬁt

~ W, (USG (3227))

Finally we see J3. For t > T := 3%~V N, (w) < t and N,(w) < r, using (3.1.4)
we have

< Y PrYE=y= Y @)ty

y;d(y,0)<2r y;d(y,m0)<2r

« a—p
C1oT C1oT t
< & w < <

< Y Gty <=
y;d(w,y)<3r

We thus complete the proof. [

Lemma 3.2.13. Under Assumption 3.1.2 (1) (2) (3) (4) and Assumption 3.2.8 there
exist constants ¢1 > 0,c9, Ty > 1 such that

w w cl/’“a_ﬁt
Py (d(zo,Yy) < 2r for some s >t ) > —aTF
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for almost all w € Q, all T > 1, t > Ty, x,29 € V(G¥) with d(z,z0) <7, t > 1P,

r>  max N, (w).
2€B(z0,catl/P)

Proof. Take a constant ¢y such that c31¢§ — ¢322% > 0. Note that by (3.1.6) we
have 6“({y € V(G) | d(zo,y) € [2t7, cot'/P]}) > (e3¢5 — €322%)t%/# | and for y and
sufficiently large t (say t > Tp) with d(zo,y) € [2tV/7, cot'/P] we have d(x,y) e <
(d(x, 20) +d(x0,y)) e < {(ca+1)t/P}1+e <t since 1+€ < B (see Assumption 3.1.2).
Then by Lemma 3.2.11 (2), (3.1.5), (3.1.6), for ¢,r as in the statement above we have

P (d(zo,Y,”) < 2r for some s >t )

= Z i (z,9)0° (y) P, (d(zo, Yy") < 2r for some s > 0 )
yeV(Gv)

Z g (x,y)0%(y) Py (d(wo, ;") < 2r for some s > 0 )

y:d(zo0,y)E[2tL/ P catl/B]
Z Co1 exp [ c (d(l"y))ﬁ/(ﬁl)] Qw(y) Cg?"a_ﬁ
ta/B SR 1/8 a—p
yd(zo,y)€[2t1/ 8 cat/B] t t (d(xo,y) +2r)
(use (3.1.5), Lemma 3.2.11 and d(x,y)"™ < t,
note that ¢ > N, (w) follows from our assumptions)
a—p
(S r
> st W) (t1/B)o—B
y:d(zo,y)E[2t/ P et/ F]
((use d(z,y) < d(z,z0) + d(z,y) < (c2 + 1)tF for y € B(xy, 02151/6))

> 05(03.10? — C3‘2204>7=06—Bt
- ta/B

v

Vv

Y]

We thus complete the proof by taking ¢; = ¢5(c31¢5 — ¢3.92%). O
Lemma 3.2.14. Under Assumption 3.1.2 (1) (2) (3) (4) and Assumption 3.2.8 there

exist positive constants ci,ca, Mo, Ty such that for any n > ny the following holds;

oe—Bt
P2 (d(zo,Yy) < 2r for some s € (t,nt] ) > 612’;_/5

for almost all w € Q, all v > 1, t > Ty, x,29 € V(G¥) with d(x,x0) <1, t > 1P,

r> max N, (w).
2€B(xg,c2t1/P)
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Proof. By Lemma 3.2.12 and Lemma 3.2.13 there exist positive constants cy, co, c3, T
such that for almost all w € 2
a—p a—p
cr*rt w o Ccor® Pt
Wng (d(zo, YY) < 2r for some s >t ) < e

for r > 1,t > Ty, x,29 € V(G¥) with d(z,x0) <7, t >rP,r> max N, (w).
2€B(x0,c3t1/P)

C1 Co
W > B for all n > ny. Then we have

Take ng such that co —
P2 (d(x,Y) < 2r for some s € (t,nt] )
> Py (d(zo, YY) < 2r for some s >t ) — Py (d(zo,Yy") < 2r for some s > nt )
re=ht re=Bmt)  ro Pt ( 1 )
2

2 ¢ PRy (nt)/? = a/B e/l

We complete the proof by adjusting the constants. ]

3.2.4 Consequences of Assumption 3.1.4
In this subsection, we give easy consequences of Assumption 3.1.4. We use ¢(q) =
vc(q) = Cq'/P(loglog q)'~'/# in this subsection.

Lemma 3.2.15. (1) Under Assumption 3.1.4 (1), for all y1,72 >0, ¢ > 1 and for

almost all w € Q there exists a positive number LV (w) = L%gmm,q(w) such
that

"> max  Ny(w), "> max  Ny(w),
i  yEB(z,72q"/P) y( ) ’ylgp(q )_yEB(mﬁw(q")) y( )

for all n > LW (w).

(2) Under Assumption 3.1.4 (2), for all y1,72 >0, ¢ > 1 and for almost all w € §)
there exists a positive number L) (w) = ngmm,q(w) such that

B> max N,(w
nd T yeB(z,72q") y( )

for all n > L@ (w).
(3) Set (t) := t'/Ph(t), where h(t) is non-increasing and v (t) is increasing func-
tion. Under Assumption 3.1.4 (3), for all y1,72 > 0, ¢ > 1 and for almost all

w € Q there exists a positive number LB (w) = ngmm,q(w) such that

1Y(¢") >  max  Ny(w)

yeB(z,729"/P)

for alln > LO®(w).
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Proof. We can prove (1) (2) (3) similarly, so we prove only the first inequality in (1).
Since

P (,qun/,é’ < max Ny) < Z P (fqun/b’ < Ny)

xT n/B
yeB(@ne/) yEB(z,v2q™/ )
< c(9q"")* f(11q"?),

where we use union bound in the first inequality and use (3.1.2) in the second in-
equality. The conclusion follows by the Borel-Cantelli lemma. O]

3.3 Proof of Theorem 3.1.5

In this section we give the proof of Theorem 3.1.5.

3.3.1 Proof of the LIL
We follow the strategy as in [27].

Theorem 3.3.1. Let o(t) = o (t) = Ct1/8(loglog t)' =18 where C' > 21+1/8¢ =1/
Then under Assumption 3.1.2 (1) (2) (3) and Assumption 3.1.4 (1) the following hold
for almost all w € Q;

supy< < A(Yg?, Y5°)

lim sup * L <1, P?-a.s. for all x € V(G*), (3.3.1)
t—o0 o(t)
Py < sup d(z, YY) < p(t) for all sufficiently large t) =1, for all z € V(G*).
0<s<t
(3.3.2)

In particular, we have

0
lim sup Yy, i) <1, P?-a.s. for all x € V(G*),
t—o0 o(t)
P (d(x,Y?) < @(t) for all sufficient large t) = 1, for all z € V(G*).

Proof. Take n > 0 and § € (0, ¢y A ¢1.4) sufficiently small constants which satisfy

(B-1)/8
C > 21//3(1 + n)l/ﬂ ( ) . Set t, = (1+n)™.

Cl2 — (5
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First we estimate Py ( sup d(x,Y?) > 2900(25”)). For all 6 € (0,c12 A c14),

0<s<tn41
using Lemma 3.2.2 we have

P sw dev2) 2 2000)

OSSStn+1
[ B/(B-1)
ln
<crexp | —(cr2 —9) (%) + coexp [—cstn1]
n+1
[ @(tn) B/(B-1)
< crexp |—(c10 —0) ((2(1 ot )1/6) + o exp [—cstpi] (3.3.3)
for  sup  N,(w) < p(t,) Atyrr. Note that sup N, (w) < o(ty) Atyeq for
2€B(z,2¢(tn)) 2€B(z,2¢(tn))

all n larger than a certain constant L = L(w) by Lemma 3.2.15 (1).
(3.3.1) is immediate from (3.3.3) and the Borel-Cantelli Lemma.

(B-1)/8
We prove (3.3.2). Let C' > 2Y8(1 4 n)'/# < > be as above. Since

Cl2 — )

P (s de,v2) 2 2600)) < P (sup de. ) > 2000

0<s<tn 0<s<tn+1

for t € [t,, t,41] and the last term of (3.3.3) is summable by the definition of 1 and
0. By the Borel-Cantelli lemma we have

Py ( sup d(Yy', YY) < 2¢p(t) for all sufficiently large ¢ ) =1, for all z € V(G¥).

0<s<t ®
(3.3.4)
We thus complete the (3.3.2) by adjusting the constants. ]
Theorem 3.3.2. Let o(t) = oo (t) = Ct'/P(loglogt)' /5,

1 C31 1/ 1 B-1)/8
where 0 < C < ( : ) <— . Then under Assumption 3.1.2 (1)

2UH/B \ 3 C2.2
(2) (3) and Assumption 3.1.4 (1) the following holds;
d(Yy,vy”
lim sup Yy, ") >1 P?-a.s. for all x € V(GY).

t—00 (1) 7

In particular, we have
P2 (d(Yy, YY) > o(t) for sufficiently large t) = 1, for all z € V(G*),
supg< < A(Yg”, Y5°)

s

lim sup >1

, Pr-a.s. for all x € V(GY).
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Proof. Define ®(q) = ¢'/?(loglog q)'~'/# and let C be as above. Take n > 0 as a
sufficiently small constant such that

O< 1 1 Cs1 1/ 1 (8-1)/8
21/8 1 2 \ 3.2 1 2.2 '

1 1 1/a
Set =3 (@> — 7. Note that 31 A" — ¢322% > 0 and 02,2(21/’80)\)5/(5_1) < 1.
C3.2

We prove that

> PY(A% | Fs) = oo, (3.3.5)

where A% = {d(Yg,Yg) > 202"} and F = o (V¥ | s < t). To prove (3.3.5),
first note that by Theorem 3.3.1 there exists a sufficiently large constant C such
that for almost all w € Q
d(z,Yy) < C1P(2") for sufficiently large n (say n > Ny), Pr-a.s.

Set BY = A2 N {d(Yy’,Ys) < C1®(2")}. Then we have

Py (AL | Fon) =2 PP (B | Fon)

— ]‘{d(YOw7Y2%)§CICI>(2n)}Pu;“7’L (d(YOw, YvQL:LJrl,Qn) Z 2%0(2n+1))

> inf PY(d(Yy, Ysn) > 202" ) ) - Lyave v n PY-as.

B (UEBW(;,HCICI)(TI)) w (A0, Y50) 2 2¢( ))) g =) o

(3.3.6)

We consider the first term of (3.3.6). Take u € B“(z,C1®(2")). Since 1 +¢ < 3,
there exists a positive integer Ny = Na(A) (which does not depend on u, w) such that
d(u,v)e < 2" for all n > N, and v € B*(u, \p(2")). So for all n > N, with
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2" A 20(2"1) > N, (w), using (3.1.5) and (3.1.6) we have
Py (d(Yy,Y5) > 20(2"1)) = Py (20(2") < d(Y5, Y3) < Ap(2"H))
= > G3n (1, 0)0% (v)

veV(GY)
2p(2" 1) <d(u,w)<Ap(27H)

B/(B-1)
Co1 d(u,v)) "
o/ SXP —02.2( - 0 (v)
=, @
202" ) <d(u,v)<Ap(27 1)

Cot (/\g0<2n+1))ﬂ/(5_1)]
—Co2 | Yo

>
—(2n)e/B (2n)1/8
(90-’({’0 € V(Gw) ‘ 2()0(2n+1) < d(u,v) < )\(10(2n+1)})
co.2(21/BAC)B/(B—1)
o
(n+1)log 2)

v

exp

2n+1) (B_l)a/ﬂ ]

> caa(c3a A" — c322%)C ( (loglog

By the above estimate we have

inf P (d(Y¥,YE) > 2p(2" 1
ueBW(aglClé(Tl)) u ( (Y57, Yan) > 20( ))

2n+1) (B—1)a/B

1 622(21/6)\0)&/(6—1)
) (log log

2 aaleond = 2?10 (g

(3.3.7)

f > N, with Ny(w) < 27 A 2p(2Y). By Lemma 3.2.15 (1),
or n > Ny wi ueB(glgﬁm)) (w) < o( ) y (1)

ma; N,(w) < 2™ A 2p(2nH
uEB(z,C&}é(Q")) ( ) - SO(

) holds for sufficiently large n (say n > N3 =
Ns(w)). Hence by (3.3.6) and (3.3.7) we have

By (A | o)

2n+1) (B-1)a/B

1 c2.2(2Y/PAC)R/(B-1)
) (log log

Rl (e

(3.3.8)
for n > N; V Ny V N3. We thus complete to show (3.3.5).

By (3.3.5) and the second Borel-Cantelli lemma, we have d(Y32, Yya,,) > 2p(2")
for infinitely many n. This implies d(z,Y5) > ¢(27) or d(z, Yi.) > ¢(2") for
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infinitely many n. Hence
d(Yy, Y
lim sup LR ) > 1.
We thus complete the proof. O
By Theorem 3.3.1, 3.3.2 and 3.2.6 we obtain (3.1.10).

3.3.2 Another law of the iterated logarithm

The proof of Theorem 3.1.5 (2) is quite similar to that of [50, Theorem 4.1] by using
Lemma 3.2.2, Corollary 3.2.4, Lemma 3.2.5, Theorem 3.2.6 and Lemma 3.2.15 (2).
So we omit the proof.

3.4 Lower Rate Function

In this section we give the proof of Theorem 3.1.6. We follow the strategy as in [64,
Section 4.1].

Theorem 3.4.1. Suppose that Assumption 3.1.2 (1) (2) (3) (4). In addition suppose
that there exists a positive constant ¢ such that 8*(x) > ¢ for all x € V(G¥) in the
case of CSRW. Let o/ > 1, h : [0,00) — (0,00) be a function such that h(t) \, 0
as t — oo, p(t) := tYPh(t) be increasing for all sufficiently large t and satisfy
Assumption 3.1.4 (3). If the function h(t) satisfies

]
/ ;h(t)a*ﬁdt < o0 (3.4.1)
1

then for almost all w € Q and all x € V(G*) we have
Py (d(z,Y) > tYPh(t) for all sufficiently large t) =1.

Proof. Set ¢(t) :=t'/Ph(t), t, := 2" and

AY = {d(z, YY) < p(s) for some s € (t,,tn41]}. Note that there exists a constant
¢ such that ¢(s) < 2cip(t,) for all sufficiently large n (say n > N;) and for all
s € (tn,tnt1]- Then by Lemma 3.2.12 we have

CZ(p(tn)a_ﬁtn

Py (A2) < P? (d(z, YY) < 2c19(t,,) for some s > t,) < E
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for n with

n > Ny, 2" > Ty, where T} is as in Lemma 3.2.12, t}/ﬁ > c1(ty),

cro(t,) > max N, (w).
19 )_zeB(m,cw(tn)) @)

(3.4.2)

Note that (3.4.2) is satisfied for sufficiently large n (say n > Ny = Na(w)) by As-
sumption 3.1.4 (3) and Lemma 3.2.15 (3). Thus

o e Cap(tn)* Ptn coh(t,) P,
dYooPrAan < > 2T: 3 2T

n>Na(w) n>No(w) n>No(w)

< Z C3h(tn)aiﬁ(tn — tn—l) < cs /Oo h(S)aiﬁ dS

= o tn - tNy—1 S
n>Na(w

Since the last expression above is integrable by (3.4.1), by the Borel-Cantelli lemma
we have

PY (d(z,Y?) > tY81(t) for all sufficiently large t) =1.
We thus complete the proof. [

Theorem 3.4.2. Under the same setting as in Theorem 3.4.1, if the function h(t)
satisfies

<1
/ gh(t)afﬁdt = o0 (3.4.3)
1
then for almost all w € Q and all x € V(G*)

P (d(x,Y}”) > @(t) for all sufficiently large t) = 0. (3.4.4)

We cite the following form of the Borel-Cantelli Lemma (see [64, Lemma 4.15],
(68, Lemma B], [20, Theorem 1]).

Lemma 3.4.3. Let {Ai}i>1 be a family of event which satisfies the following condi-
tions;

(1) > P(Ax) = oo,
(2) P(limsup A;) =0 or 1,

55



(3) There exist two constants cy, ¢y such that for each A; there exist Aj,,--- , A;, €
{Ak}kZl such that

(a) Y P(A;NA;) < erP(4)),
i=1

(b) for any k € {j+1,7+2,---} \ {j1,J2, -+, Js} we have P(A; N A;) <
CQP(AJ)P(Ak)

Then infinitely many events { Ag }r>1 occur with probability 1.

Proof of Theorem 3.4.2. First we prepare preliminary facts. Since h(t) \, 0 as t —
00, there exists a positive constant 7} such that h(¢) < 1 for all ¢t > Tj. So there
exists a constant x € (0,1) such that p(t) < (kt)/# for t > T). Take n > 1V 1
(where 79 is as in Lemma 3.2.14) with 1 — % >k and ¢; = ¢1(n) € (0,1) such that

2¢; (Y < (n™)YP for all n. Note that for all s with 7"+ < s < "2 we have
p(") = (" YPR(Y) 2 2 (02 PR(s) 2 2e10(s),  (3.4.5)
and for all sufficiently large 4, j with i > j +2 and 7/ > T} (say j > N;) we have

1-1>k
i

o (345) . - -
QRerp(n™)° < o) <kp' < gl =T <y =t (3.4.6)
Now we prove (3.4.4). Set A2 i— {d(V¥, V=) < 261 for some s € (57, 5*1]}
We use Lemma 3.4.3 to show that infinitely many A% occur with probability 1.
Note that n" > (c1o(n™*1))? for sufficiently large n (say n > Ny = Ny(n)) by

(3.4.6). By Lemma 3.2.14 we have

n+1\\a—pB,n
77"0‘//3
for n > ng (where 7 is as in Lemma 3.2.14) and n > N, with

n™ > Ty, where T is as in Lemma 3.2.14, ap(n™™) > max N, (w).
2€B(x,can™/P)
(3.4.7)

Note that (3.4.7) holds for sufficiently large n (say n > N3(w)) by Assumption 3.1.4
(3) and Lemma 3.2.15 (3). Hence

w w 02(6190(77”4_1 o 577 a—0B_ « (77n+1)a §
Z Pa: (An) Z Z na/B Z €26 B [ n+1 77 e
n>Ns n>N3 77 n>Ns 77 77
B C2C a/ﬁ h( n+1)a—ﬁ ni2 by o czc?f/o’na/ﬂ 00 h(S)O‘_’Bd
=2 T =) 2 S 5.
n>N3 n nmn nN3+1 S
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Thus we have Z Py (Ay) = oo by (3.4.5).

The condition (2) in Lemma 3.4.3 is immediate from Theorem 3.2.6, since
lim sup,, AY is a tail event.

Next we show the condition (3) in Lemma 3.4.3. Set 0% := inf{t € (5", 7" "] |
d(Y¥,Y#) < 2c10(n™1)}. Then for ¢ > j + 2 we have

P;U(A[;) N Af;) = P;(O'j < anrl, o; < niJrl)
=EY [1{oj§nj+1}P{ﬁg_ (d(;@Y;W) < 2c10(n*1) for some ¢ € (o — Uj’ni—i-l B Uj])}
< By [1{‘”3’7”1}]312 (d(z, V) < 2c10(n'™) for some ¢ > 7' — ”jH)]

< sup P2 (d(2,¥) < 2e1p(n*?) for some ¢ > — i +)
z:d(x,2)<2c10(ni 1)

x P (o7 <. (3.4.8)
By Lemma 3.2.12, for any ¢ > j + 2 with

' = > (™), 20t <ae™), o) > max N, (w)
zEB(zp(nit1))

(3.4.9)
we have
sp P2 (d(z, %) < 261005 for some ¢ > 5 — ")
zid(z,2)<2c1p(n+1)
_ G (o™ )™ " (i =) _ e (erpln™)* (3.4.10)

(n* — npi+t)e/s N (n*)>/#
(3.4.9) holds for sufficiently large i, j with ¢ > j+2 (say j > Ny = Ny(w)) by (3.4.5),

(3.4.6), Assumption 3.1.4 (3) and Lemma 3.2.15 (3). By Lemma 3.2.14, for any ¢
with

n' > Ty, where Tj is as in Lemma 3.2.14,
=

n' > (cip(n™)?, ™) > max  Ny(w) (3.4.11)
’UEB(CC70577i/ﬂ)
we have
i+1\\a—B i ‘ o
(0190(27772.)(3/)5 i < cgP¥ (d(m,Yt“’) < 2c10(n™™) for some t € (7]2,771“])
= cgPY (AY). (3.4.12)
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(3.4.11) holds for sufficiently large j (say j > N5 = Ns(w)) by (3.4.5), Assumption
3.1.4 (3) and Lemma 3.2.15 (3). Hence by (3.4.8), (3.4.10) and (3.4.12) we have
Py (AY N AY) < cP2(AY)P2(AY) for sufficiently large j (j > Ng := Ny V N;) and
i > j+2. In the case of i = j + 1 we have P (A%, NAY) < P¥(A%). Thus we
obtain the condition (3) of Lemma 3.4.3 for {AY}is .

By Lemma 3.4.3, we thus complete the proof. [

By Theorem 3.4.1 and Theorem 3.4.2 we complete the proof of Theorem 3.1.6.

3.5 Ergodic media

In this section, we consider the case G = (V| E) =

4 and obtain Theorem 3.1.8
under Assumption 3.1.7. We follow the strategy as in [27]

3.5.1 Ergodicity of the shift operator on Q%

We consider Markov chains on the random environment, which is called the environ-
ment seen from the particle, according to Kipnis and Varadhan [47].

Let Q = [0,00)¥ and define % as the natural o-algebra (generated by coordinate
maps). We write Y = Q% % = %2, If each conductance may take the value 0, we
regard 0 as the base point and define Co(w) = {z € Z? | 0 +Z» 2} = V(G¥), where
0 +2» 2 means that there exists a path v = ejey - - - e from 0 to x such that w(e;) > 0
forall i =1,2,--- k. Define Qy = {w € Q| 1Cy(w) = oo} and Py = P(- | Q).

Next we consider the Markov chains seen from the particle. Recall that {X“},>¢
is the discrete time random walk which is introduced in Section 3.1.1. Let w,(-) =
w(-+XY) = txow(-) € Q. We can regard this Markov chain {w, },>0 as being defined
on Y = OZ. We define a probability kernel Q : Qy x & — [0,1] as

Q. A) =

Z W E wO’U]'{TUOJEA}'
elel=1We Ao

This is nothing but the transition probability of the Markov chain {w, },>0.
Next we define the probability measure on (Y, %) as

(@ ) € B) = [ Pofd- )@, dipin) -+ Qusaor, i)

By the above definition, {7xww}r>o has the same law in Eo(Fy'(-)) as (wo,wr, )
has in p, that is,

Eo [Py ({Txew}izo € B)] = p((wo,w1,--+) € B) (3.5.1)
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for any B € .
We need the following Theorem. Let T : ) — ) be a shift operator of ), that is,
(TCL))n - (JJn+]_.
Theorem 3.5.1. Under Assumption 3.1.7, T is ergodic with respect to p.

The proof is similar to [16, Proposition 3.5], so we omit it.
We also need the following Zero-One law (see Proposition 3.5.2). Let a > 0 and
AY(a), AY(a), A% (a) be the events

wiy _ {1 d(X5, X3))
Aile) = {hfls;fp n'/B(loglogn)i-1/8 o a} ’

45(a) = {tim sup “Posken AXG XE)
? n— 00 nl/ﬁ(log log n)l—l/ﬁ )

wr v 1 SUDgcge, (X, X))
A3 (a) = {hm%f /5 (loglogn)-/7 ~ *

Define
A;(a) = {w € Q| A¥(a) holds for P*-a.s. and for all z € Cy(w)} .

Proposition 3.5.2. Py(A;(a)) is either 0 or 1.
Proof. See [50, Proposition 5.2]. O

3.5.2 Proof of Theorem 3.1.8

In this subsection we discuss the proof of Theorem 3.1.8. Recall T = 0, T?,, =
inf{t > T3 | V¥ # Y.} and XY = V7.

First we consider the CSRW. {1, | =T\ },,>¢ is a family of i.i.d. random variables
whose distributions are exponential with mean 1, so the law of large number gives

us
W
— =1 Py-a.s.
n

Thus
. d(Yy,Yx ) d(Xy, X
hl,iigp tl/ﬁ(lﬁ)golog ;)3_1/5 = hin_)s;ip nl/ﬂ(l(og(iog n>>1_1//37
lim sup SUPo< <, AV, ¥) = lim sup SWPo<ksn AXE, XF)
tooo /P (loglogt)t=1/7 nooo  NY/B(loglogn)t—1/8"
lim inf SoP0<s<t A0, YY) — Jim inf S oP0<k<n d(XG, X,f)
t—oo VP (loglogt)~1/8 n—oo  nl/B(loglogn)-1/#
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By Assumption 3.1.7, Proposition 3.5.2 and Theorem 3.1.5 we obtain Theorem 3.1.8.
Next we consider the VSRW. {7, | — T},,>¢ are non-i.i.d., and the distribution

1
(X))
variable with parameter 7 (z) and S,(w) := S, (w € V). Then by (3.5.1) and the
ergodicity we have

of T” | — T is exponential with mean Write S% be a exponential random

—T“— stw: ZSOTk — B* [ 5]

E [E4[S¢]] / / 27(0) exp(— (O)x)ddeP—IELwl(o)}.

Thus
1/8
) d(Yw Yw) 1 . d(X"J X“’)
1 0>t — - — 1 0> n
T’ 1P (loglog )77~ | g L S’ 78 (log log n) =1/
(0
1/8
lim sup Supogsgt dG/Ow’ st) = 1 lim sup SupOSkSn d(XSJa Xl‘:)
te #1/0(loglogt) =7\ g [ ] nsoo 11/3(loglogn)i=1/3"
_ 1/p
L inf SoPo<s<t d(Yy, YY) 1 li g SPo<k<n d(Xg, X7)
t—00 tl/ﬂ(log logt)—l/ﬂ a E [ 1( )_ t—s00 nl/ﬂ(log 10gn)—1/ﬂ .
7« (0

By Assumption 3.1.7, Proposition 3.5.2 and Theorem 3.1.5 we obtain Theorem 3.1.8.
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Chapter 4

Cutoff for lamplighter chains on
fractals

We show that the total-variation mixing time of the lamplighter random walk on
fractal graphs exhibit sharp cutoff when the underlying graph is transient (namely
of spectral dimension greater than two). In contrast, we show that such cutoff can
not occur for strongly recurrent underlying graphs (i.e. of spectral dimension less
than two).

4.1 Introduction

Markov chain mixing rate is an active subject of study in probability theory (see
[52, 61] and the references therein). Mixing is usually measured in terms of total
variation distance, which for probability measures u, v on a countable set H is

I = vy = sup [1(4) = v(A)] = 5 3 lula) = v(o) = X lue) = via)s

xeH reH

Specifically, the (e-)total variation mixing time of a Markov chain ¥ = {Y;};>¢ on
the set of vertices of a finite graph G = (V, E), having the invariant distribution m,
is

Thix(€; G) := min {t >0| max [|[P(Y;=") — 71y < e}.

zeV(G)

One of the interesting topics in the study of Markov chains is the cutoff phenomena,
mainly for the total variation mixing time (see e.g. [52, Chapter 18]). The study
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of cutoff phenomena for Markov chains was initiated by Aldous, Diaconis and their
collaborators early in 80s, and there has been extensive work in the past several
decades. Specifically, a sequence of Markov chains {Y™1y-, on the vertices of
finite graphs {G™} x>, has cutoff with threshold {ay}y>; iff

=l (e Ny
Nh_r};oaN Tix(6; GVY) =1, Ve e (0,1).
In the (switch-walk-switch) lamplighter Markov chains, each vertex of a locally
connected, countable (or finite) graph G = (V, E) is equipped with a lamp (from
Zs ={0,1}), and a move consists of three steps:

(a). The walker turns on/off the lamp at the vertex where he/she is, uniformly at
random.

(b). The walker either stays at the same vertex, or moves to a randomly chosen
nearest neighbor vertex.

(¢). The walker turns on/off the lamp at the vertex where he/she is, uniformly at
random.

Such a lamplighter chain on the graph G is precisely the random walk on the cor-
responding wreath product G* = Zy ! G (see Section 4.1.1 for the precise definitions),
and the total variation mixing time of a lamplighter chain is closely related to the
expected cover time of the underlying graph G, denoted hereafter by T, (G). The
study of cutoff for lamplighter chains goes back to Haggstrom and Jonasson [36] who
showed that cutoff does not occur for the chain on one-dimensional tori, whereas for
lamplighter chains on complete graphs, it occurs at the threshold ay = %TCOV(G(N ).
Peres and Revelle [59] further explore the relation between the mixing time of lamp-
lighter chain on G™) and T,.,(G™)), showing that, under suitable assumptions,

(% +0(1)) Teoy (G™)) < Tin(Z2 1 GM5€) < (1 + 0(1)) ooy (G, (4.1.1)
The bounds of (4.1.1) cannot be improved in general, as the lower and the upper
bounds are achieved for complete graphs, and two-dimensional tori, respectively. The
same bounds apply for any Markov chain on X G™), where in steps (a) and (c) the
walker independently chooses the element from the finite set X according to some
fixed strictly positive law. Indeed, for such chains total variation mixing time has
mostly to do with the geometry of late points of G, namely those reached by the
walker much later than most points. In particular, the LHS of (4.1.1) represents the
need to visit all but O(,/4V(G)) points before mixing of the lamps can occur and
the rus reflects having the lamps at the invariant product measure once all vertices
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have been visited. Miller and Peres [54] provide a large class of graphs for which
the LHS of (4.1.1) is sharp, with cutoff at %TCOV(G(N)). Among those are lazy simple
random walkers on d-dimensional tori, any d > 3, for which [55] further examines
the total-variation distance between the law of late points and i.i.d. Bernoulli points
(c.f. [55, Section 1] and the references therein). Finally, the analysis of effective
resistance on GN) = 73, X Ziniog Ny Plays a key role in [25], where it is shown that
the threshold a(h)T.e (G™N)) for mixing time cutoff of lamplighter chain on such
1

graphs, continuously interpolates between a(0) = 1 and a(oc0) = 3.

Another topic of much current interest is the long time asymptotic behavior of
random walks {X;} on (infinite) fractal graphs (see [3, 45, 49] and the references
therein). Such random walks are typically anomalous and sub-diffusive, so generi-
cally E,[d(Xo, X;)] < t'/% and the walk-dimension d,, exceeds two for many fractal
graphs, in contrast to the skw on Z¢ for which d,, = 2 (the notation a; < b; is
used hereafter whenever ¢ 'a; < b < ca; for some ¢ < 00). A related important
parameter is the volume growth exponent dy such that §B(x,r) < r%, where §B(x,r)
counts the number of vertices whose graph distance from z is at most . The growth
of the eigenvalues of the corresponding generator is then measured by the spectral
dimension dy = 2dy/d,,, with the Markov chain {X;} strongly recurrent when dy < 2
and transient when d, > 2 (while d; = d, = d for the srkw on Z%).

We study here the cutoff for total variation mixing time of the lamplighter chain
when G™) are increasing finite subsets of a fractal graph. While gaining important
insights on the geometry of late points for the corresponding walks, our main result
(see Theorem 4.1.4), is the following dichotomy:

e When d; < 2 there is no cutoff for the corresponding lamplighter chain, whereas
e if d, > 2, such cutoff occurs at the threshold ay = %TCOV(G(N)).

In contrast, in the critical case ds = 2 (i.e. dy = d,,), we expect the mixing time
and the corresponding cutoff phenomena to depend also on some other properties of

{GM}.

4.1.1 Framework and main results

Given a countable, locally finite and connected graph G = (V(G), E(G)), denote
by d(-,-) = dg(+,-) the graph distance (with d(z,y) the length of the shortest path
between x and y), and by B(z,r) = Bg(z,r) := {y € V(G) | d(z,y) < r} the
corresponding ball of radius r centered at z. A weighted graph is a pair (G, u)
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with p @ V(G) x V(G) — [0,00) a conductance, namely a function (z,y) — fy
such that j,y, = g, and p,y, > 0 if and only if zy € E(G). We use the notation
V(x,r):= p(B(r,r)) and more generally p(A) := > _, e for A C V(G), where

JIRES Z Ly Ve e V. (4.1.2)
y:zy€E(G)

The discrete time random walk X = {X;}:>¢ associated with the weighted graph
(G, 1) is the Markov chain on V(@) having the transition probability

Hay

[z

Let Pi(x,y) = Pi(z,y;G) := P.(X; = y) denote the distribution of X; with the
corresponding heat kernel

P(z,y) =

vVt e NU{0}

and Dirichlet form

LS =y S @) = JW) by =~ (P = Dfys for [ V(G) R
z,yeV(G)
(4.1.3)

where (f,g), = >_, f(z)g(x)p(x). The corresponding effective resistance Reg (-, -) is
given by

Rea(A, B)™ = inf{E(f, f) | fla=1, flz =0}, for A, B C V(G).

We also consider the lazy random walk X = {X,},5¢ on (G, 1), having the transition

probability
P(z,y) == {

The Dirichlet form and heat kernel of X are then, respectively E(f, f) = s, 1)
and

P(z,y), ifz#y,

) (4.1.4)
, if v =y.

N[ D=

vVt e NU{0}.
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We consider finite weighted graphs {(G™), u™)}y; with #V(GW)) — co. Using
hereafter -(V) for objects on (G™), ™) (e.g. denoting by Rig)(~,~) the effective
resistance on (G™), ™)), we make the following assumptions, which are standard
in the study of sub-Gaussian heat kernel estimates (SuB-GHKE) (c.f. [5, 49]).

Assumption 4.1.1. For some 1 < df < 00, ¢¢, ¢y < 00, po > 0 and all N > 1 we
have

(a) Uniform ellipticity: ¢! < i <, Vaye E(GM),

(b) po-condition: Hay >py Vay € E(G(N)),
(¢) dg-set condition:  c;'r¥ < VW (z,r) < er® Vo € V(GW), 1 <7 <
diam{G™ — 0.

Assumption 4.1.2 (Uniform Parabolic Harnack Inequality). For some 2 < d,, < oo,
Cprr < 00, cpmr € (0,1] and all N > 1, whenever u : [0,00) x V(G™) — [0, 00)
satisfies

u(t 4 1,2) — u(t,z) = (PN — Du(t, z), Vt € [0,4T), 2 € B™(z0,2R), (4.1.5)

for some zy € V(GM)), R < cpprdiam{G™} and T > 2R, T < R%, one also has
that

max  {u(s,2)} <Cpm min  {u(s,z)+u(s+1,2)}. (4.1.6)
2€ BN (20,R) 2e€BMN) (z9,R)
SE€[T,2T] SE[3TAT]

Remark 4.1.3. Thanks to the po-condition we have that 1 > degqow) (z)po, so the
graphs {G™)} are of uniformly bounded degrees

sup sup {degqom ()} < 0.
N zev(Ga)

Together with the uniform ellipticity, this implies that for some ¢ < oo

<™ <¢, VN >1, zeV(GWM),

xT

and thereby

FHA < uWNM(A) <éEtd, YN >1, AcV(GW). (4.1.7)
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To any finite underlying graph G = (V, E) corresponds the wreath product G* =
Z ) G such that

V(G*) =17y xV,
EG) ={(f.2),(9,9)} | f=ganday € E, orx =y and f(v) = g(v) for v # z}

and we adopt throughout the convention of using y = (f,y) for the vertices of ZG.
The lazy random walk X on (G, ;1) induces the switch-walk-switch lamplighter chain,
namely the random walk Y = {Y; = (f, Xt) }+>0 on Z2G whose transition probability
is

P ((f,2):(g,9))
%Lf:’(a:,y) =1, if z =y and f(v) = g(v) for any v # =,
= 1B(@,y) = 1P(z,), ifz#y and f(v) = g(v) for any v £ z,v,
0, otherwise.

One way to describe the moves of the Markov chain Y is as done before: first
Y switches the lamp of the current position, then moves on G according to P, and
finally switches the lamp on vertex on which it landed. We denote by Y(V) = {Y;(N) =
(fe, Xt(N))}tZO the lamplighter chain on weighted graphs (G™), u™), using P*(-, -; G)
whenever we wish to emphasize its underlying graph. The invariant (reversible)

distribution of each X, and its lazy version X, is clearly
(V) pi” ()

with the corresponding invariant distribution of Y™ being

m(y; GN) = 272N (y) vy = (fy) € V(Z:1GNY). (4.1.9)

We next state our main result.

Theorem 4.1.4. Consider lamplighter chains Y ™) whose underlying weighted graphs
{(GM) NNy ysy satisfy Assumptions 4.1.1, 4.1.2.

(a) If dy < dy, then there is no cutoff for the total variation mizing time of Yy,

(b) If dy > d,,, then the total variation mizing time for YN admits cutoff at ay =
LT (GM).
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Note that for countable, infinite weighted graph (G, i), having dy < d,, (resp.
d¢ > d,,), corresponds to a strongly recurrent (resp. transient), random walk X in
the sense of [10, Definition 1.2] (see [10, Theorem 1.3, Proposition 3.5 and Lemma
3.6]). In Section 4.2 we provide a host of fractal graphs satisfying Assumptions 4.1.1
and 4.1.2, with the Sierpinski gaskets and the two-dimensional Sierpinski carpets as
typical examples of Theorem 4.1.4(a), while high-dimensional Sierpinski carpets with
small holes serve as typical examples of Theorem 4.1.4(b).

In Section 4.3, we adapt to the setting of large finite weighted graphs, certain
consequences of Assumptions 4.1.1 and 4.1.2 which are standard for infinite graphs.
In case dy < d,,, the relevant time scale for the cover time TCOV(G(N )) is shown there
to be

Ty := (Ry)™ where Ry = diam{G™} . (4.1.10)

Applying in Section 4.4 results from Section 4.3 that apply for d¢ < d,,, we derive the
following uniform exponential tail decay for 7eo, (G™N))/Ty, which is of independent
interest.

Proposition 4.1.5. If Assumptions 4.1.1, 4.1.2 hold with dy < d,,, then for some
co finite and all t, N,

SUP  {Pu(Teor (GN)) > 1)} < ¢oe™t/(0TV) (4.1.11)
2eV(GIN))

Starting with all lamps off, namely at Yy = « := (0, z), on the event

{supg< < d(Xo, X,) < LRy}, all lamps outside BV (2, 1 Ry) are off at time ¢. Hence,
then ||P(z,; GM™) — 7*(-; GM)) |1y is still far from 0. Using this observation, we
prove in Section 4.5 the following uniform lower bound on the lamplighter chain
distance from equilibrium at time ¢ < Ty .

Proposition 4.1.6. If Assumptions 4.1.1, 4.1.2 hold, then for some finite c;, Ny,
any t and N > Ny,
d

max  ||Pf(x,;G™)) — 7% (G ||loy > epte VIV — e, RYY . (4.1.12)
x€V (Z21GW))

In Proposition 4.5.1 we bound the rus of (4.1.12) by max, Py (e (GP)) > t) pro-
vided t/Sy is large (for Sy of (4.3.10)). Since Sy < T when d; < d,,, contrasting
Propositions 4.1.5 and 4.1.6 yields Theorem 4.1.4(a) (c.f. Remark 4.5.2 for informa-
tion about Thix(€; GM))/Tooy (GNY)) and lack of concentration of 7., (G™) /Ty).
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Propositions 4.1.6 and 4.5.1 apply also when d,, < d¢, but in that case Teor(GV)) >
1V(GWN)) > Ty, and the proof of Theorem 4.1.4(b), provided in Section 4.5.2,
amounts to verifying the sufficient conditions of [54, Theorem 1.5] for cutoff at
T (GWY )). Indeed, the required uniform Harnack inequality follows from the UpHI
of Assumption 4.1.2, which as we see in Section 4.2 is more amenable to analytic
manipulations than the Harnack inequality.

4.2 Cutoff in fractal graphs

We provide here a few examples for which Theorem 4.1.4 applies, starting with the
following.

/\

Figure 4.1: A sequence of the Sierpinski gasket graphs (G(®, GM, G® respectively).

Example 4.2.1 (Sierpinski gasket graph in two dimension).
Let G denote the equilateral triangle of side length 1. That is,
= (L ﬁ)}

V(GO) = {xo = (0,0),21 = (1,022 = (5,

E(G(O)) = {5’303717 Tox2, 1’1562}-

Setting 1;(x) == (x + x;)/2 for i =0,1,2, we define the graphs {G™)}n>1 via

V(GO (le ) and E(GW+D) (Uwz )

The limit graph G = (V(Q), B(GQ)), where V(G) = UnsoV(G™) and E(G) =
UnsoE(G™), is called the Sierpinski gasket graph. It is easy to confirm that if
Assumption 4.1.1(a) holds for weight u™ on GN) then such u™) satisfies also As-
sumption 4.1.1(b) and Assumption 4.1.1(c) for dy =log3/log?2.

We further prove in Section 4.2.2 the following.
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Proposition 4.2.2. The weighted graphs {(G™), u™))}y>o of Evample 4.2.1 further
satisfy Assumption 4.1.2 with d,, = log5/log 2.

In view of Proposition 4.2.2 and having dy < d,, we deduce from Theorem
4.1.4(a) that the total variation mixing time of the lamplighter chains of Example
4.2.1, admits no cutoff.

Remark 4.2.3. For d > 3, the d-dimensional Sierpinski gasket graph is similarly
defined, and by the same reasoning the corresponding lamplighter chains admit no
mixing cutoff. In fact, one can deduce for a more general family of nested fractal
graphs (see for instance [37, Section 2] for definition), that no cutoff applies.
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Figure 4.2: A sequence of the Sierpinski carpet graphs.

Example 4.2.4 (Sierpinski carpet graph). Fizing integers L > 2 and K € [L, LY,
partition the d-dimensional unit cube Hy = [0,1]% into the collection

Q = {H?Zl[(k’;l), 111 <k <L forallie{1,2,...,d}} of L sub-cubes. Then
fixing L-similitudes {1;,1 < i < K} of Hy onto mutually distinct elements of Q,
such that ¢ (x) := L'z, there exists a unique non-empty compact F' C Hy such that
F = Ufil Vi(F). We call F the generalized Sierpinski carpet if the following four

conditions hold:

(a) (Symmetry) Hy == \Ji", ¥i(Hy) is preserved by all isometries of Hy.

(b) (Connectedness) Int(Hy) is connected, and contains a path connecting the hyper-
planes {z1 = 0} and {z; = 1}.

(¢) (Non-diagonality) If Int(Hy, N B) is nonempty for some d-dimensional cube B C

Hy which is the union of 2% distinct elements of Q, then Int(H, N B) is a connected
set.

(d) (Borders included) Hy contains the line segment {(x1,0,...,0) |0 <z < 1}.
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For a generalized Sierpinski carpet, let VO and E© denote the the 2¢ corners of
Hy and d2%71 edges on the boundary of Hy respectively, with

K

VIGM)y = L0 (VO), V(@)= JV(E™).
11,82,..., i N=1 N>1
K
BG™M)y = | L¥iiin (B?), E@G) = J B(GM).
i1,02,...,in=1 N>1

Once again, it is easy to check that if Assumption 4.1.1(a) holds for weight p®)
on G then such u™N) satisfies also Assumptions 4.1.1(b) and 4.1.1(c) for d; =
log K/ log L.

We prove in Section 4.2.2 the following.

Proposition 4.2.5. For any generalized Sierpinski carpet,
the weighted graphs {(G™), u™N}nso of Example 4.2.4 further satisfy Assumption
4.1.2 for some finite d,, = log(pK)/log L.

Whereas directly verifying Assumption 4.1.2 is often difficult, as shown in Section
4.2.1, certain conditions from the research on sub-GHKE are equivalent to pHI and
more robust. Indeed those equivalent conditions are key to our proof of Propositions
4.2.2 and 4.2.5.

In the context of Example 4.2.4, for carpets with central block of size b% removed
(so K = L= %), for some 1 < b < L — 1, one always have p > 1 when d = 2 (see [7,
Lus of (5.9)]), hence by Theorem 4.1.4(a) no cutoff for the corresponding lamplighter
chain. In contrast, from [7, ruS of (5.9)] we know that p < 1 for high-dimensional
carpets of small central hole (specifically, whenever b¢~! < L4~1 — L), so by Theorem
4.1.4(b) the corresponding lamplighter chains then admit cutoff at ay = LTe0, (GIV).

4.2.1 Stability of heat kernel estimates and parabolic Har-
nack inequality

We recall here various stability results for Heat Kernel Estimates (HKE) and Parabolic
Harnack Inequalities (pHI), in case of a countably infinite weighted graph (G, ). To
this end, we assume

o Uniform ellipticity: ¢;' < gy < co for some ¢, < 0o and all zy € E(G),

70



e po-condition: % > po for some py > 0 and all zy € E(G),
and recall few relevant properties of such (G, ).
Definition 4.2.6. Consider the following properties for d, > 2 and dy > 1:
e (VD) There ezists Cp < oo such that
V(z,2r) < CpV(x,r) for allx € V(G) and r > 1.

o (V(ds)) There exists Cy < oo such that
Cy'r® < V(w,r) < Cyr for all z € V(G) and r > 1.
e (CS(dy)) There exist 6 > 0, Cos < 0o and for each zy € V(G), R > 1 there
exists a cut-off function v =, g : V(G) = R such that:
(a) Y(z) > 1 when d(z, z9) < R/2, while y(x) =0 when d(z, z9) > R,
(b) [9(x) =¥ (y)| < Cos (d(z,y)/R)",
(c) for any z € V(G), f: B(2,2s) > R and 1 <s < R

Mo @ Y @) = )ty

z€B(z,s) yeV(Q)

<C(3) (X W@ = W)y Y FwPh).

z,y€B(z,2s) yEB(z,2s)
e (PI(d,)) There exists Cp; < oo such that
S° (F@) = Foen)ta < CorR™ >~ (f(@) = (1)) ttay

z€B(z,R) z,y€B(2,2R)
forallR> 1,z € V(G) and f : V(G) = R, where fp ) = m > ven(en) (@)
e (HKE(d,)) There erxists Cyx < 0o such that

CHK 1 d(l’,y)d“’ 1/(dw—1)
< _—hr _
plT,y) < V(z, i) P [ (JHK< ¢ > ]

for all z,y € V(G) and t > 0, whereas

1 d(, )% \ V)
pe(,y) + praa(z,y) > CixV (z, t1/dw) exp [— CHK(f) ]

forall x,y € V(G) and t > d(z,y).
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e (PHI(d,)) There exists Cpur < oo such that if u : [0,00) x V(G) — [0, 00)
satisfies

u(t+1,2) —u(t,z) = (P — Iu(t,x), Y (t,z) € [0,4T] x B(xo,2R)
for some xy € V(G), T > 2R with T < R%, then, for such xo, T, R,

max u(s,z) < i ,2) + 1,2)}.
L uls 2) < Cemr_ _min | {u(s,2) +u(s +1,2)}
s€(T,2T) SE[3T AT

Theorem 4.2.7 ([8, Theorems 1.2, 1.5]).  The following are equivalent for any
uniformly elliptic, countably infinite (G, p) satisfying the po-condition.:

(a) (VD), (PI(dy)) and (CS(d,)).
(b) (HKE(d,)).
(¢) (PHI(d,)).

Note that in each implication of Theorem 4.2.7 the resulting values of
(Cp, Cp1, 0, Ccs), Cuk and Cpyy depend only on py, ce, d,, and the assumed constants.
For example, in (PHI(d,))= (HKE(d,)), the value of Cyx depends only on Cpi,
Do, Ce and d,,.

The stability of such equivalence involves the following notion of rough isometry
(see [37, Definition. 5.9]).

Definition 4.2.8. Weighted graphs (GV, ™M) and (G®, @) are rough isometric
if there exist Cqp < oo and a map T : VY — V) such that

Cot dM(z,y) — Cou < dP(T(2), T(y)) < Cqud(w,y) + Coqu,  Va,y e VW,

d®(z', T(VW)) < Cq, Vo e VO,
Cot 1" < piy < Car ), Vo e VO,

where dV(-,-) and V@ denote the graph distance and vertex set of GW, i = 1,2, re-
spectively. Similarly, weighted graphs {(G™), ™))} x are uniformly rough isometric
to a fized, weighted graph (G, ) if each (G™), u™)) is rough isometric to (G, i) for
some Cqp < 0o which does not depend on N.

Recall [37, Lemma 5.10], that rough isometry is an equivalence relation. Further,

(VD), (PI(dy)) and (CS(d,)) are stable under rough isometry. That is,

72



Theorem 4.2.9 ([37, Proposition 5.15]). Suppose (G, ™M) and (G®, @) have
the po-condition and are rough isometric with constant Cqr. If (GO, MY satisfies
(VD), (PI(d,)), (CS(d,)) with constants (Cp, Cpr, 6, Ccs), then so does (G2, u?)
with constants which depend only on (Cp, Cpr, 0, Ccs), dw, po and Cqr.

Combining Theorems 4.2.7 and 4.2.9 we have the following useful corollary.

Corollary 4.2.10. Suppose uniformly elliptic weighted graphs {(G™), u™)y sat-
1sfy the po-condition and are uniformly rough isometric to some countably infinite
uniformly elliptic (G, u) that also has the po-condition. If (G,u) further satisfies
(PHI(d,)), then so do {(G™), u"N)}n with finite constant Cpy which is indepen-
dent of N.

4.2.2 Proof of Propositions 4.2.2 and 4.2.5

Proof of Proposition 4.2.2. Recall that for random walks on the Sierpinski gasket,
namely ji,, = 1 and the limit graph G of Example 4.2.1 (or its d-dimensional analog,
d > 3), Jones [41, Theorems 17,18] established (HKE(d,,)), which by Theorem 4.2.7
implies that such (G, 1) must also satisfy (PHI(d,,)).

Figure 4.3: The construction of a weighted graph (GW+Y, u(N+D) for a given
(G, Ny,

Proceeding to construct for each N > 1 a new weighted graph (G, u/™)), recall
that GVFD consists of three copies GV of G| with 2Nz, € GV for i = 0, 1, 2.
Note that GV = GW) whereas each GV 4 = 1,2 is the reflection of G™:0) across
a certain line V. Reflecting the weight M0 := ™) on GO across (N yields
weights V% on GV i = 1,2 (see Figure 4.3). With {u™? i = 0,1,2} forming a
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new weight on GV C G, we thus set

Hay ) =

(VD) E(GN+D
{N$y 9 1 xy E ( )7 (421)

1, otherwise.

Fixing a solution u™) : [0,00) x V(G®™) — [0, 00) of the heat equation (4.1.5) on
the time-space cylinder of center 3, € V(G™)) and size 2R < T < R%, R < iRN,
we extend u™(t,-) to the non-negative function on V(G)

uM(t,z), ifxeV(GM),
aM(t,x) = L uM(t,2), ifx ¢ V(GM) and 2’ are symmetric wrr N1 or V2]
0, otherwise.
(4.2.2)

Having R < %LRN guarantees that Bg (o, 2R) € GWHY | hence from our construction
of /™) it follows that @V) (¢, z) satisfy the heat equation corresponding to (G, u/™))
on the time-space cylinder defined by (yo, R,T"). Since G has uniformly bounded
degrees, the weighted graphs {(G, ™))}y satisfy a pj-condition (for some pj > 0
independent of N). Further, {(G, /™))}y are uniformly rough isometric to (G, )
(thanks to the uniform ellipticity of u™)). Hence, by Corollary 4.2.10, for some
Chy < 00, which does not depend on N, nor on the specific choice of yo, R and T,

a N (t.y) < O i oM (¢ a Mt +1,9)). 4.2.3
o (t,y) < Cpuy in @™t y) +a'™(t+1,y)} (4.2.3)
y€Bag(yo,R) y€Bg(yo,R)

Since @) of (4.2.2) coincides with «™¥) on B™)(y,, R) C Bg(yo, R), replacing 4
and Bg(yo, R) in (4.2.3) by u™ and B™)(yo, R), respectively, may only decrease its
Lus and increase its rRus. That is, (4.2.3) applies also for u™(-,-) and B™) (y,, R).
This holds for all N and any of the preceding choices of yq, R, T, yielding Assumption
4.1.2, as stated. O]

Proof of Proposition 4.2.5. Consider the random walk, namely p,, = 1, on a lim-
iting graph G that corresponds to a generalized Sierpinski carpet, as in Example
4.2.4. Clearly, (G, ) is uniformly elliptic and of uniformly bounded degrees (so
po-condition holds as well). Further, such random walk has properties (V(ds)) and
(HKE(dy)), with df = log K/logL > 1 and d,, = log(pK)/log L (see [6]). In par-
ticular, by Theorem 4.2.7 (G, 1) satisfies (PHI(d,,)). With G™*V consisting of K
copies of GW) | we extend the given weight ™ on G®) to a weight /™) on G.
Specifically, the weight on the edges of the reflected part of GV, as in Figure 4.4,
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is //E(N) = Keu(fv), where K, € [1, K] is the number of overlaps of e, and ¢’ is the

. ) = QpJ,(gN) for
each edge e lying on a reflection axis). Taking ,ufg(N) =1 for all other e € E(G), the
graphs {(G, /™))}y are uniformly elliptic, satisfy a pj-condition (for some p) > 0
independent of N), and are uniformly rough isometric to (G, ). Thus, by Corollary
4.2.10 the (PHI(d,,)) holds for {(G, /™))}y with a constant Cjpy; which does not
depend on N. Fixing center 3y € V(G™)) and size parameters 2R < T < R,

edge which moves to e by the reflection (so in Figure 4.4, we set i

™

N

Figure 4.4: An example of the reflection

R < 1Ry, we extend any given solution u™) : [0,00) x V(G™M) — [0,00) of the
heat equation (4.1.5) on the corresponding time-space cylinder, to the non-negative
a™N) 1 [0, 00)x V(G) — [0, 00), symmetrically along reflections, analogously to (4.2.2).
Since R < 1diam{G™} all edges of Bg(yo,2R) not in GV are among those re-
flected to GV, with our construction of x/™¥) guaranteeing that @) (-, -) satisfy the
heat equation on the corresponding time-space cylinder of (G, /™). Thanks to the
(PHI(d,,)) for {(G, '™} n, we have (4.2.3), and since &™) coincides with v on
BW)(yo, R) C Bg(yo, R), the same applies when replacing @) and Bg(yo, R) by
u™) and BW™)(yo, R), respectively. As in our proof of Proposition 4.2.2, this holds
for all relevant values of N, yo, R and T, thereby establishing Assumption 4.1.2. [
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4.3 Random walk consequences of Assumptions
4.1.1 and 4.1.2

We summarize here those consequences of Assumptions 4.1.1 and 4.1.2 we need for
Theorem 4.1.4, starting with sub-GHKE, an upper bound on the uniform mixing
times and a covering statement which are applicable for all values of (d¢,d,,). Then,
focusing in Section 4.3.1 on the case dy < d,,, we control Rig)(-, -) and relate it to Ty
of (4.1.10), complemented in Section 4.3.2 by upper bounds on the Green functions,
in case dy > d,,. We provide only proof outlines since most of these results, and their
proofs, are pretty standard.

Our first result is the uniform sub-GHKE one has on {(G™), u™))} 1, up to time of
order Tly.

Proposition 4.3.1. Under Assumptions 4.1.1 and 4.1.2, for any n < oo, there exist
cax = cux(n) < 00, such that for all N, any x,y € V(G™) and t < nTy,

N CHK 1 d™) (g, )%\ 1/(dw=1)
pg )(:U,y) < Jdr/dn P [— CHK< ; ) } . (4.3.1)
Further, for all N, any z,y € V(G™) and d™) (x,y) <t < nTy,
(N) dw \ 1/(dw—1)
(V) (V) 1 d™ (2, y)
pi(z,y) + (@, y) > T exp [— CHK(f) ] . (4.3.2)

Proof. (Sketch:) This is a finite graph analogue of (PHI(d,,))= (HKE(d,,)) of Theo-
rem 4.2.7, which is standard for a countably infinite weighted graph (see [33, Theorem
3.1, (ii) = (i)]). Such implication holds also for metric measure space with a local
regular Dirichlet form, as [11, Theorem 3.2 (¢/) = (a”)], and we sketch below how to
adapt the latter proof, specifically [11, Sections 4.3 and 5], to the finite graph setting.
First note that for ¢ < 5T the derivation of the (near-)diagonal upper-bound (4.3.1)
(without the exponential term), follows as in the proof of [72, Proposition 7.1]. Set-
ting p,SN"T’R) for the heat kernel of the process killed upon exiting B (x, R), upon
adapting the arguments in [11, Section 4.3.4], one thereby establishes the correspond-
ing (near)-diagonal lower bound, analogous to [11, (4.63)]. Namely, showing that for
some cpy; € (0,1) and cly = (') finite, any 7’ < oo, all N > 1, x € V(G™)
and R < cpyyy Ry, if g d™N) (z,y) < /% < 5/R, then
(N,z,R)

1

N,z,R

pi (2,y) + Py (@, y) > (4.3.3)
Chgt/ %

76



Combining (4.3.3) and the (near-)diagonal upper bound, one then deduces (4.3.1) as
done in [11, Sections 4.3.5-4.3.6]. Similarly, by adapting the proof of [11, Proposition
5.2(i) and (iii)], the near-diagonal lower bound (4.3.3) yields the full lower-bound of
(4.3.2). Since all these arguments involve only 7 and the constants from Assumptions
4.1.1-4.1.2, we can indeed choose the constant cyx () in (4.3.1)-(4.3.2) independently
of N. O

Proposition 4.3.1 has the following immediate consequence.

Corollary 4.3.2. Under Assumptions 4.1.1 and 4.1.2 there exist Ry and co finite,
such that for any N > 1, x € V(G(N)) and Ry <r < Ry

Px(&l?%(t d™N(z, X](-N)) <r) > ey exp(—cat/r).
Proof. Using the same arguments as in the proof of [50, Proposition 3.3], from (4.3.1)
and (4.3.2) we get the finite graph analogs of [50, Lemma 3.1] and [50, Lemma 3.4],
respectively. Combining these bounds and the Markov property, as done in [50,
Lemma 3.5], results with the stated bound for k[rd»] < ¢ < (k + 1)[r%]. All steps
of the proof involve only our universal constants c., ¢, po, Cpur, cpur, cuk and with
X J(»N) confined to certain balls, having our sub-HKE restricted to t < Ty is immaterial
here. O]

Another consequence of (4.3.1) is the following upper bound on uniform mixing
times.

Proposition 4.3.3. Suppose Assumptions 4.1.1 and 4.1.2 hold. Then, for the in-
variant measures ™) (-) of (4.1.8), some finite c(-), all N > 1 and € > 0,

‘Px(Xt =y G

() ) — 1‘ < e} <c(e)Ty .

TY. (e, GM)) := min {t >0 ’ max
z,yeV(GN)
(4.3.4)

For the proof of Proposition 4.3.3, consider the normalized Dirichlet forms of
XM and X,

EWLU 1) = = (PN = 1)),
B 1) o= = (P = D)oy = SEML(F £).
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Let H(S) :={f : V(G®™)) — [0,00) | f not a constant function, Supp{f} C S} for
S C V(GWM)) and define the spectral quantities

AM(S) .= inf M ’Har S },
(5) {v ) FemE)
(N)
Y (N) — in M :1 (N)
TAN(S) - f{Var”(N ) feHS(S )} 5 (9).

Recall the following upper bound on uniform mixing times in terms of the corre-
sponding spectral profile.

Lemma 4.3.4 ([30, Corollary 2.1]). For r > ") := inf, ey oy {7 ()}, let

AM () = inf {X<N>(5) |7M(S) < r} .

Then, for any e > 0 and all N,

4/e
U (e, GV < / _ddr (4.3.5)
mlx — 47|—£N) TA(N) (7")

Our next lemma controls the spectral profiles on the Lus of (4.3.5) en-route to Propo-
sition 4.3.3.

Lemma 4.3.5 (Faber-Krahn inequality). For any N and S C V(G™) let

(N

AM(S) = inf { ‘ € Hol )} (4.3.6)

||f||L2(M(N>
where Ho(S) == {f : V(G™) — R | Supp{f} C S}. If Assumptions 4.1.1 and 4.1.2
hold, then for some cpx > 0 and all N,

AM(S) > ep pM(S) "/ vS C V(G (4.3.7)

Proof. (Sketch) For countably infinite (G, ) satisfying the pp-condition, such Faber-
Krahn inequality is a standard consequence of (V(dy)) and the on-diagonal (HKE(d,,))
upper bound. Indeed, its proof in [21, Theorem 5.4], while written for d,, = 2, is
easily adapted to any d,, > 0, upon suitably adjusting various exponents (e.g. taking
v =d,/d; and r = t'/% cf. the discussion in [32, Proposition 5.1]). To get (4.3.7)
one instead relies on (4.3.1) at y = x, and on Assumption 4.1.1, noting that all steps
of the proof involve only the universal d¢, d.,, po, ce, ¢y and cuyk. Further, following
the proof of [21, Theorem 5.4] it now suffices to take only r < Ry, hence t < nTy
for some fixed 1 < oco. [
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Proof of Proposition 4.3.3. Recall that p™)(S) = 7™M (S) ™M (V(GM)). By (4.3.6)
we further have that A(M)(S) > /\gN)(S) for any choice of S and N, hence Lemma
4.3.5 results with

(N CFK N N —duw/dyg

AN (@) = ZX [r 1M (VG >))] . (4.3.8)
By the assumed d-set condition, u™)(V(G™)) < ¢, diam{G™}4s. Thus, combin-
ing (4.3.5) and (4.3.8) yields the bound

TIII{ix<€7 G(N)) S

as claimed. O

We conclude with a very useful covering property.

Proposition 4.3.6. Assumption 4.1.1 implies that for anyn € (0, 1], there exist L =
L(n,dys,éc,) < oo such that each GN) can be covered by L balls {B™N) (z;,m Ry)}E,
of V(GW)).

Proof. Covering V(G™)) by a single ball of radius Ry, thanks to (4.1.7) and the
assumed dg-set condition §V (G™M) < ée,(Ry)%. Further, G™) can be covered by
L balls B™(x;,nRy) such that {B™)(x;, nRy/2)} are disjoint (e.g. [5, Lemma
6.2(a)]). Consequently, L(¢c,) ' (nRy/2)% < #V(GW)) and we conclude that L <
(¢cy)?(2/n) for all N, as claimed. O

4.3.1 Strongly recurrent case: dy < d,

A consequence of Assumptions 4.1.1, 4.1.2 for dy < d,, is the following relation
between the resistance metric and the graph distance.

Proposition 4.3.7. Suppose Assumptions 4.1.1, 4.1.2 and dy < d,,. Then, for some
cr finite, all N > 1 and any z,y € V(GW)),

et d™N (2, y)% =4 < RO (2, y) < cp d™N) (2, y)@ (4.3.9)

Proof. (Sketch:) For a single infinite weighted graph this is a well known consequence
of (HKE(d,)), see for example [10, Theorem 1.3]. In our setting, the upper bound
on R&g) is derived from Proposition 4.3.1 by going via (PI(d,,)), as done in the proof
of [10, Lemma 2.3(ii), Proposition 4.2(1)]. The corresponding lower bound in (4.3.9)
is proved as in [10, Proposition 4.2(2)], by showing instead the property (SRL(d,))
(see remark at [10, bottom of Pg. 1650]). As in Proposition 4.3.1, all steps use only
constants from Assumptions 4.1.1-4.1.2 and require our sub-HKE only at ¢t < 19T y.
Hence, we end with finite cg which is independent of V. [
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The following corollary of Proposition 4.3.7 is immediate.

Corollary 4.3.8. Suppose Assumptions 4.1.1 and 4.1.2 hold for some dy < d,, and
let

r(G(M) ‘—  max )){Reﬁ(x,y)}, Sy = M(N)(V(G(N)))T(G(N)). (4.3.10)

z,ye€V(GW
Then, for some finite c,
'y < Sy <edy, VN>1. (4.3.11)

Proof. By our d;-set condition u™)(G™)) < (Ry)%, whereas r(GW)) < (Ry )% =%,
thanks to Proposition 4.3.7. With Ty := (Ry)% we are thus done. O

4.3.2 Transient case: d; > d,,

When d; > d,,, Proposition 4.3.3 and (4.3.1) yield the following decay rate of the
Green functions.

Proposition 4.3.9. Suppose Assumptions 4.1.1, 4.1.2 and dy > d,,. Then, for some
cg(+) finite, any € > 0 and finite N,

Trgix(e’G(N))
~ ~(N _
M@y = > @y < dM @y, Yy£zeV(GW).

t=0
(4.3.12)

Proof. Clearly p\™ (z,y) =, qt(s)pgN) (x,y) with g;(s) the probability that a
Binomial(t,1/2) equals s. Consequently, g™ (z,y) < 2¢™(z,y) (since >, q:(s) =
2). We further replace 7Y, (¢, G™)) in (4.3.12) by 5T, for n := c(e) of Proposition
4.3.3. Hence, from (4.3.1) for some cyk = cux(n), all N and x # y,

N = o 7dM) (2, )%\ 1/(dw-1)
g™ (,y) < 2enx Zt A/t exp [— Ciik <&> } :
t=1 ¢

Since d;/d,, > 1, the series on the rus converges (even when d¥)(z,y) = 0), and it
is easy to further bound it by ¢, d™ (z,y)%~% for some ¢, = ¢,(cuk) finite, as we
claim in (4.3.12). O
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4.4 Cover time: Proof of Proposition 4.1.5

We recall Sy, 7(G™)) of (4.3.10) and use the following notations for z,y € V(GW)),
r e [0,1],

~ M)y .
Ri?(sc,y)::Reﬂ(’3)“’)6[0,11, B (1) = {y € V(G™) | R (a,y) < r}.

r(GWV)
(4.4.1)

We show in Lemma 4.4.1 that for some ¢ > 0, with positive probability, during its
first Sy steps, a random walk on GV) makes at least € r(G™)) visits to the starting
point. Combining this with the modulus of continuity of the relevant local times
(of Lemma 4.4.2), we show in Proposition 4.4.3 and Corollary 4.4.4 that for some
k > 0, with positive probability, by time 4Sy a (small) ball B(RN) (z, k) is covered by
the random walk trajectory. In view of Propositions 4.3.6 and 4.3.7, if in addition
d; < d,, then for some L = L(k, cg) finite and all N, the set V(G™) is covered by

some {B;N)(zi, k) }L,. Proposition 4.1.5 then follows by using this fact, the Markov
property and having Sy =< T (see Corollary 4.3.8).

We now implement the details of the preceding proof strategy.

Lemma 4.4.1. Under Assumptions 4.1.1 and 4.1.2, there exists € > 0 such that

t—1

N 1 .
max max P, <L(SN)( ) < 26) = LgN)(x) = 1.(X
N21 zev(G) 8’ (G

(4.4.2)

Proof. Recall that the successive times in which the walk Xt(N) re-visits x = X(SN),

form a partial sum, whose i.i.d. N-valued increments {ng(cN)(i)}izl have mean

1 L (G
By [na(cN)] = N = N
7l )(iU) u§; )
Setting m\" : = [2¢ N (G(N )] we thus have by Markov’s inequality that
T(N) “ my" N
P, <LSN (;1:)§2e> = <an > ) < 5o Ex[n; )] < 2e,
yielding (4.4.2) when e < 274 O
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With our graphs having uniform volume growth, [22, Theorem 1.4] applies here,
giving the following modulus of continuity result.

Lemma 4.4.2. Suppose Assumptions 4.1.1 and 4.1.2. Then, for

o(k) = v/k(1 + |logk|) we have that

AN = sup  sup Pz(max max |E§N)($)—E§N)(y)]2)\go(/<a)> =0
k€(0,1],N>1 2V (GIV)) ISSN ,yeV(GI)
R (z)<n

(4.4.3)

as A — 0.

Combining Lemmas 4.4.1 and 4.4.2 yields the following uniform lower bound on the
minimum over y € BJ(QN) (x, k), of the normalized local time at y during the first 45y
moves of the random walker.

Proposition 4.4.3. Under Assumptions 4.1.1 and 4.1.2, for some positive €, Kk

(4.4.4)

- 1
inf inf ))PZ< min {L432](y)} > e> > 5

N21gz zeV(GWV yGB%N)(ac,H)

Proof. Step 1. Taking ¢ > 0 as in Lemma 4.4.1, we first show that for some s > 0,

inf  inf )Pz< min {E(S]]\i)(y)}ZE) ZZ.

N2l gev(GWN) yEB%N)(m,R)

To this end considering Lemma 4.4.2 for A < oo such that A(X) < 273 and £ > 0
such that Ap(k) < €, we obtain that, for all N and any z € V/(G™)),

P max {IZ{)@) - I W)} =€) <
r,yGB}(% >(x,n)

Consequently, by Lemma 4.4.1,

7 ~(N
S<P (LgN><x> > 2€>

1 > 7 I
<RI 22 wa (I - I} <o)
1 ~
< S + Px< min {ngv)(y)} > €> ;

yeBY) (z,r)
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thereby completing Step 1.

Step 2. Turning to prove (4.4.4) when z # z, let 74" := inf{t >0 | XM = x} denote
the first hitting time of 2 € V(G®)) by the random walk. Recall the commute time
identity (see [52, Proposition 10.6]), that for any N and x # z in V(G®),

E, [r™M] + E.[7V] = R (z,2)u ™ (G™). (4.4.5)
Hence,
P, (r{") > 38y) < LE (7] <1 (4.4.6)
3Sn 3

so by the strong Markov property at TgEN), we see that for any z € V(GW™),

PZ< min {ZALELSN( ) > e>

yEB%N)(:c K)
3Sn
>3 P min (LW -V} 2 e 7 =)
t yEBl(12 >(Z‘,H)
3Sn
= ZPZ<7}EN) = t)PQC( min {Lg])v_t(y)} > e)
=0 veBy (a.x)
() ; 7V 1
> P, ({") <35y) P, min Ls, (W) >¢€) >,
yEB%N)(gc,n) 2
by combining Step 1 and (4.4.6). O

Denoting the range of the random walk by RangeEN) = {X((]N), XI(N), o ,Xt(ivl)},
we have the following consequence of Proposition 4.4.3.

Corollary 4.4.4. If Assumptions 4.1.1 and 4.1.2 hold, then for some k > 0 and any
t

sup sup P, (Ranget 2 BM(z, )> < QL-t/(SN)
N>1g.ev(GIV)

Proof. Taking x > 0 as in Proposition 4.4.3, we have that for all N and z,z €
V(G™),

P, (Range(N) D B(N) (x, /i)) >

l\')l»—t
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Applying the Markov property at times {4iSy} for i =1,... k — 1, it follows that
P, (Rangegglv ) BJ(QN)(x, li)) <27k

and we are done, since ¢t — Rangeg ) i non-decreasing. [

Proof of Proposition 4.1.5. From Proposition 4.3.7, if ¢ n~% < k, then for any N
and z € V(GW),

BW™)(z,nRy) C B](%N)(x, K).
Setting such n = n(cgr, k) > 0 we deduce from Proposition 4.3.6 that for any x > 0
there exist L = L(k) finite and 2, ...,z € V(G™), such that for all N,

L
V(™) = By (i ).
=1

We embed the walk X within the sample path s +— XM of its lazy counterpart,
such that the number of steps M; made by the lazy walk during the first ¢ steps of
{XSSN)} is the sum of ¢ i.i.d. Geometric(1/2) variables, which are further independent

of {XLgN)}. Since the range of the lazy random walk at time M, is then Range,EN),

we have for any ¢, N and z € V(GW)
L
P, (1o (GM)) > 3t) < P(M, > 3t) + Z P, <Range§N) 2 B}(QN)(xi, /4;)) .
i=1

By Cramer-Chernoff bound, the first term on the ruS is at most 6* for some 6 < 1.
With L = L(k) independent of N, z, and Sy < ¢, Ty (see Corollary 4.3.8), we thus
reach (4.1.11) upon choosing £ > 0 as in Corollary 4.4.4 and ¢y > 2L(k) + 1 such
that e=3/% > max(f, 271/ e)), O

4.5 Lamplighter mixing: Theorem 4.1.4 and Propo-
sition 4.1.6

Proof of Proposition 4.1.6. wLOG we may and do assume that &g = (0, z) for some
zo € V(GM). Let

Ay = {( f,7) € V(Zy 1 G | 3y € V(G™) such that f(b) =0, Vbe B(N)(y,rN)} ,
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where taking ry = [(2d¢c, logy Ry )/ we have thanks to (4.1.7) and the d;-set
condition, that

jjB(N)(y,rN) > é’lv(N)(y,rN) > (écv)*l(rN)df > 2dylogy Ry .

By the same reasoning #V(GW)) < ée (Ry)%, so for the invariant distribution
7*(-; GM) of the lamplighter chain Y ™) on Zy 1 GW)

(A Gy < YT 2BV < ae (Ry) T (4.5.1)
yeV (GIN)

Part of our dy-set condition is having Ry — 00, so there exists IV; finite such that
Ry <ry < %RN for Ry of Corollary 4.3.2 and any N > N;. Since maxy{d(N) (xo,y)} >
1Ry for any zo € V(GW)), whenever N > N; the event

~ ~ ~ 1
FY = { o d(S50, 50 < 2y}

0<s<t -
implies that {Yt(N) € A% }. Consequently, for any such N we have by (4.5.1) that

max || (a, 5 GN) = 7" (5 G|y > Py (V) € Ay GN) — 1Ay GWV)
€V (ZnGM))

> P, (TGN — & (Ry) ™ .
(4.5.2)

Let ¢; := 4% ¢, for ¢y < oo of Corollary 4.3.2. Then, by Corollary 4.3.2 at r = iRN,
we have for all N > N;

. 1
Py, (T, W) > Px< max d™V (XM, X)) < ZRN> > cple TN | (4.5.3)

0<s<t -
which together with (4.5.2) completes the proof. ]

As shown next, at t > Sy the lazy walk is near equilibrium (in total variation),
and the total variation distance of P}(z,-;G™)) from its equilibrium law is then
controlled by the tail probabilities of 7o, (G™Y).

Proposition 4.5.1. For any t, weighted graphs (G™), u™)) and x € V(Zy ! G™),
1B (@, G™) = 7 (5 G oy < Pa(reon(GN) > 1) + || By, s GN) = (5 G|y

< Po(Teoe (GM)) > 1) + 2= (4.5.4)
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Proof. Using the uniform (invariant) distribution of lamp configurations at ¢ >
Teor (G, yields

177 (, - G™) = (GO |y

< Z P;(Y;S(N) =Y, 7-COV(G(N)) > t)
yeV(ZaGW))
Y R =yt 2 r(GV) - 1 (GO
yeV (ZaGM))
o (N
< Pt @) > )+ Y [P(XY =) - n ()],
yeV(GIN)

Applying the definition of total variation distance for X = {X,};> yields the first
inequality in (4.5.4). Next, let FN = min{t > 0 | X™ = z}. By the embedding
of X™) within X™) (as in the proof of Proposition 4.1.5), and the commute time
identity (see (4.4.5)), we have that for all N and x,z € V(G™)

E.[#{M] =2E,[r{M] < 28y. (4.5.5)

T T

While proving [56, Lemma 4.1], it shown that for all N, t and z € V(G™),

- 2 1
Px. - GNY _ (. ) ) < = B, [7) A5
(186, 3G = w6y ) < max (BN} (45.6)
and we get the second inequality in (4.5.4) by combining (4.5.5) and (4.5.6). O

4.5.1 The strongly recurrent case: d; < d,,

For d; < d,, we get Theorem 4.1.4(a) by combining the lower bounds of Proposition
4.1.6 with the upper bounds of Propositions 4.1.5 and 4.5.1.

Proof of Theorem 4.1.4(a). Since Ry — oo, we deduce from Proposition 4.1.6 that
for any € € (0,1),

Tmix (6, G(N) )

lim inf {
11m 1n TN

N—oo

} > —c; tlog(cye) . (4.5.7)
In contrast, with Sy < ¢,Txv and v = 7(¢) denoting the unique solution of

€= coe VO 4 Ve : (4.5.8)
2./
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we get from Propositions 4.1.5 and 4.5.1 that

Tmix (67 G(N)

lim sup { T ) } < 7(e). (4.5.9)

N—oo

The rHs of (4.5.7) blows up as € — 0, while the rus of (4.5.9) is uniformly bounded
above for € € [%, 1]. Hence, there can be no cutoff for these lamplighter chains. [J

Remark 4.5.2. In view of Proposition 4.1.5, here Tpi(€; G /Tooe (GN)) > 1
for small €. From Section 4.4 we also learn that, when d;y < d.,, the lamplighter
chains have no mizing cutoff mainly because the laws of Teoe(G™)/Tooy(GN)) do
not concentrate as N — oo (unlike the transient case of dy > d,,).

4.5.2 The transient case: d; > d,

As mentioned before, in case dy > d,, we establish the cutoff for total-variation
mixing time of the lamplighter chains by verifying that our weighted graphs

{(GM) M)} y>y satisfy the sufficient conditions from [54, Theorem 1.5]. To this
end, recall the uniform mixing times 7Y, (G™)) and Green functions §V)(-,-) that

mix

correspond to € = 1 in (4.3.4) and (4.3.12), respectively. In [54], uniformly elliptic,
finite weighted graphs {(G™), u™)} ys1 are called uniformly locally transient if for
all IV,

(2, A;GM) =3 " g (2,y) < p(d™)(, A), diam{A})

yeA
for all z € V(GW™)), A C V(GW)), where p : R, x R, — R, is such that p(r,s) | 0
as r — 00, for each fixed s. Further setting

A(G) = I;lea‘ii{uw}, A(G) := géi‘f/l{ﬂm}, A(G) = ——==

the following two assumptions are made in [54].

Assumption 4.5.3 (Transience). The finite weighted graphs {(G™), u™)} ns1 are
such that for any fixed r < 0o, as N — 00,

(a) 1(GD) = oo.
(b) sup{A(GY)} < oc.
() sup, {log VI (a, )} = olog ™) (GI)).
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(@) TGN A(GN)) = o(u™H(GP)).

Assumption 4.5.4 (Uniform Harnack inequalities).  For some C(a) < 0o and all
N,r>1,a>1, 2 V(GM), if h(-) is a positive u™)-harmonic on BM™)(z, ar),
then

< ] .
e ggl;g@){h(y)} < C(a) yeBrgvl)Igw){h(y)}

We next prove Theorem 4.1.4(b) by relying on the following restatement of [54,
Theorem 1.5].

Theorem 4.5.5. If uniformly locally transient {(G™), u™) Yy satisfy Assump-
tions 4.5.3 and 4.5.4, then the lamplighter chains {Y(N)}Nzl have cutoff at the
threshold 1T, (GM).

Remark 4.5.6. The derivation of [54, Theorem 1.5] is limited to lazy SRW on graphs
GW™N) | namely with Uay = 1 for all zy € E(G). However, up to the obvious modi-
fications we made in Assumptions 4.5.3 and 4.5.4, the same argument applies for
uniformly elliptic weighted graphs, as re-stated in Theorem 4.5.5.

Proof of Theorem 4.1.4(b). Thanks to Proposition 4.3.9 and (4.1.7) we confirm that
(G ™M) are uniformly locally transient for p(r,s) = ¢, éc,rd=4s? . Having
pM(GN)) > 7Y (Ry)¥ — oo and G of uniformly bounded degrees (see Re-
mark 4.1.3), conditions (a)-(c) of Assumption 4.5.3 also hold here. Further, with
dy < dy, the bound Tix(G™N)) < ¢(Ry)% of Proposition 4.3.3 yields Assumption
4.5.3(d). Considering Assumption 4.1.2 for u(t,-) = h(-) results with the lazy ver-
sion P™) satisfying the uniform Harnack inequality of Assumption 4.5.4 for any
a > max(2,1/cpyr). By our pg-condition this is equivalent to the full Assumption
4.5.4 (see [73, Proposition 3.5]), and we complete the proof by applying Theorem
4.5.5. O]
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