学位論文の要約

題目 Studies on Subporphyrins and Their Analogues (サブポルフィリンとその類縁体に関する研究)

氏名 吉田 康太

General Introduction

Subporphyrin is a genuine ring-contracted porphyrin that consists of regularly connected three pyrrole rings and three methine carbon atoms. Subporphyrins have been extensively studied owing to its intriguing properties such as curved 14π -electron conjugated systems, bowl-shaped structurse, and bright fluorescence, which are highly tunable by peripheral modifications. In this thesis, the author explores peripherally functionalized subporphyrins possessing attractive properties based on their bowl-shaped structures and pyrrole-modified subporphyrins, where one of the pyrrole units is replaced by a cyclic or acyclic unit.

β -Mono- and β -Hexasulfanylated Subporphyrins

 β -Mono- and β -hexasulfanylated subporphyrins were synthesized by S_NAr reactions of β -mono- and β -hexachlorinated subporphyrins with various thiols under basic conditions. β -Hexasulfanylsubporphyrins show more perturbed absorption spectra than that of β -monosulfanylsubporphyrin probably due to the proper arrangements of sulfanyl substituents for effective interaction with the subporphyrin core. While the obvious interaction of β -unsubstituted subporphyrin with C₆₀ was not observed in toluene- d_8 , β -tris(1,4-benzodithiino)subporphyrin captures C₆₀ in a 1:1 ratio with an association constant of 857 ± 58 M⁻¹ at 25 °C in toluene- d_8 .

β-Sulfinylsubporphyrins: Observation of Diastereomeric Interconversions as Evidence for Bowl Inversion

 β -(4-methoxyphenylsulfinyl)subporphyrins were synthesized and separated into two diastereomers in order to observe the bowl inversion of subporphyrin. The interconversions between *B*-phenyl diastereomers did not occur even at 140 °C in tetrachloroethane-*d*₄, indicating that neither the bowl inversion of subporphyrin nor the pyramidal inversion of the sulfur atom occurred under such conditions. On the other hand, the interconversions between *B*-methoxy diastereomers occurred in protic solvents such as methanol-*d*₄ and ethanol-*d*₅, and were accelerated with trifluoroacetic acid. These experimental results suggest that the bowl inversion of subporphyrin proceeds via an S_N1-type mechanism, which includes the formation of subporphyrin borenium cation as a key intermediate.

syn- and anti- β , β -(1,4-Dithiino)subporphyrin Dimers Capturing Fullerenes in a Different Way

B-(4-Methoxyphenyl) *syn*- and *anti*- β , β -(1,4-dithiino)subporphyrin dimers were prepared and their complexation behaviors with C₆₀ and C₇₀ were examined. The complexation behaviors of *anti*-dimer with C₆₀ and C₇₀ could not be investigated because of facile precipitation of crystals of a 1:1 complex. On the other hand, *syn*-dimer captured C₆₀ in a 1:1 manner with an association constant of $(1.9 \pm 0.2) \times 10^6$ M⁻¹ in toluene, which is the highest value among those of bowl-shaped fullerene receptors reported to date. In addition, *syn*-dimer formed a 2:1 complex with C₇₀ in toluene, and the association constants are $K_1 = (1.6 \pm 0.5) \times 10^6$ and $K_2 = (1.8 \pm 0.9) \times 10^5$ M⁻¹. Structural analysis of 1:1 complexes of *syn*-dimer with C₆₀ and C₇₀ suggested that the *syn*-dimer could change its cavity size by taking advantage of the conformationally flexible fused 1,4-dithiine unit.

Subchlorophin: Pyrrole-Modified Subporphyrin Bearing an Aldimine Unit

Subchlorophin, where two β -carbon atoms in one of three pyrrole units are missing, was synthesized from subporphyrin. Subchlorophin takes a bowl-shaped structure, and shows an intermediate diatropic ring current between those of subporphyrin and subchlorin, roughly subchlorin-like absorption spectrum, and significantly enhanced fluorescence with the smallest Stokes shift compared to those of subporphyrin and subchlorin. Electrophilic aromatic substitution reactions at the α -positions of subchlorophin were examined, and consequently nitration with Cu(NO₃)₂·3H₂O and Ac₂O proceeded with high regioselectivity. Further modifications provided α -(arylethynyl)subchlorophins, which showed perturbed absorption and fluorescence spectra depending on aryl groups. This result indicates the effective interaction between the subporphyrin core and the aryl groups through the ethynyl bridge.

Subporpholactone, Subporpholactam, and Imidazolosubporphyrin: Pyrrole-Modified Subporphyrin Bearing a Non-Pyrrolic Cyclic Unit

New pyrrole-modified subporphyrins bearing a non-pyrrolic cyclic unit, subporpholactone, subporpholactam, and imidazolosubporphyrin were synthesized. They showed attenuated diatropic ring currents as compared with that of subporphyrin and subporphyrin-like Reaction of imidazolosubporphyrin absorption and fluorescence spectra. with (pentamethylcyclopentadienyl)iridium(III) dichloride dimer gave imidazolosubporphyrin-Ir^{III} complex bearing a 6-membered iridacycle, and this complex reacted with diphenylacetylene, to afford different products depending on added salts. When potassium hexafluorophosphate was added, two isomeric imidazolosubporphyrinylidene-Ir^{III} complexes bearing a carbene adjacent to the outer nitrogen atom of the imidazole segment were obtained. To the best of our knowledge, these are first examples of porphyrinoids bearing a carbene in their π -electronic frameworks.