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Abstract

In this paper, we study cooperative games with the players whose pref-
erences depend on all players’ allocations, which we refer to as the social
preferences. The social preferences we study in this paper are represented
by the utility functions proposed by Fehr and Schmidt (1999) or the util-
ity functions proposed by Charness and Rabin (2002). First, we define and
characterize the cores, which are the same as the standard core except that
the utility functions are the Fehr-Schmidt or the Charness-Rabin type. We
show that the Fehr-Schmidt type core becomes smaller if the players become
more envious and that it may become larger or smaller if the players become
more compassionate. We also show that the Charness-Rabin type core be-
comes smaller if the players pay more attention to care about the minimal
allocation and that it may become larger or smaller if the players pay more
attention to care about the social welfare. Moreover, we analyze the alpha-
core and the beta-core of the cooperative games consisting of players with
these types of social preferences, as well as a new core concept that takes ac-
count of networks among the players. We show that the Fehr-Schmidt type
core is the smallest among these cores and that the alpha-core coincides with
the beta-core under the Fehr-Schmidt utility functions.
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1 Introduction
There are many countries which seem to accept large income disparity. Meanwhile
too large income disparity should decrease people’s utilities and ought to cause so-
cial instability. Attitudes of each person toward income disparity are explained by
inequality-averse social preferences, which depend on not only their own income
but also the income distribution of the society. Many societies would consist of
people who have such inequality-averse social preferences and would not be main-
tained if income disparity in the society is large enough. This is because such
income disparity gives disutility even to the rich. In other words, realized income
distributions in a society reflect the level of the income disparity which can be
accepted by the individuals’ preferences in the society. The main purpose of this
paper is to study delicate relationships between the shape of social preferences and
acceptable inequality in the society.

To study the relationships above, this paper analyzes solutions of cooperative
games where players’ preferences are inequality-averse social ones. The solutions
of the game we study are the core which can be understood as a set of realized in-
come distributions with acceptable disparity. We can apply any social preferences
to cooperative games but to bring clear-cut results, we consider the two well-known
models of social preferences that are proposed by Fehr and Schmidt (1999) and
Charness and Rabin (2002), respectively.

The utility functions proposed by Fehr and Schmidt (1999) (the F-S utility
functions hereafter) consist of the two parts, that is, the self-interest part and the
part that decreases in proportion to the differences between his income and those
of the others. This utility function represents inequality-averse social preferences
in the sense that if we fix one’s own income, his/her utility is maximized when
all people get the same income. The utility functions proposed by Charness and
Rabin (2002) (the C-R utility functions hereafter) depend on the self-interest part
and the “social welfare” part characterized by the minimum income and the total
income. This utility function represents inequality-averse social preferences in the
sense that if we fix one’s own income and the total income, his/her utility increases
when the minimum income increases.

When we apply the ideas of social preferences to the core of cooperative games,
we need to specify the set of players whose incomes affects blocking coalition’s
welfare. We examine three frameworks. In the first framework, players care about
those who are in the coalition they belong to. In the second framework, players
care about all the players in the game. The third framework is an intermediate case
between the first and second frameworks. In other words, players have intimate
players like family or friends and care about not only the members of their coalition
but also the intimate players who do not belong to the coalition.

To motivate our analysis, consider the following example of a symmetric game.
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There are three players, A, B, and C. If all players cooperate, they get 12. If two
players cooperate, they get 5. If they work apart, everyone gets nothing. Assume
all players are selfish. Namely, they are concerned with only their own income.
The vector (6, 6, 0) which means that A and B get 6, and C gets 0 is in the core
because no coalition can block it. Similarly, the vector (4, 4, 4) is also in the core.

Now suppose these players’ preferences are represented by a strictly inequality-
averse F-S utility function. Values of this utility function are one’s income level
when all players have the equal incomes and decrease when other players’ income
becomes higher or lower. We will show (6, 6, 0) is not in the core under any frame-
work. Notice that the utility of player C is negative. In the first framework where
players care about those who are in the coalition they belong to, player C can get 0
by the coalition of only him/her and can block it, so the vector (6, 6, 0) is not in the
core. In the second framework where players care about all the players in the game,
the vector (6, 6, 0) is not in the core because if player C blocks the imputation, A’s
income and B’s income become lower, and the differences between C’s income and
the others’ respective incomes become lower. Then, C’s utility becomes larger. In
the third framework where players care about not only the members of their coali-
tion but also an intimate player who does not belong to the coalition, the vector
(6, 6, 0) is not in the core. Assume C’s intimate player is B1. If player C blocks the
imputation, B’s income becomes lower, and C’s utility becomes larger. In contrast,
(4, 4, 4) is in the core in any framework because the utility of all players is 4, and
it is readily seen that a two-player coalition can give at most 2.5 to either of the
players.

This example shows that a vector of income levels which is in the core with
self-interested players is not necessarily in the core with inequality-averse players.
Moreover, it seems to suggest that if players are averse to income disparity, dis-
tributions with large variation tend to be blocked, and the core becomes smaller
in general. So it is natural to ask if and how the core becomes smaller toward the
equal income distribution as players get more averse to income disparity. Interest-
ingly enough, it turns out that such monotonicity holds for a parameter for envy of
the F-S utility functions but does not hold for the other parameter for compassion.

Our contributions can be summarized as follows. We define and characterize
the F-S core and the C-R core which are the same as the standard core except
that the utility functions are the Fehr-Schmidt or the Charness-Rabin type, using
the first framework where players care about those who are in the coalition they
belong to. More precisely, although the F-S and C-R cores are the cores of an NTU
game, they are characterized by inequalities which resemble coalitional rationality
inequalities of a TU game.

1If we replace B with A, we get the same result because A and B are symmetric. In addition, if
C cares about both players, we also get the same result by the discussion of the second framework.
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These inequalities enable us to carry out various comparative statics exercises.
We show that the F-S core becomes smaller if the players become more envious,
that is, if a parameter of the F-S utility functions for envy increases. However, the
F-S core may become larger or smaller if the players become more compassionate,
that is, if a parameter of the F-S utility functions for compassion increases.

The intuitive reason for such non-monotonicity is as follows. Since all players
have the F-S utility functions, a player A who has a uniquely smallest income wants
to decrease the number of players who have a larger income than his/her own.
In other words, even if A’s income becomes lower, A’s utility can become larger
when the number of the players who have a larger income decreases. This property
of the F-S utility functions allows us to expect that there is a blocking coalition
of two players which includes A such that A’s income decreases, and the other
player’s income increases. This is because if A’s disutility from envy decreases as
the number of people whom A envies decreases, A’s utility can increase.

In fact, such a blocking coalition exists when the other player is not compas-
sionate enough. Nevertheless, if the player is compassionate enough to dislike in-
equality of the blocking coalition, the player’s utility decreases even when his/her
income increases, and such a blocking coalition does not exist. Therefore, there
exist imputations which can be blocked under the F-S utility function with low
compassion but not under the function with high compassion. So the F-S core
may become larger or smaller if the players become more compassionate.

Similarly, we show that the C-R core may become larger or smaller if the play-
ers get more concerned with the social-welfare part than the self-interest part. In
contrast, the C-R core becomes smaller if the players get more concerned with the
minimum-income part than the total-income part of the social-welfare part.

Additionally, we analyze the alpha-core and the beta-core in the second frame-
work where players care about all the players in the game. In this framework,
when some players block an imputation, the players still care about the other play-
ers who remain on the original coalition, and the players’ utilities depend on the
other players’ incomes. To analyze this framework, the alpha-core and the beta-
core are adequate concepts. We show that the two cores coincide in both the F-S
and C-R cases. In general, the alpha-core includes the beta-core, but in this frame-
work, they coincide. In addition, these cores with the F-S utility functions include
the F-S core we discussed above.

Moreover, we analyze the third framework where players care about not only
the members of their coalition but also intimate players who do not belong to the
coalition. In this framework, players are not likely to punish intimate players even
when the intimate players try to block an imputation. To analyze this framework,
we define and analyze a new core concept which comes from the alpha-core and
the Equal Division Core proposed by Selten (1972). Furthermore, we compare
the F-S core, the alpha-core, and the new core and conclude the F-S core is the
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smallest among these cores under the F-S utility functions.
The relation between egalitarianism and the cooperative games is studied by

many papers, for example, Arin and Inarra (2001), Arin et al. (2008), van den
Brink et al. (2013), Bhattacharya (2004), and Dutta and Ray (1989). These papers
analyze egalitarianism, the core and/or the Shapley value. In particular, Dutta and
Ray (1989) propose egalitarian allocations. The egalitarian allocation is the feasi-
ble allocation that is not Lorenz blocked by any sub-coalitions and is undominated
by each other. Moreover, they prove there is at most one egalitarian allocation, and
the allocation is in the core. Their paper is close to ours because both the Fehr-
Schmidt and the Charness-Rabin preferences can be interpreted as some form of
egalitarianism. The differences are that (i) Dutta and Ray (1989) use Lorenz dom-
ination but we use ordinary concepts of domination, and (ii) they use the usual
transferable utility but we use the social preferences with non-transferable utili-
ties.2

This paper is structured as follows. In Section 2, we will state our model. In
Section 3, we will characterize the core with the Fehr-Schmidt preferences and
examine how the F-S core changes according to parameters specifying the de-
gree of inequity aversion. In Section 4, we will characterize the core with the
Charness-Rabin preferences and examine how the C-R core changes according to
the weights on the self-interest part and the social-welfare part, and the weights
on the minimum-income part and the total-income part within the social-welfare
part. In Section 5, we will analyze the alpha-core and the beta-core, based on the
second framework, and we will propose a new core concept and analyze it, based
on the third framework in Section 6. We will conclude in Section 7.

2 The Model
Let N = {1, 2, . . . , n} be the set of n players and v : 2N \ {∅} → R≥0 be a
characteristic function.

Definition 1. For any S ⊂ N , an imputation of S is defined as x = (xi)i∈S ∈ R|S|

such that

1.
∑

i∈S xi = v(S), and

2. for all i ∈ S, xi ≥ 0.

We call xi the share of player i in an imputation x.

2In fact, Dutta and Ray (1989) also mention non-transferable utilities but their approach is
to maximize the social welfare function, being different from our paper which studies the social
preferences.
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Let XS denote the set of all imputations of S. We interpret v(S) as the total
wealth for the members in S and an imputation as an income distribution. We call
an imputation (v(S)|S| , . . . ,

v(S)
|S| ) ∈ XS the equal imputation ofS and call imputations

which are not the equal imputation unequal imputations.
Each player has a social preference relation about income distributions. We

write the utility of x ∈ XS with S ⊂ N for player i ∈ S as ui(x, S). In interpre-
tation, ui(x, S) is the utility for i when i receives xi and cares about the income
distribution in S.

Definition 2. An imputation x ∈ XN is dominated by y ∈ XS through S if and
only if for all i ∈ S, ui(y, S) > ui(x,N).

Thus, we implicitly assume that each member of S cares about the income
distribution solely in S. Next, we consider utility functions of a specific form.

Definition 3. The F-S utility function uF
i is defined by

uF
i (x, S) = xi −

α

n− 1

∑
j∈S\{i}

max[xj − xi, 0]−
β

n− 1

∑
j∈S\{i}

max[xi − xj, 0],

where α ≥ β ≥ 0 and β < 1.

This class of utility functions is studied in Fehr and Schmidt (1999). Since
α ≥ 0 and β ≥ 0, the player with an F-S utility function (weakly) feels sympathy
for the players whose income levels are less than his and (weakly) envies the players
whose income levels are more than his. α ≥ β ≥ 0 means that envy is not weaker
than sympathy. β < 1 is a natural requirement for preferences for equality, since
in the case that β ≥ 1, even if the players who have a uniquely largest share threw
their income to decrease disparity, their utilities would not decrease.

Definition 4. The F-S core, denoted by Cα,β , is the set of the elements in XN

that are undominated by any elements in XS through any S ⊂ N when the utility
functions are the F-S utility functions.

We consider another class of utility functions.

Definition 5. The C-R utility function uC
i is defined by

uC
i (x, S) = (1− γ)xi + γ

[
δmin

j∈S
xj + (1− δ)

∑
j∈S

xj

]
,

where γ ∈ [0, 1) and δ ∈ (0, 1).
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This class of utility functions is studied in Charness and Rabin (2002). This
function can be decomposed into two factors. One is a factor of their own shares.
The other is a social-welfare factor:

W (x1, . . . , x|S|) = δmin
j∈S

xj + (1− δ)
∑
j∈S

xj,

where δ ∈ (0, 1) is a parameter measuring the degree of concern for the minimum
share. Namely, larger δ means that players become more compassionate. A C-R
utility function is therefore a convex combination of this social-welfare factor and
their own share.

Definition 6. The C-R core, denoted by Cγ,δ, is the set of the elements in XN

that are undominated by any elements in XS through any S ⊂ N when the utility
functions are the C-R utility functions.

By Definitions 3 and 5, it is clear that these functions are not linear in income.
Therefore, players’ utilities are not transferable, although the terminology comes
from TU games.

3 Core with Fehr-Schmidt preferences

3.1 The Characterization of the F-S Core
In this section, we will consider what kinds of imputations are included in the
core with the Fehr-Schmidt preferences. The following lemma states that for any
imputation of a coalition, the shares and the utilities of players are aligned in the
same way.

Lemma 1. For any S ⊂ N , any i, j ∈ S, and any y ∈ XS , uF
i (y, S) ≥ uF

j (y, S)
if and only if yi ≥ yj .

Proof. First, we will show that if there is no k ∈ S such that yi > yk > yj , then
yi ≥ yj if and only if uF

i (y, S) ≥ uF
j (y, S). The latter inequality is equivalent to

0 ≥
(
1 +

l

n− 1
α− |S| − l

n− 1
β

)
(yj − yi)

⇔ yi ≥ yj,

where l denotes the number of players whose share is greater than yj . By this
inequality, we can prove the lemma inductively.
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The next lemma asserts that if some imputation of S ⊂ N dominates x ∈ XN ,
there exists y ∈ XS which dominates x such that the shares in x and y are aligned
in the same way.

Lemma 2. Consider x = (x1, x2, . . . , xn) ∈ XN and S ⊂ N . Without loss of
generality, assume S = {i1, i2, . . . , i|S|} with xi1 ≥ xi2 ≥ · · · ≥ xi|S| . If y ∈ XS

dominates x, then we can obtain y′ = (y′i1 , y
′
i2
, . . . , y′i|S|

) ∈ XS which dominates x
with y′i1 ≥ y′i2 ≥ · · · ≥ y′i|S|

.

Proof. If k < l and yik < yil , uF
il
(x,N) ≤ uF

ik
(x,N) < uF

ik
(y, S) ≤ uF

il
(y, S)

because of Lemma 1. Therefore, if the share of ik is exchanged for that of il,
the new imputation also dominates x. Repeating this manipulation, we can obtain
y′ = (y′i1 , y

′
i2
, . . . , y′i|S|

) ∈ XS which dominates x with y′i1 ≥ y′i2 ≥ · · · ≥ y′i|S|
.

The following theorem asserts that when β is large enough for the player who
has the largest share to want to give his/her share and try to realize the equal impu-
tation, the F-S core only includes the equal imputation or is empty. Additionally,
we completely characterize the two cases.

Theorem 1. Assume β > n−1
n

. If v(N)
n

≥ v(S)
|S| for all S ⊂ N , the F-S core

includes only the equal imputation (v(N)
n

, v(N)
n

, . . . , v(N)
n

) and otherwise, the F-S
core is empty.

Proof. First, we will show the F-S core does not include an unequal imputation.
Consider x ∈ XN . We assume x1 ≥ x2 ≥ · · · ≥ xn without loss of generality and
assume that x1 >

v(N)
n

. The utility of player 1 is

x1 −
β

n− 1

n∑
i=1

(x1 − xi) =

(
1− n

n− 1
β

)
x1 +

β

n− 1
v(N).

By x1 >
v(N)
n

and β > n−1
n

,(
1− n

n− 1
β

)
x1 +

β

n− 1
v(N) <

(
1− n

n− 1
β

)
v(N)

n
+

β

n− 1
v(N) =

v(N)

n

holds. Thus, v(N)
n

> uF
1 (x,N) ≥ uF

2 (x,N) ≥ · · · ≥ uF
n (x,N) by x1 ≥ x2 ≥

· · · ≥ xn and Lemma 1. Therefore, (v(N)
n

, v(N)
n

, . . . , v(N)
n

) dominates all unequal
imputations of N .

Next, we will prove that the F-S core includes the equal imputation if v(N)
n

≥
v(S)
|S| for any S ⊂ N . By the definition of the F-S utility functions, for any S ⊂ N

and any y ∈ XS , there exists i ∈ S such that

v(N)

n
≥ v(S)

|S|
≥ yi ≥ uF

i (y, S)

8



because of
∑

i∈S yi = v(S). Thus, the F-S core includes the equal imputation. If
v(N)
n

< v(S)
|S| , the imputation (v(S)|S| , . . . ,

v(S)
|S| ) ∈ XS clearly dominates (v(N)

n
, . . . , v(N)

n
) ∈

XN , and therefore the F-S core is empty.

By this theorem, we can obtain a necessary and sufficient condition whether
the F-S core is empty or not when β > n−1

n
.

The proof of Theorem 1 reveals that all unequal imputations in XN are dom-
inated by the equal imputation through the grand coalition when β is sufficiently
large. Note that this property never holds under ordinary TU games.

Next, we consider the case of β ≤ n−1
n

. The following proposition states that
for any imputation of a coalition, v(S) can be expressed by a weighted sum of
utilities, and the weights are derived from α and β.

Proposition 1. Assume β ≤ n−1
n

. Fix S ⊂ N and y ∈ XS , so that S =
{i1, . . . , i|S|} with yi1 ≥ yi2 ≥ · · · ≥ yi|S| . Then,

|S|∑
j=1

A0A|S|

AjAj−1

uF
ij
(y, S) = v(S), (FSTGR)

where Aj = 1 + j
n−1

α − |S|−j
n−1

β. The convention is that if S = N and β = n−1
n

(hence A0 = 0),
∑|S|

j=1

A0A|S|
Aj−1Aj

uF
ij
(y,N) = |S|uF

i1
(y,N).

Proof. See Appendix A.1.

Moreover, we can show the following important formula.

A0A|S|

AjAj−1

= |S|
1

Aj−1
− 1

Aj

1
A0

− 1
A|S|

.

Thus,
|S|∑
j=1

A0A|S|

AjAj−1

= |S|

holds. In particular, if α = β = 0, Aj = 1 holds for all j = 0, . . . , |S|, and
the identity (FSTGR) is written as

∑|S|
j=1 yij = v(S) which expresses total group

rationality in TU games. Then, (FSTGR) when α = β = 0 corresponds to the
identity of total group rationality which holds under the existing model of TU
games.

We will show an intuitive meaning of A0A|S|
AjAj−1

. Fix j ∈ S arbitrarily. Consider
a ∈ R|S| which satisfies uF

ik
(a) = 1 for all k = 1, . . . , j and uF

ik
(a) = 0 for all

k = j + 1, . . . , |S|. By Lemma 1, we can assume that the shares on a of ik for all
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k = 1, . . . , j are ah, and the shares on a of ik for all k = j + 1, . . . , |S| are al. By
assumption, {

ah − (|S|−j)β
n−1

(ah − al) = 1

al − (|S|−j)α
n−1

(ah − al) = 0

holds, and then, ah − al =
1
Aj

. Therefore,{
ah = al +

1
Aj

= (1 + jα
n−1

) 1
Aj

al =
jα
n−1

1
Aj
.

The sum of the shares denoted by Tj is

jah + (|S| − j)al = |S|al + j(ah − al) =
j

Aj

(
1 +

α|S|
n− 1

)
=

j

Aj

A|S|.

Then,

Tj − Tj−1 =

(
j

Aj

− j − 1

Aj−1

)
A|S| =

jAj−1 − (j − 1)Aj

AjAj−1

A|S| =
A0A|S|

AjAj−1

.

The convention is that T0 = 0. The last equality comes from jAj−1− (j−1)Aj =
A0.

As a result, we can interpret A0A|S|
AjAj−1

as follows. Since Tj−1 is the sum of the
shares of a vector which gives 1 of utilities to ik for all k = 1, . . . , j − 1 and 0 to
ik for all k = j, . . . , |S|, A0A|S|

AjAj−1
is the marginal total shares when only ij’s utility

increases by 1, and the other players’ utilities are unchanged.
Under this interpretation, we can understand Proposition 1 as follows. For

any j = 1, . . . , |S|, to increase the utility of only ij by uF
ij
(y, S), the sum of the

shares must increase by A0A|S|
AjAj−1

uF
ij
(y, S). Then, if

∑|S|
j=1

A0A|S|
AjAj−1

uF
ij
(y, S) = v(S),

by dividing v(S) properly, ij gets the utility uF
ij
(y, S) for all j = 1, . . . , |S|.

By Proposition 1, we can get the next proposition, which states that any impu-
tation of the grand coalition is not dominated through the grand coalition.

Proposition 2. Assume β ≤ n−1
n

. Consider any x ∈ XN . There is no y ∈ XN

that dominates x.

Proof. Fix any x ∈ XN with xi1 ≥ xi2 ≥ · · · ≥ xin , where {i1, . . . , in} = N .
Assume β < n−1

n
. Recall that

n∑
j=1

A0A|S|

AjAj−1

uF
ij
(x,N) = v(N)
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for all x ∈ XN by Proposition 1. Then, for all x, y ∈ XN ,

n∑
j=1

A0A|S|

AjAj−1

uF
ij
(x,N) =

n∑
j=1

A0A|S|

AjAj−1

uF
ij
(y,N)

⇔
n∑

j=1

A0A|S|

AjAj−1

(uF
ij
(y,N)− uF

ij
(x,N)) = 0.

Since A0A|S|
AjAj−1

> 0 for all j = 1, . . . , n because of β < n−1
n

, y does not dominate x.
If β = n−1

n
, by Proposition 1,

nuF
i1
(x,N) = v(N)

⇔ uF
i1
(x,N) =

v(N)

n

for all x ∈ XN . Then, there exists no y ∈ XN that dominates x.

Proposition 2 states that if β ≤ n−1
n

, domination through the grand coalition
never occurs unlike the case of Theorem 1.

By these propositions, we can characterize the F-S core completely.

Theorem 2. Assume β ≤ n−1
n

. Consider x ∈ XN . x is in the F-S core if
and only if for all S = {i1, . . . , i|S|} ⊊ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S| ,∑|S|

j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N) ≥ v(S) holds, where Aj = 1 + j

n−1
α− |S|−j

n−1
β.

Proof. See Appendix A.2.

If α = β = 0 (hence Aj = 1 for all j = 0, . . . , |S|), the inequality in the
theorem is written as

∑|S|
j=1 xij < v(S). Then, we generalize the inequality that is

the necessary and sufficient condition that an imputation of the grand coalition is
blocked through S. Namely, S does not block an imputation x of the grand coali-
tion if and only if

∑|S|
j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N) ≥ v(S) holds. That is, these inequalities

resemble the definition of the core with a super-additive characteristic function in
a TU game. So we call this inequality the condition of “coalitional rationality”,
corresponding to the terminology in TU games.

3.2 The Comparative statics of the F-S core about α and β

In this section, we will see how α and β change the shape of the F-S core. The
following proposition shows that the standard core with traditional preferences
(α = β = 0) includes the F-S core for any α and any β.
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Proposition 3. For any α and any β, Cα,β ⊂ C0,0.

Proof. Fix any x /∈ C0,0. There exists S ⊂ N that satisfies
∑

i∈S xi < v(S). Let
ϵ = v(S)−

∑
i∈S xi and x′

i = xi +
ϵ
|S| for any i ∈ S. Then, x′ is an imputation of

S. For any α and any β,

uF
i (x

′, S) > xi −
α

n− 1

∑
j∈S\{i}

max[xj − xi, 0]−
β

n− 1

∑
j∈S\{i}

max[xi − xj, 0] ≥ uF
i (x,N)

holds for any i ∈ S. Therefore, there exists an imputation that dominates x, and
we proved the proposition.

According to this proposition, we can insist two things. One is that the condi-
tion for non-emptiness of the core is stronger compared to the case of the original
core. The other is that unequal imputations can be excluded. This is because if
C0,0 includes the equal imputation, Cα,β also includes the equal imputation.

The following theorem is an answer to how the F-S core changes if α increases.

Theorem 3. Fix α and β arbitrarily. If α′ > α, Cα′,β ⊂ Cα,β .

Proof. See Appendix A.3.

Next, how does the F-S core change if β increases? Does the F-S core always
become smaller like the case of α? The answer is no, as the following examples
show.

Assume N = {1, 2, 3}, v(N) = 25, v({2, 3}) = 14, v({1, 3}) = v({1, 2}) =
v({1}) = v({2}) = v({3}) = 0, α = 0.8, and β = 0. If x = (10, 10, 5), the
utility of player 2 is 10, and the utility of player 3 is

5− α

2
{(10− 5) + (10− 5)} = 1.

Let y = (10.1, 3.9) ∈ X{2,3}. Then, the utility of player 2 under y is 10.1, and the
utility of player 3 under y is

3.9− α

2
(10.1− 3.9) = 1.42.

Therefore, y dominates x. This is because player 3 wants to decrease the number
of players who have more shares than he/she has. If this effect is stronger than the
effect that his/her share decreases, the coalition {2, 3} will block x.

Next, assumeN = {1, 2, 3}, v(N) = 25, v({2, 3}) = 14, v({1, 3}) = v({1, 2}) =
v({1}) = v({2}) = v({3}) = 0, α = 0.8, and β = 0.5. If x = (10, 10, 5), the
utility of player 2 under x is

10− β

2
{(10− 10) + (10− 5)} =

35

4
,

12



and the utility of player 3 under x is 1. We can describe any y′ ∈ X{2,3} as (y′2, 14−
y′2). Suppose y′ dominates x. Then, y′2 ≥ u2(y

′, {2, 3}) > 35/4 > 7. The utility
of player 2 under y′ is

y′2 −
β

2
{y′2 − (14− y′2)} =

y′2
2

+
7

2
,

and the utility of player 3 under y′ is

14− y′2 −
α

2
{y′2 − (14− y′2)} = 19.6− 1.8y′2.

Therefore, y′ dominates x if and only if 21
2
< y′2 and y′2 < 93

9
. However, there is

no such y′2, and no S ⊂ N has y ∈ XS which dominates x through S.
If β > 2

3
, x is not in the F-S core because of Theorem 1. Therefore, there is an

imputation which belongs to the F-S core if β is at an intermediate level but does
not belong to the F-S core if β is too large or too small.

4 Core with Charness-Rabin preferences

4.1 The Characterization of the C-R Core
In this section, we will propose the core with the C-R preferences. For any S ⊂ N ,
letmS be the smallest integer that satisfies γδ(|S|−mS) < mS(1−γ). The number
of mS can be understood as follows. Given any imputation where mS − 1 or less
players have the minimum share in the coalition S, a transfer among the players
which increases the minimum share weakly increases all players’ utilities in S.
Thus, we call mS the Maximal Number of the Minimal-Share Players of S (the
MNMSP hereafter).

The next lemma implies the property of this number. In particular, when we
confirm whether an imputation is dominated through a given coalition S ⊂ N or
not, we only have to check whether some imputation of S which has at least mS

minimal shares dominate the imputation or not.

Lemma 3. Consider x = (x1, x2, . . . , xn) ∈ XN and S ⊂ N . Without loss of
generality, assume S = {i1, i2, . . . , i|S|} with xi1 ≥ xi2 ≥ · · · ≥ xi|S| . If y ∈ XS

dominates x, then we can obtain y′ = (y′i1 , y
′
i2
, . . . , y′i|S|

) ∈ XS which dominates x
with y′i1 ≥ y′i2 ≥ · · · ≥ y′i|S|−mS+1

= · · · = y′i|S|
.

Proof. If k < l and yik < yil , uC
il
(x,N) ≤ uC

ik
(x,N) < uC

ik
(y, S) ≤ uC

il
(y, S) by

the definition of the C-R utility functions. Therefore, if the share of ik is exchanged
for that of il, the new imputation also dominates x. Repeating this manipulation,

13



we can obtain y′′ = (y′′i1 , y
′′
i2
, . . . , y′′i|S|

) ∈ XS which dominates x with y′′i1 ≥ y′′i2 ≥
· · · ≥ y′′i|S|

.
Let m′ = | arg min

k=1,...,|S|
y′′ik |. Then, if m′ ≥ mS , define y′ = y′′, and we got the

proof. Assume m′ ≤ mS − 1. Define y′ as follows:

y′ij =

{
y′′ij −

m′

|S|−m′ ϵ if j ≤ |S| −m′

y′′ij + ϵ otherwise,

where ϵ ∈ R≥0 satisfies that y′i|S|−m′ = y′i|S|−m′+1
. By the definition ofm′, y′′i|S|−m′ >

y′′i|S|−m′+1
holds, and therefore ϵ > 0 and | arg min

k=1,...,|S|
y′ik | > m′ hold. Moreover,∑|S|

j=1 y
′
ij
=
∑|S|

j=1 y
′′
ij

holds, and y′ is an imputation ofS. We will showuC
ij
(y′, S) ≥

uC
ij
(y′′, S) holds for any j = 1, . . . , |S|. For any j /∈ arg min

k=1,...,|S|
y′′ik ,

uC
ij
(y′, S)− uC

ij
(y′′, S) = (1− γ)(y′ij − y′′ij) + γ

δ(y′i|S|
− y′′i|S|

) + (1− δ)

 |S|∑
j=1

y′ij −
|S|∑
j=1

y′′ij


= (1− γ)(y′ij − y′′ij) + γδ(y′i|S|

− y′′i|S|
)

= −(1− γ)
m′

|S| −m′ ϵ+ γδϵ

=
−m′(1− γ) + γδ(|S| −m′)

|S| −m′ ϵ ≥ 0

holds because m′ ≤ mS − 1 holds. If j ∈ arg min
k=1,...,|S|

y′′ik , uC
ij
(y′, S) ≥ uC

ij
(y′′, S)

holds obviously. Then, y′ dominates x because y′′ dominates x. By repeating
this manipulation, we got the imputation which dominates x and satisfies that the
number of players who have the minimum share is not smaller than mS . As a
result, we complete the proof.

The following proposition corresponds to Proposition 1 in the sense that for any
imputation of a coalition, v(S) can be expressed by a weighted sum of utilities, and
the weights are derived from γ and δ.

Proposition 4. Fix any S ⊂ N and any y ∈ XS , so that S = {i1, . . . , i|S|} with
yi1 ≥ yi2 ≥ · · · ≥ yi|S|−mS+1

= · · · = yi|S| . Then,

1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

uC
ij
(y, S) +

(1− γ + γδ)mS − γδ|S|
(1− γ)ΓS

uC
i|S|−mS+1

(y, S) = v(S)

(CRTGR)
holds, where ΓS = 1− γ + γδ + γ(1− δ)|S|.
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Proof. By yi1 ≥ yi2 ≥ · · · ≥ yi|S|−mS+1
= · · · = yi|S| ,

uC
ij
(y, S) = (1− γ)yij + γ

δyi|S|−mS+1
+ (1− δ)

|S|∑
j=1

yij


holds for any j = 1, . . . , |S|. Then,

1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

uC
ij
(y, S) +

(1− γ + γδ)mS − γδ|S|
(1− γ)ΓS

uC
i|S|−mS+1

(y, S)

=
1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

{uC
ij
(y, S)− uC

i|S|−mS+1
(y, S)}+ |S|

ΓS

uC
i|S|−mS+1

(y, S)

=
1− γ + γδ

ΓS

|S|∑
j=1

{yij − yi|S|−mS+1
}

+
|S|
ΓS

(1− γ)yi|S|−mS+1
+ γ

δyi|S|−mS+1
+ (1− δ)

|S|∑
j=1

yij


=

1− γ + γδ + γ(1− δ)|S|
ΓS

|S|∑
j=1

yij +
|S|
ΓS

{−(1− γ)− γδ + (1− γ) + γδ}yi|S|−mS+1

= v(S)

holds.

By definition, if all players’ shares rise by 1 unit, all players’ utilities rise by
ΓS unit. As in the case of the F-S core,

(|S| −mS)
1− γ + γδ

(1− γ)ΓS

+
(1− γ + γδ)mS − γδ|S|

(1− γ)ΓS

=
|S|
ΓS

holds. Moreover, if γ = 0 (hence ΓS = 1 and mS = 1), (CRTGR) is written as∑|S|
j=1 yij = v(S). Then, (CRTGR) when γ = 0 corresponds to the identity of

total group rationality which holds under the existing model of TU games.
By the above proposition, we can prove the next theorem which completely

characterizes the C-R core.

Theorem 4. Consider x ∈ XN . x is in the C-R core if and only if for all S =
{i1, i2, . . . , i|S|} ⊂ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S| ,

1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

uC
ij
(x,N)+

(1− γ + γδ)mS − γδ|S|
(1− γ)ΓS

uC
i|S|−mS+1

(x,N) ≥ v(S)

(1)
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holds, where ΓS = 1− γ + γδ + γ(1− δ)|S|.

Proof. See Appendix A.4.

This theorem characterizes the C-R core. If γ = 0, the inequality in the the-
orem is written as

∑|S|
j=1 xij ≥ v(S). Then, we generalize the inequality that is

the necessary and sufficient condition that an imputation of the grand coalition is
blocked through S. Similarly to Section 3, we call the inequality (1) the condition
of “coalitional rationality”.

4.2 The Comparative statics of the C-R core about γ and δ

In this section, we will see how γ and δ change the shape of the C-R core. In
Section 3.2, we prove that the F-S core is in the original core, but this statement
does not hold about the C-R core. This fact can be explained in the following
way. The F-S preferences have a property where their utilities do not decrease if
the number of players they take care of decreases. However, the C-R preferences
do not have such a property. Rather, if the number of players they take care of
decreases, the total share does not increase, and the utilities do not increase.

Moreover, the monotonicity of the size of the core does not hold for γ, as
the following example shows. Assume N = {1, 2, 3}, v(N) = 21, v({1, 2}) =
18, v({1, 3}) = v({2, 3}) = v({1}) = v({2}) = v({3}) = 0, δ = 0.5, and γ = 0.
In this case, the C-R utility function is the same as the traditional utility which is
constructed only of the self-interest part. Let x = (13, 4, 4). This imputation is
not in the C-R core. (Consider y = (13.5, 4.5) ∈ X{1,2}.)

Next, assumeN = {1, 2, 3}, v(N) = 21, v({1, 2}) = 18, v({1, 3}) = v({2, 3}) =
v({1}) = v({2}) = v({3}) = 0, δ = 0.5, and γ = 0.5. If x = (13, 4, 4), the utility
of player 1 under x is

0.5× 13 + 0.5(0.5× 4 + 0.5× 21) = 12.75,

and the utility of player 2 under x is

0.5× 4 + 0.5(0.5× 4 + 0.5× 21) = 8.25.

We can describe any y′ ∈ X{1,2} as (y′1, 18 − y′1). Suppose y′ dominates x. If
0 ≤ y′1 ≤ 9, the utility of player 1 under y′ is

0.5× y′1 + 0.5(0.5× y′1 + 0.5× 18) = 0.75× y′1 + 4.5.

Since y′ dominates x, y′1 > 11 but this is a contradiction. If 9 ≤ y′1 ≤ 18, the
utility of player 1 under y′ is

0.5× y′1 + 0.5(0.5× (18− y′1) + 0.5× 18) = 0.25× y′1 + 9,
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and the utility of player 2 under y′ is

0.5× (18− y′1) + 0.5(0.5× (18− y′1) + 0.5× 18) = −0.75× y′1 + 18.

Therefore, y′ dominates x if and only if 15 < y′1 and y′1 < 13. However, there is
no such y′1, and no S ⊂ N has y ∈ XS which dominates x. By the definition of
v, any imputation of any coalition {i} for any player i ∈ N does not dominate x.
We consider domination through the grand coalition N . The MNMSP of N , mN ,
is 2. By Proposition 4,

uC
1 (y

′′, N) + uC
2 (y

′′, N) = 21

holds, where y′′ = (y′′1 , y
′′
2 , y

′′
3) ∈ XN satisfies y′′1 ≥ y′′2 = y′′3 . Moreover,

uC
1 (x,N) + uC

2 (x,N) = 21 holds, and

{uC
1 (y,N)− uC

1 (x,N)}+ {uC
2 (y,N)− uC

2 (x,N)} = 0

holds. By Lemma 3, there is no y′′ ∈ XN that dominates x.
We can interpret this case as follows. If γ = 0, the C-R utility of players has

only a self-interest part and does not depend on the social welfare. So they can
block x by an imputation which gives more to player 1. If γ = 0.5, they care
about the social welfare. In this case, player 1 faces a trade-off between his share
and the social welfare. Then, his utility is not improved unless he gets more share
compared to the case of γ = 0. Nevertheless, if he gets enough, player 2 can not
get enough, and the utility of x for player 2 can not be improved.

Finally, assume N = {1, 2, 3}, v(N) = 21, v({1, 2}) = 18, v({1, 3}) =
v({2, 3}) = v({1}) = v({2}) = v({3}) = 0, δ = 0.5, and γ = 0.9. In this
case, the MNMSP of the coalition N is 3, so we only have to check whether
y′′′ = (7, 7, 7) ∈ XN dominates x = (13, 4, 4) or not. The utility of player 1
under y′′′ is the same as the utility of player 2 under y′′′ and that of player 3. The
value is

0.1× 7 + 0.9(0.5× 7 + 0.5× 21) = 13.3.

The utility of player 1 under x is

0.1× 13 + 0.9(0.5× 4 + 0.5× 21) = 12.55.

Since the utility of player 2 under x is the same as that of player 3 which is not
larger than that of player 1, y′′′ dominates x. Intuitively, the social welfare in the
blocking coalition increases compared to the case of γ = 0.5, and that allows them
to block x when γ = 0.9.

However, such monotonicity holds for δ. The next theorem shows the fact.

Theorem 5. Fix γ and δ arbitrarily. For any δ′ > δ, Cγ,δ′ ⊂ Cγ,δ.
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Proof. See Appendix A.5.

The intuitive reason of Theorem 5 is as follows. When δ increases, the players
get more concerned with the minimum share but less concerned with the total
shares. Then, imputations of a blocking coalition which have larger minimum
income come to dominate an imputation of the grand coalition even though the
total shares of the imputation of the blocking coalition get smaller. Therefore, the
C-R core becomes smaller.

5 The alpha-core and the beta-core
In the discussion so far, when the grand coalition is blocked, players in the blocking
coalition do not care about the remaining players by assumption. In this section,
we consider the case where the members of the blocking coalition care about all
players and study the alpha-core and the beta-core3. If players care about all other
players regardless of their coalition, some players who do not belong to the coali-
tion interrupt the coalition by raising or lowering their own incomes. To consider
the implication of these possibilities, the alpha-core and the beta-core are adequate.

Definition 7. S ⊂ N can alpha-improve upon x ∈ XN through S if and only if
there exists yS ∈ XS such that for all zN\S ∈ XN\S , ui((yS, zN\S), N) > ui(x,N)
holds.

Definition 8. The alpha-core, denoted by CA, is the set of all elements in XN

which can not be alpha-improved through any S ⊂ N .

Definition 9. S ⊂ N can beta-improve upon x ∈ XN through S if and only if for
all zN\S ∈ XN\S , there exists yS ∈ XS such that ui((yS, zN\S), N) > ui(x,N)
holds.

Definition 10. The beta-core, denoted by CB, is the set of all elements in XN

which can not be beta-improved through any S ⊂ N .

Let CA
α,β denote the alpha-core with the F-S preferences (the F-S alpha-core

hereafter) and CA
γ,δ denote the alpha-core with the C-R preferences (the C-R alpha-

core hereafter). Similarly, let CB
α,β denote the beta-core with the F-S preferences

(the F-S beta-core hereafter) and CB
γ,δ denote the beta-core with the C-R prefer-

ences (the C-R beta-core hereafter). By definition, the alpha-core includes the
beta-core under both the utility functions, i.e., CB

α,β ⊂ CA
α,β and CB

γ,δ ⊂ CA
γ,δ. In

general, the inclusions are strict, but consider the following kind of imputations:
3The terms, the alpha-core and the beta-core, are written as theα-core and the β-core in general.

To avoid confusion among the parameters (α and β) and these terms, we write these terms by
alphabets.
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Definition 11. For any S ⊂ N , z∗N\S ∈ XN\S is a dominant punishment imputa-
tion ofS if and only if for any yS ∈ XS and any zN\S ∈ XN\S , ui((yS, zN\S), N) ≥
ui((yS, z

∗
N\S), N) holds for any i ∈ S.

For any imputation of a blocking coalition, the dominant punishment impu-
tation is the worst imputation for the blocking coalition. Moreover, a dominant
punishment imputation corresponds to a dominant punishment strategy proposed
by Nakayama (1998). He proposes this strategy in the context of coalitional strate-
gic games and shows that when there is a dominant punishment strategy for any
coalition, the alpha-core coincides with the beta-core. It can be readily verified
that if a dominant punishment imputation exists in our model, the alpha-core co-
incides with the beta-core under any utility function. The difference between the
alpha-core and the beta-core is only orders between punishment by a remaining
coalition and deciding an imputation of a blocking coalition, so these cores do not
depend on the orders if there exists a dominant punishment imputation.

5.1 The alpha- and beta-core with the F-S preferences
The next theorem states that the F-S alpha-core coincides with the F-S beta-core.
Theorem 6. CA

α,β = CB
α,β holds.

Proof. We only have to prove there is a dominant punishment imputation for any
coalition. Fix any S ⊂ N . We will prove for any y ∈ XS and any z ∈ XN\S ,
uF
i ((y, z

′), N) ≤ uF
i ((y, z), N) holds for any i ∈ S, where z′ = (v(N\S), 0, . . . , 0).

Namely, we will show z′ is a dominant punishment imputation of S.
Fix any i ∈ S. First of all, we will show∑

j∈N\S

max{yi − zj, 0} ≤
∑

j∈N\S

max{yi − z′j, 0}

holds for any y ∈ XS and any z ∈ XN\S . Consider a function f : XN\S → R
such that

f(z) =
∑

j∈N\S

fj(z),

where fj : XN\S → R is defined as fj(z) = max{yi− zj, 0}. Since fj is a convex
function, f is a convex function. Then,

f(tz + (1− t)z′) ≤ tf(z) + (1− t)f(z′) ≤ max{f(z), f(z′)}

for any z, z′ ∈ XN\S . Since XN\S = {z ∈ Rn−|S||0 ≤ zj ≤ v(S),
∑

j∈N\S xj =

v(N \ S)}, a maximizer of f(z) is one of n− |S| points which satisfy all compo-
nents except only one component are 0 like (0, . . . , 0, v(N \S), 0, . . . , 0). By defi-
nition, f takes the same value among these n−|S| points. Then, if yi ≥ v(N \S),
uF
i ((y, z

′), N) ≤ uF
i ((y, z), N) holds by the definition of the F-S utility functions.
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Assume yi < v(N \S). The sum of the difference between the player i’s share
and the other’s shares which are larger than the i’s share under z is

∑
j∈N\S

max{zj − yi, 0} ≤

 ∑
j∈N\S

zj

− yi = v(N \ S)− yi =
∑

j∈N\S

max{z′j − yi, 0}.

As a result, we proved there exists a dominant punishment imputation.

Next, we will compare the F-S core and the F-S alpha-core. Intuitively, since
the remaining players punish the blocking coalition, it is more difficult for a coali-
tion to block the grand coalition, and the F-S alpha-core seems to include the F-S
core. This intuition is correct, as the next proposition reveals.

Proposition 5. For any α and any β, Cα,β ⊂ CA
α,β holds.

Proof. We assume that x /∈ CA
α,β . By the definition of the F-S alpha-core, there

exists y ∈ XS such that for all z ∈ XN\S ,

uF
i ((y, z), N) > uF

i (x,N)

for all i ∈ S. For any z ∈ XN\S ,

uF
i (y, S) = yi −

α

n− 1

∑
j∈S\{i}

max[yj − yi, 0]−
β

n− 1

∑
j∈S\{i}

max[yi − yj, 0]

≥ uF
i ((y, z), N)

= yi −
α

n− 1

∑
j∈S\{i}

max[yj − yi, 0]−
β

n− 1

∑
j∈S\{i}

max[yi − yj, 0]

− α

n− 1

∑
j∈N\S

max[zj − yi, 0]−
β

n− 1

∑
j∈N\S

max[yi − zj, 0] > uF
i (x,N),

and therefore x /∈ Cα,β holds.

This proposition implies that the condition of non-emptiness of the F-S core
is stronger than that of the F-S alpha-core. The F-S core tends to exclude unequal
imputations which might be included in the F-S alpha-core.

Note that the F-S core is included in the standard core with a traditional utility
(C0,0). However, the F-S alpha-core is not included in the standard core as the
following example shows:

Assume N = {1, 2, 3}, v(N) = 21, v({1, 2}) = 20, v({1, 3}) = v({2, 3}) =
v({1}) = v({2}) = v({3}) = 0, and β > 0.6. If x = (7, 7, 7), the utility of each
player is 7. We can describe any y ∈ X{1,2} as (y1, 20−y1), where y1 ∈ [0, 20]. We
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only have to show that there is no (y1, 20− y1) which dominates x under y1 ≤ 10.
When player 1 and player 2 join the coalition {1, 2}, player 3 gets v({3}) = 0, and
then, the utility of player 1 under (y, 0) is

y1 −
α

2
{(20− y1)− y1} −

β

2
(y1 − 0) =

(
1 + α− β

2

)
y1 − 10α.

By y1 ≤ 10 and β > 0.6,

uF
1 ((y, 0), N) < (1 + α− 0.3)10− 10α = 7

holds. Then, the coalition {1, 2} can not alpha-improve upon x. By v({1, 3}) =
v({2, 3}) = v({1}) = v({2}) = v({3}) = 0, x is in the F-S alpha-core. However,
x is not in the standard core because x1 + x2 = 14 < v({1, 2}) = 20. Then,
CA

α,β ⊂ C0,0 does not always hold.

5.2 The alpha- and beta-core with the C-R preferences
In this section, we consider the C-R alpha-core and the C-R beta-core. First, we
will show the C-R alpha-core coincides with C-R beta-core like the case of the F-S
preferences.

Theorem 7. CA
γ,δ = CB

γ,δ holds.

Proof. We only have to prove there is a dominant punishment imputation for any
coalition. Fix any S ⊂ N . We will prove for any y ∈ XS and any z ∈ XN\S ,
uC
i ((y, z

0), N) ≤ uC
i ((y, z), N) holds for any i ∈ S, where z0 ∈ XN\S satisfies

mini∈N\S z
0
i = 0. Namely, we will show z0 is a dominant punishment imputation

of S.
By the definition of the C-R utility functions,

uC
i ((y, z

0), N) = (1− γ)yi + γ[0 + (1− δ)(v(S) + v(N \ S)] ≤ uC
i ((y, z), N)

= (1− γ)yi + γδmin{min
j∈S

yj, min
j∈N\S

zj}

+γ(1− δ){v(S) + v(N \ S)},

and we complete the proof.

In the case of the C-R preferences, there are no inclusion relationships among
the standard core with a traditional utility, the C-R core, and the C-R alpha-core. In
contrast, the F-S core is included by the standard core and the F-S alpha-core. The
reason for this contrast is that the C-R utility function of the players in a coalition
S may either increase or decrease when the number of players whom one cares
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about increases. In particular, the social welfare may either increase or decrease
because the total welfare does not decrease but the minimum income does not
increase. This property does not hold with the F-S preferences. The F-S utility
of a player (weakly) decreases whenever the number of players whom the player
cares about increases. That is why the different result occurs between the F-S and
C-R preferences.

6 Concern network and new core concepts
In this section, we consider the case where each player is concerned with not only
the players in their coalition but also some players who do not belong to their
coalition. In Sections 3 and 4, we assume there are no such players, and in Section
5, each player is concerned with all players. The case we study in this section,
therefore, can be regarded as an intermediate case between Sections 3 and 5. To
describe this case, let us consider a network of players, denoted by a directed graph
G ⊂ N × N . We say the player i is concerned with the player j if (i, j) ∈ G.
Then, if G = ∅, this case coincides with the case in Sections 3 and 4, and if G is
a complete graph, this case coincides with the case in Section 5. Notice that we
allow the case where a player is concerned with another player but not vice versa.
If these two players are concerned with each other, we interpret their relationship
is very intimate like a family.

Definition 12. i, j ∈ S are intimate if and only if (i, j) ∈ G and (j, i) ∈ G.

Notations are as follows. For each i ∈ N , let Si = {j ∈ N |(i, j) ∈ G}, that is,
Si means the set of the players whom player i is concerned with. For any S ⊂ N ,
let Sc = {i ∈ N \ S| For some j ∈ S, i and j are intimate}, that is, Sc is the set of
the players who are intimate with some player in S, and let Snc = N \ (S ∪ Sc),
that is, Snc is the set of the players who are not in S and are not intimate to any
player in S. Finally, we define eS = (v(S)|S| , . . . ,

v(S)
|S| ) ∈ XS for each S ⊂ N .

If there is such a network of players, it is natural to imagine that a player keeps
caring about some other players after he/she blocked an imputation of the grand
coalition when they have an intimate relationship. The alpha-core or the beta-core
allows them to punish the players in the blocking coalition, but they do not want to
punish their intimate players. Rather, they may wish to help the intimate players.
Then, we propose a new core concept, that is, G-alpha-core.

In this section, we focus only on the F-S utility functions. We can define the G-
alpha-core under the C-R utility functions, but there are no inclusion relationships
among the C-R core, the C-R alpha-core, and the G-alpha-core under the C-R
utility functions by the same reason in the last paragraph at Section 5.2.
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Definition 13. S ⊂ N can G-alpha-improve upon x ∈ XN if and only if there
exists y ∈ XS such that for all z ∈ XSnc uF

i ((y, z, eSc), S ∪ Si) > uF
i (x,N) for

all i ∈ S.

Definition 14. The G-alpha-core, denoted by CAG
α,β , is the set of all elements in

XN which can not be G-alpha-improved through any S ⊂ N .

An important difference between the alpha-core and the G-alpha-core is that in
the G-alpha-core, if some coalition S tries to block the grand coalition, the players
in Sc cooperate and allocate themselves the equal imputation. They cooperate
and allocate themselves the equal imputation because they will not try to punish
the blocking coalition S and are basically egalitarian. This idea comes from Equal
Devision Core that is proposed by Selten (1972) to explain experimental outcomes.

Moreover, we can also define the G-beta-core:

Definition 15. S ⊂ N can G-beta-improve upon x ∈ XN if and only if for all
z ∈ XSnc , there exists y ∈ XS such that ui((y, z, eSc), S ∪ Si) > ui(x,N) for all
i ∈ S.

Definition 16. The G-beta-core, denoted by CBG, is the set of all elements in XN

which can not be G-beta-improved through any S ⊂ N .

The G-alpha-core does not coincide with the G-beta-core because there might
be no dominant punishment imputation unless G is the complete graph. Con-
sider the following example. Assume N = {1, 2, 3, 4}, α = β = 1/2, G =
{(3, 1), (4, 2)}, and

v(S) =



24 if S = N

12 if |S| = 3

12 if S = {1, 2}
8 if S = {3, 4}
0 otherwise.

Let x = (8, 8, 4, 4) ∈ XN . Coalitions except {3, 4} will not block x. The utility
of player 3 and that of player 4 is the same value under x, and its value is

4− 1

3
· 1
2
{(8− 4) + (8− 4)} =

8

3
.

Fix any z = (z1, z2) ∈ X{1,2}. Without loss of generality, assume z1 ≥ z2. If
z1 ̸= 12,

uF
k ((z, 4, 4), {3, 4} ∪ Sk) = 4− 1

3
· 1
2
|zl − 4|

> 4− 1

3
· 1
2
(12− 4) =

8

3
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for any k = 3, 4, where l ∈ Sk. If z1 = 12,

uF
3 ((z, 4.1, 3.9), {3, 4} ∪ {1}) = 4.1− 1

3
· 1
2
(12− 4.1 + 4.1− 3.9)

= 2.75 >
8

3

and

uF
4 ((z, 4.1, 3.9), {3, 4} ∪ {2}) = 3.9− 1

3
· 1
2
(3.9− 0 + 4.1− 3.9)

=
193

60
>

8

3
.

Hence, x is not in the G-beta-core.
However, x is in the G-alpha-core. Fix any y = (y3, y4) ∈ X{3,4}. Without

loss of generality, assume y3 ≥ y4. Then,

uF
4 ((0, 12, y), {3, 4} ∪ {2}) = y4 −

1

3
· 1
2
(12− y4 + y3 − y4) ≤

8

3

because y3 ≥ 4 and y4 ≤ 4. Therefore, the G-alpha-core does not coincide with
theG-beta-core in this game, and this implies that there is no dominant punishment
imputation.

In the case of the ordinary α- and β-core studied in the previous section, the
players in the remaining coalition are symmetric, but the players are not symmetric
because of the network. Then, the worst imputation of Snc for a blocking coali-
tion S depends on the imputation of S. That is why there might be no dominant
punishment imputation.

We will compare the F-S core and the G-beta-core. In the case of the G-beta-
core, some remaining players punish the blocking coalition, and then, we expect
the G-beta-core includes the F-S core. These intuitions are correct, as the next
proposition shows. Moreover, the next proposition shows that the G-beta-core is
included by the G-alpha-core.

Proposition 6. Cα,β ⊂ CBG
α,β ⊂ CAG

α,β .

Proof. First of all, we will show Cα,β ⊂ CBG
α,β . We assume that x /∈ CBG

α,β . By the
definition of ”G-beta-improve”, for all z ∈ XN\S , there exist S ⊂ N and y ∈ XS

such that

uF
i ((y, z, eSc), S ∪ Si) > uF

i (x,N)

for any i ∈ S. For any z ∈ XN\S ,

uF
i (y, S) = yi −

α

n− 1

∑
j∈S\{i}

max[yj − yi, 0]−
β

n− 1

∑
j∈S\{i}

max[yi − yj, 0]

≥ uF
i ((y, z, eSc), S ∪ Si) > uF

i (x,N),
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for any i ∈ S. Then, y dominates x and x /∈ Cα,β holds.
Secondly, we will show CBG

α,β ⊂ CAG
α,β . We assume that x /∈ CAG

α,β . By the
definition of ”G-alpha-improve”, there exist S ⊂ N and y ∈ XS such that for all
z ∈ XN\S ,

uF
i ((y, z, eSc), S ∪ Si) > uF

i (x,N)

for any i ∈ S. Then, for all z ∈ XN\S , S ⊂ N and y ∈ XS satisfies the above
inequality. Therefore, x /∈ CBG

α,β .

The result that theG-beta-core is included by theG-alpha-core also holds under
the model of coalitional strategic games, which has already been shown in previous
studies. The idea of the G-alpha- or G-beta-core is an intermediate case between
the F-S core and the F-S alpha- or F-S beta-core, respectively. In the F-S core, the
players do not care about the other players who are not in their coalition, and this
proposition shows that the F-S core is included by the G-alpha- and G-beta-core
respectively, where the players would care about the other players who is not in
their coalition.

In contrast, there is no inclusion relationship between the F-S alpha-core and
the G-alpha-core. See the following example. Notice that the examples also hold
when we compare the F-S beta-core and the G-beta-core.

Assume N = {1, 2, 3}, v(N) = 10, v({1, 2}) = v({1, 3}) = v({2, 3}) =
3, v({1}) = v({2}) = v({3}) = 0,α = 0.5 and β = 0. If x = (8/7, 31/7, 31/7) ∈
XN , the utility of player 1 is

8

7
− α

2

{
31

7
− 8

7
+

31

7
− 8

7

}
= −0.5.

It is readily seen that all coalitions except {1} are not a blocking coalition under
both the G-alpha-core and the F-S alpha-core because when the coalitions try to
block x, player 2 or player 3 can not get their utility of x, 31/7. Then, consider
{1}. First, we will show x is in the F-S alpha-core. If {1} tries to block x, then
player 1’s utility is

0− α

2
(3− 0) = −0.75 < −0.5

whatever an imputation of {2, 3} is. Therefore, x is in the F-S alpha-core because
{1} is not a blocking coalition. Next, we will prove x is not in the G-alpha-core,
where we assume G = {(1, 2), (2, 1), (1, 3)}. Then, player 1 and player 2 are
intimate. The utility of x for player 1 is the same as the case of the F-S alpha-core.
If {1} tries to block x, then player 2 and player 3 do not make the coalition because
player 2 is an intimate player for player 1 but player 3 is not, and then player 1’s
utility is 0. Therefore, x is not in the G-alpha-core. As a result, CA

α,β ⊂ CAG
α,β does

not always hold.
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We will show CAG
α,β ⊂ CA

α,β does not always hold. See the following exam-
ple: Assume N = {1, 2, 3}, v(N) = 10, v({1, 2}) = v({1, 3}) = v({2, 3}) =
3, v({1}) = 4, v({2}) = v({3}) = 0, and α = β = 0.3. If x = (3, 3.5, 3.5), the
utility of player 1 is

3− α

2
{(3.5− 3) + (3.5− 3)} = 2.85.

It is readily seen that all coalitions except {1} are not a blocking coalition under
both the G-alpha-core and the F-S alpha-core. This is because the utilities of x for
player 2 and player 3 are

3.5− β

2
{3.5− 3} = 3.425.

Consider {1}. First, we will show x is not in the F-S alpha-core. If {1} tries
to block x, the utility of player 1 is

4− β

2
(4− 3 + 4− 0) = 3.25 > 2.85

whatever an imputation of {2, 3} is. Therefore, x is not in the F-S alpha-core
because {1} is a blocking coalition. Next, we will prove x is in the G-alpha-core,
where we assume G = {(1, 2), (2, 1), (1, 3)}. Then, player 1 and player 2 are
intimate. The utility of x for player 1 is the same as the case of the F-S alpha-core.
If {1} tries to block x, player 2 and player 3 do not make the coalition because
player 2 is an intimate player for player 1 but player 3 is not, and then player 1’s
utility is

4− β

2
(4− 0 + 4− 0) = 2.8 < 2.85.

Therefore, x is in the G-alpha-core. As a result, CAG
α,β ⊂ CA

α,β does not always
hold.

By the definition of the graph, this graph prevents the remaining players mak-
ing a coalition. It makes the blocking coalition to get larger shares or get smaller
shares. As a result, there is no inclusion relationship between the F-S alpha-core
and the G-alpha-core.

7 Conclusion
In this paper, we analyzed core concepts when players have the Fehr-Schmidt pref-
erences or the Charness-Rabin preferences, respectively. We characterized the new
cores by a set of inequalities called “coalitional rationality” which is an extension
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of that on ordinary TU games when players care about those who are in their coali-
tion.

We analyzed not only the case where players are concerned with those who are
in their coalition but also the case where players are concerned with other players
in two different ways. One is that players are concerned with all the players in the
game. The other is that players are concerned with some specific players indicated
by a directed graph G and the players in their coalition. In the case where players
are concerned with all players, the alpha-core coincides with the beta-core but this
may not hold in the other case. The failure of coincidence is due to the structure of
a graph G. It is interesting to ask what type of the graph G make the G-alpha-core
coincide with the G-beta-core. Or one can ask what type of G makes the cores
bigger or smaller.
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A Appendix

A.1 Proof of Proposition 1
If S = N and β = n−1

n
(hence A0 = 0),

|S|uF
i1
(y, S) = |S|

yi1 −
β

n− 1

|S|∑
k=1

(yi1 − yik)


= |S|

{
A0yi1 +

β

n− 1
v(S)

}
= v(N).

Assume S ̸= N or β < n−1
n

(hence A0 ̸= 0). For all ij ∈ S,

uF
ij
(y, S) = yij −

α

n− 1

j−1∑
k=1

(yik − yij)−
β

n− 1

|S|∑
k=j+1

(yij − yik)

holds. Then,

uF
ij−1

(y, S)− uF
ij
(y, S) = yij−1

− α

n− 1

j−1∑
k=1

(yik − yij−1
)− β

n− 1

|S|∑
k=j

(yij−1
− yik)

−

yij −
α

n− 1

j−1∑
k=1

(yik − yij)−
β

n− 1

|S|∑
k=j

(yij − yik)


= (yij−1

− yij) +
j − 1

n− 1
α(yij−1

− yij)−
|S| − j + 1

n− 1
β(yij−1

− yij)

= Aj−1(yij−1
− yij)
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holds. Thus,

yi1 − yi|S| =

|S|∑
j=2

(yij−1
− yij)

=
uF
i1
(y, S)

A1

+

|S|−1∑
j=2

(
1

Aj

− 1

Aj−1

)
uF
ij
(y, S)−

uF
i|S|

(y, S)

A|S|−1

. Eq. (A.1)

Moreover,

uF
i1
(y, S) = A0yi1 +

β

n− 1
v(S)

and

uF
i|S|

(y, S) = yi|S| −
α

n− 1

|S|∑
k=1

(yik − yi|S|)

= A|S|yi|S| −
α

n− 1
v(S)

hold because of
∑

i∈S yi = v(S). Therefore,

yi1 − yi|S| =
uF
i1
(y, S)− β

n−1
v(S)

A0

−
uF
i|S|

(y, S) + α
n−1

v(S)

A|S|
Eq. (A.2)

holds. By Eq. (A.1) and Eq. (A.2),

|S|∑
j=1

(
1

Aj−1

− 1

Aj

)
uF
ij
(y, S) =

(
β

A0

+
α

A|S|

)
v(S)

n− 1

holds. By the definition of Aj , we rearrange this and get the following equality:

|S|∑
j=1

A0A|S|

AjAj−1

uF
ij
(y, S) = v(S).

A.2 Proof of Theorem 2
First of all, we will show the next lemma, which introduces useful formulas.

Lemma 4. For any α and any β,

(j + k)Aj − jAj+k = kA0

holds, where Aj = 1 + j
n−1

α− |S|−j
n−1

β.
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Proof. By the definition of Aj ,

(j + k)Aj − jAj+k = (j + k)

(
1 +

j

n− 1
α− |S| − j

n− 1
β

)
− j

(
1 +

j + k

n− 1
α− |S| − j − k

n− 1
β

)
= k − k|S|

n− 1
β = kA0.

Secondly, we will show that x is not in the F-S core if and only if there ex-
ists some S = {i1, . . . , i|S|} ⊊ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S| such that∑|S|

j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N) < v(S), and we will complete the proof.

(⇒) Assume x is not in the F-S core. Then, there exist S ⊂ N and y ∈ XS such
that y dominates x through S. Let {i1, . . . , i|S|} = S with xi1 ≥ xi2 ≥ · · · ≥
xi|S| . Thus, uF

ij
(y, S) > uF

ij
(x,N) holds for all j = 1, . . . , |S|. Besides, S ̸= N

holds by Proposition 2, and therefore A0 ̸= 0 holds. Since A0A|S|
Aj−1Aj

> 0 for all

j = 1, . . . , |S| by the definition of Aj ,
∑|S|

j=1

A0A|S|
Aj−1Aj

{uF
ij
(y, S) − uF

ij
(x,N)} > 0

holds. By Lemma 2, we can assume yi1 ≥ · · · ≥ yi|S| without loss of generality.
Then, v(S) >

∑|S|
j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N) holds by Proposition 1.

(⇐) If there exists some S = {i1, . . . , i|S|} ⊊ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S|

such that
∑|S|

j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N) < v(S), there exists some λ > 0 such that∑|S|

j=1

A0A|S|
Aj−1Aj

(uF
ij
(x,N) + λ) = v(S). Let ũij = uF

ij
(x,N) + λ. By Lemma 1,

ũi1 ≥ ũi2 ≥ · · · ≥ ũi|S| holds. Moreover, if ũi|S| < 0, the player i|S| can block x
through {i|S|}, and x is not in the F-S core. Then, assume ũi|S| ≥ 0.

Define y = (yi1 , yi2 , . . . , yi|S|) as follows:

yi|S| =
ũi|S| +

α
n−1

v(S)

A|S|

yij = yij+1
+

ũij − ũij+1

Aj

for all j = 1, . . . , |S| − 1.
We will confirm that y is in XS . yi1 ≥ yi2 ≥ · · · ≥ yi|S| holds because of

ũi1 ≥ ũi2 ≥ · · · ≥ ũi|S| . Since yi|S| ≥ 0 because of ũi|S| ≥ 0, yij ≥ 0 holds for
all j = 1, . . . , |S|. Therefore, we only have to show

∑|S|
j=1 yij = v(S). We can get
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this equality as follows:

|S|∑
j=1

yij =
ũi|S| +

α
n−1

v(S)

A|S|
+

|S|−1∑
j=1

 ũi|S| +
α

n−1
v(S)

A|S|
+

|S|−1∑
k=|S|−j

ũik − ũik+1

Ak


= |S|

ũi|S| +
α

n−1
v(S)

A|S|
+

|S|−1∑
j=1

j

(
ũij − ũij+1

Aj

)

=
|S|α

A|S|(n− 1)
v(S) +

1

A|S|

|S|∑
j=1

A0A|S|

AjAj−1

ũij

= v(S).

The third equality comes from j
Aj

− j−1
Aj−1

= A0

AjAj−1
which holds by Lemma 4, and

the last equality comes from the definitions of A|S| and ũij .
Therefore, if y satisfies uF

ij
(y, S) = ũij(= uF

ij
(x,N)+λ) for all j = 1, . . . , |S|,

the proof completes. By the definition of y,

yi|S| =
ũi|S| +

α
n−1

v(S)

A|S|

⇔ uF
i|S|

(y, S) = ũi|S|

holds, and for all j ≤ |S| − 1,

yij = yij+1
+

ũij − ũij+1

Aj

⇔ uF
ij
(y, S)− uF

ij+1
(y, S) = ũij − ũij+1

holds. Therefore, we can prove uF
ij
(y, S) = ũij inductively.

As a result, we proved Theorem 2.

A.3 Proof of Theorem 3
By Theorem 1, if β > n−1

n
, the F-S core does not depend on α. Then, we must

show the statement of the theorem when β ≤ n−1
n

. Assume β ≤ n−1
n

. Fix any
S = {i1, . . . , i|S|} ⊊ N and any x ∈ XN with xi1 ≥ · · · ≥ xi|S| . By Theorem 2,
we have to prove only ∂T

∂α
≤ 0, where T =

∑|S|
j=1

A0A|S|
Aj−1Aj

uF
ij
(x,N).

Let Bj =
A0A|S|
Aj−1Aj

. By
∑|S|

j=1

A0A|S|
AjAj−1

= |S|,
∑|S|

j=1Bj = |S| holds. Then,
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∑|S|
j=1

∂Bj

∂α
= 0 holds, and therefore

|S|∑
j=1

∂Bj

∂α
uF
ij
(x,N) =

|S|∑
j=1

∂Bj

∂α

(
xij −

α

n− 1

∑
k∈N

max[xk − xij , 0]−
β

n− 1

∑
k∈N

max[xij − xk, 0]

)

=

|S|∑
j=1

∂Bj

∂α

(
xij −

α + β

n− 1

∑
k∈N

max[xk − xij , 0]

+
β

n− 1

∑
k∈N

max[xk − xij , 0]−
β

n− 1

∑
k∈N

max[xij − xk, 0]

)

=

|S|∑
j=1

∂Bj

∂α

(
xij +

β

n− 1

∑
k∈N

(xk − xij)−
α + β

n− 1

∑
k∈N

max[xk − xij , 0]

)

=

|S|∑
j=1

∂Bj

∂α

((
1− n

n− 1
β

)
xij +

β

n− 1
v(N)− α + β

n− 1

∑
k∈N

max[xk − xij , 0]

)

=

|S|∑
j=1

∂Bj

∂α

((
1− n

n− 1
β

)
xij −

α + β

n− 1

∑
k∈N

max[xk − xij , 0]

)
.

Thus,

∂T

∂α
≤ 0

⇔
|S|∑
j=1

{
∂Bj

∂α
uF
ij
(x,N)− Bj

(n− 1)

∑
k∈N

max[xk − xij , 0]

}
≤ 0

⇔
|S|∑
j=1

∂Bj

∂α
uF
ij
(x,N) ≤

|S|∑
j=1

Bj

n− 1

∑
k∈N

max[xk − xij , 0]

⇔
(
1− n

n− 1
β

) |S|∑
j=1

∂Bj

∂α
xij ≤

|S|∑
j=1

{
α + β

n− 1

∂Bj

∂α
+

Bj

n− 1

}∑
k∈N

max[xk − xij , 0].

Eq. (A.3)

Furthermore, we can claim Cj ≥ 0, where Cj = α+β
n−1

∂Bj

∂α
+

Bj

n−1
. This is

because
∂Bj

∂α
= A0

|S|AjAj−1 − jA|S|Aj−1 − (j − 1)A|S|Aj

(Aj−1Aj)2(n− 1)

= Bj

|S|AjAj−1 − jA|S|Aj−1 − (j − 1)A|S|Aj

A|S|Aj−1Aj(n− 1)
.
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Then, since |S|Aj − jA|S| = (|S| − j)A0 holds by Lemma 4,

Cj =
Bj

n− 1

α+β
n−1

(|S|AjAj−1 − jA|S|Aj−1 − (j − 1)A|S|Aj) + Aj−1AjA|S|

Aj−1AjA|S|

=
Bj

n− 1

α+β
n−1

((|S| − j)A0Aj−1 − (j − 1)A|S|Aj) + Aj−1AjA|S|

Aj−1AjA|S|

=
Bj

Aj−1AjA|S|(n− 1)

(
α + β

n− 1
(|S| − j)A0Aj−1 + A0A|S|Aj

)
≥ 0

holds by Aj−1 +
α+β
n−1

= Aj for all j = 1, . . . , |S|.
Therefore, to show the following inequality is sufficient to show Eq. (A.3):(
1− n

n− 1
β

) |S|∑
j=1

∂Bj

∂α
xij ≤

|S|∑
j=1

{
α + β

n− 1

∂Bj

∂α
+

Bj

n− 1

} j−1∑
k=1

(xik − xij).

Let Dj = (j − 1)Cj + (1− n
n−1

β)
∂Bj

∂α
. Then, the above inequality is equivalent to

|S|∑
j=1

(
Djxij − Cj

j−1∑
k=1

xik

)
≤ 0

⇔
|S|∑
j=1

Djxij −
|S|∑
j=1

j−1∑
k=1

Cjxik ≤ 0

⇔
|S|∑
j=1

Djxij −
|S|∑
k=1

|S|∑
j=k+1

Cjxik ≤ 0

⇔
|S|∑
j=1

Dj −
|S|∑

k=j+1

Ck

xij ≤ 0.

Besides, since α+β
n−1

= Aj − Aj−1 holds for all j = 1, . . . , |S|,

Dj =
∂

∂α
{(α + β

n− 1
(j − 1) + 1− nβ

n− 1
)Bj}

=
∂

∂α
{(Aj−1 −

n− |S|
n− 1

β)Bj}

=
∂

∂α
{
A0A|S|

Aj

− n− |S|
n− 1

βBj}

and
Cj =

∂

∂α
(Aj − Aj−1)Bj =

∂

∂α
(

1

Aj−1

− 1

Aj

)A0A|S|.
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Thus,

Dj −
|S|∑

k=j+1

Ck =
∂

∂α

(
A0 −

n− |S|
n− 1

βBj

)
= −n− |S|

n− 1
β
∂Bj

∂α
.

Hence,

|S|∑
j=1

Dj −
|S|∑

k=j+1

Ck

xij ≤ 0

⇔
|S|∑
j=1

∂Bj

∂α
xij ≥ 0.

If |S| = 1, B1 = 1 and ∂B1

∂α
= 0. Then,

∑|S|
j=1

∂Bj

∂α
xij = 0.

Assume |S| ≥ 2. There exists some s ∈ N that satisfies ∂Bs

∂α
≥ 0 > ∂Bs+1

∂α

because ∂B1

∂α
= |S|−1

n−1
A0

A2
1
> 0 and ∂B|S|

∂α
= − |S|−1

n−1
A0

A2
|S|−1

< 0 hold (note that A0 >

0 because S ̸= N ). Moreover, s is unique because ∂Bj

∂α
has the same sign as

|S|AjAj−1 − jA|S|Aj−1 − (j − 1)A|S|Aj which is a quadratic function of j.
As a result,

|S|∑
j=1

∂Bj

∂α
xij ≥ xis

|S|∑
j=1

∂Bj

∂α
= 0,

and we proved the theorem.

A.4 Proof of Theorem 4
We will show that x is not in the C-R core if and only if there exists some S =
{i1, i2, . . . , i|S|} ⊂ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S| such that

1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

uC
ij
(x,N)+

(1− γ + γδ)mS − γδ|S|
(1− γ)ΓS

uC
i|S|−mS+1

(x,N) < v(S)

Eq. (A.4)
holds.
(⇒) Assume x is not in the C-R core. Then, there exist S ⊂ N and y ∈ XS such
that y dominates x through S. Let {i1, . . . , i|S|} = S with xi1 ≥ xi2 ≥ · · · ≥ xi|S| .
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Thus, uC
ij
(y, S) > uC

ij
(x,N) holds for all j = 1, . . . , |S|. Since 1−γ+γδ

(1−γ)ΓS
> 0 and

(1−γ+γδ)mS−γδ|S|
(1−γ)ΓS

> 0 hold by the definition of mS ,

1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

{uC
ij
(y, S)− uC

ij
(x,N)}

+
(1− γ + γδ)mS − γδ|S|

(1− γ)ΓS

{uC
i|S|−mS+1

(y, S)− uC
i|S|−mS+1

(x,N)} > 0

holds. By Lemma 3, we can assume yi1 ≥ · · · ≥ yi|S|−mS+1
= · · · = yi|S| without

loss of generality. Then, Eq. (A.4) holds by Proposition 4.
(⇐) If there exists some S = {i1, . . . , i|S|} ⊂ N with xi1 ≥ xi2 ≥ · · · ≥ xi|S|

such that Eq. (A.4) holds, there exists some λ > 0 such that

v(S) =
1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

{uC
ij
(x,N) + λ}

+
(1− γ + γδ)mS − γδ|S|

(1− γ)ΓS

{uC
i|S|−mS+1

(x,N) + λ} Eq. (A.5)

because γ < 1 and (1− γ + γδ)mS − γδ|S| > 0 hold+.
Let ũij = uC

ij
(x,N) + λ for all j = 1, . . . , |S| −mS + 1. By the definition of

the C-R utility functions, ũi1 ≥ ũi2 ≥ · · · ≥ ũi|S|−mS+1
holds.

Define y = (yi1 , yi2 , . . . , yi|S|) as follows:

yij =
ũi|S|−mS+1

− γ(1− δ)v(S)

1− γ + γδ
if j ≥ |S| −mS + 1

yij = yi|S|−mS+1
+

ũij − ũi|S|−mS+1

1− γ
otherwise.

We will confirm that y is in XS . First, we will show
∑|S|

j=1 yij = v(S).

|S|∑
j=1

(yij − yi|S|−mS+1
) =

∑|S|−mS

j=1 (ũij − ũi|S|−mS+1
)

1− γ
Eq. (A.6)
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holds by the definition of y. Then,

|S|∑
j=1

yij =

∑|S|−mS

j=1 (ũij − ũi|S|−mS+1
)

1− γ
+ |S|yi|S|−mS+1

=
(1− γ + γδ)

∑|S|−mS

j=1 (ũij − ũi|S|−m+1
) + |S|(1− γ){ũi|S|−mS+1

− γ(1− δ)v(S)}
(1− γ)(1− γ + γδ)

= ΓS

(1− γ + γδ)
∑|S|−mS

j=1 ũij + {(1− γ + γδ)mS − γδ|S|}ũi|S|−mS+1

(1− γ)(1− γ + γδ)ΓS

− γ(1− γ)(1− δ)|S|
(1− γ)(1− γ + γδ)

v(S)

holds. Therefore, by Eq. (A.5),

|S|∑
j=1

yij =
(1− γ)ΓS − γ(1− γ)(1− δ)|S|

(1− γ)(1− γ + γδ)
v(S)

= v(S).

Next, we will show minj∈S yj ≥ 0. yi1 ≥ yi2 ≥ · · · ≥ yi|S|−mS+1
= · · · = yi|S|

holds because of ũi1 ≥ ũi2 ≥ · · · ≥ ũi|S|−mS+1
. Then, we will prove yi|S|−mS+1

≥ 0.
By the definition of y and

∑|S|
j=1 yij = v(S),

(1− γ + γδ)yi|S|−mS+1
= ũi|S|−mS+1

− γ(1− δ)

|S|∑
j=1

yij

⇔ ΓSyi|S|−mS+1
= ũi|S|−mS+1

− γ(1− δ)

|S|∑
j=1

(yij − yi|S|−mS+1
)
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holds. Then, by Eq. (A.6),

(1− γ)ΓSyi|S|−mS+1
= (1− γ)ũi|S|−mS+1

− γ(1− δ)

|S|−mS∑
j=1

(ũij − ũi|S|−mS+1
)

≥ (1− γ)

{
(1− γ)xi|S|−mS+1

+ γ

[
δmin

j∈N
xj + (1− δ)

∑
j∈N

xj

]

− γ(1− δ)

|S|−mS∑
j=1

(xij − xi|S|−mS+1
)


≥ (1− γ)

{
(1− γ)xi|S|−mS+1

+ γ

[
δmin

j∈N
xj + (1− δ)

∑
j∈N

xj

]

− γ(1− δ)
∑
j∈N

xj + γ(1− δ)(|S| −mS)xi|S|−mS+1

}
= (1− γ){(1− γ)xi|S|−mS+1

+γ[δmin
j∈N

xj + (1− δ)(|S| −mS)xi|S|−mS+1
]} ≥ 0

holds, and we got yi|S|−mS+1
≥ 0 because of ΓS > 0.

Therefore, if y satisfiesuC
ij
(y, S) = ũij(= uC

ij
(x,N)+λ) for all j = 1, . . . , |S|−

mS+1, then y dominates x because uC
ij
(y, S) > uC

ij
(x,N) for all j = 1, . . . , |S|−

mS + 1 and uC
ij
(y, S) = uC

i|S|−mS+1
(y, S) > uC

i|S|−mS+1
(x,N) ≥ uC

ij
(x,N) for

all j = |S| − mS + 2, . . . , |S|. Then, we will show uC
ij
(y, S) = ũij for all

j = 1, . . . , |S| − mS + 1. uC
i|S|−mS+1

(y, S) = ũi|S|−mS+1
holds by the definition

of y. Similarly,

yij = yi|S|−mS+1
+

ũij − ũi|S|−mS+1

1− γ

⇔

(1− γ)yij + γ

δ min
j=1,...,|S|

yij + (1− δ)

|S|∑
j=1

yij


−

(1− γ)yi|S|−mS+1
+ γ

δ min
j=1,...,|S|

yij + (1− δ)

|S|∑
j=1

yij

 = ũij − ũi|S|−mS+1

⇔ uC
ij
(y, S)− uC

i|S|−mS+1
(y, S) = ũij − ũi|S|−mS+1

holds by the definition of y. Therefore, we can prove uC
ij
(y, S) = ũij for any

j ≤ |S| −mS by the definition of the case of j = |S| −mS + 1.
As a result, we proved Theorem 4.
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A.5 Proof of Theorem 5
Fix any S = {i1, . . . , i|S|} ⊂ N and any x ∈ XN with xi1 ≥ · · · ≥ xi|S| . Let
xmin = mini∈N xi. Define a function of δ denoted by U as

U(δ) =
1− γ + γδ

(1− γ)ΓS

|S|−mS∑
j=1

uC
ij
(x,N)+

(1− γ + γδ)mS − γδ|S|
(1− γ)ΓS

uC
i|S|−mS+1

(x,N).

Let δm = m(1−γ)
γ(|S|−m)

for each m = 1, . . . , |S| − 1. We can easily show that U
is differentiable except at δm for all m = 1, . . . , |S| − 1 by the definition of
mS . We will show U is continuous at δm for all m = 1, . . . , |S| − 1. Since
limδ→δm+0 U(δ) = U(δm), we will prove limδ→δm−0 U(δ) = U(δm). Since

U(δ) =

1−γ+γδ
1−γ

∑|S|−mS+1
j=1 (uC

ij
(x,N)− uC

i|S|−mS+1
(x,N)) + |S|uC

i|S|−mS+1
(x,N)

ΓS

=
(1− γ + γδ)

∑|S|−mS+1
j=1 (xij − xi|S|−mS+1

) + |S|uC
i|S|−mS+1

(x,N)

ΓS

holds,

lim
δ→δm−0

U(δ)− U(δm) =

(1−γ)|S|
|S|−m

∑|S|−m
j=1 (xi|S|−m

− xi|S|−m+1
)

ΓS

+
|S|{uC

i|S|−m+1
(x,N)− uC

i|S|−m
(x,N)}

ΓS

=
(1− γ)|S|(xi|S|−m

− xi|S|−m+1
)

ΓS

+
(1− γ)|S|{xi|S|−m+1

(x,N)− xi|S|−m
(x,N)}

ΓS

= 0.

Then, we proved continuity of U . Therefore, by Theorem 4, we only have to prove
∂U(δ)
∂δ

≤ 0 at δ ̸= δm for all m = 1, . . . , |S|. Since

∂U

∂δ
=

γΓS + γ(|S| − 1)(1− γ + γδ)

Γ2
S

|S|−mS+1∑
j=1

(xij − xi|S|−mS+1
)

+

∂uC
i|S|−mS+1

∂δ
ΓS + γ(|S| − 1){(1− γ)xi|S|−mS+1

+ γ(δxmin + (1− δ)v(N))}
Γ2
S

|S|

=
γ|S|
Γ2
S

|S|−mS+1∑
j=1

(xij − xi|S|−mS+1
)

+
−γ(1− γ)(xi|S|−mS+1

− xmin) + γ|S|{(1− γ)xi|S|−mS+1
+ γxmin} − γv(N)

Γ2
S

|S|
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holds,

∂U

∂δ
≤ γ|S|

Γ2
S


v(N)−

|S|∑
j=|S|−mS+2

xij

− (|S| −mS + 1)xi|S|−mS+1


+
−γ(1− γ)(xi|S|−mS+1

− xmin) + γ|S|{(1− γ)xi|S|−mS+1
+ γxmin} − γv(N)

Γ2
S

|S|

=

∑|S|
j=|S|−mS+2(xi|S|−mS+1

− xij)− (1− γ + γ|S|)(xi|S|−mS+1
− xmin)

Γ2
S

γ|S|

≤
[mS − 1− (1− γ + γ|S|)](xi|S|−mS+1

− xmin)

Γ2
S

γ|S|

holds. The integer mS − 1 satisfies

mS − 1 ≤ γδ|S|
1− γ + γδ

≤ γ|S|
1− γ + γ

= γ|S|

because γδ|S|
1−γ+γδ

is a non-decreasing function of δ and δ ∈ (0, 1). Therefore,

∂U

∂δ
≤

[γ|S| − (1− γ + γ|S|)](xi|S|−mS+1
− xmin)γ|S|

Γ2
S

= −
(1− γ)(xi|S|−mS+1

− xmin)γ|S|
Γ2
S

≤ 0

holds. As a result, we proved the theorem.
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