
C–S Bond Activation 

Shinya Otsuka, Keisuke Nogi, Hideki Yorimitsu 

Department of Chemistry, Graduate School of Science, Kyoto University 

 

1 Introduction 

Transition metal-mediated activation of C–S bonds has received much attention for more than half a 

century.  Desulfurization of organosulfur compounds including thiophenes under heterogeneous 

transition metal catalysis is a very important process in petroleum refinery industry to avoid generations 

of sulfur oxides upon burning and eventually of acid rain. In recent years, transition metal-catalyzed 

transformations that include C–S bond cleavage have been attracting significant attention in the field of 

organic synthesis. In particular, C–S bonds have now been regarded as being equivalent to carbon–

halogen bonds and sulfur-based organic synthesis has been emerging as a surrogate for the conventional 

halogen-based organic synthesis. Such a situation has become reality thanks to new knowledge about 

reactions of C–S bonds with transition metal complexes and development of new powerful transition 

metal catalysts. To overview the current situation of C–S bond activation in organic synthesis, this review 

first briefly summarizes stoichiometric C–S bond activation by transition metal complexes and then 

focuses on catalytic synthetic reactions involving C–S bond activation. 

 

2 Stoichiometric Reactions 

Stoichiometric reactions of organosulfur compounds with transition metal complexes to cleave their C–S 

bonds have been well studied. Due to limitations of space, some representative examples are shown in 

this chapter. A nice review by Yu is suitable for comprehensive review [1]. 

 

2.1 Cleavage of C–S Bonds of Thiophene Analogues 

Due to its unparalleled importance as well as its extremely large scale, hydrodesulfurization of petroleum 

material under hydrogen atmosphere with heterogeneous catalysts has been extensively studied from 

mechanistic as well as practical viewpoints. However, heterogeneous catalytic mechanisms are difficult to 

understand at atomic and molecular levels. Therefore, activation of C–S bonds with molecular transition 

metal complexes has been investigated as models of the heterogeneous hydrodesulfurization process. 

Among organosulfur compounds in crude oil, thiophenes are difficult to desulfurize because of the 

existence of endocyclic sulfur atoms in their stable aromatic cores, thus being main substrates for this 

research. 

Since rhodium is a catalytically active metal in heterogeneous hydrodesulfurization, molecular rhodium 



complexes have been examined to cleave C–S bonds in thiophene derivatives. In 1991, Jones found that 

Cp*Rh(Ph)(H)(PMe3) cleaved a C–S bond of thiophene at 60 °C to give six-membered metallacycle 1 

(Scheme 1) [2]. Complex 1 did not react with 1 atm of H2 even at 110 °C, the temperature where 1 started 

decomposing to Cp*Rh(PMe3)2. Diels-Alder reaction of 1 with dimethyl acetylenedicarboxylate at 80 °C 

gave cycloadduct 2 in 60% yield based on 1, achieving overall desulfurative C–C bond formation. 

Additional investigation was performed to understand the coordination mode of the thiophene-rhodium 

complex and the ensuing oxidative addition. Experimental investigations suggested that sterically 

hindered tetramethylthiophene would coordinate in an η1 fashion to the rhodium, giving 

Cp*Rh(PMe3)(η1-S-C4Me4S) [3]. However, recent computational study suggested 

Cp*Rh(PMe3)(η2-S,C1-C4H4S) to be an intermediate prior to oxidative addition [4, 5]. Whereas oxidative 

addition of benzo[b]thiophene to Cp*Rh(Ph)(H)(PMe3) proceeded under similar conditions, that of 

dibenzothiophene was slow, which indicates the importance of η2 coordination prior to oxidative addition. 

Installation of a pyridyl moiety at the 4 position of dibenzothiophene accelerated the C–S bond cleavage 

[6]. 

 

  

Scheme 1 Oxidative addition of thiophene to rhodium complex 

 

Iridium is another active metal in heterogeneous hydrodesulfurization. In 1993, Bianchini and 

Sanchez-Delgado reported oxidative addition of thiophene to a cationic iridium complex 

[(triphos)Ir(C6H6)]BPh4 with a loss of benzene to produce cationic complex 3 in 90% yield (Scheme 2) 

[7]. The reaction of 3 with LiHBEt3 at –50 °C yielded neutral hydride complex 4, and intramolecular 

hydroiridation product 5 was formed when the reaction mixture was warmed to 50 °C. Complex 5 went 

back to cationic iridacycle 6 upon treatment with trityl cation Ph3CPF6. 

 



 

Scheme 2 Oxidative addition of thiophene to iridium complex and following reactions 

 

Similar C–S bond cleavage proceeded with benzo[b]thiophene although it is less reactive than thiophene 

(Scheme 3) [8]. At room temperature, mixing [(triphos)Ir(C6H6)]BPh4 and benzo[b]thiophene resulted in 

coordination to yield η3-benzo[b]thiophene complex 7. Upon heating 7 in THF at reflux, oxidative 

addition of the C2–S bond took place to afford iridacycle 8. Exposure of 8 to 5 atom of CO gas at 70 °C 

induced reductive elimination to generate iridium dicarbonyl complex 9 and benzo[b]thiophene. Instead, 

the reaction of 8 with 5 atm of H2 gas at room temperature resulted in hydrogenation of the alkene moiety, 

affording 10 along with triphenylborane and benzene. Oxidative addition of a C–S bond of 

dibenzothiophene to iridium complexes was slow, which is similar to the case of rhodium, and competed 

with that of a C–H bond [9]. 

 

 

Scheme 3 Oxidative addition of benzo[b]thiophene to iridium complex and following reactions 

 

As described above, dibenzothiophene is reluctant to undergo oxidative addition to rhodium or iridium 

complexes. In contrast, electron-rich nickel-bisphosphine complex was found to cleave the C–S bonds of 

dibenzothiophene even at room temperature. Treatment of [Ni(dippe)H]2 (dippe = 

1,2-bis(diisopropylphosphino)ethane) with dibenzothiophene led to isolation of the corresponding 

oxidative adduct 11 (Scheme 4) [10]. Standing a THF solution of 11 for 5 d at room temperature caused 



disproportionation into nickelathiacycle 12, dinuclear Ni(I) μ-sulfide complex 13, and dibenzothiophene 

in a ratio of 1:1:2. Later, platinum [11] and palladium [12] analogues of 11 having the strongly 

electron-donating dippe ligand were also isolated. 

 

 

Scheme 4 C–S bond cleavage of dibenzothiophene by nickel complex 

 

2.2 Cleavage of Allylic C–S Bonds 

Oxidative addition of relatively reactive allylic sulfides has been investigated since 1980s. In 1983, 

Yamamoto reported that reactions of Pd(PR3)2 (R = Cy, tBu) with allyl phenyl sulfide provided dinuclear 

oxidative adducts [Pd2(μ-C3H5)(μ-SPh)(PR3)2] (Scheme 5a) [13]. According to the X-ray crystallographic 

analysis of similar PMe3 adduct 14 [14], the distance between the two palladium atoms was 2.613 Å 

indicating the existence of a Pd–Pd bond. Treatment of 14 with 1 atm of CO at room temperature resulted 

in reductive elimination to furnish allyl phenyl sulfide and palladium carbonyl complexes (Scheme 5b). A 

mononuclear palladium complex was synthesized by Kurosawa in 1995 [15]. Oxidative addition of allyl 

phenyl sulfide to Pd2(dba)3 gave thiolate-bridged dinuclear complex 15 (Scheme 5c). Addition of PCy3 

provided phosphine-ligated mononuclear complex 16, whereas addition of PPh3 resulted in formation of 

dinuclear complex [Pd2(μ-C3H5)(μ-SPh)(PPh3)2] along with elimination of allyl phenyl sulfide. 



 
Scheme 5 Oxidative addition of allyl phenyl sulfide to palladium complexes 

 

2.3 Cleavage of Acyl C–S Bonds 

In analogy with acid chlorides, thioesters and thioimidates are more reactive than sulfides. Substantial 

investigations have hence been executed. In 1997, Kuniyasu and Kurosawa found that the C–S bonds of 

dithiocarbonimidate 17 were cleaved by a palladium or platinum complex [16]. Oxidative addition of one 

of the C–S bonds of 17 to Pd(PPh3)4 followed by departure of isocyanide took place at room temperature 

to provide 18 in 87% yield after 20 h (Scheme 6a). The C–S bond cleavage and isocyanide deinsertion are 

reversible, and 17 was obtained from the corresponding disulfide and isocyanide by means of 2 mol% of 

Pd(PPh3)4 accompanied by the formation of 20 (Scheme 6b). While Pt(PPh3)4 did not react with 17 at 

room temperature, a 60% yield of 19 was obtained after the reaction at 50 °C for 42 h (Scheme 6a). C–S 

bond cleavage of 20 was also examined. However, a reaction of 20 with Pd(PPh3)4 formed a complicated 

mixture and the oxidative adduct was not observed. On the other hand, a reaction of 20 with Pt(PPh3)4 

gave the corresponding oxidative adduct 21 (Scheme 6c). 

 



  
Scheme 6 Oxidative addition of imidoyl C–S bonds 

 

Oxidative addition of thioacrylates to Pt(PPh3)4 was also studied by Kuniyasu and Kambe (Scheme 7) 

[17].  p-Tolyl thioacrylate 22 was converted to simple π-complex 23 and only trace amounts of the 

oxidative adducts were formed (Scheme 7a). Alkyl or aryl substituents at the α or β position facilitated 

oxidative addition. Furthermore, a β-cis-SAr substituent could stabilize the oxidative adduct by 

intramolecular coordination to isolate the oxidative adduct in excellent yield under mild conditions 

(Scheme 7b) [18]. 

 

  

Scheme 7 Oxidative addition of thioacrylates to platinum complex 

 

2.4 Cleavage of Alkenyl and Aryl C–S Bonds 



Platinum-mediated cleavage of vinylic C–S bonds were achieved by Kuniyasu and Kurosawa (Scheme 8) 

[19]. Oxidative addition of α,β-(p-tolylsulfanyl)styrene to Pt(PPh3)2(C2H4) proceeded at room temperature 

at the β-C–S bond. The two α substituents, a phenyl group and a sulfanyl group, are crucial for this 

oxidative addition and these substituents were suggested to stabilize the anionic charge in zwitterionic 

intermediate 26. 

 

 
Scheme 8 Oxidative addition of vinyl sulfide to platinum complex 

 

Yamamoto reported in 1986 that nickel-triethylphosphine complex could cleave the C–S bond of diphenyl 

sulfide to generate trans-[Ni(Ph)(SPh)(PEt3)2] [20]. When unsymmetrical phenyl p-tolyl sulfide was 

treated similarly at room temperature, oxidative addition took place at one of the two C–S bonds to 

provide trans-{Ni(Ph)[S(p-Tol)](PEt3)2} and trans-[Ni(p-Tol)(SPh)(PEt3)2] in a ratio of 86:14. However, 

this oxidative addition was found to be reversible and heating one of these complexes at 60 °C led to a 

1:1 mixture. 

Recently, Jones reported that dippe-ligated palladium complex can cleave the C–S bond of diphenyl 

sulfide even at room temperature [12, 21]. They prepared an equivalent of 14-electron Pd(dippe) by 

reducing PdCl2(dippe) with NaHBEt3. Oxidative addition of diphenyl sulfide to in-situ-generated 

Pd(dippe) afforded the oxidative adduct (Scheme 9).  Exposure of its solution in benzene to 1 atm of CO 

gave a mixture of palladium complexes including 46% of carbonylated [Pd(PhCO)(SPh)(dippe)]. 

 

 
Scheme 9 Oxidative addition of diphenyl sulfide to low-valent palladium complex  

 

3 Catalytic Cross-Coupling Reactions 

Transition metal-catalyzed cross-coupling reactions are among the most important classes of carbon–

carbon or carbon–heteroatom bond formation in organic synthesis. Conventionally, relatively reactive aryl 

halides or sulfonates have been predominantly used as electrophilic partners. Recently, there have been 

dramatic advances in the cross-coupling arena, and catalytic transformations of inert bonds such as C–F, 



C–O, C–N, and even C–C bonds have been now realized. Organosulfur compounds, such as aryl sulfides, 

sulfoxides, and sulfones, have been also known to serve as electrophilic counterparts in cross-coupling 

reactions. In 1979, Takei [22, 23] and Wenkert [24] independently reported pioneering works in this field 

by means of a nickel catalyst and organomagnesium reagents (Scheme 10).  

 

 

Scheme 10 First example of cross-coupling of aryl sulfide reported by Takei and Wenkert 

 

However, until the end of 20th century, cross-coupling of organosulfur compounds had been far less 

investigated compared to other organoheteroatom substrates probably due to the following difficulties: (1) 

robust C–S bonds hamper oxidative addition; (2) transition metal–sulfur bonds are strong to render the 

subsequent transmetalation sluggish; (3) Anionic sulfur leaving groups generated in situ are catalyst 

poisons to impede catalytic turnover. Recently, with the aid of very electron-rich and robust transition 

metal catalysts, elegant cross-coupling reactions of organosulfur compounds have been reported one after 

another. This Section deals with pioneering works as well as recent advances about catalytic 

cross-coupling reactions of organosulfur compounds.  

 

3.1 Cross-Coupling Reactions of Sulfides 

3.1.1 Kumada-Tamao-Corriu-type coupling 

Based on the seminal works by Takei and Wenkert, a series of Kumada-Tamao-Corriu-type 

transformations of aryl and heteroaryl sulfides with organomagnesium reagents has been developed [25–

29]. In contrast, transition metal-catalyzed transformations of alkyl sulfides have been scarcely reported. 

Slow oxidative addition due to the lack of a neighboring π orbital and conceivable β-hydride elimination 

interfere with smooth catalytic turnover, as is the case for the cross-coupling of alkyl halides.  

Luh did a seminal work on cross-coupling of alkyl sulfides, specifically dithioacetals. The reaction of 

dithioacetals with alkylmagnesium reagents provided alkylidenated products instead of the expected 

dialkylated products (Scheme 11) [30, 31]. The catalytic cycle would begin with oxidative addition of one 

of the two benzylic C–S bonds of sufficient reactivity. The following transmetalation and reductive 

elimination would proceed normally. The second oxidative addition of the remaining benzylic C–S bond 

resulted in alkylidenation via β-hydride elimination. 

 



  

Scheme 11 Cross-coupling of dithioacetals with alkylmagnesium reagents 

 

Nakamura reported dehydrogenative cross-coupling of alkyl sulfides with arylmagnesium reagents by 

means of a nickel–SIPr (SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene) catalyst (Scheme 

12) [32]. The reaction was initiated with C(sp2)–S bond cleavage of the substrate. Following β-hydride 

elimination and reductive elimination would afford zero-valent nickel species and thioketone. 

Deprotonation of the thioketone followed by second oxidative addition would generate alkenylnickel 

intermediate. Subsequent transmetalation and reductive elimination would furnish the alkenylated 

product. 

 



 
Scheme 12 Nickel-catalyzed dehydrogenative cross-coupling of alkyl sulfides with arylmagnesium 

reagents. The SIPr ligand on nickel is omitted for clarity. 

 

As the state-of-the-art, in 2013, Denmark developed Kumada-Tamao-Corriu-type cross-coupling of alkyl 

sulfides (Scheme 13) [33]. Although the substrates should be alkyl azaaryl sulfides such as alkyl 

2-pyridyl sulfides, arylation of the C–S bond proceeded in the presence of a catalytic amount of 

Fe(acac)3. 

 

 

Scheme 13 Iron-catalyzed arylation of alkyl sulfide 

 

3.1.2 Negishi-type coupling 



The high reactivity of organomagnesium reagents would facilitate smooth transmetalation and catalytic 

turnover.  However, these reagents raise an issue of poor functional group compatibility. To address this 

issue, in 1997, Liebeskind developed Negishi-type cross-coupling of aryl sulfides with moderately 

reactive diorganozinc reagents [34]. In this reaction, chelating thioglycolic acid was chosen as a specially 

designed leaving group that holds a zinc cation to enhance transmetalation of the nickel thiolate species 

with diorganozinc reagents (Scheme 14).  

 

 

Scheme 14 Negishi-type cross-coupling of aryl sulfides enhanced by chelating leaving group 

 

After this pioneering report, a series of Negishi-type cross-coupling reactions of aryl sulfides were 

developed [35–43]. However, the aryl units in sulfides must be activated heteroaryl rings and simple aryl 

sulfides such as methyl phenyl sulfide are virtually unreactive under these reported conditions. 

Remarkable progress on Negishi-type cross-coupling of unactivated aryl sulfides was provided by 

Yorimitsu in 2014 [44]. By means of a palladium–N-heterocyclic carbene (NHC) complex as a catalyst, a 

broad range of aryl sulfides could be coupled with arylzinc reagents even at room temperature or below to 

afford the corresponding coupling products (Scheme 15). The importance of the NHC ligand is obvious; 

triarylphosphines, trialkylphosphines, and Buchwald-type biarylylphosphines did not promote the 

reaction. Not only the electron-rich nature of NHC-ligated palladium center accelerates oxidative addition, 

but also the strongly coordinating NHC ligand would keep the palladium catalyst molecular and highly 

active by preventing the formation of Pd nanoparticles. This catalysis was applied to deprotonative 

arylation of polyfluoroarenes and heteroarenes with aryl sulfides [45]. Deprotonative zincation with a 

2,2,6,6-tetramethylpiperidinylzinc base followed by palladium–NHC-catalyzed cross-coupling with aryl 

sulfides afforded the corresponding arylated products with high efficiency. 

 



 
Scheme 15 Palladium–NHC-catalyzed cross-coupling of unactivated aryl sulfides with arylzinc reagents 

 

3.1.3 Suzuki-Miyaura-type coupling 

From a viewpoint of functional group compatibility, cross-coupling with organoboron compounds is 

highly attractive. In 2002, Liebeskind achieved cross-coupling of nitrogen-containing heteroaryl sulfides 

with arylboronic acids with the aid of a palladium/tri(2-furyl)phosphine (TFP) catalyst and a 

stoichiometric amount of copper(I) thiophene-2-carboxylate (CuTC) (Scheme 16) [46]. Owing to the mild 

reactivity of the arylboronic acids, the transformation tolerated various functional groups including ester, 

cyano, formyl, and nitro groups. It was suggested that CuTC plays a dual role, polarizing the Pd–S bond 

of oxidative adducts by thiophilic Cu(I) and activating boronic acid by the carboxylate, to facilitate 

transmetalation. In analogous fashions, Suzuki-Miyaura-type cross-coupling of activated heteroaryl 

sulfides has been developed, which was nicely summarized by Kappe [47]. 

 

 
Scheme 16 Suzuki-Miyaura-type cross-coupling of heteroaryl sulfides (Liebeskind-Srogl coupling) 

 

Taking advantage of directing groups, Weller and Willis [48] and Shi [49] reported rhodium-catalyzed 

arylation of ortho-carbonyl-substituted aryl sulfides with arylboron compounds (Scheme 17). Kwon 

achieved coupling of ortho-nitro aryl sulfides with aryl- and alkenylboronic acids by employing a 

catalytic amount of Pd(PPh3)4 [50]. 

 



 
Scheme 17 Directed Suzuki-Miyaura-type cross-coupling of aryl sulfides developed by Weller and Willis 

 

3.1.4 With other nucleophiles 

Wang reported palladium-catalyzed reactions of aryl sulfides with benzo-fused azoles with the aid of 

NaOtBu through deprotonation at the most acidic 2 position (Scheme 18) [51]. 

 

  

Scheme 18 Cross-coupling of aryl sulfides with azoles through C–H cleavage 

 

In 2016, Yorimitsu developed α-arylation of ketimines with aryl sulfides by using SingaCycle-A1 [52, 53], 

an IPr-ligated palladium complex, as a catalyst (Scheme 19) [54]. The corresponding aryl ketones were 

obtained after acidic workup. The arylation did not occur with ketones instead of ketimines, indicating 

that the higher reactivity of azaenolates than that of the parent enolates would be crucial. Arylation of 2- 

and 4-methylpyridines with aryl sulfides could be also accomplished in an analogous manner [55]. 

 

 
Scheme 19 α-Arylation of ketimines with aryl sulfides 

 

Substantial efforts have been also directed toward development of carbon–heteroatom bond-forming 

reactions of aryl sulfides. The first Buchwald-Hartwig-type amination of aryl sulfides was developed by 

Yorimitsu by means of palladium–NHC catalysts. Especially, SingaCycle-A3 and -A1 smoothly catalyzed 

amination of aryl sulfides with anilines and aliphatic amines, respectively, to afford the desired aminated 



products (Scheme 20) [56, 57]. 

 

 

Scheme 20 Amination of aryl sulfides with anilines and alkylamines 

 

A palladium–IPr catalyst system also enabled Miyaura-type ipso-borylation of aryl sulfides with 

bis(pinacolato)diboron (B2pin2) [58]. In the presence of 10 mol% of Pd-PEPPSI-IPr and an excess 

amount of LiN(SiMe3)2 as a base, aryl sulfides could be converted into the borylated products although 

applicable functional groups were limited because of the harsh reaction conditions (Scheme 21a). Almost 

at the same time, Hosoya reported rhodium-catalyzed borylation of aryl sulfides with B2pin2 [59]. By 

utilizing [Rh(OH)(cod)]2/PCy3 as a catalyst, the borylation proceeded without any external bases, thus 

tolerating various functional groups (Scheme 21b).  

 

 
Scheme 21 Borylation of aryl sulfides with palladium or rhodium catalyst 

 

Introduction of a phosphorus atom via C–S bond cleavage was also executed. Chen, Yin, and Han 

developed phosphinylation of aryl sulfides with diaryl- or dialkylphosphine oxides under nickel catalysis 

(Scheme 22) [60]. This reaction was also applicable to aryl sulfones to afford the corresponding 

phosphinylated products.  

 



 

Scheme 22 Nickel-catalyzed phosphinylation of aryl sulfides 

 

Recently, Morandi reported that substitution reaction of aryl methyl sulfides or arenethiols with 

alkanethiol via C(sp2)–S bond cleavage proceeded in the presence of a catalytic amount of 

SingaCycle-A1 and an excess amount of LiN(SiMe3)2 to afford alkyl aryl sulfides (Scheme 23) [61]. The 

successive C–S bond cleavage and formation are reversible and the transformation is regarded as a “C–S 

bond metathesis”.  

 

 

Scheme 23 Palladium-catalyzed C–S bond metathesis 

 

Homogeneous metal catalysts are also effective for hydrogenative desulfanylation of aryl and alkyl 

sulfides. Recently, Martin reported nickel-catalyzed reduction of aryl and benzyl sulfides with 

dimethylethylsilane (Scheme 24a) [62]. Nakada also found that palladium catalyzes reduction of aryl 

sulfides with triethylsilane, which accommodates various functional groups (Scheme 24b) [63]. 

 

 

Scheme 24 Desulfanylation of aryl sulfides 

 

3.2 Cross-Coupling Reactions of Thioesters 

In a fashion similar to the C–S bond-cleaving transformation of aryl sulfides, cross-coupling of thioesters 

has been also extensively studied. While thioesters are air-stable and easy to handle, their C–S bonds are 

more reactive than C–O bonds of esters or C–N bonds of amides. Therefore, thioesters have been 

regarded as readily convertible carboxylic acid derivatives. In 1990, the first example of catalytic C–S 



bond transformation of thioesters was reported by Fukuyama, in which thioesters were reduced to the 

corresponding aldehyde with a hydrosilane and a catalytic amount of Pd/C (Scheme 25a) [64, 65]. In 

1998, Fukuyama also achieved synthesis of ketones from thioesters and organozinc reagents with the aid 

of PdCl2(PPh3)2 catalyst (Scheme 25b) [66].  

 

 

Scheme 25 Catalytic transformations of thioesters into aldehydes and ketones 

 

Later, Liebeskind and Srogl accomplished palladium-catalyzed cross-coupling of thioesters with aryl- and 

alkenylboronic acids mediated by a stoichiometric amount of CuTC (Scheme 26) [67]. Alkylation of 

thioesters was also executed with 9-alkyl-9-BBN reagents with the aid of Cs2CO3 as an activator of the 

boron reagents [68]. 

 

 
Scheme 26 Cross-coupling of thioesters with aryl- and alkenylboronic acids 

 

Liebeskind also developed an alternative approach to ketones from thioesters and organostannane 

compounds (Scheme 27a) [69]. Addition of a stoichiometric amount of copper salt was again effective for 

smooth reaction. Furthermore, in 2005, Liebeskind reported copper-free cross-coupling of thioesters by 

means of organoindium reagents (Scheme 27b) [70]. A variety of aryl and alkylindium reagents could be 

involved in the coupling reaction to yield the corresponding ketones in the absence of copper reagents. 

 



 

Scheme 27 Cross-coupling of thioesters with organostannanes or -indiums 

 

Cross-coupling of thioesters has been often employed in organic synthesis such as peptide 

functionalization and natural product synthesis [47]. Scheme 28 exemplifies functionalization of 

thioester-containing peptides with Liebeskind-Srogl cross-coupling [71]. 

 

  

Scheme 28 C-Terminus functionalization of thioester-containing peptide with Liebeskind-Srogl 

cross-coupling 

 

Very recently, Niwa and Hosoya found that aromatic thioesters also serve as precursors of arylboronate 

esters. By using a rhodium catalyst and B2pin2, they achieved decarbonylative borylation of aromatic 

thioesters (Scheme 29) [72]. 

 

 

Scheme 29 Decarbonylative borylation of aromatic thioesters to furnish arylboronate esters 

 

3.3 Cross-Coupling Reactions of Sulfonium Salts 

As described in Chapter 3.1 and 3.2, cross-coupling of aryl sulfides has been extensively investigated and 

now can be regarded as a useful transformation like conventional halogen-based cross-coupling. By 

means of sophisticated transition metal catalysts or external thiophilic additives, researchers overcame 

rather unreactive C–S bonds as well as inhibition of catalytic turnover by metallophilic sulfur fragments. 



As an alternative means, employment of aryl sulfoniums in place of aryl sulfides offers two advantages: 

(1) the C–S bonds of aryl sulfoniums would be much more reactive in oxidative addition than those of 

aryl sulfides due to their electron-deficiency; (2) leaving dialkyl sulfides should be less catalyst poisonous 

than anionic thiolate species derived from aryl sulfides. 

As a seminal work, Liebeskind accomplished cross-coupling of aryl and benzyl sulfoniums with 

organotin, -boron, and -zinc reagents by using palladium catalysts (Scheme 30a) [73, 74]. Owing to the 

aforementioned advantages of aryl sulfoniums, the reactions proceeded under very mild conditions. For 

instance, arylation with arylboronic acids uneventfully took place even at 50 °C with a mild base, K2CO3 

(Scheme 30b). 

 

 
Scheme 30 Cross-coupling of benzyl, aryl, and alkenyl sulfoniums 

 

Not only Suzuki-Miyaura-type arylation, Mizoroki-Heck-type alkenylation (Scheme 31a) [75] and 

Sonogashira-type alkynylation (Scheme 31) [76] have been also reported recently. 

 

 
Scheme 31 (a) Mizoroki-Heck-type and (b) Sonogashira-type coupling of arylsulfonoium salts 

 

As described above, cross-coupling of aryl sulfoniums provides significant advantages over that of aryl 

sulfides. However, less attention has been paid to the former because aryl sulfoniums must be prepared in 



advance and the preparation often suffers from multi-step manipulations as well as difficulty in 

purification. 

Very recently, Yorimitsu developed practical one-pot borylation of readily available and a wide range of 

aryl sulfides via aryl sulfoniums [77]. Aryl sulfides were easily converted to the corresponding aryl 

sulfoniums through methylation with methyl triflate (MeOTf). After removal of all volatiles, addition of 

catalysts, base, and B2pin2, and subsequent heating at 60 °C gave the desired borylated products (Scheme 

32). Owing to the mild reaction conditions, diverse functional groups including acyl, nitro, hydroxy, 

chloro, and even tosyloxy moiety well survived. Because of its facile manipulation as well as synthetic 

utility, similar one-pot transformations should be further investigated. 

 

  

Scheme 32 One-pot borylation of aryl sulfides via sulfonium 

 

3.4 Ring-Opening Transformation of Thiophenes 

While thiophenes are targets of industrial desulfurization under heterogeneous catalysis, they can also be 

recognized as attractive building blocks in cross-coupling reactions. If cross-coupling reaction takes place 

at both of the C–S bonds of thiophene, it becomes an equivalent of 1,4-dihalobutadiene. Similarly, 

dibenzothiophene and benzothiophene can be regarded as 2,2'-dihalobiphenyl and 2,β-dihalostyrene, 

respectively. 

In the report of the Kumada-Tamao-Corriu-type cross-coupling of aryl sulfides provided by Wenkert [24], 

methylation and phenylation of these three thiophene analogues were described (Scheme 33). 

 



 

Scheme 33 Nickel-catalyzed ring-opening transformations of thiophenes 

 

While dibenzothiophene underwent ring-opening disubstitution in refluxing benzene, monoalkylated 

compound was obtained as the major product when the reaction was conducted at room temperature. 

(Scheme 34) [78]. A similar transformation of benzothiophene gave (Z)-2-(1-propenyl)thioanisole, 

indicating that the first oxidative addition takes place at the pseudovinylic C2–S bond. 

 

 

Scheme 34 Ring-opening monosubstitution 

 

Under Ni–NHC-catalyzed conditions, complete isomerization of the diene moiety took place after the 

ring-opening arylation of thiophene and (E,E)-1,4-diaryl-1,3-butadienes were obtained exclusively [79]. 

Since mono-arylated products were not observed at all, Hintermann proposed a reaction pathway 

involving oxidative cyclization of mono-substituted ring-opening butadienylthiolate 27 instead of 

oxidative addition of the C–SMgBr bond (Scheme 35). 

 



 

Scheme 35 Reaction pathway proposed by Hintermann. The IPr ligand on nickel is omitted for clarity. 

 

Ring-opening of dinaphtho[2,1-b:1',2'-d]thiophene provides 2'-substituted 1,1'-binaphthyl-2-thiols that 

have axial chirality. Hayashi accomplished asymmetric cross-coupling of the dinaphthothiophene with 

organomagnesium reagents by means of Ni(cod)2 and a chiral oxazoline-phosphine ligand to furnish 

axially chiral 1,1'-binaphthylthiols (Scheme 36) [80]. The mercapto group of a binaphthylthiol thus 

synthesized was converted to alkyl, iodo, boryl, and phosphinyl substituents to synthesize various 

2,2'-disubstituted 1,1'-binaphthyls. 

 

 
Scheme 36 Synthesis of chiral binaphthyls by ring-opening cross-coupling of 

dinaphtho[2,1-b:1',2'-d]thiophene 

 

Rh/Cu co-catalysis enabled ring-opening diborylation of dibenzothiophenes to afford 2,2'-diborylbiphenyl 

[81]. Transformation of the boryl groups provided various π-systems (Scheme 37). 



 

 

Scheme 37 Ring-opening diborylation of dibenzothiophenes 

 

Alkylation on the sulfur atom of dibenzothiophenes renders their C(sp2)–S bonds easier to cleave.  

Taking advantage of considerable reactivity of aryl sulfoniums, Yorimitsu accomplished skeletal 

transformation of dibenzothiophenes into triphenylenes (Scheme 38) [82]. Aryl sulfonium 28 derived 

from dibenzothiophene was treated with sodium tetraarylborates in the presence of a catalytic amount of 

Pd(PtBu3)2 to yield the corresponding ring-opening product 29. After SN2-type cyclization with AgSbF6, 

the resulting sulfonium 30 was transformed to the desired triphenylenes through palladium-catalyzed 

intramolecular C–H arylation via C–S bond cleavage. 

 

 
Scheme 38 Skeletal transformation of dibenzothiophenes into triphenylenes assisted by 

palladium-catalyzed ring-opening arylation of sulfoniums 

 



 

3.5 Cross-Coupling Reactions of Sulfoxides 

As an obvious feature of organosulfur compounds, facile interconversion among three oxidation states, 

sulfide, sulfoxide, and sulfone; is extensively utilized in organic chemistry. Aryl sulfoxides have played 

important roles in synthetic organic chemistry. Although Pummerer reaction has been well-known as 

sulfoxide-based organic synthesis, recent researches have revealed their potential toward latest 

technology such as C–H functionalization [83, 84]. 

In stark contrast, C–S bond-cleaving transformation of aryl sulfoxides has been far less investigated. As a 

seminal work, Wenkert achieved methylation and arylation of aryl sulfoxides with methyl- and 

arylmagnesium reagents [24]. In 2013, Enthaler reported similar transformations with a nickel catalyst 

[85]. However, in these reactions, the yields of the products derived from alkyl aryl sulfoxides were less 

than 50%. 

Yorimitsu inferred that the leaving alkanesulfenate anion from alkyl aryl sulfoxide would be 

valence-isoelectronic with peroxide anion and catalyst-oxidizing to impede catalytic turnover and that 

alkyl aryl sulfoxides would be potentially degraded by highly reactive organomagnesium reagents. Based 

on these considerations, Yorimitsu conducted arylation of aryl sulfoxides with moderately reactive 

diarylzinc reagents derived from arylmagnesium, ZnBr2, and LiBr, under nickel catalysis (Scheme 39) 

[86]. By consuming catalytically harmful alkanesulfenate anions through oxidative homocoupling of the 

diarylzinc reagents, smooth catalytic turnover was consummated. Indeed, homocoupling products of 

diarylzinc reagents and the targeted cross-coupling products were obtained in a 1:1 ratio. 

 

 

Scheme 39 Nickel-catalyzed arylation of aryl methyl sulfoxides with diarylzinc reagents 

 

Yorimitsu also developed Sonogashira-Hagihara-type alkynylation of diaryl sulfoxides with terminal 

alkynes by means of Pd-PEPPSI-SIPr as a precatalyst (Scheme 40) [87]. 

Although carbon–heteroatom bond formations such as borylation [59, 88] and phosphinylaiton [60] of 

aryl sulfoxides have been reported, they suffered from low yields of the products and/or poor functional 



group compatibility. Further investigations should be directed. 

 

 
Scheme 40 Sonogashira-Hagihara-type alkynylation of diaryl sulfoxides 

 

3.6 Cross-coupling Reaction of Sulfones 

As electrophilic substrates in cross-coupling reactions, aryl sulfones have attracted less attentions than 

aryl sulfides. Julia reported Ni(acac)2- or Fe(acac)3-catalyzed cross-coupling of alkenyl phenyl sulfones 

or alkenyl tert-butyl sulfones with organomagnesium reagents (Scheme 41) [89]. Notably, ipso-alkylation 

of alkenyl sulfones proceeded in moderate to good yields while alkenyl sulfones may serve as good 

Michael acceptors. 

 

 

Scheme 41 Alkylation of alkenyl sulfones under nickel or iron catalysis 

 

Allylic substitution with Grignard reagents was also enabled by copper [90] or iron [91] catalysis 

(Scheme 42a, b). Benzylic sulfones and α-sulfonylacetophenones can be alkylated under nickel catalysis 

(Scheme 42c) [92]. 

 

 



Scheme 42 Substitution reactions of reactive sulfones with Grignard reagents 

 

Nambo and Crudden developed arylation of diarylmethyl phenyl sulfones with arylboronic acids by 

means of a palladium–NHC catalyst (Scheme 43a) [93]. However, this reaction conditions were not 

applicable to Suzuki-Miyaura arylation of benzyl phenyl sulfones. In order to achieve this transformation, 

they employed sulfonyl leaving groups having an electron-withdrawing moiety. With these leaving 

groups, Suzuki-Miyaura cross-coupling [94] and C–H arylation of azoles [95] with the benzyl sulfones 

afforded diarylmethanes efficiently (Scheme 43b). 

 

  
Scheme 43 Suzuki-Miyaura arylation of diphenylmethyl sulfones and benzyl sulfones 

 

3.7 Cross-coupling Reaction of Sulfonyl Chlorides 

Desulfitative cross-coupling of sulfonyl chlorides has received much attention due to their high 

availability as well as reactivity. Since oxidative addition followed by elimination of SO2 gives arylmetal 

chlorides, sulfonyl chlorides have served as prospective electrophiles in the cross-coupling arena. 

In 1988, Kasahara reported palladium-catalyzed Mizoroki-Heck-type desulfitative alkenylation of 

arylsulfonyl chlorides with styrene and electron-deficient monosubstituted alkenes (Scheme 44) [96].  

Reaction of arylsulfonyl chlorides with ethylene gas gave styrene derivatives as major products, along 

with stilbenes as minor products [97]. Almost at the same time, Miura also reported desulfitative 

alkenylation of arylsulfonyl chlorides with similar alkenes in generally high yields (Scheme 44) [98, 99]. 

 



  

Scheme 44 Desulfitative Mizoroki-Heck reaction of arylsulfonyl chlorides 

 

Vogel tested several phosphine and NHC ligands for the desulfitative Mizoroki-Heck reaction and found 

that Herrmann-Beller palladacycle showed exquisite catalytic activity; the desired alkenylation product 

was obtained with a catalyst loading as low as 0.1 mol% (Scheme 45a) [100]. Despite the high activity of 

the catalyst, a reaction temperature as high as 140 °C was still required for this desulfitative 

transformation. In contrast, when the alkenylation of p-toluenesulfonyl chloride with styrene was 

conducted at a lower reaction temperature (60 °C) with a catalytic amount of Pd(PPh3)4, styryl p-tolyl 

sulfone was obtained without departure of SO2 (Scheme 45b). This sulfone would not be an intermediate 

in the desulfitative Mizoroki-Heck reaction shown in Scheme 45a since it did not expel SO2 in the 

presence of the palladacycle. 

 



  

Scheme 45 Palladium-catalyzed (a) desulfitative Mizoroki-Heck reaction and (b) Mizoroki-Heck reaction 

without desulfitation 

 

Catalytic desulfitative arylation of sulfonyl chlorides has been also extensively conducted with a series of 

arylmetal reagents [101]. Recently, C–H direct arylation via desulfitative process of sulfonyl chlorides 

has been examined. For example, arylation of the 2 positions of furan [102], pyrrole [103], and thiophene 

[104] has been reported (Scheme 46).  

 

  
Scheme 46 C–H arylation of heteroarenes with arylsulfonyl chlorides 

 

Carbonylative transformations were also developed. Miura reported alkoxycarbonylation of arylsulfonyl 

chlorides with titanium tetraalkoxides proceeded under 10 atm of pressure CO to yield the corresponding 

esters (Scheme 47a) [105]. Vogel reported ketone synthesis from arylsulfonyl chlorides and aryltin 

reagents in the presence of a palladium catalyst under 59 atm of CO (Scheme 47b) [106]. 

 



  

Scheme 47 Desulfitative carbonylation of arylsulfonyl chlorides 

 

Sonogashira-Hagihara-type cross-coupling was enabled by palladium/copper co-catalysis (Scheme 48a) 

[107]. Palladium/copper co-catalysis also enabled cyanation of sulfonyl chlorides with copper cyanide 

(Scheme 48b) [108]. 

 

 

Scheme 48 Pd/Cu-cocatalyzed (a) Sonogashira-Hagihara cross-coupling and (b) cyanation 

 

The high reactivity of sulfonyl chlorides enables iodination. In the presence of a palladium complex, 

lithium chloride, zinc iodide, and titanium tetraisopropoxide, naphthylsulfonyl chlorides were converted 

to the corresponding iodonaphthalenes (Scheme 49). 

 

 
Scheme 49 Desulfitative iodination of arylsulfonyl chlorides 

 

3.8 Cross-coupling Reaction of Arylsulfinates 

Arylsulfinates are another class of organosulfur compounds that are utilized in desulfitative 

transformations. Since coordination to transition metal followed by elimination of SO2 gives arylmetal 

intermediates, arylsulfinates serve as nucleophilic coupling partners with the polarity opposite to 



arylsulfonyl chlorides. In 1992, a pioneering work was done by Sato and Okoshi, in which arylsulfinates 

underwent desulfitative cross-coupling with aryl bromides or chlorides with the aid of a palladium 

catalyst (Scheme 50) [109]. The scope of electrophilic coupling partners was later expanded to aryl 

triflates [110] and benzyl chlorides [111]. 

 

 

Scheme 50 Desulfitative cross-coupling of aryl halides with arylsulfinates 

 

Arylsulfinates have also been utilized in oxidative cross-coupling reactions (Scheme 51).  Oxidative 

Mizoroki-Heck reactions with styrenes or electron-deficient alkenes were reported independently by 

Deng [112] and Wang [113]. Oxidative cross-coupling reaction with organosilanes [114] or organoborons 

[115] provided the corresponding biaryl products; this strategy could be also applicable to C–H arylation 

of azoles [116] or polyfluoroarenes [117]. 

 

 

Scheme 51 Oxidative cross-coupling of arylsulfinates 

 

3.9 Cross-coupling Reaction of Sulfonyl Hydrazides 

Sulfonyl hydrazides, which are readily accessible from the corresponding sulfonyl chlorides and 

hydrazine hydrate, are also utilized as nucleophilic coupling partners in desulfinative cross-coupling like 

sulfinates.  In 2012, Tian reported oxidative Mizoroki-Heck-type alkenylation of arylsulfonyl hydrazides 

catalyzed by Pd(OAc)2 [118]. As shown in Scheme 52, the proposed catalytic cycle starts from Pd(OAc)2. 

After deprotonative coordination of sulfonyl hydrazide, β-hydride elimination would provide diazene 31.  

Deprotonative coordination of 31 followed by departure of N2 and SO2 gives arylpalladium intermediate 

32.  Insertion into alkene followed by β-hydride elimination would furnish the product, along with the 

formation of HPdOAc. Reductive elimination of acetic acid and successive oxidation by air regenerate 



Pd(OAc)2. In a similar manner, oxidative cross-coupling reactions of arylsulfonyl hydrazides with 

nucleophilic reagents have been investigated [101]. 

 

 

Scheme 52 Oxidative Mizoroki-Heck reaction of sulfonyl hydrazides. 

 

4 Palladium-Catalyzed Desulfitative Addition of Arylsulfinates to Unsaturated Compounds 

In addition to cross-coupling-type reactions mentioned in the Section 3.8, palladium-catalyzed 

desulfitative addition of arylsulfinates to unsaturated compounds has been actively developed. 

Desulfitative addition of arylsulfinates to aromatic nitriles afforded aryl ketones (Scheme 53) [119, 120]. 

The key step of the reaction would be a desulfitation process to afford arylpalladium species which acts 

as a nucleophilic aryl donor.  After coordination of the nitrile moiety to the arylpalladium intermediate, 

insertion would give imidylpalladium. 

 



 

Scheme 53 Desulfitative addition of arylsulfinates to nitriles. 

 

In analogous fashions, desulfitative addition to α,β-unsaturated ketones [121, 122] as well as 

hydroarylation of alkynes [123] have been reported (Scheme 54).  

 

 
Scheme 54 Desulfitative addition to α,β-unsaturated ketones and alkynes. 

 

 

5 Transition Metal-Catalyzed Insertion of CO or Alkynes into C–S Bonds 

As described in Section 3, considerable efforts have been directed toward cross-coupling reactions of C–S 

bonds. On the other hand, catalytic insertion reactions of CO or C–C triple bonds into C–S bonds have 

been also investigated since they afford useful molecules, specifically thioesters or alkenyl sulfides 

(Scheme 55). However, the products are comparably reactive or more reactive than the starting materials, 



which makes such transformations difficult, especially in the cases of CO insertion where 

decarbonylation is facile. This Section is devoted to recent progress about catalytic insertion of CO or 

alkynes into C–S bonds. 

 

 

Scheme 55 Transition metal-catalyzed insertion into C–S bond. 

 

5.1 Insertion of CO or Its Equivalent into C–S Bonds 

To avoid the undesired decarbonylation event, a high pressure of CO is effective to shift the equilibrium 

to the product side. With this strategy, Alper succeeded in developing CO insertion into the C–S bonds of 

four-membered thietanes catalyzed by a combination of Co2(CO)8 and Ru3(CO)12 (Scheme 56a) [124].  

Whereas Co2(CO)8 and Ru3(CO)12 themselves showed catalytic activity, combined use of both complexes 

improved the reactivity. Later, Komiya found that a Pt–Co heterodinuclear complex enabled the 

transformation at lower reaction temperature and CO pressure [125]. In 1994, Alper reported 

rhodium-catalyzed insertion of CO into benzylic C–S bonds (Scheme 56b) [126]. Alper also developed 

insertion of CO into allylic C(sp3)–S bonds under palladium or ruthenium catalysis (Scheme 56c) [127]. 

The insertion products, 3-butenoyl thioesters, were isomerized to acrylic thioesters under the conditions. 

 

  

Scheme 56 Insertion of CO into C–S bond with high pressures of CO 



 

As synthetic equivalents of gaseous CO, isocyanides have been also utilized in this type of insertion.  

Fujiwara and Kambe achieved palladium-catalyzed insertion of 2,6-xylyl isocyanide into the C–S bonds 

of thiocarbamates (Scheme 57) [128]. Only 2,6-disubstitutedaryl isocyanides reacted under the reaction 

conditions, which suggests that steric bulk around the isocyanide moiety would be important for reductive 

elimination from the imidoylpalladium intermediate. 

 

 

Scheme 57 Palladium-catalyzed insertion of isocyanide into the C–S bond of thiocarbamates 

 

Very recently, Yorimitsu developed insertion of tert-butyl isocyanide into the C–S bonds of heteroaryl 

sulfides by means of a 1,1'-bis(diisopropylphosphino)ferrocene (dippf)-ligated palladium complex 

(Scheme 58) [129]. Subsequent acidic hydrolysis afforded the corresponding heteroaromatic thioesters 

being useful synthetic intermediates. 

 

 

Scheme 58 Palladium-catalyzed insertion of tert-butyl isocyanide into C–S bonds of heteroaryl sulfides 

 

5.2 Carbothiolation: Insertion of Alkynes into C–S Bonds 

Various organosulfur compounds have been found to participate in alkyne insertion reactions to yield 

alkenyl sulfides. Kuniyasu, Kambe, and Kurosawa reported platinum-catalyzed decarbonylative insertion 

of thioesters with terminal alkynes (Scheme 59) [130]. Some stoichiometric reactions justified the 

reaction mechanism where decarbonylation occurred after oxidative addition to generate an 

arylplatinum(II) thiolate.  Insertion of alkynes followed by reductive elimination would afford the 

alkenyl sulfides. The reactions with internal alkynes also proceeded at a higher reaction temperature of 

140 °C, while terminal alkynes reacted at 110 °C [131]. 

 



 
Scheme 59 Platinum-catalyzed decarbonylative carbothiolation of alkynes with thioesters 

 

Thiocarbonates [132], thiocarbamates [133], and imidoyl sulfides [134] as well as thioesters reacted with 

alkynes (Scheme 60). In these cases, decarbonylation did not take place probably due to the presence of 

heteroatom groups. As a result, acrylic esters, acrylamides, and imines, respectively, were obtained under 

palladium or nickel catalysis. 

 

  

Scheme 60 Carbothiolations of alkynes proceeding without decarbonylation 

 

Palladium-catalyzed intramolecular cyclization of an N-propargylthiocarbamate proceeded without 

decarbonylation, producing four-membered lactam (Scheme 61a) [135]. Vinylogous analogues, 

β-(phenylsulfanyl)-N-propargylacrylamides, also cyclized in the presence of a platinum catalyst (Scheme 

61b) [136]. 

 



  

Scheme 61 (a) Palladium-catalyzed and (b) platinum-catalyzed intramolecular carbothiolation 

 

Endocyclic C(=O)–S bonds also undergo alkyne insertion. Kurahashi and Matsubara reported 

decarbonylative insertions of alkynes to thiophthalic anhydrides by employing nickel catalysts (Scheme 

62) [137]. Notably, regioselectivity as well as decarbonylation could be controlled by phosphine ligands 

to selectively synthesize three products: (a) thiocoumarins, (b) thioisocoumarins, and (c) benzothiophenes.  

Addition of methylaluminium bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD) as a Lewis acid was the 

key for the thiocoumarin synthesis. 

 

  
Scheme 62 Nickel-catalyzed decabonylative carbothiolations of alkynes with thiophthalic anhydrides.  

The wavy line indicates the C–S bond where the initial oxidative addition would take place. 

 

Carbothiolation of aryl sulfides with cleavage of aromatic C–S bonds has been developed. Nishihara 



developed insertion of terminal alkynes into C–S bonds of azolyl sulfides (Scheme 63) [138]. In the 

presence of a palladium-NHC complex, carbothiolation took place regioselectively as the azolyl groups 

are attached to the terminal position. 

 

 

Scheme 63 Carbothiolation of terminal alkynes with azolyl sulfides 

 

Alkyne insertion into C–S bonds of aryl sulfides could also be accomplished with the aid of directing 

groups. Aryl sulfides containing a carbonyl group at their ortho-positions participated in 

rhodium-catalyzed insertion reaction with terminal alkynes (Scheme 64) [139]. 

  

Scheme 64 Rhodium-catalyzed carbonyl-directed carbothiolation of alkynes with aryl sulfides 

 

Carbothiolations of alkynes involving C(sp)–S bond activation were also developed. Nomoto and Ogawa 

reported that palladium-catalyzed cyanothiolation of terminal alkynes with phenyl thiocyanate took place 

to provide acrylonitrile derivatives (Scheme 65) [140]. Reaction of PhSCN with a stoichiometric amount 

of Pd(PPh3)4 afforded a complex Pd(SPh)(CN)(PPh3)2 and this complex also catalyzed the insertion 

reaction, which suggests a reaction mechanism that involves an oxidative addition–alkyne insertion–

reductive elimination sequence. 

 

 

Scheme 65 Cyanothiolation of alkynes 

 

Yorimitsu and Oshima developed alkynylthiolation. In the presence of palladium-triarylphosphine 

complexes, reactions of alkynyl phenyl sulfides and terminal alkynes gave sulfanyl enynes (Scheme 66) 

[141]. While reactions of internal alkynes were sluggish, elevated temperatures in the presence of a less 



electron-rich palladium complex enabled synthesis of tetrasubstituted olefins. 

 

 

Scheme 66 Alkynylthiolation of alkynes 

 

A rhenium catalyst was utilized for carbothiolation involving C(sp3)–S bond cleavage. Kuninobu and 

Takai reported that [HRe(CO)4]n catalyzed carbothiolation of terminal alkynes with α-thioketones 

(Scheme 67) [142]. The insertion of alkyne would be followed by isomerization of the olefin moiety, 

resulting in the formation of γ-sulfanyl α,β-unsaturated ketones. 

 

 

Scheme 67 Rhenium-catalyzed carbothiolation of alkynes with α-thioketones 

 

6 Conclusion 

The importance and complexity of catalytic hydrodesulfurization of thiophene derivatives have attracted 

chemists to study stoichiometric reactions of low-valent transition metal complexes with thiophene 

derivatives. Oxidative addition of other acyclic organosulfur compounds to transition metal have also 

been actively investigated. 

Recent remarkable progress on transition metal catalysis has been enabling organosulfur compounds to 

serve as electrophilic coupling partners like organohalogen compounds. The invention of 

electron-donating NHC ligands facilitated the progress by allowing transition metal to participate in 

smooth oxidative addition and facile transmetalation. The use of highly reactive and electron-rich nickel 



catalysts is an alternative key factor to achieve the progress. As an alternative to utilize electron-rich 

transition metal complexes, alkylation on sulfur atom is an effective strategy to make the C–S bond easier 

to cleave. Catalytic transformations of thiophene derivatives afford butadiene, styrene, and biphenyl 

derivatives efficiently. As reactive substrates, arylsulfonyl chlorides have attracted attention because 

oxidative addition of ArSO2–Cl bonds is efficient and departure of SO2 is reasonably smooth. 

Arylsulfinates and arylsulfonyl hydrazides have been utilized in oxidative cross-coupling or precursors of 

carbon nucleophiles via desulfitation. Further development of catalytic transformations of organosulfur 

compounds that transcends halogen-based conventional cross-coupling technology should be expected in 

the near future. 

Insertion of carbon monoxide or its equivalents and alkynes into a C–S bond is inherently difficult 

because the products, thioesters and alkenyl sulfides, respectively, are reactive under the reaction 

conditions. In light of the importance of thioesters and alkenyl sulfides in organic synthesis, such 

insertions are to be developed to a higher level.  
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