
1 INTRODUCTION 

It is well known that near-fault ground motions have peculiar characteristics and long-period, 
long-duration ground motions are causing great influences on high-rise buildings and base-
isolated buildings. The effects of near-fault ground motions on structural response have been 
investigated extensively (Hall et al. 1995, Sasani and Bertero 2000, Alavi and Krawinkler 2004, 
Kalkan and Kunnath 2006, Khaloo et al. 2015). The fling-step and forward-directivity are two 
special keywords to characterize such near-fault ground motions (Mavroeidis and Papageorgiou 
2003, Kalkan and Kunnath 2006).  Especially, Northridge earthquake in 1994, Hyogoken-
Nanbu (Kobe) earthquake in 1995 and Chi-Chi (Taiwan) earthquake in 1999 raised special at-
tention to many earthquake structural engineers. 

The fling-step and forward-directivity inputs have been characterized by two or three wave-
lets.  For this class of ground motions, many useful research works have been conducted.  
Mavroeidis and Papageorgiou (2003) investigated the characteristics of this class of ground mo-
tions in detail and proposed some simple models.  In this paper, several new approaches based 
on the double impulse (Kojima and Takewaki 2015a) and the triple impulse (Kojima and 
Takewaki 2015b) are proposed for various models representing important nonlinear vibration 
phenomena and the intrinsic response characteristics by the near-fault ground motion are cap-
tured.  Then the approaches are applied to several interesting models in practice (soil-structure 
interaction problem, dynamic stability problem including collapse, overturning problem of 
rocking block).  The common concept is the modeling of simple sinusoidal waves into a few 
impulses and the use of energy balance in the closed-form derivation of the maximum elastic-
plastic response.  The use of energy balance is enabled because the impulses cause only free 
vibration and complicated treatment by forced input can be avoided.  The proposed approach 
is expected to overcome the difficulty of computational repetition for capturing resonant phe-
nomena in nonlinear structural dynamics (Caughey 1960, Iwan 1961). 
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ABSTRACT: Near-fault ground motions and long-period, long-duration ground motions pos-
sess special characteristics.  The essential aspect of the near-fault ground motions can be char-
acterized by one-cycle or a few-cycle sinusoidal waves (e.g. Ricker wavelet) which are well 
represented by double or triple impulses.  Furthermore, the principal part of the long-period, 
long-duration ground motions can be characterized by many-cycle sinusoidal waves which are 
well described by multiple impulses.  In this paper, it is shown that good approximate elastic-
plastic responses of various structural models to the near-fault ground motions and long-period, 
long-duration ground motions can be derived by using the responses to the double, triple and 
multiple impulses.  The energy approach plays an important and critical role in the derivation 
of such good approximate responses in closed form. 
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Figure 1. Modeling of main part of pulse-type recorded ground motion into the corresponding one-
cycle sinusoidal input: (a) Rinaldi station fault-normal component (Northridge earthquake 1994),  

(b) Kobe University NS component (almost fault-normal) (Hyogoken-Nanbu (Kobe) earthquake 1995)  
(Kojima and Takewaki 2016a) 
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Figure 2. Modeling of pulse-like ground motions: (a) Fling-step input (one-cycle sine) and double 
impulse, (b) Forward-directivity input (one and half-cycle sine) and triple impulse  

(Kojima and Takewaki 2015a) 

2 MODELING OF MAIN PART OF NEAR-FAULT GROUND MOTION INTO DOUBLE 
IMPULSE AND TRIPLE IMPULSE 

It is known that most near-fault ground motions have a few pulse-like waves as shown in Figure 
1. When only the maximum response is concerned, the response resulting from such pulse-like 
waves is important. In this paper, the main part of the pulse-like ground motions is modeled 
into the double impulse (see Figure 2(a)) or the triple impulse (see Figure 2(b)). 

In this paper, the level of the double or triple impulse is adjusted so that the maximum 
Fourier amplitude of the double or triple impulse is equal to that of the corresponding one-cycle 
sine wave or one and half-cycle sine wave.  This adjustment is made in order to guarantee the 
better response correspondence between the one-cycle sine wave or one and half-cycle sine 
wave and the double or triple impulse. The correspondence of the Fourier amplitudes between 
the one-cycle sine wave or one and half-cycle sine wave and the double or triple impulse is 
shown in Figures 3(a), (b). 



3 CLOSED-FORM ELASTIC-PLASTIC RESPONSE TO CRITICAL DOUBLE IMPULSE 

Figure 4 shows an overview of the response process of an elastic-perfectly plastic single-
degree-of-freedom (SDOF) model to the critical double impulse.  The critical double impulse 
means the double impulse causing the maximum response under a constant velocity amplitude 
and a variable impulse interval (Drenicl 1970, Takewaki 2007). It should be emphasized that 
the critical timing of the second impulse is the time when the restoring force attains zero in the 
first unloading process (Kojima and Takewaki 2015a). The response correspondence (restoring 
force-deformation relation) under the double impulse is shown in Figure 3(c). 
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Figure 3. Adjustment of input level of double or triple impulse to the corresponding one-cycle or one 
and half-cycle sine wave based on Fourier amplitude equivalence and response correspondence under 

double impulse: (a) Double impulse, (b) Triple impulse, (c) Restoring force-deformation correspondence 
under double impulse (Kojima and Takewaki 2015a, b) 
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Figure 4. Overview of elastic-plastic response process of SDOF model to critical double impulse (Critical 
timing of second impulse is the time when the restoring force attains zero in the first unloading process.) 
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Figure 5. Maximum amplitude of deformation for the recorded ground motions and the proposed one: 
(a) Rinaldi station fault-normal component, (b) Kobe University NS component  

(Kojima and Takewaki 2016a) 

 
Figure 5 illustrates the maximum deformation for two recorded ground motions (Rinaldi sta-

tion fault-normal component during Northridge earthquake 1994 and Kobe University NS com-
ponent during Hyogoken-Nanbu (Kobe) earthquake 1995) and that obtained by the proposed 
critical double impulse. Since the recorded ground motion is fixed, the initial velocity V is fixed 
and yV  (product of the natural circular frequency 1  and the yield deformation yd : refer-
ence velocity giving just yield deformation after the first impulse) is changed here.  Because 

1  is closely related to the resonance condition, yd  is changed principally.  This procedure 
is similar to the well-known elastic-plastic response spectrum developed in 1960-1970 in the 
field of earthquake resistant design.  The solid line is obtained by changing yV  for the speci-
fied V using the method for the double impulse and the dotted line is drawn by conducting the 
elastic-plastic time-history response analysis on each model with varied yV  under the recorded 
ground motion.  It can be observed that the result by the proposed method is a fairly good ap-
proximation of the recorded pulse-type ground motions.  If we use a bilinear hysteresis model 
with a positive second slope, the correspondence becomes better. 

4 CLOSED-FORM ELASTIC-PLASTIC RESPONSE TO CRITICAL TRIPLE IMPULSE 

In comparison with the response to the double impulse, the process of deriving the critical tim-
ing is somewhat complicated in the triple impulse.  The maximum deformation after the first 
impulse is denoted by max1u , that after the second impulse is expressed by max 2u  and that af-
ter the third impulse is described by max3u .  The maximum deformation can be obtained by 
using the energy balance of kinetic energy, strain energy and dissipated energy.   

Figure 6 shows the following four cases depending on the input level. 

CASE 1: Elastic response during all response stages ( max3u  is the largest) 

CASE 2: Yielding after the third impulse ( max3u  is the largest) 

CASE 3: Yielding after the second impulse ( max 2u  or max3u  is the largest) 

3-1: The timing of the third impulse is in the unloading stage. 

3-2: The timing of the third impulse is in the yielding (loading) stage. 

CASE 4: Yielding after the first impulse ( max 2u  is the largest) 

It is assumed here that the critical impulse has the second impulse timing (time of the second 
impulses) of zero restoring force in the first unloading process. It can be understood that the 
third impulse timings (time of the third impulses) are different in CASE 3 and CASE 4.  Care-
ful treatment should be made in the derivation of the critical timing (Kojima and Takewaki 
2015b). 
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Figure 6. Prediction of maximum elastic-plastic deformation under triple impulse based on energy ap-

proach (● : first impulse,▲ : second impulse, : third impulse) (Kojima and Takewaki 2015b) 
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Figure 7. Comparison of triple impulse and the corresponding three wavelets of sinusoidal waves: (a) 
Ductility, (b) Earthquake input energy (Kojima and Takewaki 2015b) 

 

Figure 7 shows the comparison of critical ductility and earthquake input energy between the 
triple impulse and the forward-directivity input (one and half-cycle sine wave).  It can be ob-
served that, when the adjustment of input amplitude is made following the procedure in Section 
2, the responses of the triple impulse and the forward-directivity input coincide fairly well. 

5 CLOSED-FORM CRITICAL EARTHQUAKE RESPONSE OF ELASTIC-PLASTIC 
STRUCTURES ON COMPLIANT GROUND UNDER NEAR-FAULT GROUND MOTIONS 

The problem of soil-structure interaction is very interesting and important in the structural and 
geotechnical engineering.  It is aimed here that, once the soil-structure interaction model can 
be modeled into an SDOF model, the formulation presented in Section 3 can be applied to the 
soil-structure interaction model. Figure 8 presents the simplified swaying-rocking model and 
the equivalent SDOF model.  ek  is the equivalent stiffness. 

Figure 9 shows the relation of the maximum deformation ratio ( ) /y p yd u d  ( yd : yield 
deformation, pu : plastic deformation) with / yV V  for three soil conditions and fixed-base 
case. In the low input level, as the ground becomes stiffer, the plastic deformation of the super-
structure becomes larger.  On the other hand, in the large input level, as the ground becomes 
softer, the plastic deformation of the super-structure becomes larger.   These properties result 
from the fact that, as the ground becomes softer, the strain energy stored in the ground becomes 
larger in the case where the super-structure is in the plastic range.  It is interesting to note that 
such properties can be derived by taking full advantage of the closed-form expression of the 
critical elastic-plastic responses (Kojima and Takewaki 2016a). 

 

Hu
R

m

k

Rk

Hk
H

Impulse input 

 S H Ru u u H  

Su

( )Sf u

yf

yd

1

k

   

eu
m

Impulse input 

ek

 

eu

( )e ef u

yf

e
yd

1

ek

 
(a)            (b) 

Figure 8. Modeling in soil-structure interaction problem:  
(a) Simplified swaying-rocking model, (b) Equivalent SDOF model (Kojima and Takewaki 2016a) 
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Figure 9. Relation of the maximum plastic deformation ( ) /y p yd u d  with / yV V  for three soil 

conditions and fixed-base case (Kojima and Takewaki 2016a) 

6 CLOSED-FORM DYNAMIC STABILITY CRITERION FOR ELASTIC-PLASTIC 
STRUCTURES UNDER NEAR-FAULT GROUND MOTIONS 

The problem of dynamic collapse of structures has been an important and challenging problem 
for long time. In this section, it is demonstrated that the proposed approach (balance of input 
energy and dissipated energy) can be applied to this problem. Figure 10 shows several patterns 
of stability limit (patterns of collapse).  The vertical axis is the ratio of the input velocity level 
to the structural strength and the horizontal axis is the second slope ratio to the first stiffness.  
A more detailed derivation can be found in the reference (Kojima and Takewaki 2016b). 

Figure 11(a) shows the maximum deformation with respect to / yV V  under the Rinaldi sta-
tion fault-normal component and the corresponding double impulse.  The solid line has been 
drawn by the proposed method.  On the other hand, the dotted line has been obtained from the 
time-history response analysis for many models with different values of yV .  It can be found 
that about / 0.8yV V   is the approximate limit.  From the detailed investigation, 

/ 0.78yV V   and / 0.79yV V   have been selected for candidates to be investigated.  Figure 
11(b) demonstrates the restoring-force-deformation relation for the stable case ( / 0.78yV V  ) 
and the unstable case ( / 0.79yV V  ).  In addition, Figure 11(c) presents the deformation time-
history for the stable case ( / 0.78yV V  ) and the unstable case ( / 0.79yV V  ).  On the other 
hand, Figure 11(d) shows the corresponding restoring-force time-history for stable case 
( / 0.78yV V  ) and the unstable case ( / 0.79yV V  ).  It can be confirmed that the proposed 
stability limit using the double impulse is fairly accurate. 
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Figure 10. Several patterns of stability limit (patterns of collapse) (Kojima and Takewaki 2016b) 
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Figure 11. Stable model ( / 0.78yV V  ) and unstable model ( / 0.79yV V  ) under Rinaldi station 

fault-normal component: (a) Maximum deformation with respect to / yV V  under Rinaldi station fault-
normal component and the corresponding double impulse, (b) Restoring force-deformation relation for 

stable case and unstable case, (c) Deformation time-history for stable case and unstable case, (d) Restor-
ing-force time-history for stable case and unstable case (Kojima and Takewaki 2016b) 

7 CLOSED-FORM OVERTURNING LIMIT OF RIGID BLOCK UNDER CRITICAL 
NEAR-FAULT GROUND MOTIONS 

A closed-form limit on the input level of the double impulse as a substitute of a near-fault 
ground motion can be derived for the overturning of a rigid block (Nabeshima et al. 2016).  
Figure 12 shows the modeling of the rocking motion of a rigid block using a rigid bar supported 
by a non-linear elastic rotational spring with rigid initial stiffness and negative second slope. 

Figure 13 presents the rocking response of a rigid block and governing law (conservation of 
angular momentum, conservation of energy, energy dissipation). 

Figure 14 illustrates the limit velocity amplitude of the critical double impulse with respect 
to R for 2b=1, 2, 4[m] (closed-form expression and numerical simulation). The proposed 
closed-form limit velocity amplitude coincides fairly well with the numerical simulation result.  
Figure 14 demonstrates that the proposed method seems reliable. 

Figure 15 shows the critical acceleration amplitude ratio of the equivalent one-cycle sinus-
oidal input to acceleration of gravity for 2b=1, 2, 4[m] and the comparison with other results 
(Dimitrakopoulos and DeJong 2012, Makris and Kampas 2016). The accuracy of the proposed 
method can be assured. 
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Figure 12. Modeling of rocking rigid block: (a) Modeling by rigid bar supported by non-linear elastic ro-
tational spring with rigid initial stiffness and negative second slope, (b) Moment-rotation relation for rock-

ing response of rigid block and timing of double impulse 



energy 

dissipation (1)

energy 

dissipation (2)
V V

conservation of 

angular momentum (1)

conservation of 

angular momentum (2)

initial rotational velocity initial rotational velocitychange of rotational velocity

conservation 

of energy (1)

conservation 

of energy (2)

R




1max


2max

impact

conservation of 

angular momentum (3)

energy 

dissipation (3)
 

Figure 13. Rocking response of rigid block and governing law (conservation of angular momentum, con-
servation of energy, energy dissipation) (Nabeshima et al. 2016) 
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Figure 14. Limit velocity amplitude of critical double impulse with respect to R for 2b=1, 2, 4[m] 

(closed-form expression and numerical simulation)  
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Figure 15. Critical acceleration amplitude ratio of equivalent one-cycle sinusoidal input to acceleration 

of gravity for 2b=1, 2, 4[m] and comparison with other results (Nabeshima et al. 2016) 

8 SIMPLE EVALUATION METHOD OF SEISMIC RESISTANCE OF RESIDENTIAL 
HOUSE UNDER TWO CONSECUTIVE SEVERE GROUND MOTIONS 

In the 2016 Kumamoto earthquake in Japan, two severe ground shakings with the seismic inten-
sity 7 (the highest level in Japan Metheorological Agency (JMA) scale; approximately X-XII in 
Mercalli scale) occurred consecutively on April 14 and April 16.  In the seismic regulations of 
most countries, it is usually prescribed that such severe earthquake ground motion occurs once 
in the working period of buildings.  A simple evaluation method has been proposed on the 
seismic resistance of residential houses under two consecutive severe ground motions with in-
tensity 7 (Kojima and Takewaki 2016c). In that paper, an impulse of the velocity V has been 
adopted as a representative of near-fault ground motion and two separated impulses have been 
used as the repetition of intensive ground shakings with the seismic intensity 7 (see Figure 16). 

Figure 17 presents the collapse scenario under two impulses and energy consideration for 
evaluating limit input velocity. Figure 18 illustrates the [2] [1]/y yV V  for the second-slope ratio 
  where [1]

yV  denotes the reference velocity (strength of the model) just collapsing after one 
impulse and [2]

yV  denotes the reference velocity (strength of the model) just collapsing after 
two impulses. Finally the plot of [2] [1]/y yf f  (the ratio of the model strength for just collapse 
after two impulses to that for just collapse after one impulse) is shown in Figure 19. The simu-
lation using the Kumamoto earthquake ground motion (on April 16) is also included. 
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Figure 16. Modeling of repeated intensive ground motions into two impulses  

(Kojima and Takewaki 2016c) 
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Figure 17. Collapse scenario under two impulses and energy consideration for evaluating limit input level 

(Kojima and Takewaki 2016c) 
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Figure 20. Resonant response of a super high-rise building in Osaka, Japan during the 2011 Tohoku   
(Japan) earthquake under long-duration, long-period ground motion (Kojima and Takewaki 2015c) 

9 CLOSED-FORM ELASTIC-PLASTIC RESPONSE TO CRITICAL MULTIPLE IMPULSE 

Long-period, long-duration ground motions are of great concern recently after the Mexico 
earthquake in 1985, the Tokachioki earthquake in 2003 and the Tohoku (Japan) earthquake in 
2011 (Kojima and Takewaki 2015c).  Figure 20 shows an actual resonant response of a super 
high-rise building in Osaka, Japan during the 2011 off the Pacific coast of Tohoku earthquake.  
This phenomenon clearly indicates the necessity and requirement of consideration of response 
under long-duration ground motion. 

The multiple impulse input can be used as a substitute of the long-duration earthquake 
ground motion, mostly expressed in terms of harmonic waves, and a closed-form solution can 
be derived of the elastic-plastic response of an SDOF structure under the critical multiple im-
pulse input.  While the critical set of input amplitude and input frequency (timing of impulse) 
have to be computed iteratively for the multi-cycle sinusoidal wave, that can be obtained direct-
ly without iteration for the multiple impulse input by introducing a modified version (only the 
timing between the first and second impulses is modified so that the second impulse is given at 
the zero restoring-force).  The resonance can be proved by using energy investigation.  The 
critical timing of the multiple impulses can be characterized as the time with zero restoring 
force.  This decomposition of input amplitude and input frequency has overcome the long-time 
difficulty in finding the resonant frequency without repetition. 

Since only the free-vibration appears in such multiple impulse input, the energy approach 
plays an important role in the derivation of the closed-form solution of a complicated elastic-
plastic critical response.  In other words the energy approach enables the derivation of the 
maximum critical elastic-plastic seismic response without solving the differential equation 
(equation of motion).  In this process, the input of impulse is expressed by the instantaneous 
change of velocity of the structural mass.  The maximum elastic-plastic response after impulse 
can be obtained by equating the initial kinetic energy computed by the initial velocity to the 
sum of hysteretic and elastic strain energies as in the formulation under the double and triple 
impulses. 

10 CONCLUSIONS 

In this paper, it has been shown that good approximate elastic-plastic responses of various 
structural models to near-fault ground motions and long-duration ground motions can be de-
rived by using the responses to the corresponding double, triple and multiple impulses. The 
original energy approach played an important role in the derivation of such good approximate 
responses in closed form. It should be emphasized that even the phenomena expressed by the 
negative second slope can be treated in a unified manner.  
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